
Software RefactoringSoftware Refactoring
Part IV: In-class, class hierarchies and other refactoringsPart IV: In-class, class hierarchies and other refactorings

Bartosz Walter
<Bartek.Walter@man.poznan.pl>

Advanced Object-Oriented Design
Lecture 8

AgendaAgenda

1. Transforming inter-class associations
2. Managing complex conditional expressions

Catalog of software refactoringsCatalog of software refactorings

Modifying the inheritance hierarchy
 moving members up and down the hierarchy
 extracting new entities

Pull Up Field/ MethoPull Up Field/ Methodd
Name

Pull Up Field/ Method
Summary

Two subclasses have the same field/ method
Goal

Move the field/ method to the superclass
Mechanics
 inspect the member to ensure they are identical
 create a new method in superclass, copy the body of one of methods,

adjust and compile
 delete one subclass method, compile & test
 proceed with deleting subclass methods

by M. Fowler

Pull Up Pull Up Constructor BodyConstructor Body
Name

Pull Up Constructor Body
Summary

Constructors on subclasses are almost identical
Goal

Create a superclass constructor, call it from subclasses
Mechanics
 define a superclass constructor
 move the common code from the subclass to the superclass
 call the superclass constructor as first step in the subclass constructor
 compile & test

by M. Fowler

Push DownPush Down Field/ Method Field/ Method
Name

Push Down Field/ Method
Summary

Behavior on superclass is relevant only for some subclasses
Goal

Move it to those subclasses
Mechanics
 declare a method in all subclasses and copy the body into each

subclass (beware of access level!)
 remove method from superclass (or declare abstract)
 compile & test
 remove method from subclasses that do not need it

by M. Fowler

Extract InterfaceExtract Interface
Name

Extract Interface
Summary

Some clients use the same subset of class's interface
Goal

Extract the subset into an interface
Mechanics
 create an empty interface
 declare the common operations in the interface
 declare the relevant classes as implementing the interface
 adjust the client type declarations to use the interface

by M. Fowler

Extract SuperclassExtract Superclass
Name

Extract Superclass
Summary

There are two classes with similar features
Goal

Move the common features to a newly created superclass
Mechanics
 create a blank abstract superclass
 pull up fields, whole methods and constructor body
 compile & test at every change
 if necessary, split remaining methods and pull them up
 change references in clients to superclass (if possible)

by M. Fowler

Extract SubclassExtract Subclass
Name

Extract Subclass
Summary

Some features of a class are used only in some its instances
Goal

Extract a subclass for these features
Mechanics
 define a new subclass
 define appropriate constructors for the subclass (use Factory Method if

needed)
 replace calls to superclass constructor with a subclass one

appropriately
 push down selected fields/ methods to the subclass
 eliminate remaining fields that controls behavior of original class now

indicated by the subclass
 compile & test

by M. Fowler

Catalog of software refactoringsCatalog of software refactorings

In-class refactorings
 changing inter-method relationships

Remove SetterRemove Setter
Name

Remove Setter
Summary

A field should be set at creation time and never altered
Goal

Remove any updating method for that field
Mechanics
 check if setter for the field is called only in the constructor (directly or by

other method called by constructor)
 make the constructor to access the field directly
 compile & test
 remove the setter and make the field final

by M. Fowler

Form Template MethodForm Template Method
Name

Form Template Method
Summary

Two methods in subcl. perform similar stops in same order
Goal

Give them same signature and then pull them up
Mechanics
 decompose methods so that extracted methods are either identical or

completely different
 pull up the identical methods into the superclass
 rename different methods so the signatures of all methods at each step

are the same, compile & test
 pull up one of original methods; make signatures of different methods

abstract at superclass
 compile & test
 remove the other methods, compile & test

by M. Fowler

Example: Form Template MethodExample: Form Template Method by M. Fowler

Inline ClassInline Class
Name

Inline Class
Summary

A class does not earn for itself
Goal

Move its features to another class and delete it
Mechanics
 move the public protocol from the source class to the absorbing one
 delegate the public methods to the source class
 change all references from the source class to the absorbing one
 compile & test
 move fields & methods to the absorbing class

by M. Fowler

Replace Method with Method ObjectReplace Method with Method Object
Name

Replace Method with Method Object
Summary

A long method uses local variables so that it cannot be split
Goal

Turn the method into its own object
Mechanics
 create a new class and name it appropriately
 give it a final field for the object that hosted original method and fields

for temporary variables and parameters
 create a constructor that takes a source object and each parameter
 move the original method into the new class
 compile
 replace the call to the method with creation of an instance of the new

class and call its method

by M. Fowler & K. Beck

Replace Static Variable with ParameterReplace Static Variable with Parameter
Name

Replace Static Variable with Parameter
Summary

A function depending on a static variable needs to be reused in
more general context.

