(c) Bartosz Walter

Lecture 14

Aspect-Oriented Programming

Bartosz Walter
<Bartek.Walter@man.poznan.pl>

bjects are not enough

Object-oriented paradigm
= system is a set of collaborating units — classes
= classes allow for hiding their implementation and expose
interfaces only
= polymorphism localizes common behavior and provides
interface for related concepts, and allows for specializations

but OO paradigm fails to address properly
functions that span
multiple unrelated units

Aspect Oriented Programming

Requirements decomposition

Core requirements System requirements
(bussiness) o (technical) S
S & & 3
L § o S & S
& &S § & & 9

Implications

= Code tangling
Modules in a software system may simultaneously interact with
several requirements. For example, often developers
simultaneously think about business logic, performance,
synchronization, logging, and security. Such a multitude of
requirements results in the simultaneous presence of elements
from each concern's implementation, resulting in code tangling.

= Code scattering
Since crosscutting concerns, by definition, spread over many
modules, related implementations also spread over all those
modules. For example, in a system using a database,
performance concerns may affect all the modules accessing
the database.

http://'www.javaworld.com/

Concerns

A concern is a particular goal, concept, or area of interest.

In technology terms, a typical software system comprises several
core and system-level concerns.

For example, a credit card processing system's core concern would
process payments, while its system-level concerns would handle
logging, transaction integrity, authentication, security, performance,
and so on. Many such concerns — known as crosscutting concerns —
tend to affect multiple implementation modules.

Using current programming methodologies, crosscutting concerns
span over multiple modules, resulting in systems that are harder to
design, understand, implement, and evolve.

AspectJ homepage

Aspect-oriented programming

(c) Bartosz Walter

System = a set of concerns

Persistence

L .
i Logging
)

Tmple mentation
Modules

http://'www.javaworld.com/

AspectJ basics

PARC AspectJ

= a freely available AOP implementation for Java from
Xerox PARC

= uses Java as the language for implementing individual
concerns,

= specifies extensions to Java for weaving rules

= the rules are specified in terms of pointcuts, join points,
advices, and aspects

= aspect compiler combines different aspects and the
original code together at byte-code level

Xerox Palo-Alto Research Center

Hello, World!

public class HelloWorld {
public static void say(String message) { \
System.out.printin(message);

public static void sayToPerson(String message, String name) {
System.out.printin(name + ", " + message);

AspectJ homepage

Hello, World! (cont,)

public aspect MannersAspect {
pointcut callSayMessage() :

call(public static void HelloWorld.say*(..));

before() : callSayMessage() {
System.out.printin("Good day!");

}

after() : callSayMessage() {
System.out.printin("Thank you!");

}

}

AspectJ homepage

Basic AspectJ concepts

= joinpoint
an identifiable point in a program'’s execution; e.g. joinpoints
could define calls to specific methods in a class, loops,
assignments, handling exceptions etc.

= pointcut
program construct to designate joinpoints and collect specific
context at those points

= advice

code that runs upon meeting certain conditions: before, after
and around a pointcut; e.g. an advice could log a message
before executing a joinpoint

AspectJ homepage

Aspect-oriented programming

(c) Bartosz Walter

= dedicated classes that can crosscut other classes
= units of modularization

= put together advices and pointcuts

= can contain methods and fields

= can extend classes or interfaces

Aspects
aspect DisplayUpdating {
poi ntcut nove():
call (void Line.setP1(Point)) ||
call (void Line.setP2(Point));

after() returning: nmove() {
Di spl ay. update();
}
}

method
execution join

JOinpOintS points method call join

points

a method execution

= Method or constructor call
captures methods or constructors signatures

= Method or constructor execution
captures methods or constructors bodies

= Read/write access to a field

= Exception handler execution

= Object and class initialization execution

A pointcut is a kind of predicate on joinpoints that:
= matches or not a given joinpoint
= captures the context of that joinpoint

name parameters

. poi ntcut setEnd():
Pointcuts cal I (void Line.setPi(Point)) ||

cal | (voi d Line.setP2(Point))

k primitive pointcut, can also be:

- call, execution - this, target, args
- get, set - within, withincode
- handler - cflow, cflowbelow

