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Pool of Objects: Intent Pool of Objects: Structure

Client
0.n W/
Manage (create and re-use) the multiple-use of Fodl
objects in cases when their creation is costly or EPooly
. .. uses getinstance()
there could exist only a limited number of Jestotiect)
returnObject()

instances Ssize()
ReusableObject ? !
—

by Shalloway & Trott by Shalloway & Trott

Pool of Objects: Participants Pool of Objects: Consequences

) Pogl ) ) ) = improved performance
* 1S an access pqnt for '“Sta”?es ReusgpleOb/ects ) = ReusableObjects are initialized once and re-used multiple times
= manages the lifecycle (creation, acquiring, return, disposal) of » faster request handiin
ReusableObjects q 9

= balanced, smooth resource consumption

= better encapsulation and higher cohesion
= Pool manages the ReusableObjects'lifecycle
= Client contacts only the Pool

= load balancing

= handles exceptions thrown by ReusableObjects
= ReusableObject

= has a defined lifecycle

= can be reused
= Client

= requests the ReusableObjects from the Pool

by Shalloway & Trott by Shalloway & Trott
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Pool of Objects: Example

javax.sql.DataSource is a generic interface for database
connection factories. It defines a getConnection() method,
which provides a client with an wrapped connection
instance.

Invoking close() on the wrapper does not close the
connection itself; it simply returns it to the DataSource,
which therefore acts as a self-recovering pool of objects.
Pools are often implemented as singletons, usually they
are also multithreaded (with getObject() and returnObject()
synchronized)

Chain of Responsibility: Intent

= Avoid coupling the sender of a request to its
receiver by giving more than one object a
chance to handle the request

= Chain the receiving objects and pass the
request along the chain until an object
handles it

by the Gang of Four

Chain of Responsibility: Structure

Handler
Client
®HandieRequest() +successar

ConcreteHandler ConcreteHandler2
‘HandleRequestO ‘Hand\eﬁequest[}
by the Gang of Four

Chain of Responsibility: Participants

= Handler
= defines an interface for handling requests
= (optional) implements the successor link
= Concrete Handler
= handles requests it is responsible for
= can access its successor

= if the ConcreteHandler can handle the request, it does so;
otherwise it forwards the request to its successor

= Client
= initiates the request to a ConcreteHandler object on the chain

by the Gang of Four

Chain of Responsibility: Consequences

Chain of Responsibility allows for:

= reduced coupling

= Object does not need to know which other object handles the
request

= both Sender and Receiver have no knowledge of each other

= chain elements do not know the chain's structure
= added flexibility in assigning responsibilities to objects

= responsibilities can be freely distributed among chain elements
= no guarantee of receipt

by the Gang of Four

Chain of Responsibility: Example 1

for (f : filters) {
Inbox if (f.doFilter() {

EHfilters : Set break;

}

Sfilter(msg : Message)

J

Filter

}

SdoFilter()
Filterl Filter2 Filter3

SdoFilter() SdoFilter() FdoFilter()
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Chain of Responsibility: Example 1

‘ Client ‘

: Inbox ‘ ‘ : Filterl ‘ ‘ : Filter2 ‘ ‘ : Filter3 ‘

|
9

filter(Message).

doFilter(
L 7 5

0 . ‘
‘D doFilter( )

|
doFilter() U ~

Chain of Responsibility: Example 2

Filter
SdoFilter()
[ I 1
Inbox +filterChain Filterl +next Filter2 +next Filter3
®filter(msg : Message) RdoFilter() SdoFilter() doFiter(

filterChain.doFilter() 1 if (! isEligible()) AN
next.doFilter()

Chain of Responsibility: Example 2

Facade: Motivation

‘ Client ‘ - Inbox ‘ ‘ Filter1 : Filter ‘ Filter2 : Filter ‘ Filter3 : Filter
‘ ‘ ‘ = Provide a unified interface to a set of
dorite) interfaces in a subsystem
doFilter()
doriter() = Facade defines a higher-level interface that
‘ ‘ makes the subsystem easier to use
by the Gang of Four
Facade: Structure Facade: Participants
Client
$operation() - Facade
\ = knows which subsystem classes are responsible for handling
the request
= delegates client requests to appropriate subsystem objects
L = subsystem classes
‘ Subsystem2 ‘ ‘ Subsystem3 . . .,
; | ; | = implement subsystem functionality