Goal
Pass the variable as parameter

Mechanics
 if the function calls other functions using the static variable in question,

then use this refactoring on all those invoked functions first.
 add a new argument to the function
 add the static variable as actual argument to all callers of this function

in.
 replace all references to the static variable within the function by the

new argument

by M. Vittek

Example: Replace Static Variable with ParameterExample: Replace Static Variable with Parameter by M. Fowler

void printValues() {
 for (int i = 0; i < people.length; i++) {
 System.out.println(people[i].name+" has salary "+people[i].salary);
 }
}

public static void main(String args[]) {
 ... printValues();
}

void printValues(PrintStream outfile) {
 for (int i = 0; i < people.length; i++) {
 outfile.println(people[i].name+" has salary "+people[i].salary);
 }
}

public static void main(String args[]) {
 ... printValues(System.out);
}

Catalog of software refactoringsCatalog of software refactorings

Other refactorings
 changing algorithms
 dealing with non-existing methods
 dynamic & static initialization

Split LoopSplit Loop
Name

Split Loop
Summary

A loop is doing two things
Goal

Split the loop
Mechanics
 copy the loop and remove the differing pieces from each loop
 compile and test
 reorganize the lines to group the loop with related code from outside the

loop
 compile and test.
 consider applying Extract Method or Replace Temp with Query on each

loop

by M. Fowler

Example: Split loopExample: Split loop by M. Fowler

private Person [] people;

void printValues() {
 double averageAge = 0;
 double totalSalary = 0;
 for (int i = 0; i < people.length; i++) {
 averageAge += people[i].age;
 totalSalary += people[i].salary;
 }
 averageAge = averageAge / people.length;
 System.out.println(averageAge);
 System.out.println(totalSalary);
}

Example: Split loopExample: Split loop by M. Fowler

private Person [] people;

void printValues() {
 double averageAge = 0;
 double totalSalary = 0;
 for (int i = 0; i < people.length; i++) {
 totalSalary += people[i].salary;
 }
 for (int i = 0; i < people.length; i++) {
 averageAge += people[i].age;
 }
 averageAge = averageAge / people.length;
 System.out.println(averageAge);
 System.out.println(totalSalary);
}

Example: Split loopExample: Split loop by M. Fowler

private Person [] people;

void printValues() {
 double averageAge = 0;
 for (int i = 0; i < people.length; i++) {
 totalSalary += people[i].salary;
 }

 double totalSalary = 0;
 for (int i = 0; i < people.length; i++) {
 averageAge += people[i].age;
 }

 averageAge = averageAge / people.length;

 System.out.println(averageAge);
 System.out.println(totalSalary);
}

Example: Split loopExample: Split loop by M. Fowler

void printValues() {
 System.out.println(averageAge());
 System.out.println(totalSalary());
}

private double averageAge() {
 double result = 0;
 for (int i = 0; i < people.length; i++) {
 result += people[i].age;
 }
 return result / people.length;
}

private double totalSalary() {
 double result = 0;
 for (int i = 0; i < people.length; i++) {
 result += people[i].salary;
 }
 return result;
}

