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Catalog of Design Patterns

Pool of ObjectsPool of Objects: : IntentIntent

Manage (create and re-use) the multiple-use of 

objects in cases when their creation is costly or 

there could exist only a limited number of 

instances

by Shalloway & Trott

PoolPool ofof ObjectsObjects: : StructureStructure

by Shalloway & Trott
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PoolPool ofof ObjectsObjects: : ParticipantsParticipants

� Pool
� is an access point for instances ReusableObjects

� manages the lifecycle (creation, acquiring, return, disposal) of 
ReusableObjects

� handles exceptions thrown by ReusableObjects

� ReusableObject
� has a defined lifecycle

� can be reused

� Client
� requests the ReusableObjects from the Pool

by Shalloway & Trott

PoolPool ofof ObjectsObjects: : ConsequencesConsequences

� improved performance
� ReusableObjects are initialized once and re-used multiple times

� faster request handling

� balanced, smooth resource consumption

� better encapsulation and higher cohesion
� Pool manages the ReusableObjects' lifecycle

� Client contacts only the Pool

� load balancing

by Shalloway & Trott
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PoolPool ofof ObjectsObjects: : ExampleExample

javax.sql.DataSource is a generic interface for database 
connection factories. It defines a getConnection() method, 
which provides a client with an wrapped connection 
instance. 

Invoking close() on the wrapper does not close the 
connection itself; it simply returns it to the DataSource, 
which therefore acts as a self-recovering pool of objects. 

Pools are often implemented as singletons, usually they 
are also multithreaded (with getObject() and returnObject()
synchronized)

ChainChain ofof ResponsibilityResponsibility: : IntentIntent

� Avoid coupling the sender of a request to its 

receiver by giving more than one object a 

chance to handle the request

� Chain the receiving objects and pass the 

request along the chain until an object 

handles it

by the Gang of Four

ChainChain ofof ResponsibilityResponsibility: : StructureStructure

by the Gang of Four

Chain of ResponsibilityChain of Responsibility: : ParticipantsParticipants

� Handler
� defines an interface for handling requests

� (optional) implements the successor link

� Concrete Handler
� handles requests it is responsible for

� can access its successor

� if the ConcreteHandler can handle the request, it does so; 
otherwise it forwards the request to its successor

� Client
� initiates the request to a ConcreteHandler object on the chain

by the Gang of Four

Chain of ResponsibilityChain of Responsibility: : ConsequencesConsequences

Chain of Responsibility allows for:

� reduced coupling
� Object does not need to know which other object handles the 

request

� both Sender and Receiver have no knowledge of each other

� chain elements do not know the chain's structure

� added flexibility in assigning responsibilities to objects
� responsibilities can be freely distributed among chain elements

� no guarantee of receipt

by the Gang of Four

Chain of ResponsibilityChain of Responsibility: : Example Example 11
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for (f : filters) {
   if (f.doFilter()) {
      break;
   }
}

Inbox

filters : Set

filter(msg : Message)



Design Patterns II

(c) Bartosz Walter 3

Chain of ResponsibilityChain of Responsibility: : Example Example 11

ClientClient  : Inbox : Inbox  : Filter1 : Filter1  : Filter2 : Filter2  : Filter3 : Filter3

doFilter( )

filter(Message)

doFilter( )

doFilter( )

Chain of ResponsibilityChain of Responsibility: : Example Example 22
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doFilter()
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if (! isEligible())
   next.doFilter()

Chain of ResponsibilityChain of Responsibility: : Example Example 22
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FacadeFacade: : MotivationMotivation

� Provide a unified interface to a set of 

interfaces in a subsystem 

� Facade defines a higher-level interface that 

makes the subsystem easier to use

by the Gang of Four

FacadeFacade: : StructureStructure

by the Gang of Four

Client

Operation()

Subsystem1

Subsystem2 Subsystem3

Facade

FacadeFacade: : ParticipantsParticipants

� Facade
� knows which subsystem classes are responsible for handling 

the request

� delegates client requests to appropriate subsystem objects

� subsystem classes
� implement subsystem functionality

� handle work assigned to them by the Facade object

� have no knowledge of the facade, i.e. they keep no references
to it

by the Gang of Four
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FacadeFacade: : ConsequencesConsequences

