
Design patternsDesign patterns
Part IIIPart III

Advanced Object-Oriented Design
Lecture 12

Bartosz Walter
<Bartek.Walter@man.poznan.pl>



Design patternsDesign patterns

Catalog of Design Patterns



Decorator: IntentDecorator: Intent

 Attach additional responsibilities to an 
object dynamically.

 Provide a flexible alternative to subclassing for 
extending functionality.

by the Gang of Four



Decorator: StructureDecorator: Structure

by the Gang of Four



Decorator: ParticipantsDecorator: Participants

by the Gang of Four

 Component
 declares an interface for objects rhat can have additional 

responsibilities
 Concrete Component

 implements the Component interface
 Decorator

 declares an interface that conforms to Component’s interface
 knows about Component

 Concrete Decorator
 adds responsibilities to the component



Decorator: ConsequencesDecorator: Consequences

by the Gang of Four

more flexible than static inheritance
 responsibilities can be added at run-time
 less complex class hierarchy

pay-as-you-go
 features are added whenever needed

object identities differ
 object identity is different from Decorator's identity

lot of small decorating classes



Decorator: ImplementationDecorator: Implementation

 Conformance of interfaces
 Decorator and Component must implement same interface

 Default Decorator
 Keeping Component lightweight

 the data storage should be deferred to subclasses

 Strategy vs. Decorator
 Strategy deals with changing the guts
 Decorator deals with changing the skin

by the Gang of Four



Decorator: Example of useDecorator: Example of use

The hierarchy of java.io.* classes.
FilterInputStream is a decorator for InputStream. 
Its subclasses provide decorated 
implementations for the InputStream methods, 
and then forward the requests to the component 
object (InputStream).

by the Gang of Four



Flyweight: IntentFlyweight: Intent

Use sharing to support large numbers of fine-
grained objects efficiently 

by the Gang of Four



Flyweight: StructureFlyweight: Structure

by the Gang of Four



Flyweight: ParticipantsFlyweight: Participants

by the Gang of Four

Flyweight
 declares an interface through which flyweights can receive and 

act on extrinsic state
Concrete Flyweight
 adds storage for intrinsic state (if any)
must be independent of its context

Unshared Concrete Flyweight
 non-sharable flyweight

Flyweight Factory
 creates and manages flyweight objects
 ensures that flyweights are shared properly

Client
 implements Implementor interface



Flyweight : ConsequencesFlyweight : Consequences

 growing space savings
 reduction of total number of instances
 reduction of intrinsic state
 extrinsic state may be computed or stored

 run-time costs
 managing the extrinsic state

by the Gang of Four



Flyweight: Example of useFlyweight: Example of use

Dealing with icons displayed on the screen.
The icons share most of their data, except 
for the name and pointer to the underlying 
object. Therefore they can implement the 
flyweight: the core of the object is shared 
among them, and parametrized with their 
intrinsic state.

by the Gang of Four



Command: IntentCommand: Intent

 Encapsulate a request as an object.

 Allow parametrizing clients with different 
requests.

 Support undoable operations

by the Gang of Four



Command: StructureCommand: Structure

by the Gang of Four



Command: ParticipantsCommand: Participants

by the Gang of Four

 Command
 declares an interface for executing an operation

 ConcreteCommand
 defines a binding between a Receiver and an action
 implements execute() method

 Client
 creates a ConcreteCommand object and sets its receiver

 Invoker
 asks the command to carry out the request

 Receiver
 knows how to perform the concrete operations



Command: ConsequencesCommand: Consequences

 decoupling the sender from receiver
 Commands can be manipulated and extended like any other 

object
 Commands can be assembled into a composite command
 adding new Commands is easy

by the Gang of Four



Command: Example of useCommand: Example of use

In the menu bar, after an item is clicked, an 
appropriate command is issued and executed.
The MenuItem stores commands and invokes 
appropriate one for the given receiver (a 
document etc.). Concrete Commands handles the 
request.



Mediator: IntentMediator: Intent

 Define an object that encapsulates how a set 
of objects interact.

 Promote loose coupling by keeping objects 
from referring to each other explicitly.

