
Secure Project
Błażej Pietrzak
blazej.pietrzak@cs.put.poznan.p

Agenda

 Designing
 Security principles
 STRIDE Threat Model
 ACL Lists

 Programming
 Buffer Overrun
 Cryptographic Foibles
 Storing Secrets
 Canonical Representation Issues

Agenda – cont.

 Network programming
 Socket Security
 Denial Of Service Attacks
 User input & Other

Designing

Two common security
mistakes

 Applications are designed by teams of
people who do not understand security

 Adding security to the application as an
afterthought:
 It is expensive
 Adding security might change the way you’ve

implemented features
 Adding security might change the application

interface

Why these mistakes are
made?

 Security is boring
 Security is often seen as functionality

disabler
 Security is difficult to measure
 Security is usually not the primary skill or

interest of the designers and developers
creating the product

Security Principles to Live By

 Establish a security process
 Management control and revision control of

specifications, code, documentation and tests
 Define the product security goals
 Consider security as a product feature
 Learn from mistakes
 Use least privilege
 Use defense in depth

 Imagine your application is the last application
standing, and every defensive mechanism
protecting you has been destroyed

Security Principles to Live By

 Assume external systems are insecure
 Plan on failure

 What happens if the firewall is breached?
Death, taxes and computer system failure are all
inevitable to some degree. Plan for the event.

 Fail to a secure mode
 If the attacker knows that he can make your code

fail, he can bypass security mechanisms because
your failure mode is insecure

Security Principles to Live By

 Employ secure defaults
 The less often used features should be off by

default to reduce potential security exposure
 Remember that security features != secure

features
 Never depend on security through

obscurity
 Always assume that the attacker has access to all

source code and all designs

Three Final Points

 If you find a security bug fix it and go
looking for similar issues in other parts of
code

 Make the fix as close as possible to the
location of vulnerability

 Cure the problem, not the symptoms

Security design by Threat
Modelling

 Brainstorm the known threats to the
system

 Rank the threats by decreasing risk
 Choose how to respond to the threats
 Choose techniques to mitigate the threats
 Choose the appropriate technologies from

the identified techniques

Security design by Threat
Modelling

 Brainstorm the known threats to the
system
 Two or three hours for the initial brainstorm

meeting with group up to 10 people
 Have one person lead the meeting – the most

security savvy of the team
 At least one member from each development

discipline: design, coding, testing, documentation
 The design and code changes are made after the

meeting
 Have a overall system architecture on the

whiteboard

Security design by Threat
Modelling

 The STRIDE Threat Model – categories:
 Spoofing identity – illegally accessing and then

using another user’s authentication information.
 Tampering with data – malicious modification of

data like unauthorized changes made to persistent
data or data as it flows between two computers
over an open network, such as Internet

Security design by Threat
Modelling

 The STRIDE Threat Model – categories
cont.:
 Repudiation – they are associated with users who

deny performing an action without other parties
having any way to prove otherwise.
Nonrepudiation is the ability of the system to
counter repudiation threats.
Example:
If a user purchases an item, he might have to sign
for the item upon receipt. The vendor can then use
the signed receipt as evidence that the user did
receive the package.

Security design by Threat
Modelling

 The STRIDE Threat Model – categories
cont.:
 Information disclosure – exposure of information to

individuals who are not supposed to have access
to it
Example:
A user’s ability to read a file that she was not
granted access to and an intruder’s ability to read
data in transit between two computers.

 Denial of service
 Elevation of privilege

Example: Obtaining root account

Security design by Threat
Modelling

 Items to Note While Thread Modeling
 Title – descriptive and short i.e.: „Attacker

accesses a user’s shopping cart”
 Threat type(s) – a threat can fall under multiple

STRIDE categories
 Target – which part of application is prone to the

attack
 Chance – chance of the threat to occur from 1

(greatest) to 10 (least)

Security design by Threat
Modelling

 Items to Note While Thread Modeling – cont.:
 Criticality – extent and severity of the damage (some data

are invaluable) from 1 (least damage) to 10 (greatest
damage)

 Attack techniques – How would an attacker manifest the
threat?

 Mitigation techniques (optional) – What would mitigate
such threat? How difficult it is to mitigate?