� shielding clients from subsystem components
� clients may communicate with subsystems via Facade

� subsystems are easier to use and cheaper in maintenance

� flexible access to subsystems
� clients can call both Facade and underlying subsystems

� promotion of looser coupling between the 
subsystems and their clients
� subsystems can be hidden from the clients

� subsystems can be easily replaced

� provisioning of only partial functionality by the 
Facade

by the Gang of Four

FacadeFacade: : ExampleExample

public class Email { // facade
MimeMessage msg = null; // subsystem1
Session session = Session.getInstance(null, props); // subsystem2

public Email(String subject, String text) {
msg = new MimeMessage(session);
msg.setFrom(DEFAULT_FROM);
msg.setSubject(subject);
msg.setText(text, "UTF-8");

}

public void sendTo(String[] to) {
msg.setRecipients(Message.RecipientType.TO, convert(to));
Transport transport = session.getTransport("smtp");
transport.sendMessage(msg, msg.getAllRecipients()

}

public void sendTo(String[] to, String[] cc) {
msg.setRecipients(Message.RecipientType.TO, convert(to)); 
msg.setRecipients(Message.RecipientType.CC, convert(Cc)); 
Transport transport = session.getTransport("smtp");
transport.sendMessage(msg, msg.getAllRecipients()

}
}

BuilderBuilder: : MotivationMotivation

� Separate the construction of a complex 

object from its representation

� The same construction process can create

different representations

by the Gang of Four

BuilderBuilder: : StructureStructure

by the Gang of Four

ConcreteBuilder

BuildPart()
GetResult()

Builder

BuildPart()

for all objects in structure {
   builder->BuildPart()
} Product

Client
Director

Construct()

+builder

BuilderBuilder: : ParticipantsParticipants

� Builder
� specifies an abstract interface for creating parts of a Product

� Concrete Builder
� constructs and assembles parts of the product by implementing the 

Builder interface

� defines and keeps track of representation it creates

� provides an interface for retrieving the Product

� Director
� constructs an object using the Builder interface

� Product
� includes classes that define its parts, including interfaces for 

assembling the parts into the final result

by the Gang of Four

BuilderBuilder: : ConsequencesConsequences

� Product's internal representations may vary

� isolation the construction code from 

representation code

� finer control over the construction process

� improved testability

by the Gang of Four
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BuilderBuilder: : ExampleExample

public class Director {
Builder roofBuilder = new RoofBuilder();
Builder wallBuilder = new WallBuilder();
Builder foundationBuilder = new FoundationBuilder();

public House assemble() {
Roof roof = (Roof) roofBuilder.build();
Part wall = (Wall) roofBuilder.build();
Part foundation = (Foundation) foundationBuilder.build();

House house = new House();
house.setFoundation (foundation);
house.setWall(wall);
house.setRoof(roof);

return house;
}

}

public interface Builder {       
public Part build();

}

Memento: Memento: MotivationMotivation

Without violating encapsulation, capture and 

externalize an object's internal state so that 

the object can be restored to this state later

by the Gang of Four

Memento: Memento: ApplicabilityApplicability

� A snapshot of an object state must be 

saved so that it can be restored later

� A direct interface to obtaining the state would 

expose implementation details and break the 

encapsulation

by the Gang of Four

Memento: Memento: StructureStructure

by the Gang of Four

Originator

state

SetMemento(Memento)
CreateMemento()

return new Memento(state)

state = Memento->GetState()

Memento

state

GetState()
SetState()

Caretaker+memento

Memento: Memento: ParticipantsParticipants

� Memento
� stores original state of the Originator state

� protects agains access by objects other that the Originator

� Originator
� creates a Memento containing a snapshot of its current internal 

state

� uses the Memento to restore its internal state

� Caretaker
� is responsible for Memento safekeeping

� never examines the content of a memento

by the Gang of Four

Memento: Memento: ImplementationImplementation

� Two interfaces of Memento
� narrow – Caretaker can only pass Memento to other objects

� wide – Originator sees all data needed to restore its state

� Java implementation
� Memento as an inner class of the Originator

� Memento and Originator within a common package (methods 

accessible at default security level)

