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Aspect-Oriented Programming

Bartosz Walter
<Bartek.Walter@man.poznan.pl>

bjects are not enough

Object-oriented paradigm
= system is a set of collaborating units — classes
= classes allow for hiding their implementation and expose
interfaces only
= polymorphism localizes common behavior and provides
interface for related concepts, and allows for specializations

but OO paradigm fails to address properly
functions that span
multiple unrelated units

Aspect Oriented Programming
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Implications

= Code tangling
Modules in a software system may simultaneously interact with
several requirements. For example, often developers
simultaneously think about business logic, performance,
synchronization, logging, and security. Such a multitude of
requirements results in the simultaneous presence of elements
from each concern's implementation, resulting in code tangling.

= Code scattering
Since crosscutting concerns, by definition, spread over many
modules, related implementations also spread over all those
modules. For example, in a system using a database,
performance concerns may affect all the modules accessing
the database.

http://'www.javaworld.com/

Concerns

A concern is a particular goal, concept, or area of interest.

In technology terms, a typical software system comprises several
core and system-level concerns.

For example, a credit card processing system's core concern would
process payments, while its system-level concerns would handle
logging, transaction integrity, authentication, security, performance,
and so on. Many such concerns — known as crosscutting concerns —
tend to affect multiple implementation modules.

Using current programming methodologies, crosscutting concerns
span over multiple modules, resulting in systems that are harder to
design, understand, implement, and evolve.

AspectJ homepage
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System = a set of concerns
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Tmple mentation
Modules

http://'www.javaworld.com/

AspectJ basics

PARC AspectJ

= a freely available AOP implementation for Java from
Xerox PARC

= uses Java as the language for implementing individual
concerns,

= specifies extensions to Java for weaving rules

= the rules are specified in terms of pointcuts, join points,
advices, and aspects

= aspect compiler combines different aspects and the
original code together at byte-code level

Xerox Palo-Alto Research Center

Hello, World!

public class HelloWorld {
public static void say(String message) { \
System.out.printin(message);

public static void sayToPerson(String message, String name) {
System.out.printin(name + ", " + message);

AspectJ homepage

Hello, World! (cont,)

public aspect MannersAspect {
pointcut callSayMessage() :

call(public static void HelloWorld.say*(..));

before() : callSayMessage() {
System.out.printin("Good day!");

}

after() : callSayMessage() {
System.out.printin("Thank you!");

}

}

AspectJ homepage

Basic AspectJ concepts

= joinpoint
an identifiable point in a program'’s execution; e.g. joinpoints
could define calls to specific methods in a class, loops,
assignments, handling exceptions etc.

= pointcut
program construct to designate joinpoints and collect specific
context at those points

= advice

code that runs upon meeting certain conditions: before, after
and around a pointcut; e.g. an advice could log a message
before executing a joinpoint

AspectJ homepage
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= dedicated classes that can crosscut other classes
= units of modularization

= put together advices and pointcuts

= can contain methods and fields

= can extend classes or interfaces

Aspects
aspect DisplayUpdating {
poi ntcut nove():
call (void Line.setP1(Point)) ||
call (void Line.setP2(Point));

after() returning: nmove() {
Di spl ay. update();
}
}

method
execution join

JOinpOintS points method call join

points

a method execution

= Method or constructor call
captures methods or constructors signatures

= Method or constructor execution
captures methods or constructors bodies

= Read/write access to a field

= Exception handler execution

= Object and class initialization execution

A pointcut is a kind of predicate on joinpoints that:
= matches or not a given joinpoint
= captures the context of that joinpoint

name parameters

. poi ntcut setEnd():
Pointcuts cal I (void Line.setPi(Point)) ||

cal | (voi d Line.setP2(Point))

k primitive pointcut, can also be:

- call, execution - this, target, args
- get, set - within, withincode
- handler - cflow, cflowbelow

- initialization, staticinitialization
matches if the join point is a method call with this signature

© Palo Alto Research Center
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Pointcuts in AspectJ: call

call: represent calls to methods or constructors (after
evaluation of arguments, but prior to the call itself)

| call (MethodOrConstructorSignature) |

call(* MyClass.myMethod*(String,..)) Call to any method with name starting with
"myMethod" in MyClass and the first

argument is of String type

Call to myMethod() in any class in default
package

all(* *.myMethod(..))

call(MyClass.new(..)) Call to any MyClass' constructor with any

arguments

call(MyClass+.new(..)) Call to any MyClass or its subclass's

constructor.