- initialization, staticinitialization
matches if the join point is a method call with this signature

© Palo Alto Research Center

Aspect-oriented programming

(c) Bartosz Walter

Pointcuts in AspectJ: call

call: represent calls to methods or constructors (after
evaluation of arguments, but prior to the call itself)

| call (MethodOrConstructorSignature) |

call(* MyClass.myMethod*(String,..)) Call to any method with name starting with
"myMethod" in MyClass and the first

argument is of String type

Call to myMethod() in any class in default
package

all(* *.myMethod(..))

call(MyClass.new(..)) Call to any MyClass' constructor with any

arguments

call(MyClass+.new(..)) Call to any MyClass or its subclass's

constructor.

AspectJ homepage

Pointcuts in AspectJ: execution

execution: represent the body of a method or a constructor

| execution (MethodOrConstructorSignature)

execution(Execution of myMethod() in MyClass taking
public void MyClass.myMethod(String)) | a String argument, returning void, and with
public access

Execution of any method with name starting
in "myMethod" in MyClass and the first
argument is of String type

execution(
* MyClass.myMethod*(String,..))

execution(MyClass+.new(..)) Execution of any MyClass or its subclass's

constructor.

execution(
public * com.mycompany..**(..))

All public methods in all classes in any
package with com.mycompany the root
package

AspectJ homepage

Pointcuts in AspectJ: field access

field access: read or write to a class field

get (FieldSignature)

set (FieldSignature)

get(int MyClass.position) Read access to an integer position field in
MyClass class

execution(Owner *.owner) Setting a value of an owner field of type
Owner at any class

AspectJ homepage

Pointcuts in AspectJ: exception handlers

handler: execution of an exception handling code

| handler (ExceptionTypePattern) |

handler(EJBException) Execution of catch-block handling

RemoteException type

handler(RuntimeException+) Execution of catch-block handling

RuntimeException type or its derivatives

handler(Class®) Execution of catch-block handling exception
types starting with Class (e.g.

ClassNotFound, ClassCast etc.)

AspectJ homepage

Pointcuts in AspectJ: static initialization

static initialization: execution of class initialization

| staticinitialization (TypePattern) |

staticinitialization(MyClass) Execution of a static block in MyClass

staticinitialization(AnotherClass+) Execution of a static block in MyClass or its

subclass

AspectJ homepage

Pointcuts in AspectJ: specials

this: captures current object
target: captures an object on which a method is to be called
args: captures code with specific parameters

this (TypePatternOrObjectldentifier)
target (TypePatternOrObjectldentifier)
args (TypePatternOrObjectldentifier, ...)

this(AClass) All joinpoints where this is of type AClass

args(int, String) Al joinpoints with two parameters: first of type int and the other of

type String

AspectJ homepage

Aspect-oriented programming

(c) Bartosz Walter

Pointcuts in AspectJ: if

if: performs a conditional check on a joinpoint

| if (BooleanExpression) |

if(EventQueue.isDispatchThread()) | All the joinpoints where
EventQueue.isDispatchThread() evaluates to true

AspectJ homepage

Advices

Advices in AspectJ

before() : call (public * FooClass.methodName(args)) {

}

= before()
executed just before a pointcut is executed
after() {returning | throwing}
executed right after a pointcut is executed
= around(context)

surrounds a pointcut and controls if the jointpoint execution
should proceed

AspectJ homepage

Advices in AspectJ: example

aspect Poi nt BoundsPreCondi tion {

before(int newX):
cal | (void Point.setX(int)) &% args(newX) {
assert (newX >= M N_X);
assert (newX <= MAX_X);

}
before(int newy):
call (void Point.setY(int)) &% args(newy) {
assert (newy >= MN_Y);
assert (newY <= MAX Y);
}

private void assert(bool ean v) {
if (1v)
throw new Runti meException();

© Palo Alto Research Center

Advices in AspectJ: example

aspect Poi nt BoundsPost Condi tion {

after(Point p, int newX) returning:
call (void Point.setX(int)) &% target(p) && args(newX) {
assert (p.getX() == newX);
}

after(Point p, int newy) returning:
call (void Point.setY(int)) &k target(p) && args(newy) {
assert (p.getY() == newy);
}

private void assert(bool ean v) {
if ('v)
throw new Runti neException();