� C++ implementation
� Originator is a friend class to Memento
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Memento: Memento: ExampleExample

public class Account {
private int balance = 0;

public void credit(int amount) {
balance += amount;

}

public void debit(int amount) {
balance -= amount;

}

public void setMemento(Memento memento) { 
memento.restoreState();

}

public Memento createMemento() { 
Memento mementoToReturn = new Memento();
mementoToReturn.setState(); 

return mementoToReturn; 
} 

Memento: Memento: ExampleExample

public class Account {
// continued...

class Memento {
int mementoBalance = 0;

public void setState() { 
mementoBalance = balance;

}

public void restoreState() {
balance = mementoBalance;

}
}

}

Memento: Memento: ExampleExample

public class Bank {
public static void main(String[] args) {

Account.Memento caretaker = null;

Account account = new Account("John Smith");
account.credit(200); // balance = 200

account.createMemento();

account.debit(100); // balance = 100
account.debit(50); // balance = 50

account.setMemento();

account.debit(50); // balance = 150
}

}

Memento: Memento: ConsequencesConsequences

� preserving encapsulation boundaries
�it shields other objects from potentially complex Originator internals

� simplifying the Originator
�all storage management burden put on Originator

�clients ask the Originator to store and restore the Mementos

� defining narrow and wide interfaces

� potential memory overhead
�Originator may copy large amounts of state data

�Caretaker in unaware of the Memento's size

by the Gang of Four

PrototypePrototype: : MotivationMotivation

Specify the kinds of objects to create using a 

prototypical instance, and create new objects

by cloning this prototype

by the Gang of Four

PrototypePrototype: : ApplicabilityApplicability

� Classes to instatiate are specified at 

runtime.

� To avoid parallel hierarchies of factories 

and products.

� Instances of a class can have one of only few 

different combinations of state.

by the Gang of Four
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PrototypePrototype: : StructureStructure

by the Gang of Four

ConcretePrototype1

Clone()

ConcretePrototype2

Clone()

Prototype

Clone()

Client

Operation()

prototype

p = prototype->Clone()

return clone 
of itself

return clone 
of itself

PrototypePrototype: : ParticipantsParticipants

� Prototype
� declares an interface for cloning itself. 

� Concrete Prototype
� implements an operation for cloning itself. 

� Client
� creates a new object by asking a prototype to clone itself. 

by the Gang of Four

PrototypePrototype: : ConsequencesConsequences

� manipulating products at runtime
� new prototypical instances can register to be available for 

cloning

� specyfying new object by varying values and 
structure
� Prototype creates new objects as instatiation does

� reduced subclassing

by the Gang of Four

PrototypePrototype: : ExampleExample

public class Employee {

private String name = null;

private Date birthday = null;

public Employee(String name, Date birthday) {

this.name = name;

this.birthday = birthday;

}

}

Employee emp = new Employee("John Smith", new Date());

Employee emp2 = (Employee) emp.clone();

java.lang.CloneNotSupportedException

PrototypePrototype: : ExampleExample

public class Employee implements Cloneable {

private String name = null;

private Date birthday = null;

public Employee(String name, Date birthday) {

this.name = name;

this.birthday = birthday;

}

public Object clone() throws CloneNotSupportedException {

// some specific cloning (eg. deep copy)

return super.clone();

}

}

Employee emp = new Employee("John Smith", new Date());

Employee emp2 = (Employee) emp.clone();

assertEquals(emp, emp2);

StateState: : MotivationMotivation

Allow an object to alter its behavior when its 

internal state changes. The object will appear

to change its class.

by the Gang of Four
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StateState: : ApplicabilityApplicability

� Object's behavior depends on its state

� The behavior must change at runtime

� Operations have large, multipart conditionals

that depend on the object's state

� Each state is a self-contained object, that can vary 

independently from other objects

by the Gang of Four

StateState: : StructureStructure

by the Gang of Four

ConcreteStateA

Handle()

ConcreteStateB

Handle()

state->Handle()

State

Handle()

Context

Request()

state

StateState: : ParticipantsParticipants

� Context
� defines the interface of interest to clients

� maintains an instance of a ConcreteState subclass that defines 
the current state