AspectJ homepage

Pointcuts in AspectJ: execution

execution: represent the body of a method or a constructor

| execution (MethodOrConstructorSignature)

execution( Execution of myMethod() in MyClass taking
public void MyClass.myMethod(String)) | a String argument, returning void, and with
public access

Execution of any method with name starting
in "myMethod" in MyClass and the first
argument is of String type

execution(
* MyClass.myMethod*(String,..))

execution(MyClass+.new(..)) Execution of any MyClass or its subclass's

constructor.

execution(
public * com.mycompany..**(..))

All public methods in all classes in any
package with com.mycompany the root
package

AspectJ homepage

Pointcuts in AspectJ: field access

field access: read or write to a class field

get (FieldSignature)

set (FieldSignature)

get(int MyClass.position) Read access to an integer position field in
MyClass class

execution(Owner *.owner) Setting a value of an owner field of type
Owner at any class

AspectJ homepage

Pointcuts in AspectJ: exception handlers

handler: execution of an exception handling code

| handler (ExceptionTypePattern) |

handler(EJBException) Execution of catch-block handling

RemoteException type

handler(RuntimeException+) Execution of catch-block handling

RuntimeException type or its derivatives

handler(Class®) Execution of catch-block handling exception
types starting with Class (e.g.

ClassNotFound, ClassCast etc.)

AspectJ homepage

Pointcuts in AspectJ: static initialization

static initialization: execution of class initialization

| staticinitialization (TypePattern) |

staticinitialization(MyClass) Execution of a static block in MyClass

staticinitialization(AnotherClass+) Execution of a static block in MyClass or its

subclass

AspectJ homepage

Pointcuts in AspectJ: specials

this: captures current object
target: captures an object on which a method is to be called
args: captures code with specific parameters

this (TypePatternOrObjectldentifier)
target (TypePatternOrObjectldentifier)
args (TypePatternOrObjectldentifier, ...)

this(AClass) All joinpoints where this is of type AClass

args(int, String) Al joinpoints with two parameters: first of type int and the other of

type String

AspectJ homepage
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Pointcuts in AspectJ: if

if: performs a conditional check on a joinpoint

| if (BooleanExpression) |

if(EventQueue.isDispatchThread()) | All the joinpoints where
EventQueue.isDispatchThread() evaluates to true

AspectJ homepage

Advices

Advices in AspectJ

before() : call (public * FooClass.methodName(args)) {

}

= before()
executed just before a pointcut is executed
after() {returning | throwing}
executed right after a pointcut is executed
= around(context)

surrounds a pointcut and controls if the jointpoint execution
should proceed

AspectJ homepage

Advices in AspectJ: example

aspect Poi nt BoundsPreCondi tion {

before(int newX):
cal | (void Point.setX(int)) &% args(newX) {
assert (newX >= M N_X);
assert (newX <= MAX_X);

}
before(int newy):
call (void Point.setY(int)) &% args(newy) {
assert (newy >= MN_Y);
assert (newY <= MAX Y);
}

private void assert(bool ean v) {
if (1v)
throw new Runti meException();

© Palo Alto Research Center

Advices in AspectJ: example

aspect Poi nt BoundsPost Condi tion {

after(Point p, int newX) returning:
call (void Point.setX(int)) &% target(p) && args(newX) {
assert (p.getX() == newX);
}

after(Point p, int newy) returning:
call (void Point.setY(int)) &k target(p) && args(newy) {
assert (p.getY() == newy);
}

private void assert(bool ean v) {
if ('v)
throw new Runti neException();

