
Design patternsDesign patterns
Part IIIPart III

Advanced Object-Oriented Design
Lecture 12

Bartosz Walter
<Bartek.Walter@man.poznan.pl>



Design patternsDesign patterns

Catalog of Design Patterns



Decorator: IntentDecorator: Intent

 Attach additional responsibilities to an 
object dynamically.

 Provide a flexible alternative to subclassing for 
extending functionality.

by the Gang of Four



Decorator: StructureDecorator: Structure

by the Gang of Four



Decorator: ParticipantsDecorator: Participants

by the Gang of Four

 Component
 declares an interface for objects rhat can have additional 

responsibilities
 Concrete Component

 implements the Component interface
 Decorator

 declares an interface that conforms to Component’s interface
 knows about Component

 Concrete Decorator
 adds responsibilities to the component



Decorator: ConsequencesDecorator: Consequences

by the Gang of Four

more flexible than static inheritance
 responsibilities can be added at run-time
 less complex class hierarchy

pay-as-you-go
 features are added whenever needed

object identities differ
 object identity is different from Decorator's identity

lot of small decorating classes



Decorator: ImplementationDecorator: Implementation

 Conformance of interfaces
 Decorator and Component must implement same interface

 Default Decorator
 Keeping Component lightweight

 the data storage should be deferred to subclasses

 Strategy vs. Decorator
 Strategy deals with changing the guts
 Decorator deals with changing the skin

by the Gang of Four



Decorator: Example of useDecorator: Example of use

The hierarchy of java.io.* classes.
FilterInputStream is a decorator for InputStream. 
Its subclasses provide decorated 
implementations for the InputStream methods, 
and then forward the requests to the component 
object (InputStream).

by the Gang of Four



Flyweight: IntentFlyweight: Intent

Use sharing to support large numbers of fine-
grained objects efficiently 

by the Gang of Four



Flyweight: StructureFlyweight: Structure

by the Gang of Four



Flyweight: ParticipantsFlyweight: Participants

by the Gang of Four

Flyweight
 declares an interface through which flyweights can receive and 

act on extrinsic state
Concrete Flyweight
 adds storage for intrinsic state (if any)
must be independent of its context

Unshared Concrete Flyweight
 non-sharable flyweight

Flyweight Factory
 creates and manages flyweight objects
 ensures that flyweights are shared properly

Client
 implements Implementor interface



Flyweight : ConsequencesFlyweight : Consequences

 growing space savings
 reduction of total number of instances
 reduction of intrinsic state
 extrinsic state may be computed or stored

 run-time costs
 managing the extrinsic state

by the Gang of Four



Flyweight: Example of useFlyweight: Example of use

Dealing with icons displayed on the screen.
The icons share most of their data, except 
for the name and pointer to the underlying 
object. Therefore they can implement the 
flyweight: the core of the object is shared 
among them, and parametrized with their 
intrinsic state.

by the Gang of Four



Command: IntentCommand: Intent

 Encapsulate a request as an object.

 Allow parametrizing clients with different 
requests.

 Support undoable operations

by the Gang of Four



Command: StructureCommand: Structure

by the Gang of Four



Command: ParticipantsCommand: Participants

by the Gang of Four

 Command
 declares an interface for executing an operation

 ConcreteCommand
 defines a binding between a Receiver and an action
 implements execute() method

 Client
 creates a ConcreteCommand object and sets its receiver

 Invoker
 asks the command to carry out the request

 Receiver
 knows how to perform the concrete operations



Command: ConsequencesCommand: Consequences

 decoupling the sender from receiver
 Commands can be manipulated and extended like any other 

object
 Commands can be assembled into a composite command
 adding new Commands is easy

by the Gang of Four



Command: Example of useCommand: Example of use

In the menu bar, after an item is clicked, an 
appropriate command is issued and executed.
The MenuItem stores commands and invokes 
appropriate one for the given receiver (a 
document etc.). Concrete Commands handles the 
request.



Mediator: IntentMediator: Intent

 Define an object that encapsulates how a set 
of objects interact.

 Promote loose coupling by keeping objects 
from referring to each other explicitly.