 Mitigation status – Has the threat been mitigated? Valid
entries are: Yes, No, Somewhat and Needs Investigating.

 Bug number

Security design by Threat
Modelling

 Rank the threats by Decreasing Risk
 Risk = Criticality / Chance

 Choose how to respond to the Threats
 Do nothing
 Inform the user of the threat

 Many users don’t what the right decision is
 Users will learn to ignore warnings if they come up to

often.
 Remove the problem

 There is always the next version!
 Fix the problem

Security design by Threat
Modelling

 Choose techniques to mitigate the Threats
(techniques != technologies)
 Spoofing identity

 Authentication (i.e. X.509 certificates, IPSec, HTTP Basic
Authentication, Digest Authentication, DCOM)

 Protect secrets
 Don’t store secrets

 Tampering with data
 Authorization (i.e. ACL, Privileges, IP adress restrictions)
 Hashes
 Message authentication codes
 Digital signatures
 Tamper-resistant protocols (SSL/TLS, IPSec, DCOM, EFS)

Security design by Threat
Modelling

 Choose techniques to mitigate the Threats
– cont.:
 Repudiation

 Digital signatures
 Timestamps
 Audit trails

 Information disclosure
 Authorization
 Privacy-enhanced protocols
 Encryption
 Protect secrets
 Don’t store secrets

Security design by Threat
Modelling

 Choose techniques to mitigate the Threats
– cont.:
 Denial of service

 Authentication
 Authorization
 Filtering
 Throttling – limiting the number of requests to the

system
 Quality of service – i.e. prioritising the traffic

 Elevation of privilege
 Run with least privilege

Security design by Threat
Modelling

 Defining ACL (Access Control List) Lists:
 Determine the resource you use
 Determine the business defined access

requirements
 Determine the appropriate access control

technology
 Convert the access requirements to access

control technology

Security design by Threat
Modelling

 ACL consists of ACEs
 ACE is:

 Subject
 Access Rights

 Always place deny ACEs at the start of the
ACL

Programming

 Public Enemy #1 – Buffer Overrun
 Static Buffer Overruns
 Heap Overruns
 Format String Bugs
 Preventing Buffer Overruns

Stack

32-bit Intel processor

Previous Stack
Area

Return address
Method params

Old EBP

Local variables
(e.g. Buffer)

ESP

EBP

Static Buffer Overruns

 A buffer declared on the stack is
overwritten by copying data larger than
the buffer

 Variables declared on the stack are
located next to the return address for the
function’s caller

 the return address for the function gets
overwritten by an address chosen by the
attacker

Static Buffer Overruns -
example

 This program shows an example of how a
static buffer overrun can be used to
execute arbitrary code.

 Its objective is to find an input string that
executes the function bar and execute the
function bar

Static Buffer Overruns -
example

#include <stdio.h>
#include <string.h>

void foo(const char* input) {
 char buf[10];
 printf("My stack looks like:\n%p\n%p\n%p\n%p\n%p\n%p\n\n");
 strcpy(buf, input);
 printf("%s\n", buf);
 printf("Now the stack looks like:\n%p\n%p\n%p\n%p\n%p\n%p\n\n");
}

void bar(void) {
 printf("Augh! I've been hacked!\n");
}

int main(int argc, char* argv[]) {
 printf("Address of foo = %p\n", foo);
 printf("Address of bar = %p\n", bar);
 foo(argv[1]);
 return 0;
}

A trick to view
the stack

Static Buffer Overruns -
example

#include <stdio.h>
#include <string.h>

void foo(const char* input) {
 char buf[10];
 printf("My stack looks like:\n%p\n%p\n%p\n%p\n%p\n%p\n\n");
 strcpy(buf, input);
 printf("%s\n", buf);
 printf("Now the stack looks like:\n%p\n%p\n%p\n%p\n%p\n%p\n\n");
}

void bar(void) {
 printf("Augh! I've been hacked!\n");
}

int main(int argc, char* argv[]) {
 printf("Address of foo = %p\n", foo);
 printf("Address of bar = %p\n", bar);
 foo(argv[1]);
 return 0;
}

Pass the user
input without
range checking.

