Design Petterns |

Design patterns

Lecture 11

Desigr;agellltterns Catalog of Design Patterns

Bartosz Walter
<Bartek.Walter@man.poznan.pl>

Pool of Objects: Intent Pool of Objects: Structure

Client
0.n W/
Manage (create and re-use) the multiple-use of Fodl
objects in cases when their creation is costly or EPooly
. .. uses getinstance()
there could exist only a limited number of Jestotiect)
returnObject()

instances Ssize()
ReusableObject ? !
—

by Shalloway & Trott by Shalloway & Trott

Pool of Objects: Participants Pool of Objects: Consequences

) Pogl))) = improved performance
* 1S an access pqnt for '“Sta”?es ReusgpleOb/ects) = ReusableObjects are initialized once and re-used multiple times
= manages the lifecycle (creation, acquiring, return, disposal) of » faster request handiin
ReusableObjects q 9

= balanced, smooth resource consumption

= better encapsulation and higher cohesion
= Pool manages the ReusableObjects'lifecycle
= Client contacts only the Pool

= load balancing

= handles exceptions thrown by ReusableObjects
= ReusableObject

= has a defined lifecycle

= can be reused
= Client

= requests the ReusableObjects from the Pool

by Shalloway & Trott by Shalloway & Trott

(c) Bartosz Walter

Design Petterns |

Pool of Objects: Example

javax.sql.DataSource is a generic interface for database
connection factories. It defines a getConnection() method,
which provides a client with an wrapped connection
instance.

Invoking close() on the wrapper does not close the
connection itself; it simply returns it to the DataSource,
which therefore acts as a self-recovering pool of objects.
Pools are often implemented as singletons, usually they
are also multithreaded (with getObject() and returnObject()
synchronized)

Chain of Responsibility: Intent

= Avoid coupling the sender of a request to its
receiver by giving more than one object a
chance to handle the request

= Chain the receiving objects and pass the
request along the chain until an object
handles it

by the Gang of Four

Chain of Responsibility: Structure

Handler
Client
®HandieRequest() +successar

ConcreteHandler ConcreteHandler2
‘HandleRequestO ‘Hand\eﬁequest[}
by the Gang of Four

Chain of Responsibility: Participants

= Handler
= defines an interface for handling requests
= (optional) implements the successor link
= Concrete Handler
= handles requests it is responsible for
= can access its successor

= if the ConcreteHandler can handle the request, it does so;
otherwise it forwards the request to its successor

= Client
= initiates the request to a ConcreteHandler object on the chain

by the Gang of Four

Chain of Responsibility: Consequences

Chain of Responsibility allows for:

= reduced coupling

= Object does not need to know which other object handles the
request

= both Sender and Receiver have no knowledge of each other

= chain elements do not know the chain's structure
= added flexibility in assigning responsibilities to objects

= responsibilities can be freely distributed among chain elements
= no guarantee of receipt

by the Gang of Four

Chain of Responsibility: Example 1

for (f : filters) {
Inbox if (f.doFilter() {

EHfilters : Set break;

}

Sfilter(msg : Message)

J

Filter

}

SdoFilter()
Filterl Filter2 Filter3

SdoFilter() SdoFilter() FdoFilter()

(c) Bartosz Walter

Design Petterns |

Chain of Responsibility: Example 1

‘ Client ‘

: Inbox ‘ ‘ : Filterl ‘ ‘ : Filter2 ‘ ‘ : Filter3 ‘

|
9

filter(Message).

doFilter(
L 7 5

0 . ‘
‘D doFilter()

|
doFilter() U ~

Chain of Responsibility: Example 2

Filter
SdoFilter()
[I 1
Inbox +filterChain Filterl +next Filter2 +next Filter3
®filter(msg : Message) RdoFilter() SdoFilter() doFiter(

filterChain.doFilter() 1 if (! isEligible()) AN
next.doFilter()

Chain of Responsibility: Example 2

Facade: Motivation

‘ Client ‘ - Inbox ‘ ‘ Filter1 : Filter ‘ Filter2 : Filter ‘ Filter3 : Filter
‘ ‘ ‘ = Provide a unified interface to a set of
dorite) interfaces in a subsystem
doFilter()
doriter() = Facade defines a higher-level interface that
‘ ‘ makes the subsystem easier to use
by the Gang of Four
Facade: Structure Facade: Participants
Client
$operation() - Facade
\ = knows which subsystem classes are responsible for handling
the request
= delegates client requests to appropriate subsystem objects
L = subsystem classes
‘ Subsystem2 ‘ ‘ Subsystem3 . . .,
; | ; | = implement subsystem functionality

