(c) Bartosz Walter

Design patterns

Lecture 12

Design patterns

Catalog of Design Patterns
Part Il

Bartosz Walter
<Bartek.Walter@man.poznan.pl>

Decorator: Intent Decorator: Problem

public class Invoice {
String buyer = null;
String issuer = null;
List <Listitem> elements = new ArrayList<Listltem>()
Header header = null;

private boolean useHeader() {
return header != null;

= Attach additional responsibilities to an object
dynamica"y public void print() {

if (useHeader()) {
. . . . header.print()
= Provide a flexible alternative to subclassing for }
extending functionality prini(‘lssuer * + issuer);

print("Buyer: " + buyer);

for (e : elements) {
e.print();

by the Gang of Four

Decorator: Problem Decorator: Problem

public class Invoice {
String buyer = null;
String issuer = null;
List <Listitem> elements = new ArrayList<Listltem>()

public void print() {

. 5 Invoice
print("Issuer: " + issuer); Client

print("Buyer: " + buyer); -

for (e : elements) { I: Fprint()
) e.print(); I\
} ! -
public class Headerlnvoice extends Invoice { InvoiceWithHeaderl InwiceWithHeader2

Header header = null;

Sprint() Sprint()

private boolean useHeader() {
return header != null;

}
public void print() {
if (useHeader()) {
header.print();

super.print();

Design Patterns 11

(c) Bartosz Walter

Decorator: Structure

Component

Soperation()

—

ConcreteComponent Decorator

Soperation)| component->Operation() [
[\
Decorator->Operation() AN
addedBehavior()

Soperation()

ConcreteDecoratorA ConcreteDec oratorB
BJaddedstate

Soperation()
SaddedBehaviour()

®operation()

by the Gang of Four

Decorator: Participants

= Component

declares an interface for objects that may be assigned
additional responsibilities

= Concrete Component
implements the Component interface
= Decorator

declares an interface that conforms to Component’s interface

is aware of the decorated Component (which is either a
Concrete Component or another Decorator)

= Concrete Decorator
adds responsibilities to the component

by the Gang of Four

Decorator: Consequences

= more flexible than static inheritance
= responsibilities can be added at run-time
= |ess complex class hierarchy
= pay-as-you-go
= features are added whenever needed
= object identities differ
= object identity is different from Decorator's identity

= object identity should be encapsulated and hidden from
client

lot of small, well-defined decorating classes
= improved testability

by the Gang of Four

Decorator: Implementation

= Conformance of interfaces
Decorator and Component must implement same interface

Default Decorator
= Keeping Component lightweight

the data storage should be deferred to subclasses
= Strategy vs. Decorator

Strategy deals with changing the internals
Decorator deals with changing the skin

by the Gang of Four

Decorator: Example

Client O
1 Printable 1
Sprint()
1 | Headerl Inwice Header2
Sprint() Sprint() Sprint) | 1

Flyweight: Intent

= Use sharing to support large numbers of
fine-grained objects efficiently

= Separate intrinsic (shared) and extrinsic
(unique) object state into separate objects

by the Gang of Four

Design Patterns 11

(c) Bartosz Walter

Flyweight: Structure

FlyweightFactory Flyweight

flyweights

SGetFlyweight(key : String) Soperation(extrinsicState)

/

if (fiyweights(key] exists) {
retumn existing flyweight;

}else{

create new one;

add to pool;

return the new one;

}

ConcreteFlyweight

UnsharedConcreteFlyweight

)

ment |
—

Flyweight: Participants

= Flyweight
declares an interface through which flyweights can receive and
utilize the extrinsic state

= Concrete Flyweight
adds storage for an intrinsic state
must be independent of its context (extrinsic state)
Unshared Concrete Flyweight
non-sharable flyweight
Flyweight Factory
creates and manages flyweight objects
ensures that flyweights are shared properly
= Client

by the Gang of Four acquires Flyweight instances through FlyweightFactory
Flyweight: Consequences Flyweight: Example
public abstract class TeaOrder { 1l Flyweight
public abstract void serveTea(TeaOrderContext teaOr derContext);
. . }
" growing space savings
. . public class TeaFlavor extends TeaOrder { 1l ConcreteFlyweight
= reduction of total number of instances String teaFlavor; /I intrinsic (shared) state
= reduction of intrinsic state TeaFlavor(String teaFlavor) {
= extrinsic state may be computed or stored this.teaFlavor = teaFlavor;
" computatlonal costs public String getFlavor() {
= managing the extrinsic state return this.teaFlavor;
I teaOrderContext is an extrinsic (unique) state
public void serveTea(TeaOrderContext teaOrderContex t){
System.out.printin("Serving tea flavor " + teaFlavor
+"to table number "+ teaOrderContext.getTable());
}
}
by the Gang of Four by Lawrence Trurett

