
Welcome to Object-Oriented WorldWelcome to Object-Oriented World

Bartosz Walter
<Bartek.Walter@man.poznan.pl>

Object-oriented Design, Refactoring &
Testing

Lecture 1

Important dataImportant data

Lectures
Thursdays, 11.45 AM, Polish-German Academic

Centre

Duty hours: Wednesdays, 1:30-3.00 PM, room
2@PGAC

Laboratory classes

Thursdays, 8.00 PM, 9.45 PM

Teacher: Andrzej Swędrzyński
kokosz@man.poznan.pl

Method of verification

Examination

Schedule outlineSchedule outline

1. Object-oriented world
2. Introduction to Java
3. Good programming

practices
4. Unit-testing
5. Refactoring
6. Design patterns
7. Automated testing

1 week
1 week
1 week
1 week
3-4

weeks
3-4

weeks
1 week

What object-orientation means?What object-orientation means?

Encapsulation
Polymorphism

Inheritance

Abstraction

Flexibility

Modularization
Reuse

AbstractionAbstraction

1. Everything is an object

2. Program is a set of objects, which interact by
sending messages to each other

3. Every object is composed of other objects

4. Object has its type

5. All objects of given type can accept the same
messages

Alan Kay, author of Smalltalk:

PolymorphismPolymorphism

Phone

call()

Mobile Phone

call()

Polymorphism: ability to accept the message by an
appropriate class known at runtime

InterfacesInterfaces

Phone

call()

Mobile Phone

call()

Phone.call()

InterfacesInterfaces

Phone.call()

Phone

call()

Mobile Phone

call()

Wire Phone

call()

InterfacesInterfaces

Phone.call()

Phone

call()

Mobile Phone

call()

Wire Phone

call()

Interface: visible part of the class

Program to interfaces, not implementation.

Multiple interfacesMultiple interfaces

Clock

Phone

call()

Mobile Phone

call()
time()

Wire Phone

call()
time()

Clock

time()

Phone
Mobile Phone is a

Phone

Mobile Phone is a
Clock

Interfaces vs. inheritanceInterfaces vs. inheritance

Phone

call()

Mobile Phone

call()

Phone

call()

Mobile Phone

call()

Wire Phone

call()

Mobile Phone is
a kind of Phone.
It can call like a

Phone.

Wire Phone and Mobile
Phone are of type Phone.

They both can call.

Class inheritance vs. interface inheritanceClass inheritance vs. interface inheritance

Class inheritance: inherits (default) implementation

Interface inheritance: inherits method signatures

Wire Phone

call()

Phone

call()
Phone

call()

Mobile Phone

call()

DefaultPhone

call()

DefaultMobilePhone

call()

EncapsulationEncapsulation

Human

setHairColor()
getHairColor()
setHeight()
getHeight()
setName()
getName()

hair color

height

name

...

h = new Human();

h.setName();

h.getHeight();

...

EncapsulationEncapsulation

Human

setHairColor()
getHairColor()
setHeight()
getHeight()
setName()
getName()

Human

setHairColor()
getHairColor()
setHeight()
getHeight()
Human(name)

Do not create invalid objects

EncapsulationEncapsulation

How about safety?

Book
categories

getCategories() : Vector

Category
1..n

0..n

1..n

0..n

Book
categories

getCategories() : Category[]

Category
1..n

0..n

1..n

0..n

EncapsulationEncapsulation

Provide safe access to objects.

Book
categories

getCategories() : Iterator

Category
1..n

0..n

1..n

0..n

return
categories.iterator();

Access levelsAccess levels

public

protected

private

implementation

Different types of relations: associationDifferent types of relations: association

User Phone

Phone belongs to the User.

Phone can change the User

User does not need to know the Phone.

User can possess many Phones.

Phone and User can exist independently.

Different types of relations: compositionDifferent types of relations: composition

Book Page

Book is composed of pages.

Page is a part of book.

Page cannot exist apart from book.

Book manages pages (adds, removes etc.)

Different types of relations: inheritanceDifferent types of relations: inheritance

Wire Phone is a kind of Phone.

Wire Phone can access Phone.

Phone cannot be used instead of Wire Phone.

Wire Phone can be used instead of Phone.

Wire Phone must inherit all features of Phone.

Phone is a indistractable part of Wire Phone.

Wire Phone

call()

Phone

call()

Inheritance vs. compositionInheritance vs. composition

Wife

Husband

Wife

Wife Husband

0..10..10..1 0..1

Wife Husband

0..10..10..1 0..1

Human Human

Inheritance vs. composition: pros & consInheritance vs. composition: pros & cons

Inheritance Composition

Fixed at compile-time

More error-resistant

Heavyweight,

Exhibits internals

Indistractable

Evaluated at runtime

More error-prone

Lightweight

Flexible

Prefer composition over inheritance

Value objectsValue objects

Identified by value

There may exist multiple equal objects

Objects are immutable

Money

If (objectA.equals(objectB)) {
 // objectA & objectB have common content
}

Time objects

Physical values

Reference objectsReference objects

Identified by reference

There may exist only one instance (or caching is used)

Objects are changeable

People

If (objectA == objectB) {
 // objectA & objectB refer to the same object
}

Mobile phones

Books

ExampleExample

The library catalog contains adults and children.

Catalog

Human

Adult Child

Catalog

Adult Child

Human Age

Another exampleAnother example

Some of employees are managers.

Employee

getSalary()

Manager

getSalary()

Manager

getSalary()

Worker

getSalary()

Employee

getSalary()

Job

getSalary()

Yet another...Yet another...

Every child knows their parent(s)

Parent Child
1 1..n1 1..n

Parent

Child

BibliographyBibliography

1. J. W. Cooper: Java. Wzorce projektowe.
Helion 2001

2. B. Eckel: Thinking in Java. Helion 2001
3. J. Shalloway, J. Trott: Projektowanie

zorientowane obiektowo. Wzorce
projektowe. Helion 2001

4. E. Gamma et al.: Design patterns.
Elements... Addison-Wesley 1995

5. M. Fowler: Refactoring. Improving
design... Addison-Wesley 1999

6. J. Langer: Java style. Patterns for
implementation. Prentice Hall 2000

Q&AQ&A

