
Design Patterns I

(c) Bartosz Walter 1

Design patternsDesign patterns
PartPart II

Advanced Object-Oriented Design

Lecture 10

Bartosz Walter
<Bartek.Walter@man.poznan.pl>

AgendaAgenda

� Motivation for patterns

� Systematics of patterns

� Patterns by Gang of Four

� Catalog of design patterns

MotivationMotivation

� Can the common problems we encounter
while development be solved in a similar
manner?

� Can these problems be abstracted so that
they could help in creating concrete
solutions?

MotivationMotivation

"The pattern describes a problem, which occurs over and

over again in our environment, and describes the core of

the solution to that problem, in such a way that you can

use the solution a million times over, without ever doing

it the same way twice"

Christopher Alexander et al.:"A Pattern Language", 1977

Patterns Patterns for for civil architecturecivil architecture

inspired by example by Ralph Johnson

Czy zbudujemy most, opierając przęsło na kolejnych

filarach połączonych łukiem, tak aby łuk usztywniał i

naciągał przęsło stanowiąc jego podparcie na całej

długości przęsła,

czy teŜ mocując płyty z obu stron za pomocą kilku lin

stalowych o kolejno coraz krótszych długościach do

pylonów umieszczonych pośrodku długości mostu?

PatternsPatterns for for civil architecturecivil architecture

Czy zbudujemy most łukowy czy podwieszany?

inspired by example by Ralph Johnson

Design Patterns I

(c) Bartosz Walter 2

Attributes of Attributes of a a patternpattern

when?
how?

trade-offs?

alternatives?context?

prerequisites?

Pattern

Patterns in softwarePatterns in software

"Wzorzec projektowy identyfikuje i specyfikuje
pewną abstrakcję, której poziom znajduje się
powyŜej poziomu abstrakcji pojedynczej klasy,
instancji lub komponentu"

E. Gamma et al., 1993

Design pattern templateDesign pattern template (by (by thethe Gang Gang of Fourof Four))

A pattern is described by:

� Name – a part of designer's vocabulary

� Classification – category it belongs to

� Intent – what it does, what issue it addresses

� Also Known As – aliases

� Motivation – a scenario that illustrates a design problem
and how the pattern solves that problem

� Applicability – situations in which it can be applied

� Structure – graphical representation of the classes
involved in the pattern (class & interactions)

Design pattern templateDesign pattern template ((contcont.).)

� Participants – classes and objects participating in the
pattern and their responsibilities

� Collaborations – how the participants interact

� Consequences – trade-offs, variables and alternatives

� Implementation – pitfalls & hints for implementation,
language-specific issues

� Sample Code

� Known Uses – examples of application in real systems

� Related Patterns – patterns closely related to this pattern

Design patternsDesign patterns

Catalog of Design Patterns

Design patterns systematicsDesign patterns systematics

Creational

� abstract the instantiation process

� make the system independent of how the objects are
created

Behavioral

� deal with algorithms and assignment of responsibilities

� characterize control flow & interaction

Structural

� how the classes are composed

� use inheritance or composition appropriately

Design Patterns I

(c) Bartosz Walter 3

Design patterns systematicsDesign patterns systematics

Creational
� Abstract Factory

� Builder

� Factory Method

� Prototype

� Singleton

Structural
� Adapter

� Bridge

� Composite

� Decorator

� Facade

� Proxy

Behavioral
� Chain of responsibility

� Command

� Interpreter

� Iterator

� Mediator

� Memento

� Observer

� State

� Strategy

� Template method

� Visitor

SingletonSingleton: : IntentIntent

� Ensure the class has a single instance

throughout the application

� Provide an access point for it

by the Gang of Four

SingletonSingleton: : StructureStructure

by the Gang of Four

SingletonSingleton: : ParticipantsParticipants

Singleton

� defines statically available getInstance() operation for

accessing the object

� restricts access to its constructor only to itself and its

subclasses

� is responsible for creating its own (or its subclass')

unique instance

by the Gang of Four

SingletonSingleton: : ConsequencesConsequences

Singleton:

� takes care of the creating its instance

� separates Clients from managing its instance; they

expect the instance to exist when requested

� allows for refinement of the instance by subclassing

� can be extended to a pool of instances

� is usually stateless (due to multithreading issues)

� acts like a global instance

� may increase coupling

by the Gang of Four

Apply only when needed!