Flyweight: Example

public class TeaOrderCtx {
int tableNumber;

TeaOrderContext(int tableNumber) {
this.tableNumber = tableNumber;
public int getTable() {

return this.tableNumber;
}

}

/I context provides extrinsic state

by Lawrence Trurett

Flyweight: Example

public class TeaFlavorFactory { 1 Flyweight Factory
TeaFlavor[] flavors = new TeaFlavor[10];// <10 flavors
int teasMade =0;

can be made

/I Factory Method
public TeaFlavor getTeaFlavor(String flavorToGet) {
for (int i=0;i< teasMade; i++) {
if (flavorToGet.equals((flavors[i]).getFlavor())) {
return flavorsli];
}

}
flavors[teasMade] = new TeaFlavor(flavorToGet);
return flavors[teasMade++];

}

public int getTotalTeaFlavorsMade() {
return teasMade;

by Lawrence Trurett

Design Patterns 11

(c) Bartosz Walter

Flyweight: Example

class TestFlyweight {
static TeaFlavor[] flavors = new TeaFlavor[100]; Il orders
static TeaOrderCtx[] tables = new TeaOrderCtx[100]; I tables
static int ordersMade =0;
static TeaFlavorFactory teaFlavorFactory;

static void takeOrders(String flavorln, int table) {
flavors[ordersMade] = teaFlavorFactory.getTeaFlavor(flavorlin);
tables[ordersMade++] = new TeaOrderCtx(table);

public static void main(String[] args) {
teaFlavorFactory = new TeaFlavorFactory();
takeOrders("chai",
takeOrders(“chai”,
takeOrders(“camomile”
takeOrders("earl grey",
takeOrders("camomile", 897);
for (int i=0;i< ordersMade; i++) {
flavors[i].serveTea(tables[i]);

L 1)
1;

System.out.printin(" *);
System.out.printin(“total teaFlavor objects made: "
+ teaFlavorFactory.getTotalTeaFlavorsMade());
}
}

} by Lawrence Trurett

Command: Intent

= Encapsulate a request as an object

= Allow parametrizing clients with different
requests

= Support undoable operations

by the Gang of Four

Command: Structure

Command
— SExecute
0
\
\ -
\ Receiver
L
\
RAction() \
ConcreteCommand
Bstate receiver->Action()
® 0

by the Gang of Four

Command: Participants

= Command
= declares an interface for executing an operation
= ConcreteCommand

= defines a binding between a Receiver and an action
= implements execute() method

= Client
= creates a ConcreteCommand object and sets its Receiver
= Invoker
= asks the Command to carry out the request
= Receiver
= knows how to perform the concrete operations
by the Gang of Four

Command: Consequences

= decoupling the sender from Receiver

= Commands can be manipulated and extended like any
other object

= Commands can be assembled into a composite
command

= adding new Commands is easy
= Command may be undoable (see Memento)

by the Gang of Four

Command: Example

Bank

Account

Interest

Sincome() l— ~|BBbalance : Long
Stransfer()
SinterestChange()

Operation 0 = new Income (@mount);
account.execute(o)

/ v InterestA InterestB InterestC

Scompute()

A\
A

®doOperation(operation : Operation)

<<creates>>

N Operation
R ¢ Scompute()| |Bcompute(| |Bcompute()
®execute()
[I]
InterestChange ncome T

BJaccount : Account| |BBaccount : Account| [Bfrom : Account
Binterest : Interest | [| |&to: Account

Sexecute()
Wexecute() T |M®execute()

Design Patterns 11

(c) Bartosz Walter

Command: Example

public class Bank { /I Invoker, Client
public void income(Account acc, long amount) {
Operation oper = new Income(amount);
acc.doOperation(oper);

public void transfer(Account from, Account to, long amount) {
Operation oper = new Transfer(to, amount);
from.doOperation(oper);
}
}

public class Account {
long balance = 0;
Interest interest = new InterestA();
History history = new History();

1l Reciever

public void doOperation(Operation oper) {
oper.execute(this);
history.log(oper);

Command: Example

/I Command

abstract public class Operation {
public void execute();
}

public class Income { /I ConcreteCommand1
public Income(long amount) {
1/ store parameters...

public void execute(Account acc) {
acc.add(amount);

}

public class Transfer { /I ConcreteCommand2
public Income(Account to, long amount) {
/I store parameters...

public void execute(Account from) {
from.subtract(amount);
to.add(amount);
}
}

Mediator: Intent

= Define an object that encapsulates how a set of
objects interact

= Promote loose coupling by keeping objects
from referring to each other explicitly