 Allow varying their interaction 
independently.

by the Gang of Four



Mediator: StructureMediator: Structure

by the Gang of Four



Mediator: ParticipantsMediator: Participants

by the Gang of Four

Mediator
 defines an interface for communicating woth Colleague 

objects

Concrete Mediator
 implements cooperative behaviour by coordinating 

Colleagues
 knows and maintains its Colleagues

Colleague classes 
 each of them knows its Mediator
 colleage communicates with Mediator instead of another 

Colleague



Mediator: ConsequencesMediator: Consequences

 limited subclassing
Mediator localizes behavior that otherwise would be distributed
 changing the behavior requires subclassing the Mediator only

 decoupling the colleagues from each other
 simplified object protocols

Mediator replaces a many-to-many associations with one-to-
many

 centralized control
 trade-off between complexity of interaction with compexity of 

mediator
mediator becomes a hard to maintain monolith by the Gang of Four



Mediator: Example of useMediator: Example of use

Communication of related widgets in a graphical 
application.
Routing the requests

by the Gang of Four



Template Method: IntentTemplate Method: Intent

 Define the skeleton of an algorithm in an 
operation, deferring some steps to 
subclasses.

 Allow subclasses redefining certain steps 
of an algorithm without changing the 
algorithm's structure.

by the Gang of Four



Template Method: StructureTemplate Method: Structure

by the Gang of Four



Template Method: ParticipantsTemplate Method: Participants

 AbstractClass
 defines abstract primitive operations
 implements a template method defining the skeleton of an 

algorithm
 ConcreteClass

 implements primitive operations

by the Gang of Four



Template Method: ConsequencesTemplate Method: Consequences

 inverted control structure
don't call us, we will call you

 different kinds of operations called by TM
concrete operations (on Concrete Class or client classes)
concrete Abstract Class operations (methods useful for subclasses)
primitive operations (abstract methods)
factory methods
hook operations (default behavior that can be extended)

by the Gang of Four



Template Method: Example of useTemplate Method: Example of use

by the Gang of Four

Generic algorithms with hooks and abstract 
methods.
Sorting algorithms can extend a common class 
which specifies methods to implement and 
reuse.



Visitor: IntentVisitor: Intent

 Represent an operation to be performed 
on the elements of an object structure.

 Allow defining a new operation without 
changing the classes of the elements on 
which it operates.

by the Gang of Four



Visitor: StructureVisitor: Structure

by the Gang of Four



Visitor: ParticipantsVisitor: Participants

 Visitor
 declares operations for every ConcreteElement to be visited

 Concrete Visitor
 implements the operations

 Element
 defines accept() operation parametrized with Visitor

 Concrete Element
 implements accept() operation

 Object Structure
 can enumerate its elements
 may provide a high-level interface to allow the visitor to visit its 

elements by the Gang of Four



Visitor: ConsequencesVisitor: Consequences

 easy adding new operations
 new Visitors can traverse the object structure

 gathering related operations and separation 
of unrelated ones
 related behavior is localized in a Visitor
 unrelated sets of behavior are partitioned in their own Visitor 

subclasses
 difficult adding new Concrete Elements

 each Concrete Element gives rise to a new operation on 
Visitor and corresponding Concrete Visitors

 visiting across class hierarchies
 unlike Iterator, the Visitor can visit objects of different classes

by the Gang of Four



Visitor: Consequences (cont.)Visitor: Consequences (cont.)

 accumulating state
 Visitors can accumulate state during the object traversal

 breaking encapsulation
 pattern often enforces existance often public operations that 

access an element's internal state

by the Gang of Four



Iterator: IntentIterator: Intent

Provide a way to access elements of an 
aggregate sequentially without exposing its 
internal structure.

by the Gang of Four



Iterator: StructureIterator: Structure

by the Gang of Four



Iterator: ParticipantsIterator: Participants

 Iterator
– declares an interface for accessing and iterating through 

aggregates
 Concrete Iterator

– performs necessary computations
 Aggregate

– declares an interface for creating Iterator
 Concrete Aggregate

– implements Iterator interface

by the Gang of Four



Iterator: ConsequencesIterator: Consequences

 supports multiple variations of traversing 
the aggregate
 adapts only to a concrete class, not subclasses

 multiple traversal allowed
 each Iterator keeps track of the running traversal

by the Gang of Four



ReadingsReadings

1. Gamma E. et al., Design Patterns. 
Elements of Reuseable Object-Oriented 
Software. Addison-Wesley, 1995

2. Eckel B., Thinking in patterns. 
http://www.bruceeckel.com

3. Cooper J., Java. Wzorce Projektowe. 
Helion, 2001

4. Shalloway A., Trott J., Projektowanie 
zorientowane obiektowo. Wzorce 
projektowe. Helion, 2001



Q & AQ & A