/| = handle work assigned to them by the Facade object
| = have no knowledge of the facade, i.e. they keep no references
—— toit

ubsysteml1

by the Gang of Four by the Gang of Four

(c) Bartosz Walter

Design Petterns |

Facade: Consequences

= shielding clients from subsystem components
= clients may communicate with subsystems via Facade
= subsystems are easier to use and cheaper in maintenance
= flexible access to subsystems
= clients can call both Facade and underlying subsystems
= promotion of looser coupling between the
subsystems and their clients
= subsystems can be hidden from the clients
= subsystems can be easily replaced
= provisioning of only partial functionality by the
Facade

by the Gang of Four

Facade: Example

public class Email { /1 facade
M nmeMessage msg = null; /1 subsysteml
Session session = Session.getlnstance(null, props); // subsysten?

public Email (String subject, String text) {
msg = new M meMessage(session);
nmsg. set Fr on{ DEFAULT_FROM ;
nmsg. set Subj ect (subj ect) ;
nsg. set Text (text, "UTF-8");
}

public void sendTo(String[] to) {
nmsg. set Reci pi ent s(Message. Reci pi ent Type. TO, convert(to));
Transport transport = session.getTransport("sntp");
transport.sendMessage(nsg, nsg.get Al |l Reci pients()

public void sendTo(String[] to, String[] cc) {
nsg. set Reci pi ent s(Message. Reci pi ent Type. TO, convert (to
nsg. set Reci pi ent s(Message. Reci pi ent Type. CC, convert (Cc
Transport transport = session.getTransport("sntp");
transport.sendMessage(nsg, nsg.get Al | Reci pients()

}

)
)

}

Builder: Motivation

= Separate the construction of a complex
object from its representation

= The same construction process can create
different representations

by the Gang of Four

Builder: Structure

W‘ Director +builder Builder
— ®construct() ®BuildPart()
for all objects in structure {
builder->BuildPart() Concretehien
} SBuildPart() —
®GetResult()
by the Gang of Four

Builder: Participants

= Builder

= specifies an abstract interface for creating parts of a Product

= Concrete Builder

= constructs and assembles parts of the product by implementing the
Builder interface

= defines and keeps track of representation it creates
= provides an interface for retrieving the Product

= Director
= constructs an object using the Builder interface

= Product

= includes classes that define its parts, including interfaces for
assembling the parts into the final result

by the Gang of Four

Builder: Consequences

Product's internal representations may vary

isolation the construction code from
representation code

finer control over the construction process
= improved testability

by the Gang of Four

(c) Bartosz Walter

Design Petterns |

Builder: Example

public class Director {
Bui | der roof Bui | der = new Roof Bui | der ()
Bui | der wal | Bui | der = new Wl | Bui | der () ;
Bui I der foundationBuil der = new FoundationBuil der();

public House assenble() {
Roof roof = (Roof) roofBuilder.build();
Part wall = (Wall) roofBuilder.build();
Part foundation = (Foundation) foundationBuilder.build();

House house = new House();

house. set Foundati on (foundation);
house. set Val | (wal |');

house. set Roof (roof) ;

return house;
}
}

public interface Builder {
public Part build();

Memento: Motivation

Without violating encapsulation, capture and
externalize an object's internal state so that
the object can be restored to this state later

by the Gang of Four

Memento: Applicability

= A snapshot of an object state must be
saved so that it can be restored later

= A direct interface to obtaining the state would
expose implementation details and break the
encapsulation

by the Gang of Four

Memento: Structure

Originator Memento
Bstate Bstate +memento [Caretaker
$setMemento(Memento) SGetsState() :‘
@CreateMemento() Wsetstate()
T
T
| \
(I
retum new Memento(state) AN
\
\
state = Memento->GetState() ﬁ
by the Gang of Four

Memento: Participants

= Memento

stores original state of the Originator state

protects agains access by objects other that the Originator
= Originator

creates a Memento containing a snapshot of its current internal
state

uses the Memento to restore its internal state
= Caretaker

is responsible for Memento safekeeping

never examines the content of a memento

by the Gang of Four

Memento: Implementation

= Two interfaces of Memento
narrow — Caretaker can only pass Memento to other objects
wide — Originator sees all data needed to restore its state