= Allow varying their interaction independently

by the Gang of Four

Mediator: Structure

+HWlediator

Meadiator

ConcreteColleague2

ConcreteMediator ConcreteColleaguel

by the Gang of Four

Mediator: Participants

= Mediator
defines an interface for communicating woth Colleague objects
= Concrete Mediator
implements cooperative behaviour by coordinating Colleagues
knows and maintains its Colleagues
= Colleague classes
each of them knows the Mediator

colleagues communicate with Mediator instead of another
Colleague directly

by the Gang of Four

Mediator: Consequences

= |imited subclassing
= Mediator localizes behavior that otherwise would be distributed
= changing the behavior requires subclassing the Mediator only
= decoupling the colleagues from each other

= simplified object protocols
= Mediator replaces many-to-many associations with one-to-many

= centralized control

= frade-off between complexity of interaction with compexity of a
Mediator
= Mediator becomes a hard to maintain monolith

by the Gang of Four

Design Patterns 11

(c) Bartosz Walter

Mediator: Example

class Mediator {
private boolean slotFull = false;
private int number;

public synchronized void storeMessage(int num) {
while (slotFull == true) {
try {
wait();
}catch (InterruptedException e) {}

slotFull = true;
number = num;
notifyAll();

}

public synchronized int retrieveMessage() {
while (slotFull == false) {
try {

wait();
} catch (InterruptedException e) {}
slotFull = false;

notifyAll();
return number;

h_\' Vincent Huston

Mediator: Example

class Producer extends Thread {
private Mediator med.
private int id;
private static int num =1;

public Producer(Mediator m) {
med =m;

id = num++;
}
public void run() {
int num;
while (true) {
med.storeMessage(num = (int)(Math.random()*100));
System.out.print("p" +id + "-" + num +"");
}

by Vincent Huston

Mediator: Example

class Consumer extends Thread {
private Mediator med.
private int id;
private static int num =1;

public Consumer(Mediator m) {
med =m;
id = num++;

}

public void run() {
while (true) {
System.out.print("c" + id + "-" + med.retrieveMessa ge();

by Vincent Huston

Template Method: Intent

= Define the skeleton of an algorithm in an
operation, deferring some steps to
subclasses

= Allow subclasses redefining certain steps
of an algorithm without changing the
algorithm's structure

by the Gang of Four

Template Method: Structure

AbstractCilass
$TamplateMethod])
SarimitiveCparationd|)
'pnmJ!JveOperannZ{]

primativeOperation?();

p‘}\matweOperatioﬂO;

ConcreteClass
SorimitiveCperation’ ()
SurimitiveCperation2()

by the Gang of Four

Template Method: Participants

= AbstractClass

defines abstract primitive operations
implements a template method defining the skeleton of an
algorithm
= ConcreteClass
implements primitive operations

by the Gang of Four

Design Patterns 11

(c) Bartosz Walter

Template Method: Consequences Template Method: Example

public abstract class TitleInfo {
private String titeName;

= inverted control structure

Il template method
public final String processTitleInfo() {

= a superclass defers implementation to subclasses StringBuffer titleinfo = new StringBuffer();
; X titleInfo.append(this.getTitleBlurb());
= don't call us, we will call you titlelnfo.append(this.getDvdEncodingRegionInfo());
= different kinds of operations called by) retum titeinfo-toStringy);
Tem p Iate Meth Od /I concrete abstract class methods
R . public final void setTitleName(String titteNameln) {
= concrete operations (on ConcreteClass or client classes)) this.titleName = titleNameln;
= concrete AbstractClass operations (methods useful for subclasses) public final String getTitleName() {
Lo . return this.titteName;
= primitive operations (abstract methods)
[factory methods /I primitive operation — must be overriden

public abstract String getTitleBlurb();

=hook operations (default behavior that can be extended) // hook operation - may be overridden
public String getDvdEncodingRegionInfo() {
return "

by the Gang of Four } ! by Vincent Huston

Template Method: Example Template Method: Example

public class DvdTitlelnfo extends TitleInfo { public class BookTitleInfo extends Titlelnfo {

private char encodingRegion; private String author;

public DvdTitleInfo(String titteName, char region) { public BookTitleInfo(String titteName, String author){
this.setTitleName(titleName); this.setTitleName(titteName);
this.setEncodingRegion(region); this.setAuthor(author);

/I new concrete methods /I new concrete methods

public void setEncodingRegion(char region) { public void setAuthor(String authorin) {
this.region = region; this.author = authorln;

public char getEncodingRegion() {
return this.encodingRegion; public String getAuthor() {
return this.author;

/I overriden primitive operation

public String getTitleBlurb() { /I overriden primitive operation

return ("DVD: " + this.getTitleName() + ", starring " public String getTitleBlurb() {

+ this.getStar()); return ("Book: " + this.getTitleName() + ", Author: "

} + this.getAuthor());
/I overriden hook }
public String getDvdEncodingRegioninfo() {

return (", encoding region: " + this.getEncodingRegion();

