
Design Patterns II

(c) Bartosz Walter 1

Design patternsDesign patterns
PartPart IIII

Advanced Object-Oriented Design

Lecture 11

Bartosz Walter
<Bartek.Walter@man.poznan.pl>

Design patternsDesign patterns

Catalog of Design Patterns

Pool of ObjectsPool of Objects: : IntentIntent

Manage (create and re-use) the multiple-use of

objects in cases when their creation is costly or

there could exist only a limited number of

instances

by Shalloway & Trott

PoolPool ofof ObjectsObjects: : StructureStructure

by Shalloway & Trott

Client

Pool

Pool()
getInstance()
getObject()
returnObject()
size()

10..n

ReusableObject

0..n

1

uses

0..n 1

0..n

1

PoolPool ofof ObjectsObjects: : ParticipantsParticipants

� Pool
� is an access point for instances ReusableObjects

� manages the lifecycle (creation, acquiring, return, disposal) of
ReusableObjects

� handles exceptions thrown by ReusableObjects

� ReusableObject
� has a defined lifecycle

� can be reused

� Client
� requests the ReusableObjects from the Pool

by Shalloway & Trott

PoolPool ofof ObjectsObjects: : ConsequencesConsequences

� improved performance
� ReusableObjects are initialized once and re-used multiple times

� faster request handling

� balanced, smooth resource consumption

� better encapsulation and higher cohesion
� Pool manages the ReusableObjects' lifecycle

� Client contacts only the Pool

� load balancing

by Shalloway & Trott

Design Patterns II

(c) Bartosz Walter 2

PoolPool ofof ObjectsObjects: : ExampleExample

javax.sql.DataSource is a generic interface for database
connection factories. It defines a getConnection() method,
which provides a client with an wrapped connection
instance.

Invoking close() on the wrapper does not close the
connection itself; it simply returns it to the DataSource,
which therefore acts as a self-recovering pool of objects.

Pools are often implemented as singletons, usually they
are also multithreaded (with getObject() and returnObject()
synchronized)

ChainChain ofof ResponsibilityResponsibility: : IntentIntent

� Avoid coupling the sender of a request to its

receiver by giving more than one object a

chance to handle the request

� Chain the receiving objects and pass the

request along the chain until an object

handles it

by the Gang of Four

ChainChain ofof ResponsibilityResponsibility: : StructureStructure

by the Gang of Four

Chain of ResponsibilityChain of Responsibility: : ParticipantsParticipants

� Handler
� defines an interface for handling requests

� (optional) implements the successor link

� Concrete Handler
� handles requests it is responsible for

� can access its successor

� if the ConcreteHandler can handle the request, it does so;
otherwise it forwards the request to its successor

� Client
� initiates the request to a ConcreteHandler object on the chain

by the Gang of Four

Chain of ResponsibilityChain of Responsibility: : ConsequencesConsequences

Chain of Responsibility allows for:

� reduced coupling
� Object does not need to know which other object handles the

request

� both Sender and Receiver have no knowledge of each other

� chain elements do not know the chain's structure

� added flexibility in assigning responsibilities to objects
� responsibilities can be freely distributed among chain elements

� no guarantee of receipt

by the Gang of Four

Chain of ResponsibilityChain of Responsibility: : Example Example 11

Filter

doFilter()

Filter1

doFilter()

Filter2

doFilter()

Filter3

doFilter()

for (f : filters) {
 if (f.doFilter()) {
 break;
 }
}

Inbox

filters : Set

filter(msg : Message)

Design Patterns II

(c) Bartosz Walter 3

Chain of ResponsibilityChain of Responsibility: : Example Example 11

ClientClient : Inbox : Inbox : Filter1 : Filter1 : Filter2 : Filter2 : Filter3 : Filter3

doFilter()

filter(Message)

doFilter()

doFilter()

Chain of ResponsibilityChain of Responsibility: : Example Example 22

Filter

doFilter()

filterChain.doFilter()

Inbox

filter(msg : Message)

Filter1

doFilter()

Fil ter2

doFilter()

Filter3

doFilter()

+next+next+filterChain

if (! isEligible())
 next.doFilter()

Chain of ResponsibilityChain of Responsibility: : Example Example 22

ClientClient : Inbox : Inbox Filter1 : FilterFilter1 : Filter Filter2 : FilterFilter2 : Filter Filter3 : FilterFilter3 : Filter

doFilter()

doFil ter()

doFilter()

filter(Message)

FacadeFacade: : MotivationMotivation

� Provide a unified interface to a set of

interfaces in a subsystem

� Facade defines a higher-level interface that

makes the subsystem easier to use

by the Gang of Four

FacadeFacade: : StructureStructure

by the Gang of Four

Client

Operation()

