
(c) Bartosz Walter

Software Refactoring: Introduction 1

Software RefactoringSoftware Refactoring
IntroductionIntroduction

Bartosz Walter
<Bartek.Walter@man.poznan.pl>

Advanced Object-Oriented Design
Lecture 5

MottoMotto

„Any fool can write code that a computer can understand.

Good programmers write code that humans can understand.”

Martin Fowler

AgendaAgenda

� Motivation

� Introduction

� Cost of refactoring

� Correctness

� Bad code smells

� Methods of bad smell detection

AgendaAgenda

Motivation

More functionalityMore functionality, , quicklyquickly!! Bug Bug fixingfixing

(c) Bartosz Walter

Software Refactoring: Introduction 2

We've got We've got no no timetime. . Let's integrateLet's integrate...... Motivation Motivation for for refactoringrefactoring

� High cost of maintenance
� 80% of TCO (Yourdon 1976)
� legacy software problem (Boehm 1975: at Boeing

$30 → $4000 per LOC)
� Software entropy increases during development
� Code becomes hardly understandable
� Design does not fit present requirements/functionality
� YAGNI = You Aren't Going to Need It

AgendaAgenda

Introduction

Intiuitive definitionIntiuitive definition

� a change made to the internal structure of software
� to make it easier to understand and cheaper to modify
� without changing its observable behaviour (same input to

a program yields same output)

void doSth()
void doSth()

RefactoringRefactoring isis::

Source: W. Opdyke, 1991

Formal definitionFormal definition

R = (pre; T)
where
� pre is the precondition that the program must satisfy, and
� T is the program transformation

RefactoringRefactoring is an ordered pairis an ordered pair

Source: D. Roberts, 1999

ExampleExample: : Extract MethodExtract Method

ExtractExtract MethodMethod

void scalarProduct(String[] params) {

int[] x = prepareX(params);

int[] y = prepareY(params);

int[] product = computeXY(x, y);

// ...

for (i = 0; i < x.length; i++) {

out.println("X = " + x[i]);

out.println("Y = " + y[i]);

out.println("X * Y = " + product[i]);

}

}

void scalarProduct(String[] params) {

int[] x = prepareX(params);

int[] y = prepareY(params);

int[] product = computeXY(x, y);

// ...

printScalarProduct(x, y, product);

}

void printScalarProduct(int[] x, int[]y,

int[] product) {

for (i = 0; i < x.length; i++) {

out.println("X = " + x[i]);

out.println("Y = " + y[i]);

out.println("X * Y = " + product[i]);

}

}Preconditions:
� there exists no printScalarProduct() method in the class
� the class does not inherit neither scalarProduct() nor printScalarProduct()

(c) Bartosz Walter

Software Refactoring: Introduction 3

Extended formal definitionExtended formal definition

Source: D. Roberts, 1999

R = (pre; T; P)
where
� pre is an assertion that must be true on a program for R to

be legal,
� T is the program transformation, and
� P is a function from assertions to assertions that

transforms legal assertions whenever T transforms
programs

RefactoringRefactoring is an ordered tripleis an ordered triple

ExampleExample: : Rename MethodRename Method

Rename MethodRename Method

class ClassA

void methodName1 () {

// some code
}

}

class ClassA

void methodName2 () {

// some code
}

}

Preconditions:
� there exists no method void methodName2() in class ClassA
� class ClassA does not inherit neither methodName1() nor

methodName2()

Postconditions:
� class ClassA does not define method methodName1()

� class ClassA does define method methodName2()

AgendaAgenda

Cost of refactoring

Cost of refactoringCost of refactoring

The cost depends on:

� the programming language used
� support from CASE tools
� the nature of refactorings performed
� number and quality of test cases

Refactoring does not add new functions to the system,
while it does consume time and resources

� automation of localization
� automation of transformation
� automation of verification