© Palo Alto Research Center

Examples

Aspect-oriented programming
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AspectJ example: Authentication AspectJ example: logger

public abstract aspect AbstractAuthenticationAspect { public f:lass. Cred |.tCard P.rocessor(
public abstract pointcut operationsNeeddingAuthentication(); public void debit(CreditCard card, Currency amount).
i . . e throws InvalidCardException, NotEnoughAmountException, CardExpiredException {
before() : operationsNeeddingAuthentication() { » .
Authenticator.authenticate(); ) II Debiting logic
} } public void credit(CreditCard card, Currency amount)
throws InvalidCardException {
I/ Crediting logic
public aspect DatabaseAuthenticationAspect }
extends AbstractAuthenticationAspect { }
public pointcut operationsNeeddingAuthentication():
call(* DatabaseServer.connect()); public interface Logger {
} public void log(String message);
}
AspectJ homepage http://'www.javaworld.com/
AspectJ example: logger (cont.) AspectJ example: logger (cont.)
public aspect LogCreditCardProcessorOperations { public aspect LogCreditCardProcessorOperations {
Logger logger = new StdoutLogger(); before(CreditCard card, Money amount):

publicOperationCardAmountArgs(card, amount) {
logOperation("Starting",

pointcut publicOperation(): thisJoinpoint.getSignature().toString(), card, amount);

execution(public * CreditCardProcessor.*(..));
after(CreditCard card, Money amount) returning:
pointcut publicOperationCardAmountArgs(CreditCard card, Money amount): publicOperationCardAmountArgs(card, amount) {

: " . logOperation("Completing"”,
ublicOperation() && args(card, amount); peat 8 X
P P 0 sl ) thisJoinpoint.getSignature().toString(), card, amount);

) ) o ) ) }
private void logOperation(String status, String operation, after (CreditCard card, Money amount) throwing (Exception e):
CreditCard card, Money amount) { publicOperationCardAmountArgs(card, amount) {
logger.log(status + " " + operation + " Card: " + card + " Amount: " + amount); logOperation("Exception " + e,
} thisJoinpoint.getSignature().toString(), card, amount);
}
http://'www.javaworld.com/ http://'www.javaworld.com/

AspectJ example: Access control AspectJ example: Access control

public class Product { public class Product {
public Product() {
I/ constructor implementation static aspect FlagAccessViolation {
} pointcut factoryAccessViolation()

< call(Product.new(..)) && !within(ProductFactory+);

public void configure() {
I/ configuration implementation pointcut configuratorAccessViolation()

} : call(* Product.configure(..)) && !within(ProductConfigurator+);

declare error : factoryAccessViolation() || configuratorAccess\Violation()
: "Access control violation";

AspectJ homepage AspectJ homepage
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AspectJ example: Access control

public class Product {

static aspect FlagAccessViolation {
pointcut factoryAccessViolation()
: call(Product.new(..)) && !within(ProductFactory+);

pointcut configuratorAccessViolation()
: call(* Product.configure(..)) && !within(ProductConfigurator+);

before() : factoryAccessViolation() || configuratorAccessViolation() {
throw new Exception("Access control violation");
}
}

}

AspectJ homepage

Other capabilities

method and field introduction

introducing methods and fields into classes and interfaces
restructuring inheritance hierarchy

defining a parent class or implemented interfaces
translating checked exceptions to unchecked ones

wrapping exceptions into org.aspectj.lang. SoftException
accessing non-public members

priviliged aspects access private and protected class member

AspectJ homepage

= AOP is based on, not contrary to, other
programming paradigms

= AOP helps in modularizing the code

= aspects crosscut the existing modules

of the code

= AOP allows for altering both behavior and structure

1. http://eclipse.org/aspectj/

2. http://www.parc.com/research/csl/projects/
aspectj/default.html

3. Kiczales G. et al. "An overview of AspectJ”.
Proceedings of 15th ECOOP
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