/| = handle work assigned to them by the Facade object
| = have no knowledge of the facade, i.e. they keep no references
—— toit

ubsysteml1

by the Gang of Four by the Gang of Four
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Facade: Consequences

= shielding clients from subsystem components
= clients may communicate with subsystems via Facade
= subsystems are easier to use and cheaper in maintenance
= flexible access to subsystems
= clients can call both Facade and underlying subsystems
= promotion of looser coupling between the
subsystems and their clients
= subsystems can be hidden from the clients
= subsystems can be easily replaced
= provisioning of only partial functionality by the
Facade

by the Gang of Four

Facade: Example

public class Email { /1 facade
M nmeMessage msg = null; /1 subsysteml
Session session = Session.getlnstance(null, props); // subsysten?

public Email (String subject, String text) {
msg = new M meMessage(session);
nmsg. set Fr on{ DEFAULT_FROM ;
nmsg. set Subj ect (subj ect) ;
nsg. set Text (text, "UTF-8");
}

public void sendTo(String[] to) {
nmsg. set Reci pi ent s(Message. Reci pi ent Type. TO, convert(to));
Transport transport = session.getTransport("sntp");
transport.sendMessage(nsg, nsg.get Al |l Reci pients()

public void sendTo(String[] to, String[] cc) {
nsg. set Reci pi ent s(Message. Reci pi ent Type. TO, convert (to
nsg. set Reci pi ent s(Message. Reci pi ent Type. CC, convert (Cc
Transport transport = session.getTransport("sntp");
transport.sendMessage(nsg, nsg.get Al | Reci pients()

}

)
)

}

Builder: Motivation

= Separate the construction of a complex
object from its representation

= The same construction process can create
different representations

by the Gang of Four

Builder: Structure

W‘ Director +builder Builder
— ®construct() ®BuildPart()
for all objects in structure {
builder->BuildPart() Concretehien
} SBuildPart() —
®GetResult()
by the Gang of Four

Builder: Participants

= Builder

= specifies an abstract interface for creating parts of a Product

= Concrete Builder

= constructs and assembles parts of the product by implementing the
Builder interface

= defines and keeps track of representation it creates
= provides an interface for retrieving the Product

= Director
= constructs an object using the Builder interface

= Product

= includes classes that define its parts, including interfaces for
assembling the parts into the final result

by the Gang of Four

Builder: Consequences

Product's internal representations may vary

isolation the construction code from
representation code

finer control over the construction process
= improved testability

by the Gang of Four
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Builder: Example

public class Director {
Bui | der roof Bui | der = new Roof Bui | der ()
Bui | der wal | Bui | der = new Wl | Bui | der () ;
Bui I der foundationBuil der = new FoundationBuil der();

public House assenble() {
Roof roof = (Roof) roofBuilder.build();
Part wall = (Wall) roofBuilder.build();
Part foundation = (Foundation) foundationBuilder.build();

House house = new House();

house. set Foundati on (foundation);
house. set Val | (wal |');

house. set Roof (roof ) ;

return house;
}
}

public interface Builder {
public Part build();

Memento: Motivation

Without violating encapsulation, capture and
externalize an object's internal state so that
the object can be restored to this state later

by the Gang of Four

Memento: Applicability

= A snapshot of an object state must be
saved so that it can be restored later

= A direct interface to obtaining the state would
expose implementation details and break the
encapsulation

by the Gang of Four

Memento: Structure

Originator Memento
Bstate Bstate +memento [ Caretaker
$setMemento(Memento) SGetsState() :‘
@CreateMemento() Wsetstate()
T
T
| \
(I
retum new Memento(state) AN
\
\
state = Memento->GetState() ﬁ
by the Gang of Four

Memento: Participants

= Memento

stores original state of the Originator state

protects agains access by objects other that the Originator
= Originator

creates a Memento containing a snapshot of its current internal
state

uses the Memento to restore its internal state
= Caretaker

is responsible for Memento safekeeping

never examines the content of a memento

by the Gang of Four

Memento: Implementation

= Two interfaces of Memento
narrow — Caretaker can only pass Memento to other objects
wide — Originator sees all data needed to restore its state