} " .
by Vincent Huston by Vincent Huston

emplate Method: Example

class TestTitleInfoTemplate {
public static void main(String[] args) {

TitleInfo bladeRunner =
new DvdTitleInfo("Blade Runner”, '1%);
TitleInfo electricSheep =
new BookTitleInfo("Do Androids Dream of Electric She ep?",
"Phillip K. Dick");
TitleInfo sheepRaider = new GameTitleInfo("Sheep Raid er');

System.out printn(*);) Provide a way to access elements of an
S ateunnos procesaTitelntog). aggregate sequentially without exposing its

System.out.printin("Testing electricSheep "

+ electricSheep.processTitleInfo()); |nterna| Structure

System.out.printin("Testing sheepRaider "
+ sheepRaider.processTitlelnfo());
}

}

Testing bladeRunner DVD: Blade Runner, encoding region: 1

Testing electricSheep Book: Do Androids Dream of Ele ctric Sheep?,
Author: Phillip K. Dick

Testing sheepRaider Game: Sheep Raider

by Vincent Huston by the Gang of Four

Design Patterns 11

(c) Bartosz Walter

Iterator: Structure

Iterator
Db < N = ®getFirst()
Wcreatelterator() getNext()
N BhasNext()

:

ConcreteAggregate

Screatelterator()

retun new Concretelterator(this) ﬁ

by the Gang of Four

Ilterator: Participants

= |terator

= declares an interface for accessing and iterating through
Aggregates

= Concrete lterator
= performs necessary computations
= Aggregate
= declares an interface for creating /terator

Concrete Aggregate

= implements lterator interface

by the Gang of Four

Ilterator: Consequences

= supports multiple variations of traversing the
aggregate
= adapts only to a concrete class, not subclasses
= multiple traversal allowed
= each lterator keeps track of the running traversal
= [terators are stateful

by the Gang of Four

Visitor: Intent

= Represent an operation to be performed on
the elements of an object structure.

= Allow defining a new operation without
changing the classes of the elements on
which it operates.

by the Gang of Four

Visitor: Structure

Visitor by the Gang of Four
— Suisic)
SVisitC
/\
[1
ConcreteVisitorl ConcreteVisitor2
BVisitC) BvisitC)
Bv/isitC BvisitCe
[objectstrucure | Element
|

‘ ‘ ®Accept(Visitor)

T

C C

B Accept(Visitor) WAccept(Visitor)
SOoperationA() SoperationB()
Visitor->VisitConcreteElementA(this) Visitor->VisitConcreteElementB this)™

Visitor: Participants

= Visitor
= declares operations for every ConcreteElement to be visited
= Concrete Visitor
= implements the operations
= Element
= defines accept() operation parametrized with Visitor
Concrete Element
= implements accept() operation
Object Structure
= can enumerate its elements

= may provide a high-level interface to allow the visitor to visit its
elements

by the Gang of Four

Design Patterns 11

(c) Bartosz Walter

Visitor: Consequences

= easy adding new operations
= new Visitors can traverse the object structure

= gathering related operations and separation
of unrelated ones
= related behavior is localized in a Visitor

= unrelated sets of behavior are partitioned in their own Visitor
subclasses

Visitor: Consequences (cont.)

= accumulating state
= Visitors can accumulate state during the structure traversal
= breaking encapsulation

= pattern often enforces existance often public operations that
access an element's internal state

= difficult adding new ConcreteElements

= each ConcreteElement gives rise to a new operation on
Visitor and corresponding ConcreteVisitors

= visiting across class hierarchies
= unlike Iterator, the Visitor can visit objects of different classes

by the Gang of Four by the Gang of Four

Visitor: Example Visitor: Example

public class Bank { public abstract class BankingProduct {
List<BankingProduct> products = new ArrayList<Bankin gProduct>();
blic List<BankingProduct > doR rt(R t it public interface Element {
P EstLSBan:iT]ég?oégcri resL?l[eport(Report report) { public BankingProduct accept(Report report);
= new ArrayList<BankingProduct >(); }
for (BankingProduct product : products) { public class Account extends BankingProduct implements Element {
result.add(product.accept(report)); public BankingProduct accept(Report report) {
if (isPriviliged(report)) {
return report.visit(this);
return result; }
} ’ return null;

}

public class Credit extends BankingProduct
public BankingProduct accept(Report report) {
if (isPriviliged(report)) {
return report.visit(this);

}

return null;

implements Element {

}

}

Visitor: Example

public class Over1000Report implements Visitor {
public BankingProduct visit(Account acc)
if (acc.balance > 1000)
return this;

return null;
public BankingProduct visit(Credit credit) {
if (credit.draft > 1000 && credit.isActive())
return this;
return null
}
public class PassAllReport implements Visitor {
public BankingProduct visit(Account acc) {
return this;
public BankingProduct visit(Credit credit) {
return this;

Design Patterns 11