� State
� defines an interface for encapsulating the behavior associated 

with a particular state of the Context

� Concrete State subclasses
� each subclass implements a behavior associated with a state of 

the Context

by the Gang of Four

StateState: : ConsequencesConsequences

� partition of the behavior for different states
� state-specific code lives in State subclasses

� intent of the state-dependent behavior is clearer

� explicit state transitions

� protection from inconsistent internal states

� possible sharing of state objects
� States are stateless

by the Gang of Four

StateState: : ExampleExample

public class Account {
private int balance = 0;
private String owner = null;
private boolean isOpen = false;

public Account(String owner, int balance) {
this.owner = owner;
this.balance = balance;
this.isOpen = true;

}
public void credit(int amount) {

if (isOpen) {
balance += amount;

} else {
alert("The account is closed!");

}
}

}

StateState: : ExampleExample

public interface AccountState {
public void credit(Account acc, int amount);

}

public class AccountOpen implements AccountState {
public void credit(Account acc, int amount) {

acc.balance += amount;
}

}

public class AccountClosed implements AccountState {
public void credit(Account acc, int amount) {

alert("The account is closed!");
}

}
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StateState: : ExampleExample

public class Account {
private int balance = 0;
private String owner = null;
private AccountState state = null;

public Account(String owner, int balance) {
this.owner = owner;
this.balance = balance;
this.state = new AccountOpen();

}

public void credit(int amount) {
this.state.credit(this, amount);

}

public void close() {
this.state = new AccountClosed();

}
}

StrategyStrategy: : ApplicabilityApplicability

� Define a family of algorithms, encapsulate each

one, and make them interchangeable

� Strategy lets the algorithm to vary 

independently from clients that use it

by the Gang of Four

StrategyStrategy: : StructureStructure

by the Gang of Four

ConcreteStrategyA

AlgorithmInterface()

ConcreteStrategyB

AlgorithmInterface()

Strategy

AlgorithmInterface()

Context2

ContextInterface()

strategy

StrategyStrategy: : ParticipantsParticipants

� Strategy
� declares an interface common to all supported algorithms. 

Context uses this interface to call the algorithm defined by a 
ConcreteStrategy

� Concrete Strategy
� implements the algorithm using the Strategy interface

� Context
� is configured with a ConcreteStrategy object

� maintains a reference to a Strategy object

� may define an interface that lets Strategy access its data

by the Gang of Four

StrategyStrategy: : ConsequencesConsequences

� reusable families of related algorithms

� flexible alternative to plain subclassing
� algorithms can be exchanged dynamically

� clear separation of common and specific behavior

� elimination of complex conditionals

� often client must be aware of different Strategies

� possible high complexity of Strategy interface
� all Strategies must share common interface, regardless from their 

needs

� increased number of objects within application

by the Gang of Four

StrategyStrategy: : Example Example 11

HeapSort

init()
sample()
sort()

MergeSort

init()
sample()
sort()

QuickSort

init()
sample()
sort()

Sorter

data : java.uti l.Collection

sort()

SortingStrategy

ini t()
sample()
sort()
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StrategyStrategy: : Example Example 22

public class BannerGenerator {
OuputDevice device = null;

public BannerGenerator() {
device = new Screen();

}

public void generate(String text1, String text2) {
device.CR();
device.print(text1);
device.LF();
device.CR();
device.print(text2);
device.FF();

}
}

StrategyStrategy: : Example Example 22

interface OutputDevice {
public String print(String text);
public String CR();
public String LF();
public String FF();

}

class Screen implements OutputDevice {
public String print(String text) {

System.out.print(text);
}
public String CR() {

System.out.print("\n");
}
public String LF() {

System.out.print("\n");
}
public String FF() {

System.out.print("\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n");
}

}

StrategyStrategy: : Example Example 22

interface OutputDevice {
public String print(String text);
public String CR();
public String LF();
public String FF();

}

class Printer implements OutputDevice {
private PrnDriver prn = new PrnDriver();

public String print(String text) {
prn.print(text);

}
public String CR() {

prn.return();
}
public String LF() {

prn.nextLine();
}
public String FF() {

prn.nextPage();
}

}

Design patternsDesign patterns

... to be continued again...
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