= Java implementation
Memento as an inner class of the Originator

Memento and Originator within a common package (methods
accessible at default security level)

= C++ implementation
Originator is a friend class to Memento

(c) Bartosz Walter

Design Petterns |

Memento: Example Memento: Example

public class Account { public class Account {
private int balance = 0; /'l continued...
public void credit(int amount) { class Menento {
bal ance += anount; int nenentoBal ance = 0;
}
public void setState() {
public void debit(int anount) { nenent oBal ance = bal ance;
bal ance -= anount; }
}
public void restoreState() {
public void setMenento(Menento nenento) { bal ance = nenent oBal ance;
nenento. restoreState(); }
} }

}
public Menmento createMenento() {
Menent o mementoToReturn = new Menento();
menent oToRet urn. set State() ;

return menment oToRet urn;

}

Memento: Example Memento: Consequences

public class Bank {
public static void main(String[] args) {

Account . Merrento car et aker = nul | ; = preserving encapsulation boundaries
Account account = new Account ("John Smith"); it shields other objects from potentially complex Originator internals
account . credit(200); /1 bal ance = 200

= simplifying the Originator

account. creat eMerment o() ; L.
all storage management burden put on Originator

account . debi t (100); /1 balance = 100

account . debi t (50) ; /1 bal ance : 50 clients ask the Originator to store and restore the Mementos
account . set Merrent o() ; = defining narrow and wide interfaces
account . debi t (50); /1 bal ance = 150 n potent'al memory overhead
}
} Originator may copy large amounts of state data

Caretaker in unaware of the Memento's size

by the Gang of Four

Prototype: Motivation Prototype: Applicability

= (Classes to instatiate are specified at
runtime.

Specify the kinds of objects to create using a

prototypical instance, and create new objects

by cloning this prototype

= To avoid parallel hierarchies of factories
and products.

= |nstances of a class can have one of only few
different combinations of state.

by the Gang of Four by the Gang of Four

(c) Bartosz Walter

Design Petterns |

Prototype: Structure

Client prototype Prototype

ScClone()
/\

Soperation()
T

‘ Col tePrototypel ‘
[F®cione() |

return clone I
of itself

‘ ConcretePrototype2 ‘
[F®cione() | |

retum clone I
of itself

p = prototype->Clone() j

by the Gang of Four

Prototype: Participants

= Prototype

= declares an interface for cloning itself.
= Concrete Prototype

= implements an operation for cloning itself.
= Client

= creates a new object by asking a prototype to clone itself.

by the Gang of Four

Prototype: Consequences

= manipulating products at runtime

new prototypical instances can register to be available for
cloning

= specyfying new object by varying values and
structure
Prototype creates new objects as instatiation does
= reduced subclassing

by the Gang of Four

Prototype: Example

public class Enployee {
private String name = null;
private Date birthday = null;

public Enployee(String nane, Date birthday) {
this.name = nane;
this.birthday = birthday;
}
}

Enpl oyee enp = new Enpl oyee("John Smith", new Date());
Enpl oyee enp2 = (Enpl oyee) enp.clone();

java. | ang. G oneNot Support edExcepti on

Prototype: Example

public class Enployee inplenments Cloneable {
private String name = null;
private Date birthday = null;

public Enployee(String nane, Date birthday) {
this. name = nane;
this.birthday = birthday;

}

public Object clone() throws C oneNot SupportedException {
/1 sone specific cloning (eg. deep copy)
return super.clone();
}
}

Enpl oyee enp = new Enpl oyee("John Smith", new Date());
Enpl oyee enp2 = (Enpl oyee) enp.clone();
assert Equal s(enp, enp2);

State: Motivation

Allow an object to alter its behavior when its
internal state changes. The object will appear
to change its class.

by the Gang of Four

(c) Bartosz Walter

Design Petterns |

State: Applicability

= Object's behavior depends on its state
= The behavior must change at runtime

= Qperations have large, multipart conditionals
that depend on the object's state

= Each state is a self-contained object, that can vary
independently from other objects

by the Gang of Four

State: Structure

Context state State

®Request()

state->Handle() i

$Handle()

‘ ConcreteStateA H ConcreteStateB ‘
\ $Handle() H $Handle() \

by the Gang of Four

State: Participants

= Context
= defines the interface of interest to clients

= maintains an instance of a ConcreteState subclass that defines
the current state

= State

= defines an interface for encapsulating the behavior associated
with a particular state of the Context