Experimental evaluationExperimental evaluation

Incremental

8 people

Unit-tests

&

Refactoring

6 people

Increment III: 1 use-case

Increment II: 2 use-cases

Increment I: 2 use-cases

Increment 0: framework

Comparison of development cyclesComparison of development cycles

Incremental (AH) Unit-tests & refactoring (TR)

Refactoring

Development

Acceptance tests

Unit tests

AnalysisAnalysis

Development

Acceptance tests

(c) Bartosz Walter

Software Refactoring: Introduction 4

ResultsResults

Effort at every increment

0
50

100
150
200
250
300
350
400
450
500
550

AH I TR I AH II TR II AH III TR III

cz
as

 [
m

in
]

Cost of refactoringCost of refactoring

0%

10%

20%

30%
40%

50%

60%

70%

80%

F I F II F III

K
o

sz
tR

ef
 [%

]

CostRef = (timeTest&Ref / time AdHoc) – 1

0%

20%

40%

60%

80%

100%

120%

140%

AdHoc II/I Test&Ref II/I AdHoc III/I Test&Ref III/I

Relative cost of refactoringRelative cost of refactoring

Phase3/Phase1
Phase2/Phase1

WhenWhen to doto do andand not to do not to do refactoringrefactoring??

� Three strikes and refactor

� Before functional
enhancement

� Variability reveals

� Regular reviews

� Fixed scope

� Run-once projects

� Prematurely published
interfaces

� Unstable, rubbish code

� At close deadlines

Unfinished refactoring is like going into debt.
You can live with it, but it is costly.

Ward Cunningham

AgendaAgenda

Correctness of refactorings

ExampleExample: : Inline Inline TempTemp

i = 0;

...

array[0] = i++;

array[1] = i++;

array[2] = i++;

...

i = 0;

x = i++;

array[0] = x;

array[1] = x;

array[2] = x;

...

?1

2

3

1

1

1

(c) Bartosz Walter

Software Refactoring: Introduction 5

Predicate Predicate noSideEffectsPnoSideEffectsP

Inputs:
� A program referencing a variable Var of initial value 1

� A function F potentially modifying the value of Var

Problem 1:
� Has a call to the function F a side-effect resulting in modifying

the variable Var?

Lemma 1:
� Problem 1 (no-side-effects) is unsolvable

Predicate Predicate noSideEffectsPnoSideEffectsP

Lemma 2:
� Problem 2 (modified no-side-effects) is NP-hard

Inputs:
� A program referencing a variable Var of initial value 1

� A function F potentially modifying the value of Var

Problem 2:
� Does exist a inputs' set, which makes the function F to modify

the variable Var?

Correctness of refactoringsCorrectness of refactorings

� Automated

verification

� Implemented in many

IDEs

� Verification requires

testing

� Tests need to be

manually created

SIMPLE HARD

SimpleSimple refactoringsrefactorings

void method()
void method()

preconditions

� Verified through static analysis

� Can be proved to be correct

postconditions

Hard refactoringsHard refactorings

� Cannot be proved analitycally

� Role of unit tests

void method()
void method()

preconditions postconditions

Classification of refactoring depending of verifClassification of refactoring depending of verif. . methodmethod

Hard (ca.50)
(tests are required)

Simple (ca. 22)
(analytically proved)

(c) Bartosz Walter

Software Refactoring: Introduction 6

Classification of refactoring depending of verifClassification of refactoring depending of verif. . methodmethod

Simple (ca. 22)
(analytically proved)

Testable (ca. 25)
(tests required, but well-known)

Unknown (ca. 25)
(tests required, but unknown)

Example of Example of a a testable refactoringtestable refactoring: : Move MethodMove Method

check if creating getSubject() in class Student does not disturb inheritance

check if creating getName() in class Lecturer does not disturb inheritance

check if getSubject() in class Student returns appropriate object of class Subject?

check if Subject object exists every time when Student references it

check if getLectureName() call returns same name like prior the change

�
�

Student

Subject

Lecturer

+ getLecture ()

+ getLectureName()

Student

Subject

Lecturer

+ getLectureName()

+ getSubject()

+ getLecture ()