Static Buffer Overruns -
example

#include <stdio.h>
#include <string.h>

void foo(const char* input) {
 char buf[10];
 printf("My stack looks like:\n%p\n%p\n%p\n%p\n%p\n%p\n\n");
 strcpy(buf, input);
 printf("%s\n", buf);
 printf("Now the stack looks like:\n%p\n%p\n%p\n%p\n%p\n%p\n\n");
}

void bar(void) {
 printf("Augh! I've been hacked!\n");
}

int main(int argc, char* argv[]) {
 printf("Address of foo = %p\n", foo);
 printf("Address of bar = %p\n", bar);
 foo(argv[1]);
 return 0;
}

To make life
easier on myself

Static Buffer Overruns -
example

StaticOverrun.exe Hello
Address of foo = 00401000
Address of bar = 00401045
My stack looks like:
00000000
00000000
7FFDF000
0012FF80
0040108A
00410EDE

The return
address of foo

„Hello” was
copied in.

Hello
Now the stack looks like:
6C6C6548
0000006F
7FFDF000
0012FF80
0040108A
00410EDE

Static Buffer Overruns -
example

StaticOverrun.exe ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890
Address of foo = 00401000
Address of bar = 00401045
My stack looks like:
00000000
00000000
7FFDF000
0012FF80
0040108A
00410EDE

Hello
Now the stack looks like:
44434241
48474645
4C4B4A49
504F4E4D
54535251
58575655

The NEW return
address of foo

The return
address of foo

Static Buffer Overruns -
example

 The application error message now shows
that we’re trying to execute instructions at
0x54535251.

 Glancing at our ASCII charts, we see that
0x54 is the code for the letter T, so that’s
what we’d like to modify 

Heap Overruns

 As in the case of a static buffer overrun,
attacker can write fairly arbitrary
information into places in application that
he shouldn’t have access to

 Many programmers don’t think heap
overruns are exploitable, leading them to
handle allocated buffers with less care
than static buffers

Heap Overruns - example

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

class BadStringBuf {
public:
 BadStringBuf(void) { m_buf = NULL; }
 ~BadStringBuf(void) {
 if(m_buf != NULL)
 free(m_buf);
 }
 void Init(char* buf) { m_buf = buf; }
 void SetString(const char* input) { strcpy(m_buf, input); }
 const char* GetString(void) { return m_buf; }

private:
 char* m_buf;
};

Heap Overruns – example
cont.

BadStringBuf* g_pInput = NULL;

void bar(void) { printf("Augh! I've been hacked!\n"); }

void BadFunc(const char* input1, const char* input2) {
 char* buf = NULL;
 char* buf2 = (char*) malloc(16);

 g_pInput = new BadStringBuf;
 buf = (char*) malloc(16);
 g_pInput->Init(buf2);

 strcpy(buf, input1);
 g_pInput->SetString(input2);

 printf("input 1 = %s\ninput2 = %s\n", buf, g_pInput->GetString());

 if(buf != NULL)
 free(buf);
}

No error
checking on
allocations

Heap Overruns – example
cont.

 Application blows up whether the first or
second argument becomes to long but that
the address of the error shows that the
memory corruption occurs on the heap

 Using the debugger you find out that the
pointer to the second buffer is sitting just
a 0x40 bytes past the location from the 1st
buffer start – so we can change the pointer
address of the buffer to point on stack

Heap Overruns – example
cont.

int main(int argc, char* argv[]) {
 char arg1[128];
 char arg2[4] = {0x0f, 0x10, 0x40, 0};
 int offset = 0x40;

 memset(arg1, 0xfd, offset);
 arg1[offset] = (char) 0x94;
 arg1[offset+1] = (char) 0xfe;
 arg1[offset+2] = (char) 0x12;
 arg1[offset+3] = 0;
 arg1[offset+4] = 0;

 printf("Address of bar is %p\n", bar);
 BadFunc(arg1, arg2);

 if(g_pInput != NULL)
 delete g_pInput;

 return 0;
}

The address of
the bar function.