= Concrete State subclasses

= each subclass implements a behavior associated with a state of
the Context

by the Gang of Four

State: Consequences

= partition of the behavior for different states
state-specific code lives in State subclasses
intent of the state-dependent behavior is clearer

= explicit state transitions
protection from inconsistent internal states

= possible sharing of state objects
States are stateless

by the Gang of Four

State: Example

public class Account {
private int balance = 0;
private String owner = null;
private bool ean isCpen = false;

public Account(String owner, int balance) {
this.owner = owner;
this.balance = bal ance;
this.isOpen = true;

public void credit(int amount) {
if (isOpen) {
bal ance += anount;
} else {
alert("The account is closed!");
}
}

}

State: Example

public interface AccountState {
public void credit(Account acc, int anount);

}

public class AccountOpen inplenents AccountState {
public void credit(Account acc, int amount) {
acc. bal ance += anount;
}
}

public class AccountCl osed inplenents AccountState {
public void credit(Account acc, int amount) {
al ert("The account is closed!");
}
}

(c) Bartosz Walter

Design Petterns |

State: Example

public class Account {
private int balance = 0;
private String owner = null;
private AccountState state = null;

public Account(String owner, int balance) {
this.owner = owner;
this.balance = bal ance;
this.state = new Account Qpen();

}
public void credit(int amount) {

this.state.credit(this, amount);
}

public void close() {
this.state = new Account O osed();
}

}

Strategy: Applicability

= Define a family of algorithms, encapsulate each
one, and make them interchangeable

= Strategy lets the algorithm to vary
independently from clients that use it

by the Gang of Four

Strategy: Structure

Context2 Strategy

strategy

®Contextinterface() ® Algorithminterface()

‘ ConcreteStrategy A H ConcreteStrategyB ‘
‘ ‘Algori‘hmlmerfaceo‘ ‘ ‘Algorithlnterface()‘

by the Gang of Four

Strategy: Participants

= Strategy
= declares an interface common to all supported algorithms.
Context uses this interface to call the algorithm defined by a
ConcreteStrategy
= Concrete Strategy
= implements the algorithm using the Strategy interface
= Context
= is configured with a ConcreteStrategy object

= maintains a reference to a Strategy object
= may define an interface that lets Strategy access its data

by the Gang of Four

Strategy: Consequences

reusable families of related algorithms

flexible alternative to plain subclassing
algorithms can be exchanged dynamically
clear separation of common and specific behavior

= elimination of complex conditionals

= often client must be aware of different Strategies

possible high complexity of Strategy interface

all Strategies must share common interface, regardless from their
needs

= increased number of objects within application

by the Gang of Four

Strategy: Example 1

Sorter SortingStrategy
B5data : java. util.Collection S Sinit()
Ssample()

Wsort() Ssort()
HeapSort MergeSort QuickSort
Finit() Finit() Finit()
Ssample() Ssample() Ssample()
Msort() Ssort () Ssort()

(c) Bartosz Walter

Design Petterns |

Strategy: Example 2

public class BannerGenerator {
Quput Devi ce device = null;

public BannerGenerator() {
device = new Screen();

Strategy: Example 2

interface QutputDevice {
public String print(String text);
public String CR();
public String LF();
public String FF();

} }

public void generate(String textl, String text2) { class Screen inplements QutputDevice {
device. CR(); public String print(String text) {
device.print(textl); System out. print(text);

device. LF(); }
devi ce. CR(); public String CR() {
devi ce.print(text2); Systemout.print("\n");
devi ce. FF(); }
} public String LF() {
} Systemout. print("\n");

}
public String FF() {
Systemout. print("\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n");

Strategy: Example 2

interface CQutputDevice {
public String print(String text);
public String CR();
public String LF();
public String FF();

Design patterns

}

class Printer inplenments CQutputDevice {
private PrnDriver prn = new PrnDriver();

public String print(String text) {
prn.print(text);

... to be continued again...

}
public String CR() {
prn.return();

}
public String LF() {
prn. nextLine();

}
public String FF() {
prn. next Page() ;

}

}

1. GammaE. et al., Design Patterns.
Elements of Reuseable Object-Oriented
Software. Addison-Wesley, 1995

2. Eckel B., Thinking in patterns.
http://lwww.bruceeckel.com

3. Cooper J., Java. Wzorce Projektowe.
Helion, 2001

4. Shalloway A., Trott J., Projektowanie
zorientowane obiektowo. Wzorce
projektowe. Wydanie Il. Helion, 2005

(c) Bartosz Walter