Subsystem1

Subsystem2 Subsystem3

Facade

FacadeFacade: : ParticipantsParticipants

� Facade
� knows which subsystem classes are responsible for handling

the request

� delegates client requests to appropriate subsystem objects

� subsystem classes
� implement subsystem functionality

� handle work assigned to them by the Facade object

� have no knowledge of the facade, i.e. they keep no references
to it

by the Gang of Four

Design Patterns II

(c) Bartosz Walter 4

FacadeFacade: : ConsequencesConsequences

� shielding clients from subsystem components
� clients may communicate with subsystems via Facade

� subsystems are easier to use and cheaper in maintenance

� flexible access to subsystems
� clients can call both Facade and underlying subsystems

� promotion of looser coupling between the
subsystems and their clients
� subsystems can be hidden from the clients

� subsystems can be easily replaced

� provisioning of only partial functionality by the
Facade

by the Gang of Four

FacadeFacade: : ExampleExample

public class Email { // facade
MimeMessage msg = null; // subsystem1
Session session = Session.getInstance(null, props); // subsystem2

public Email(String subject, String text) {
msg = new MimeMessage(session);
msg.setFrom(DEFAULT_FROM);
msg.setSubject(subject);
msg.setText(text, "UTF-8");

}

public void sendTo(String[] to) {
msg.setRecipients(Message.RecipientType.TO, convert(to));
Transport transport = session.getTransport("smtp");
transport.sendMessage(msg, msg.getAllRecipients()

}

public void sendTo(String[] to, String[] cc) {
msg.setRecipients(Message.RecipientType.TO, convert(to));
msg.setRecipients(Message.RecipientType.CC, convert(Cc));
Transport transport = session.getTransport("smtp");
transport.sendMessage(msg, msg.getAllRecipients()

}
}

BuilderBuilder: : MotivationMotivation

� Separate the construction of a complex

object from its representation

� The same construction process can create

different representations

by the Gang of Four

BuilderBuilder: : StructureStructure

by the Gang of Four

ConcreteBuilder

BuildPart()
GetResult()

Builder

BuildPart()

for all objects in structure {
 builder->BuildPart()
} Product

Client
Director

Construct()

+builder

BuilderBuilder: : ParticipantsParticipants

� Builder
� specifies an abstract interface for creating parts of a Product

� Concrete Builder
� constructs and assembles parts of the product by implementing the

Builder interface

� defines and keeps track of representation it creates

� provides an interface for retrieving the Product

� Director
� constructs an object using the Builder interface

� Product
� includes classes that define its parts, including interfaces for

assembling the parts into the final result

by the Gang of Four

BuilderBuilder: : ConsequencesConsequences

� Product's internal representations may vary

� isolation the construction code from

representation code

� finer control over the construction process

� improved testability

by the Gang of Four

Design Patterns II

(c) Bartosz Walter 5

BuilderBuilder: : ExampleExample

public class Director {
Builder roofBuilder = new RoofBuilder();
Builder wallBuilder = new WallBuilder();
Builder foundationBuilder = new FoundationBuilder();

public House assemble() {
Roof roof = (Roof) roofBuilder.build();
Part wall = (Wall) roofBuilder.build();
Part foundation = (Foundation) foundationBuilder.build();

House house = new House();
house.setFoundation (foundation);
house.setWall(wall);
house.setRoof(roof);

return house;
}

}

public interface Builder {
public Part build();

}

Memento: Memento: MotivationMotivation

Without violating encapsulation, capture and

externalize an object's internal state so that

the object can be restored to this state later

by the Gang of Four

Memento: Memento: ApplicabilityApplicability

� A snapshot of an object state must be

saved so that it can be restored later

� A direct interface to obtaining the state would

expose implementation details and break the

encapsulation

by the Gang of Four

Memento: Memento: StructureStructure

by the Gang of Four

Originator

state

SetMemento(Memento)
CreateMemento()

return new Memento(state)

state = Memento->GetState()

Memento

state

GetState()
SetState()

Caretaker+memento

Memento: Memento: ParticipantsParticipants

� Memento
� stores original state of the Originator state

� protects agains access by objects other that the Originator

� Originator
� creates a Memento containing a snapshot of its current internal

state

� uses the Memento to restore its internal state

� Caretaker
� is responsible for Memento safekeeping

� never examines the content of a memento

by the Gang of Four

Memento: Memento: ImplementationImplementation

� Two interfaces of Memento
� narrow – Caretaker can only pass Memento to other objects