To overcome
heap corruption
checking

The return
address in the
stack

Integer Overflow

 Overflow and underflow
 Signed versus unsigned
 Truncation

Integer Overflow

 Overflow and underflow

bool func(size_t cbSize) {
 if (cbSize < 1024) {
 char *buf = new char[cbSize-1];
 if (buf == NULL) return false;
 memset(buf,0,cbSize-1);
 ...
 delete [] buf;
 return true;
 } else {
 return false;
 }
}

Integer Overflow

 Signed versus unsigned

bool func(char *s1, int len1, char *s2, int len2) {
 char buf[128];
 if (1 + len1 + len2 > 128) return false;

 if (buf) {
 strncpy(buf,s1,len1);
 strncat(buf,s2,len2);
 }

 return true;
}

Integer Overflow

 Truncation

bool func(byte *name, DWORD bufSize) {
 unsigned short calculatedBufSize = bufSize;
 byte *buf = (byte*) malloc(calculatedBufSize);

 if (buf) {
 memcpy(buf, name, bufSize);
 ...
 if (buf) free(buf);
 return true;
 }
 return false;
}

Format string bugs

The coding construct in DCOM that led to the Blaster worm

HRESULT GetMachineName(WCHAR *pwszPath,
 WCHAR wszMachineName[N + 1]) {

 LPWSTR pwszServerName = wszMachineName;
 while (*pwszPath != '\\')
 *pwszServerName++ = *pwszPath++;
 ...
}

Format string bugs

Secured

HRESULT GetMachineName(WCHAR *pwszPath,
 WCHAR wszMachineName[N + 1]) {

 LPWSTR pwszServerName = wszMachineName;

 size_t machineName = N;
 while (*pwszPath != '\\' && --machineName)
 *pwszServerName++ = *pwszPath++;
 ...
}

Preventing buffer overruns

 Always validate all your inputs and outputs
 Safe String Handling

bool HandleInput(const char* input) {
 char buf[80];

 if(input == NULL) {
 assert(false);
 return false;
 }
 if(strlen(input) < sizeof(buf)) {
 strcpy(buf, input);
 } else {
 return false;
 }

 return true;
}

Preventing buffer overruns

 Safe String Handling – cont.
bool HandleInput_Strncpy2(const char* input) {
 char buf[80];
 if(input == NULL) {
 assert(false);
 return false;
 }
 buf[sizeof(buf) - 1] = '\0';
 strncpy(buf, input, sizeof(buf));
 if(buf[sizeof(buf) - 1] != '\0') {
 //Overflow!
 return false;
 }
 return true;
}

Preventing buffer overruns

Spot the security flaw
bool SprintfLogError(int line, unsigned long err,
 char* msg) {

 char buf[132];
 if(msg == NULL) {
 assert(false);
 return false;
 }

 sprintf(buf, "Error in line %d = %d - %s\n", line,
 err, msg);

 return true;
}

Preventing buffer overruns

 Standard Template Library Strings
#define MAX_CHARS 132
#include <string>
using namespace std;

void HandleInput_STL(const char* input) {
 string str1, str2;

 str2.append(input, MAX_CHARS);

 printf("%s\n", str2.c_str());
}

Cryptographic Foibles

 Don’t use int rand(void) to create
passwords etc. because of its
predictability

 Don’t use your own cryptographic
functions

 Keep keys close to the source

Cryptographic Foibles – cont.

Storing secrets

 Threats
 Attacker can debug process using the secret, set

a breakpoint at the location where the code
gathers the information and read the data in the
debugger

 The memory holding the secret becomes paged to
the page file

Storing secrets – cont.

 Prevention
 Store the (salted) hash of the secret, not the

secret itself
 Get the secret from the user each time the secret

is used
 Use external devices to encrypt secret data

Canonical Representation
Issues

 There is often more than one valid way to
represent the resource name

 Example
C:\temp\longfilename.txt
C:\temp\longfi~1.txt
\\?\C:\temp\longfilename.txt
C:\temp\..\temp\longfilename.txt

Canonical Representation
Issues

 Web-specific bugs for web pages and urls
 The “normal” 7-bit or 8-bit character representation
 Hexadecimal escape codes
 UTF-8 variable-width encoding
 UCS-2 Unicode encoding
 Double encoding
 HTML escape codes (Web pages, not URLs)
 „Parent Paths”