 Allow varying their interaction 
independently.

by the Gang of Four



Mediator: StructureMediator: Structure

by the Gang of Four



Mediator: ParticipantsMediator: Participants

by the Gang of Four

Mediator
 defines an interface for communicating woth Colleague 

objects

Concrete Mediator
 implements cooperative behaviour by coordinating 

Colleagues
 knows and maintains its Colleagues

Colleague classes 
 each of them knows its Mediator
 colleage communicates with Mediator instead of another 

Colleague



Mediator: ConsequencesMediator: Consequences

 limited subclassing
Mediator localizes behavior that otherwise would be distributed
 changing the behavior requires subclassing the Mediator only

 decoupling the colleagues from each other
 simplified object protocols

Mediator replaces a many-to-many associations with one-to-
many

 centralized control
 trade-off between complexity of interaction with compexity of 

mediator
mediator becomes a hard to maintain monolith by the Gang of Four



Mediator: Example of useMediator: Example of use

Communication of related widgets in a graphical 
application.
Routing the requests

by the Gang of Four



Template Method: IntentTemplate Method: Intent

 Define the skeleton of an algorithm in an 
operation, deferring some steps to 
subclasses.

 Allow subclasses redefining certain steps 
of an algorithm without changing the 
algorithm's structure.

by the Gang of Four



Template Method: StructureTemplate Method: Structure

by the Gang of Four



Template Method: ParticipantsTemplate Method: Participants

 AbstractClass
 defines abstract primitive operations
 implements a template method defining the skeleton of an 

algorithm
 ConcreteClass

 implements primitive operations

by the Gang of Four



Template Method: ConsequencesTemplate Method: Consequences

 inverted control structure
don't call us, we will call you

 different kinds of operations called by TM
concrete operations (on Concrete Class or client classes)
concrete Abstract Class operations (methods useful for subclasses)
primitive operations (abstract methods)
factory methods
hook operations (default behavior that can be extended)

by the Gang of Four



Template Method: Example of useTemplate Method: Example of use

by the Gang of Four

Generic algorithms with hooks and abstract 
methods.
Sorting algorithms can extend a common class 
which specifies methods to implement and 
reuse.



Visitor: IntentVisitor: Intent

 Represent an operation to be performed 
on the elements of an object structure.

 Allow defining a new operation without 
changing the classes of the elements on 
which it operates.

by the Gang of Four



Visitor: StructureVisitor: Structure

by the Gang of Four



Visitor: ParticipantsVisitor: Participants

 Visitor
 declares operations for every ConcreteElement to be visited

 Concrete Visitor
 implements the operations

 Element
 defines accept() operation parametrized with Visitor

 Concrete Element
 implements accept() operation

 Object Structure
 can enumerate its elements
 may provide a high-level interface to allow the visitor to visit its 

elements by the Gang of Four



Visitor: ConsequencesVisitor: Consequences

 easy adding new operations
 new Visitors can traverse the object structure

 gathering related operations and separation 
of unrelated ones
 related behavior is localized in a Visitor
 unrelated sets of behavior are partitioned in their own Visitor 

subclasses
 difficult adding new Concrete Elements

 each Concrete Element gives rise to a new operation on 
Visitor and corresponding Concrete Visitors

 visiting across class hierarchies
 unlike Iterator, the Visitor can visit objects of different classes

by the Gang of Four



Visitor: Consequences (cont.)Visitor: Consequences (cont.)

 accumulating state
 Visitors can accumulate state during the object traversal

 breaking encapsulation
 pattern often enforces existance often public operations that 

access an element's internal state

by the Gang of Four



Iterator: IntentIterator: Intent

Provide a way to access elements of an 
aggregate sequentially without exposing its 
internal structure.

by the Gang of Four



Iterator: StructureIterator: Structure

by the Gang of Four



Iterator: ParticipantsIterator: Participants

 Iterator
– declares an interface for accessing and iterating through 

aggregates
 Concrete Iterator

– performs necessary computations
 Aggregate

– declares an interface for creating Iterator
 Concrete Aggregate

– implements Iterator interface

by the Gang of Four



Iterator: ConsequencesIterator: Consequences

 supports multiple variations of traversing 
the aggregate
 adapts only to a concrete class, not subclasses

 multiple traversal allowed
 each Iterator keeps track of the running traversal

by the Gang of Four



ReadingsReadings

1. Gamma E. et al., Design Patterns. 
Elements of Reuseable Object-Oriented 
Software. Addison-Wesley, 1995

2. Eckel B., Thinking in patterns. 
http://www.bruceeckel.com

3. Cooper J., Java. Wzorce Projektowe. 
Helion, 2001

4. Shalloway A., Trott J., Projektowanie 
zorientowane obiektowo. Wzorce 
projektowe. Helion, 2001



Q & AQ & A