SingletonSingleton: : Example of useExample of use

There are several tax systems for small companies:

� flat tax

� income-based tax

� ordinary PIT

The company can choose one of them.

by the Gang of Four

Design Patterns I

(c) Bartosz Walter 4

SingletonSingleton: 2PL : 2PL versionversion

static public Tax getInstance() {

if (taxInstance == null) {

synchronize (this) {

if (taxInstance == null) {

taxInstance == new TaxA();

}

}

}

return instance;

}

by A. Shalloway and J. Trott

But:
� Java compiler can optimize the code and allow two instances

� use volatile keyword to mark synchronization method

SingletonSingleton: : Inner classesInner classes

public class TaxA extends Tax {

private static class Instance {

static final Tax instance = new TaxA();

}

private TaxA() {}

public static Taxt getInstance() {

return Instance.instance;

}

}

by A. Shalloway and J. Trott

A class loader loads a single instance of
TaxA.Instance class, which holds a single instance of
Tax object.

ObserverObserver: : IntentIntent

Define a one-to-many dependency between

objects so that when one object changes state,

all its depending objects are notified and

updated automatically

by the Gang of Four

ObserverObserver: : StructureStructure

by the Gang of Four

ObserverObserver: : ParticipantsParticipants

� Subject
� knows its Observers

� provides interface for attaching and detaching Observers

� Observer
� defines an updating interface

� Concrete Subject
� stores state of interest to Concrete Observers

� sends notification ot its Observers

� Concrete Observer
� maintains reference to Concrete Subject

� updates its state with Subject

by the Gang of Four

ObserverObserver: : ConsequencesConsequences

Observer permits for:
� abstract coupling between Subject and Observer

� Subject knows hardly anything of its Observers

� Subject and Observers may belong to different abstraction layers

� message broadcasting

� scalable updates (pull vs. push models)
� push: Observers get full information about change

� pull: Observers get plain notification, needs to query Subject for
details

� keeping system's state consistent

� dangling references at Subjects to be removed (solution:
weak references)

by the Gang of Four

Design Patterns I

(c) Bartosz Walter 5

ObserverObserver: : Example of useExample of use

To stay in touch with your favourite news service,
you can subscribe to a newsletter.

Any urgent news will be broadcasted to all
subscribers until they cancel subscription.

News are broadcasted either as full data or plain
links

by the Gang of Four

Adapter (Adapter (WrapperWrapper):): MotivationMotivation

� Allow classes to work together that could

not happen otherwise because of

incompatible interfaces

� Convert the interface of a class into another

interface a client expects

by the Gang of Four

Adapter (Adapter (WrapperWrapper):): Structure Structure for for inheritanceinheritance

by the Gang of Four

Adapter (Adapter (WrapperWrapper):): Structure Structure for for delegationdelegation

by the Gang of Four

Adapter (Adapter (WrapperWrapper):): ParticipantsParticipants

� Target
� defines the domain-specific interface

� Client
� collaborates with objects conforming to the Target interface

� Adaptee
� defines an existing interface that needs adapting

� Adapter
� adapts the interface of Adaptee to Target

by the Gang of Four

Adapter (Adapter (WrapperWrapper):): Consequences Consequences for for object object adapteradapter

� high flexibility
� a single Adapter may work with many Adaptees

� Adapter can add functionality to all Adaptees at once

(Decorator)

� difficult behavior overriding
� it requires subclassing Adaptee and making Adapter to refer

directly to the subclasses

by the Gang of Four

Design Patterns I

(c) Bartosz Walter 6

Adapter (Adapter (WrapperWrapper):): Consequences Consequences for for classclass adapteradapter

� low flexibility
� Adapter adapts only to a concrete Adaptee class, not its

subclasses

� Adaptees cannot be changed at runtime

� potential behavior change
� Adapter may override some of Adaptee behaviour

(Decorator)

� low overhead
� introduces only a single object

� no additional reference is needed to get to the Adaptee

by the Gang of Four

Adapter (Adapter (WrapperWrapper):): Example of useExample of use

by the Gang of Four

Client
NetworkProtocol

open()
transmit()
close()

FTPClient

openPort()
sendCommand()
get()
closePort()