 Example:
Attacker can access data outside of the Web root

Canonical Representation
Issues

 Preventing
 Don’t make decisions based on names
 Use regular expression to restrict what’s allowed in

a name
 Stopping 8.3 file name generation
 Don’t trust the PATH variable
 Canonicalize the name
 Design web-based system in such a way that

parent paths are not required

Network programming

 Socket Security
 Avoid server hijacking by binding the address with

SO_EXCLUSIVEADDRUSE
 Any IP service should be configurable at one of

three levels:
 Which network interface is listening
 Which IP address(es) it listens on and on which port
 Which clients can connect to the service

Network programming

 Socket Security
 Accepting connections

 Connectionless (UDP)
 Drop the packet and don’t send a reply if you don’t want to

accept the request
 A reply consumes your resources and gives the attacker

information

Connection-based (TCP)
Client Server

SYN

SYN-ACK

ACK

Data transfer

Data transfer

FIN

FIN-ACK

FIN

Connection-based (TCP)

 Even if You immediately drop the
connection, the attacker knows that some
service is listening on that port

 We’re also going to exchange a total of
seven packets in the process of telling the
client to go away

 he might have hacked his IP stack to never
send the FIN-ACK in response to our FIN. If
that’s the case, we’ll wait two segment
lifetimes for a reply

Connection-based (TCP)

 There are system solutions for conditional
acceptance of the connection
(SO_CONDITIONAL_ ACCEPT)
 You decide whether or not to establish connection

with the client
 It sends 3 times SYN packet to the client

Firewall-Friendly Applications

 Use one connection to do the job
 Don’t make connections back to the client

from the server
 Connection-based protocols are easier to

secure
 Don’t try to multiplex your application over

another protocol
 Don’t embed host IP addresses in

application-layer data
 Configure your client and server to

customize the port used

Spoofing

 Three hosts:
 An attacker
 A victim
 Innocent third party

 Don’t rely on ip address or dns name –
prove it with the shared secret, a
certificate or other strong crypt method

User input

 Mistake #1 Trusting the user
 A Web service that allows users a guestbook
 The attacker doesn’t like the guestbook
 The attacker posts the message
<meta http-equiv=”refresh”

content=”2;URL=http://www.google.pl/”>
 Every time someone will look through the

guestbook he will be presented the www.google.pl
page

 Mistake #2 Unbounded Sizes – buffer
underrun

User input

 Mistake #3 Using Direct User Input in SQL
Statements
 The attacker knows a username and wants to

spoof that user account
 The SQL statement checking user name and

password looks like this:
SELECT count(*) FROM client

 WHERE name=$NAME and pwd=$PWD

User input

 Mistake #3 Using Direct User Input in SQL
Statements
The attacker enters name Cheryl' –
The SQL statement will look:
SELECT count(*)
FROM client
WHERE name=‘Cheryl’ --and pwd=‘‘

The SQL statements can be joined
SELECT * from client INSERT into client
VALUES (‘me’, ‘URHacked’)

User input

 Mistake #4 Not being strict is dangerous
 Many Web developers allow “safe” HTML

constructs
 The user can send HTML tags but nothing else,

other than plaintext. A cross-site scripting danger
still exists because the attacker can embed script
in some of these tags. Here are some examples:

 <link rel=stylesheet href="javascript:alert

(document.domain)">
 <input type=image src=javascript:alert

(document.domain)>

User input & Others

 Never trust user input
 All input is bad until proven otherwise
 Data must be validated as it crosses the boundary

between untrusted and trusted environments
 All the dangerous characters must be converted to

their safe equivalent or removed from the input
 Do not use password directly
 Don’t store secrets in web pages
 Use HTTP GET only for queries

Literature

 Malicious html tags
 www.cert.org/advisories/CA-2000-02.html

 Phrack
 www.phrack.org

 SQL Injection Wargame
 http://www.hackingzone.org/sql/index.php

 Try 2 Hack
 http://www.try2hack.nl/

 M.Howard, D. LeBlanc: Bezpieczny kod –
Tworzenie i zastosowanie, Microsoft Press 2002

 Simson Garfinkel i Gene Spafford, WWW
Bezpieczeństwo i handel, Helion 1999

The end

 Thank You for Your attention 