= Java implementation
Memento as an inner class of the Originator

Memento and Originator within a common package (methods
accessible at default security level)

= C++ implementation
Originator is a friend class to Memento

(c) Bartosz Walter
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Memento: Example Memento: Example

public class Account { public class Account {
private int balance = 0; /'l continued...
public void credit(int amount) { class Menento {
bal ance += anount; int nenentoBal ance = 0;
}
public void setState() {
public void debit(int anount) { nenent oBal ance = bal ance;
bal ance -= anount; }
}
public void restoreState() {
public void setMenento(Menento nenento) { bal ance = nenent oBal ance;
nenento. restoreState(); }
} }

}
public Menmento createMenento() {
Menent o mementoToReturn = new Menento();
menent oToRet urn. set State() ;

return menment oToRet urn;

}

Memento: Example Memento: Consequences

public class Bank {
public static void main(String[] args) {

Account . Merrento car et aker = nul | ; = preserving encapsulation boundaries
Account account = new Account ("John Smith"); it shields other objects from potentially complex Originator internals
account . credit(200); /1 bal ance = 200

= simplifying the Originator

account. creat eMerment o() ; L.
all storage management burden put on Originator

account . debi t (100); /1 balance = 100

account . debi t (50) ; /1 bal ance : 50 clients ask the Originator to store and restore the Mementos
account . set Merrent o( ) ; = defining narrow and wide interfaces
account . debi t (50); /1 bal ance = 150 n potent'al memory overhead
}
} Originator may copy large amounts of state data

Caretaker in unaware of the Memento's size

by the Gang of Four

Prototype: Motivation Prototype: Applicability

= (Classes to instatiate are specified at
runtime.

Specify the kinds of objects to create using a

prototypical instance, and create new objects

by cloning this prototype

= To avoid parallel hierarchies of factories
and products.

= |nstances of a class can have one of only few
different combinations of state.

by the Gang of Four by the Gang of Four
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Prototype: Structure

Client prototype Prototype

ScClone()
/\

Soperation()
T

‘ Col tePrototypel ‘
[F®cione() |

return clone I
of itself

‘ ConcretePrototype2 ‘
[F®cione() | |

retum clone I
of itself

p = prototype->Clone() j

by the Gang of Four

Prototype: Participants

= Prototype

= declares an interface for cloning itself.
= Concrete Prototype

= implements an operation for cloning itself.
= Client

= creates a new object by asking a prototype to clone itself.

by the Gang of Four

Prototype: Consequences

= manipulating products at runtime

new prototypical instances can register to be available for
cloning

= specyfying new object by varying values and
structure
Prototype creates new objects as instatiation does
= reduced subclassing

by the Gang of Four

Prototype: Example

public class Enployee {
private String name = null;
private Date birthday = null;

public Enployee(String nane, Date birthday) {
this.name = nane;
this.birthday = birthday;
}
}

Enpl oyee enp = new Enpl oyee("John Smith", new Date());
Enpl oyee enp2 = (Enpl oyee) enp.clone();

java. | ang. G oneNot Support edExcepti on

Prototype: Example

public class Enployee inplenments Cloneable {
private String name = null;
private Date birthday = null;

public Enployee(String nane, Date birthday) {
this. name = nane;
this.birthday = birthday;

}

public Object clone() throws C oneNot SupportedException {
/1 sone specific cloning (eg. deep copy)
return super.clone();
}
}

Enpl oyee enp = new Enpl oyee("John Smith", new Date());
Enpl oyee enp2 = (Enpl oyee) enp.clone();
assert Equal s(enp, enp2);

State: Motivation

Allow an object to alter its behavior when its
internal state changes. The object will appear
to change its class.

by the Gang of Four
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State: Applicability

= Object's behavior depends on its state
= The behavior must change at runtime

= Qperations have large, multipart conditionals
that depend on the object's state

= Each state is a self-contained object, that can vary
independently from other objects

by the Gang of Four

State: Structure

Context state State

®Request()

state->Handle() i

$Handle()