Substitute AlgorithmSubstitute Algorithm
Name

Substitute Algorithm
Summary

You want to replace an algorithm with one that is clearer
Goal

 Replace the body of the method with the new algorithm
Mechanics
 prepare your alternative algorithm and get it compiling
 run the new algorithm against the tests
 if tests fail, use the old algorithm for comparison in testing and

debugging

Example: Substitute AlgorithmExample: Substitute Algorithm by M. Fowler

String foundPerson(String[] people) {

 for (int i = 0; i < people.length; i++) {
 if (people[i].equals ("Don")) {
 return "Don";
 }
 if (people[i].equals ("John")) {
 return "John";
 }
 if (people[i].equals ("Kent")) {
 return "Kent";
 }
 }

 return "";
}

Example: Substitute AlgorithmExample: Substitute Algorithm by M. Fowler

String foundPerson(String[] people) {

 List candidates = Arrays.asList(new String[] {"Don", "John", "Kent"});
 for (int i=0; i<people.length; i++)
 if (candidates.contains(people[i]))
 return people[i];

 return "";
}

Introduce AssertionIntroduce Assertion
Name

Introduce Assertion
Summary

A section of code assumes sth about the state of program
Goal

Make the assumption explicit with an assertion
Mechanics
 assertions by default should not change the behavior
 do they?

by M. Fowler

Introduce Foreign MethodIntroduce Foreign Method
Name

Introduce Foreign Method
Summary

A server class needs a new method, but cannot be modified
Goal

Create class in the client class and pass a server class
instance to it as the first argument

Mechanics
 create the needed method in the client class
 make an instance of the server class the first parameter
 comment appropriately to avoid accidental execution

by M. Fowler

Introduce Local ExtensionIntroduce Local Extension
Name

Introduce Local Extension
Summary

A server class needs a new method, but cannot be modified
Goal

Create a new class with extra method. Make it a wrapper or
subclass of the original

Mechanics
 create an extension class as either wrapper or subclass of the original
 add converting constructors to the extension
 add new features to the extension
 replace the original with the extension where needed
 move any foreign methods defined for this class up to now onto the

extension

by M. Fowler

Replace Recursion with IterationReplace Recursion with Iteration
Name

Replace Recursion with Iteration
Summary

Code that uses recursion is hard to understand
Goal

Replace recursion with iteration
Mechanics
 determine the base case of the recursion
 implement a loop that will iterate until the base case is reached
 make a progress towards the base case; send the new arguments to

the top of the loop instead to the recursive method

by I. Mitrovic

Example: Replace Recursion with IterationExample: Replace Recursion with Iteration by I. Mitrovic

public class CountDown {
 public void countDown(int n) {
 if (n == 0) return;
 System.out.println(n + "...");
 waitASecond();
 countDown(n-1);
 }

 public void waitASecond() {
 try {
 Thread.sleep(1000);
 } catch (InterruptedException ignore) { }
 }

 public static void main(String[] args) {
 CountDown c = new CountDown();
 c.countDown(10);
 }
}

Replace Iteration with RecursionReplace Iteration with Recursion
Name

Replace Iteration with Recursion
Summary

It is not obvious what each iteration in loop is doing
Goal

Replace iteration with recursion
Mechanics
 identify the candidate loop that modifies one or more scoped locals and

then returns a result based on their final values
 move the loop into a new function
 compile & test
 replace the loop with a function that accepts the local variables, and

which returns the final result

by I. Mitrovic

Replace Iteration with RecursionReplace Iteration with Recursion
Name

Replace Iteration with Recursion
Mechanics
 the implementation of the function should be an 'if' statement, which

tests the looping condition (the condition expression in "while
(condition) ...;"); the "then" clause should calculate/return the final result;
the "else" clause should make the recursive call, with appropriately
modified parameters

 compile & test

by I. Mitrovic

Example: Replace Iteration with RecursionExample: Replace Iteration with Recursion by I. Mitrovic

unsigned greatest_common_divisor (unsigned a, unsigned b) { unsigned greatest_common_divisor (unsigned a, unsigned b) {
 while (a != b) { while (a != b) {
 if (a > b) {if (a > b) {
 a -= b; a -= b;
 } else if (b > a) { } else if (b > a) {
 b -= a; b -= a;
 } }
 } }
} }

Example: Replace Iteration with RecursionExample: Replace Iteration with Recursion by I. Mitrovic

unsigned greatest_common_divisor (unsigned a, unsigned b) { unsigned greatest_common_divisor (unsigned a, unsigned b) {
 if (a > b) { if (a > b) {
 return greatest_common_divisor (a-b, b); return greatest_common_divisor (a-b, b);
 } else if (b > a) { } else if (b > a) {
 return greatest_common_divisor (a, b-a); return greatest_common_divisor (a, b-a);
 } else // (a == b) {} else // (a == b) {
 return a; } return a; }
} }

Q&AQ&A