Adapter (Adapter (WrapperWrapper):): Example of useExample of use

by the Gang of Four

Client
NetworkProtocol

open()
t ransmit()
close()

FTPAdapter

FTPClient

openPort()
sendCommand()
get()
closePort()

Adapter (Adapter (WrapperWrapper):): Example of useExample of use

by the Gang of Four

Client
NetworkProtocol

open()
t ransmit()
close()

FTPAdapter

FTPClient

openPort()
sendCommand()
get()
closePort()

CompositeComposite: : MotivationMotivation

� Compose objects into tree-like structures to

represent part-whole hierarchies

� Allow for uniform handling of both single

objects and compound structures

by the Gang of Four

CompositeComposite: : StructureStructure

by the Gang of Four

Design Patterns I

(c) Bartosz Walter 7

CompositeComposite: : ParticipantsParticipants

� Component
� declares an interface for objects in composition

� implements common behaviour to all classes

� Leaf
� represents a node without children

� Composite
� represents a node with children

� stores references to children

by the Gang of Four

CompositeComposite: : ConsequencesConsequences

� defines class hierarchies

� makes the client application simple

� makes adding new kind of components easier

� permits a variable number of instances to exist

� restricting components is difficult

by the Gang of Four

CompositeComposite: : Example of useExample of use

Organizations usually have a tree-like form. Departments

make tree branches, and employees are the leaves.

Both departments and single employees can be

managed in a common way.

Regardless from the actual organization's size, it is

managed in a uniform way.

by the Gang of Four

ProxyProxy: : MotivationMotivation

� Provide a surrogate for another object to

controll access to it

� Smoothly defer initialization after the object

is needed

� Initialize actual objects on demands

by the Gang of Four

ProxyProxy: : StructureStructure

Client
Subject

Request()

Proxy

Request()

RealSubject

Request()

realSubject->Request()

by the Gang of Four

ProxyProxy: : ParticipantsParticipants

� Proxy
� maintains reference to RealSubject

� implements same interface as Subject

� controls access to the RealSubject

� Subject
� defines a common interface for Proxy and RealSubject

� Real Subject
� defines the real object represented by Proxy

by the Gang of Four

Design Patterns I

(c) Bartosz Walter 8

ProxyProxy: : ConsequencesConsequences

� confusing indirections
�object may reside in a different address space

� optimizations
�virtual proxies may provide optimizations

� high level of protection for the actual object
�may require additional attention and care

by the Gang of Four

ProxyProxy: : ApplicabilityApplicability

� A remote proxy provides a local representative for

an object in a different address space

� A virtual proxy creates expensive objects on

demand

� A protection proxy controls access to the original

object

by the Gang of Four

ProxyProxy: : Example of useExample of use

by the Gang of Four

Huge memory arrays can be expensive in handling.

Instead of creating the array at startup, a proxy can be

used to avoid the initial overhead. The proxy stands for

the actual array, since it implements the same interface.

Remote objects are difficult to handle and expensive in

creation.

Remote proxy hides the complexity of network

communication and acts like a local stub for the remote

object

Factory MethodFactory Method: : MotivationMotivation

� Define an interface for creating an object

� Let a class defer instatiation to subclasses

� Let the subclass decide the class and

method of creating the product object

by the Gang of Four

FactoryFactory MethodMethod: : ApplicabilityApplicability

� Client can't anticipate the class of objects it

must create

� A class wants its subclasses to specify the

objects to create

� Classes delegate responsibility to one of

several helper subclasses

by the Gang of Four

Factory MethodFactory Method: : StructureStructure

by the Gang of Four

Design Patterns I

(c) Bartosz Walter 9

Factory MethodFactory Method: : ParticipantsParticipants

� Product
� declares an interface for objects created by Factory Method

� ConcreteProduct
� implements the Product interface

� Creator
� declares an interface for a type of Product object

� may provide a default implementation of Factory Method

� ConcreteCreator
� overrides the factory method to return Concrete Product

by the Gang of Four

Factory MethodFactory Method: : ConsequencesConsequences

� provided hooks for subclasses
� gives subclasses a hook for providing an extended version of

an object

� Parametrized FM vs. Polymorphic FM
� Creator can select the object to create or it is the

responsibility of the subclasses

by the Gang of Four

Factory MethodFactory Method: : Example of useExample of use

by the Gang of Four

A word processor creates documents of different

formats. Regardless from the format, they are handled in

similar way.