‘ ConcreteStateA H ConcreteStateB ‘
\ $Handle() H $Handle() \

by the Gang of Four

State: Participants

= Context
= defines the interface of interest to clients

= maintains an instance of a ConcreteState subclass that defines
the current state

= State

= defines an interface for encapsulating the behavior associated
with a particular state of the Context

= Concrete State subclasses

= each subclass implements a behavior associated with a state of
the Context

by the Gang of Four

State: Consequences

= partition of the behavior for different states
state-specific code lives in State subclasses
intent of the state-dependent behavior is clearer

= explicit state transitions
protection from inconsistent internal states

= possible sharing of state objects
States are stateless

by the Gang of Four

State: Example

public class Account {
private int balance = 0;
private String owner = null;
private bool ean isCpen = false;

public Account(String owner, int balance) {
this.owner = owner;
this.balance = bal ance;
this.isOpen = true;

public void credit(int amount) {
if (isOpen) {
bal ance += anount;
} else {
alert("The account is closed!");
}
}

}

State: Example

public interface AccountState {
public void credit(Account acc, int anount);

}

public class AccountOpen inplenents AccountState {
public void credit(Account acc, int amount) {
acc. bal ance += anount;
}
}

public class AccountCl osed inplenents AccountState {
public void credit(Account acc, int amount) {
al ert("The account is closed!");
}
}

(c) Bartosz Walter
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State: Example

public class Account {
private int balance = 0;
private String owner = null;
private AccountState state = null;

public Account(String owner, int balance) {
this.owner = owner;
this.balance = bal ance;
this.state = new Account Qpen();

}
public void credit(int amount) {

this.state.credit(this, amount);
}

public void close() {
this.state = new Account O osed();
}

}

Strategy: Applicability

= Define a family of algorithms, encapsulate each
one, and make them interchangeable

= Strategy lets the algorithm to vary
independently from clients that use it

by the Gang of Four

Strategy: Structure

Context2 Strategy

strategy

®Contextinterface() ® Algorithminterface()

‘ ConcreteStrategy A H ConcreteStrategyB ‘
‘ ‘Algori‘hmlmerfaceo‘ ‘ ‘Algorithlnterface()‘

by the Gang of Four

Strategy: Participants

= Strategy
= declares an interface common to all supported algorithms.
Context uses this interface to call the algorithm defined by a
ConcreteStrategy
= Concrete Strategy
= implements the algorithm using the Strategy interface
= Context
= is configured with a ConcreteStrategy object

= maintains a reference to a Strategy object
= may define an interface that lets Strategy access its data

by the Gang of Four

Strategy: Consequences

reusable families of related algorithms

flexible alternative to plain subclassing
algorithms can be exchanged dynamically
clear separation of common and specific behavior

= elimination of complex conditionals

= often client must be aware of different Strategies

possible high complexity of Strategy interface

all Strategies must share common interface, regardless from their
needs

= increased number of objects within application

by the Gang of Four

Strategy: Example 1

Sorter SortingStrategy
B5data : java. util.Collection S Sinit()
Ssample()

Wsort() Ssort()
HeapSort MergeSort QuickSort
Finit() Finit() Finit()
Ssample() Ssample() Ssample()
Msort() Ssort () Ssort()
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Strategy: Example 2

public class BannerGenerator {
Quput Devi ce device = null;

public BannerGenerator() {
device = new Screen();

Strategy: Example 2

interface QutputDevice {
public String print(String text);
public String CR();
public String LF();
public String FF();

} }

public void generate(String textl, String text2) { class Screen inplements QutputDevice {
device. CR(); public String print(String text) {
device.print(textl); System out. print(text);

device. LF(); }
devi ce. CR(); public String CR() {
devi ce.print(text2); Systemout.print("\n");
devi ce. FF(); }
} public String LF() {
} Systemout. print("\n");

}
public String FF() {
Systemout. print("\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n");

Strategy: Example 2

interface CQutputDevice {
public String print(String text);
public String CR();
public String LF();
public String FF();

Design patterns

}

class Printer inplenments CQutputDevice {
private PrnDriver prn = new PrnDriver();

public String print(String text) {
prn.print(text);

... to be continued again...

}
public String CR() {
prn.return();

}
public String LF() {
prn. nextLine();

}
public String FF() {
prn. next Page() ;

}

}
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