+ getName ()

AgendaAgenda

Bad code smells

Bad code smellsBad code smells

If it stinks, change it

Kent Beck's grandma

discussing child-rearing philosophy

Bad code smellBad code smell

A bad smell is a symptom of

the poor code quality that

indicates the need for

refactoring

Martin Fowler
„Refactoring, Improving the design

of existing code”, Addison-Wesley, 1999

CommentsComments

Symptoms

Comments unnecessarily replicate the control flow

Solutions

� move the over-commented parts to a new method (Extract
Method)

� Rename Method to better reflect its purpose
� Introduce Assertion if it clears-out the code control flow

(c) Bartosz Walter

Software Refactoring: Introduction 7

Long MethodLong Method

� Extract Method

� extract temporary variables to external methods with
Replace Temp with Query

� Introduce Parameter Object or Preserve Whole Object to
decrease the number of parameters

� Replace Method with Method Object to extract a method
to a new class

Symptoms

� A method performs multiple activities (too many options)
� Not enough support from other methods, causing the

method to do tasks at a lower level than it should
� Overly complicated exception handling

Long Parameter Long Parameter ListList

Solutions

� Replace Parameter with Method, Preserve Whole Object
or Introduce Parameter Object to decrease the number of
formal parameters

Symptoms

A method is provided with more external information than
it actually needs

Duplicated CodeDuplicated Code

Symptoms

Same or similar code appears all over the system

Solutions

� single class: extract out the common bits into their own
method (Extract Method)

� sibling classes: Extract Method with a shared functionality
and then Pull-up the Method to a common superclass

� unrelated classes: Extract Class with common behavior
and delegate to it (possibly in static context)

Large classLarge class

Solutions

� Extract Class to split-up the class by reference
� Extract Subclassto split-up the class by inheritance
� Extract Interface to split-up the class by polymorphism
� Extract Superclass and Pull-up Methods to a superclass

Symptoms

� Class holds too much responsibility
� Numerous inner classes, static and instance methods
� Excessive numbers of convenience methods

Incomplete Library ClassIncomplete Library Class

Symptoms

Some functionality is missing from an existing library,
while the library cannot be modified

Solutions

� create the methods in the client object (Introduce Foreign
Method)

� create a subclass or a wrapper with required functionality
(Introduce Local Extension)

Switch StatementsSwitch Statements

Symptoms

A method contains a complex, nested switch/conditional
statement

Solutions

� extract out the common bits into their own method (Extract
Method) if code is in same class

� Replace Conditional with Polymorphism/State to use
polymorphism instead

� Replace Conditional with Subclasses to use inheritance
instead

(c) Bartosz Walter

Software Refactoring: Introduction 8

Speculative GeneralitySpeculative Generality

Symptoms

A class is designed to hold some responsibility in the
future, but never ends up doing it.

Solutions

� Remove abstract classes with Collapse Hierarchy

� Remove unnecessary delegation with Inline Class
� Methods with unused parameters - Remove Parameter

� Methods named with odd abstract names should be
simplified with Rename Method

Data Data ClassClass

Symptoms

A class is merely holding data and offering no interesting
methods (Data Transfer Objects)

Solutions

� Move some of clients' code to the data class via a
combination of Extract Method and Move Method

� Split-up and Inline Class

Data Data ClumpsClumps

Symptoms

A set of data that's always hanging with each other (e.g.
name, street, zip)

Solutions

� Turn the clump into a class with Extract Class

� Then continue the refactoring with Introduce Parameter
Object or Preserve Whole Object in order to pass a single
instance

� Related to Long Parameter List

Refused BequestRefused Bequest

Symptoms

Subclass does not need the inherited data and methods

Solutions

� Create a new sibling class and use Push Down Method
and Push Down Field

� If a subclass is reusing behavior but does not want to
support the interface of the superclass, use Replace
Inheritance with Delegation

Inappropriate IntimacyInappropriate Intimacy

Symptoms

Directly getting in the internals of another class

Solutions

� Move Method / Move Field to an appropriate class
� restrict the references Change Bidirectional Association to