Factory Method allows to hide the decision about the

type of the document. The type of document depends on

the factory implementation, not the document itself.

Collection.iterator() creates appropriate object for the

underlying collection.

Abstract FactoryAbstract Factory: : MotivationMotivation

Provide an interface for creating families of

related or dependent objects without

specyfying concrete classes

by the Gang of Four

AbstractAbstract FactoryFactory: : ApplicabilityApplicability

� System should be independent of how its

products are created, composed and represented

� A family of related Product objects is designed to

be used together

� A library of products should not reveal their

implementation

by the Gang of Four

Abstract FactoryAbstract Factory: : StructureStructure

by the Gang of Four

Design Patterns I

(c) Bartosz Walter 10

Abstract FactoryAbstract Factory: : ParticipantsParticipants

� Abstract Factory
� declares an interface for operations that create Abstract

Products

� Concrete Factory
� implements operations to create Concrete Products

� Abstract Product
� declares an interface for a type of Product object

� Concrete Product
� defines a product object to be created by appropriate Concrete

Factory

� implements the Abstract Product interface

by the Gang of Four

Abstract FactoryAbstract Factory: : ConsequencesConsequences

� isolation of concrete classes
� Factory encapsulates responsibility for object creation

� clients manipulate instances through their abstract interfaces

� ease of Product families exchange
� only the Concrete Factory needs to replaced

� promotion of consistency among Products
� declares an interface for a type of Product object

� difficult support for new Products
� Abstract Factory fixes the set of delivered Products

by the Gang of Four

Abstract FactoryAbstract Factory: : ImplementationImplementation

� Factories as singletons
� only a single ConcreteFactory per product family is needed

� Creating the products via Factory Methods
� every product has its Factory Method in an Abstract Factory

� Extensible Factories
� the type of Product is determined by a parameter

by the Gang of Four

Abstract FactoryAbstract Factory: : Example of useExample of use

by the Gang of Four

Publishing application can produce both screen and

paper output. The widgets used for assembling the

publications are make families of corresponding objects.

In order to reduce the configuration needed to get the

required format, the Abstract Factory produces an

appropriate set of widgets, which are referenced as

abstract objects.

BridgeBridge: : MotivationMotivation

Decouple an abstraction from its

implementation so that the two can vary

independently.

by the Gang of Four

BridgeBridge: : StructureStructure

by the Gang of Four

Design Patterns I

(c) Bartosz Walter 11

BridgeBridge: : ParticipantsParticipants

by the Gang of Four

� Abstraction

� defines the abstraction interface

� maintains a reference to the Implementor object

� Refined Abstraction

� extends the interface defined by Abstraction

� Implementor

� defines the interface for implementations

� may be different from Abstraction

� Concrete Implementor

� implements Implementor interface

BridgeBridge: : ConsequencesConsequences

Bridge:

� decouples the interface from implementation

� improves extensibility of Abstraction and

Implementor

� hides implementation details from clients

by the Gang of Four

BridgeBridge: : ImplementationImplementation

� Single Implementor only
� Bridge is useful even if there is only one Implementor

� Strategies for choosing right Implementor
� Abstraction instantiates appropriate Implementor in

constructor

� use default Implementor initially and change it later

� delegate the decision to another object (a Factory)

by the Gang of Four

BridgeBridge: : Example of useExample of use

Graphical objects represented in application can defer
their functions to specialized libraries, which will manage
them.

Objects should only know the library interface, not specific
implementation

Libraries can be switched as long as they share common
interface.

by the Gang of Four

Design patternsDesign patterns

... to be continued

ReadingsReadings

1. Gamma E. et al., Design Patterns.

Elements of Reuseable Object-Oriented

Software. PWN 2005

2. Eckel B., Thinking in patterns.

http://www.bruceeckel.com

3. Cooper J., Java. Wzorce Projektowe.

Helion, 2001

4. Shalloway A., Trott J., Projektowanie

zorientowane obiektowo. Wzorce

projektowe. Helion, 2001

Design Patterns I

(c) Bartosz Walter 12

Q & AQ & A