� wide – Originator sees all data needed to restore its state

� Java implementation
� Memento as an inner class of the Originator

� Memento and Originator within a common package (methods

accessible at default security level)

� C++ implementation
� Originator is a friend class to Memento

Design Patterns II

(c) Bartosz Walter 6

Memento: Memento: ExampleExample

public class Account {
private int balance = 0;

public void credit(int amount) {
balance += amount;

}

public void debit(int amount) {
balance -= amount;

}

public void setMemento(Memento memento) {
memento.restoreState();

}

public Memento createMemento() {
Memento mementoToReturn = new Memento();
mementoToReturn.setState();

return mementoToReturn;
}

Memento: Memento: ExampleExample

public class Account {
// continued...

class Memento {
int mementoBalance = 0;

public void setState() {
mementoBalance = balance;

}

public void restoreState() {
balance = mementoBalance;

}
}

}

Memento: Memento: ExampleExample

public class Bank {
public static void main(String[] args) {

Account.Memento caretaker = null;

Account account = new Account("John Smith");
account.credit(200); // balance = 200

account.createMemento();

account.debit(100); // balance = 100
account.debit(50); // balance = 50

account.setMemento();

account.debit(50); // balance = 150
}

}

Memento: Memento: ConsequencesConsequences

� preserving encapsulation boundaries
�it shields other objects from potentially complex Originator internals

� simplifying the Originator
�all storage management burden put on Originator

�clients ask the Originator to store and restore the Mementos

� defining narrow and wide interfaces

� potential memory overhead
�Originator may copy large amounts of state data

�Caretaker in unaware of the Memento's size

by the Gang of Four

PrototypePrototype: : MotivationMotivation

Specify the kinds of objects to create using a

prototypical instance, and create new objects

by cloning this prototype

by the Gang of Four

PrototypePrototype: : ApplicabilityApplicability

� Classes to instatiate are specified at

runtime.

� To avoid parallel hierarchies of factories

and products.

� Instances of a class can have one of only few

different combinations of state.

by the Gang of Four

Design Patterns II

(c) Bartosz Walter 7

PrototypePrototype: : StructureStructure

by the Gang of Four

ConcretePrototype1

Clone()

ConcretePrototype2

Clone()

Prototype

Clone()

Client

Operation()

prototype

p = prototype->Clone()

return clone
of itself

return clone
of itself

PrototypePrototype: : ParticipantsParticipants

� Prototype
� declares an interface for cloning itself.

� Concrete Prototype
� implements an operation for cloning itself.

� Client
� creates a new object by asking a prototype to clone itself.

by the Gang of Four

PrototypePrototype: : ConsequencesConsequences

� manipulating products at runtime
� new prototypical instances can register to be available for

cloning

� specyfying new object by varying values and
structure
� Prototype creates new objects as instatiation does

� reduced subclassing

by the Gang of Four

PrototypePrototype: : ExampleExample

public class Employee {

private String name = null;

private Date birthday = null;

public Employee(String name, Date birthday) {

this.name = name;

this.birthday = birthday;

}

}

Employee emp = new Employee("John Smith", new Date());

Employee emp2 = (Employee) emp.clone();

java.lang.CloneNotSupportedException

PrototypePrototype: : ExampleExample

public class Employee implements Cloneable {

private String name = null;

private Date birthday = null;

public Employee(String name, Date birthday) {

this.name = name;

this.birthday = birthday;

}

public Object clone() throws CloneNotSupportedException {

// some specific cloning (eg. deep copy)

return super.clone();

}

}

Employee emp = new Employee("John Smith", new Date());

Employee emp2 = (Employee) emp.clone();

assertEquals(emp, emp2);

StateState: : MotivationMotivation

Allow an object to alter its behavior when its

internal state changes. The object will appear

to change its class.

by the Gang of Four

Design Patterns II

(c) Bartosz Walter 8

StateState: : ApplicabilityApplicability

� Object's behavior depends on its state

� The behavior must change at runtime

� Operations have large, multipart conditionals

that depend on the object's state

� Each state is a self-contained object, that can vary

independently from other objects

by the Gang of Four

StateState: : StructureStructure

by the Gang of Four

ConcreteStateA

Handle()

ConcreteStateB

Handle()

state->Handle()

State

Handle()

Context

Request()

state

StateState: : ParticipantsParticipants

� Context
� defines the interface of interest to clients

� maintains an instance of a ConcreteState subclass that defines
the current state

� State
� defines an interface for encapsulating the behavior associated

with a particular state of the Context

� Concrete State subclasses
� each subclass implements a behavior associated with a state of

the Context

by the Gang of Four

StateState: : ConsequencesConsequences

� partition of the behavior for different states
� state-specific code lives in State subclasses