Unidirectional Association

� Extract Class to hold the shared internals of both classes
� Replace Inheritance with Delegation to better separate

former super- and subclasses

Lazy ClassLazy Class

Symptoms

A class has no or very limited responsibility

Solutions

� Collapse Hierarchy if subclasses are nearly vacuous
� Inline Class - move the methods and fields in the class

that was using it and remove the original class

(c) Bartosz Walter

Software Refactoring: Introduction 9

Feature EnvyFeature Envy

Solutions

� Move Method (possibly after Extract Method is applied)
� use Visitor or Self Delegation patterns

Symptoms

� A method in one class uses lots of functionality from
another class

� Low class cohesion

Message ChainsMessage Chains

Symptoms

Long chain of getAnotherObject() calls

Solutions

� Hide Delegate to remove unnecessary indirection
� Extract Method and then Move Method to move it down

the chain

Middle ManMiddle Man

Symptoms

A class delegates further most of its methods

Solutions

� Remove Middle Man

� If only a few methods aren't doing much, use Inline
Method

� You could also consider turning the middle man into a
subclass with Replace Delegation with Inheritance

Divergent ChangeDivergent Change

Solutions

� Identify everything that changes for a particular cause and
use Extract Class to put them all together

Symptoms

A class is commonly changed in different ways for
different reasons

Shotgun SurgeryShotgun Surgery

Symptoms

A change results in the need to make a lot of little changes
in several classes

Solutions

� use Move Method and Move Field to put all the changes
into a single class

� use Inline Class to bring a whole bunch of behavior
together

Parallel Inheritance HierarchiesParallel Inheritance Hierarchies

Symptoms

Every time a subclass of one class is created, a
corresponding subclass of another is required

Solutions

� use Move Method and Move Field to combine the
hierarchies into one

(c) Bartosz Walter

Software Refactoring: Introduction 10

AgendaAgenda

Methods of bad smell detection

Symptoms of Symptoms of a a bad smellbad smell

Bad code smell

Metrics

Analysis of

Abstract Syntax Tree

Intuition

History of

changes

Dynamic

analysis

Presence of

other smells

Relations among bad code smellsRelations among bad code smells

� Simple compatibility
Smell S1 is compatible with a smell S2 (S1 ⇒⇒⇒⇒ S2) if the presence of S1 implies the
presence of S2 (with probability level higher than assumed).

� Mutual compatibility
Mutual compatibility (S1 ⇔⇔⇔⇔ S2) is a symmetric closure of a simple compatibilty
relation.

� Transitive compatibility
Smell S1 is transitively compatible with a smell S3 (S1 ⇒⇒⇒⇒⇒⇒⇒⇒ S3) if S1 is compatible
with a S2, and the S2 is compatible with S3

� Aggregate compatibility
Smells S1,..,Sn are compatible as an aggregate with smell Sm (S1,..,Sn⇒⇒⇒⇒ Sm) if their
simultaneous presence implies the existence of the Sm with higher probability that
for any individual smell S1,..,Sn.

� Incompatibility
Smell S1 is incompatible with S2 (S1 ⇒⇒⇒⇒ S2) if the presence of S1 excludes the
simultaneous presence of the smell S2.

SummarySummary

� Refactoring is costly at development phase, but
decreases cost of maintenance

� Refactoring must preserve software behaviour

� Testing and analysis as methods of verification

� Code smells indicate a need for refactoring

� Code smell require sophisticated detection and
identification mechanism

ReadingsReadings

1. M. Fowler, Refactoring.
Improving Design od Existing
Code. Addison-Wesley, 1999.

2. Refactoring HomePage,
http://www.refactoring.com/

3. W. Wake, Refactoring Workbook.
Addison-Wesley, 2003.

4. J. Kerievsky, Refaktoryzacja do
wzorców. Helion, 2005.

5. B. Pietrzak, XSmells Eclipse
Plug-in

Q&AQ&A