© Palo Alto Research Center

Examples

Aspect-oriented programming

(c) Bartosz Walter

AspectJ example: Authentication AspectJ example: logger

public abstract aspect AbstractAuthenticationAspect { public f:lass. Cred |.tCard P.rocessor(
public abstract pointcut operationsNeeddingAuthentication(); public void debit(CreditCard card, Currency amount).
i . . e throws InvalidCardException, NotEnoughAmountException, CardExpiredException {
before() : operationsNeeddingAuthentication() { » .
Authenticator.authenticate();) II Debiting logic
} } public void credit(CreditCard card, Currency amount)
throws InvalidCardException {
I/ Crediting logic
public aspect DatabaseAuthenticationAspect }
extends AbstractAuthenticationAspect { }
public pointcut operationsNeeddingAuthentication():
call(* DatabaseServer.connect()); public interface Logger {
} public void log(String message);
}
AspectJ homepage http://'www.javaworld.com/
AspectJ example: logger (cont.) AspectJ example: logger (cont.)
public aspect LogCreditCardProcessorOperations { public aspect LogCreditCardProcessorOperations {
Logger logger = new StdoutLogger(); before(CreditCard card, Money amount):

publicOperationCardAmountArgs(card, amount) {
logOperation("Starting",

pointcut publicOperation(): thisJoinpoint.getSignature().toString(), card, amount);

execution(public * CreditCardProcessor.*(..));
after(CreditCard card, Money amount) returning:
pointcut publicOperationCardAmountArgs(CreditCard card, Money amount): publicOperationCardAmountArgs(card, amount) {

: " . logOperation("Completing"”,
ublicOperation() && args(card, amount); peat 8 X
P P 0 sl) thisJoinpoint.getSignature().toString(), card, amount);

)) o)) }
private void logOperation(String status, String operation, after (CreditCard card, Money amount) throwing (Exception e):
CreditCard card, Money amount) { publicOperationCardAmountArgs(card, amount) {
logger.log(status + " " + operation + " Card: " + card + " Amount: " + amount); logOperation("Exception " + e,
} thisJoinpoint.getSignature().toString(), card, amount);
}
http://'www.javaworld.com/ http://'www.javaworld.com/

AspectJ example: Access control AspectJ example: Access control

public class Product { public class Product {
public Product() {
I/ constructor implementation static aspect FlagAccessViolation {
} pointcut factoryAccessViolation()

< call(Product.new(..)) && !within(ProductFactory+);

public void configure() {
I/ configuration implementation pointcut configuratorAccessViolation()

} : call(* Product.configure(..)) && !within(ProductConfigurator+);

declare error : factoryAccessViolation() || configuratorAccess\Violation()
: "Access control violation";

AspectJ homepage AspectJ homepage

Aspect-oriented programming

(c) Bartosz Walter

AspectJ example: Access control

public class Product {

static aspect FlagAccessViolation {
pointcut factoryAccessViolation()
: call(Product.new(..)) && !within(ProductFactory+);

pointcut configuratorAccessViolation()
: call(* Product.configure(..)) && !within(ProductConfigurator+);

before() : factoryAccessViolation() || configuratorAccessViolation() {
throw new Exception("Access control violation");
}
}

}

AspectJ homepage

Other capabilities

method and field introduction

introducing methods and fields into classes and interfaces
restructuring inheritance hierarchy

defining a parent class or implemented interfaces
translating checked exceptions to unchecked ones

wrapping exceptions into org.aspectj.lang. SoftException
accessing non-public members

priviliged aspects access private and protected class member

AspectJ homepage

= AOP is based on, not contrary to, other
programming paradigms

= AOP helps in modularizing the code

= aspects crosscut the existing modules

of the code

= AOP allows for altering both behavior and structure

1. http://eclipse.org/aspectj/

2. http://www.parc.com/research/csl/projects/
aspectj/default.html

3. Kiczales G. et al. "An overview of AspectJ”.
Proceedings of 15th ECOOP

Q&A

Aspect-oriented programming