� intent of the state-dependent behavior is clearer

� explicit state transitions

� protection from inconsistent internal states

� possible sharing of state objects
� States are stateless

by the Gang of Four

StateState: : ExampleExample

public class Account {
private int balance = 0;
private String owner = null;
private boolean isOpen = false;

public Account(String owner, int balance) {
this.owner = owner;
this.balance = balance;
this.isOpen = true;

}
public void credit(int amount) {

if (isOpen) {
balance += amount;

} else {
alert("The account is closed!");

}
}

}

StateState: : ExampleExample

public interface AccountState {
public void credit(Account acc, int amount);

}

public class AccountOpen implements AccountState {
public void credit(Account acc, int amount) {

acc.balance += amount;
}

}

public class AccountClosed implements AccountState {
public void credit(Account acc, int amount) {

alert("The account is closed!");
}

}

Design Patterns II

(c) Bartosz Walter 9

StateState: : ExampleExample

public class Account {
private int balance = 0;
private String owner = null;
private AccountState state = null;

public Account(String owner, int balance) {
this.owner = owner;
this.balance = balance;
this.state = new AccountOpen();

}

public void credit(int amount) {
this.state.credit(this, amount);

}

public void close() {
this.state = new AccountClosed();

}
}

StrategyStrategy: : ApplicabilityApplicability

� Define a family of algorithms, encapsulate each

one, and make them interchangeable

� Strategy lets the algorithm to vary

independently from clients that use it

by the Gang of Four

StrategyStrategy: : StructureStructure

by the Gang of Four

ConcreteStrategyA

AlgorithmInterface()

ConcreteStrategyB

AlgorithmInterface()

Strategy

AlgorithmInterface()

Context2

ContextInterface()

strategy

StrategyStrategy: : ParticipantsParticipants

� Strategy
� declares an interface common to all supported algorithms.

Context uses this interface to call the algorithm defined by a
ConcreteStrategy

� Concrete Strategy
� implements the algorithm using the Strategy interface

� Context
� is configured with a ConcreteStrategy object

� maintains a reference to a Strategy object

� may define an interface that lets Strategy access its data

by the Gang of Four

StrategyStrategy: : ConsequencesConsequences

� reusable families of related algorithms

� flexible alternative to plain subclassing
� algorithms can be exchanged dynamically

� clear separation of common and specific behavior

� elimination of complex conditionals

� often client must be aware of different Strategies

� possible high complexity of Strategy interface
� all Strategies must share common interface, regardless from their

needs

� increased number of objects within application

by the Gang of Four

StrategyStrategy: : Example Example 11

HeapSort

init()
sample()
sort()

MergeSort

init()
sample()
sort()

QuickSort

init()
sample()
sort()

Sorter

data : java.uti l.Collection

sort()

SortingStrategy

ini t()
sample()
sort()

Design Patterns II

(c) Bartosz Walter 10

StrategyStrategy: : Example Example 22

public class BannerGenerator {
OuputDevice device = null;

public BannerGenerator() {
device = new Screen();

}

public void generate(String text1, String text2) {
device.CR();
device.print(text1);
device.LF();
device.CR();
device.print(text2);
device.FF();

}
}

StrategyStrategy: : Example Example 22

interface OutputDevice {
public String print(String text);
public String CR();
public String LF();
public String FF();

}

class Screen implements OutputDevice {
public String print(String text) {

System.out.print(text);
}
public String CR() {

System.out.print("\n");
}
public String LF() {

System.out.print("\n");
}
public String FF() {

System.out.print("\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n");
}

}

StrategyStrategy: : Example Example 22

interface OutputDevice {
public String print(String text);
public String CR();
public String LF();
public String FF();

}

class Printer implements OutputDevice {
private PrnDriver prn = new PrnDriver();

public String print(String text) {
prn.print(text);

}
public String CR() {

prn.return();
}
public String LF() {

prn.nextLine();
}
public String FF() {

prn.nextPage();
}

}

Design patternsDesign patterns

... to be continued again...

ReadingsReadings

1. Gamma E. et al., Design Patterns.

Elements of Reuseable Object-Oriented

Software. Addison-Wesley, 1995

2. Eckel B., Thinking in patterns.

http://www.bruceeckel.com

3. Cooper J., Java. Wzorce Projektowe.

Helion, 2001

4. Shalloway A., Trott J., Projektowanie

zorientowane obiektowo. Wzorce

projektowe.Wydanie II. Helion, 2005

Q & AQ & A

