(c) Bartosz Walter

Lecture 4

Motivation and goals

Complexity metrics

Metrics for Object-Oriented Design (MOOD suite)
Metrics suite by Chidamber-Kemerer

Metrics by R. Martin

Law of Demeter

Object-oriented metrics

2 N

Bartosz Walter
<Bartek.Walter@man.poznan.pl>

Goals for OO metrics

Why 00 metrics?

= the instrumentarium changes: localization,
encapsulation, information hiding, inheritance, and

Goals object abstraction techniques

= they are supposed to be better suited for measuring
00 systems than traditional ones

= they are better related to external attributes of OO
systems, like fault-proneness or maintainability

Ide:

a
to evaluate the complexity of an algorithm

Definition
= the number of independent paths within a procedure (method)
= the count of test-cases needed to test the method comprehensively

. . Formula _ _
Complexity metrics CC=E-V+2

Remarks

= lower CC may imply decreased testing and increased understandability
or that decisions are deferred through message passing, but not that
the method is not complex

= CC measures methods, not classes (due to inheritance), but combined
tc|>gether with other measures it may also evaluate the complexity of a
class

= CC values greater than 20 suggest the method is too complex

Object-oriented metrics

(c) Bartosz Walter

? If G is the control flowgraph of program P
<‘> and G has e edges (arcs) and n nodes
g&l P
v (P} is the number of linearly MOOD .
suite

independent paths in G
here e=16 n=13 v (P)=5

¢ More simply, if d is the number of
decision nodes in G then
‘ v(P)=d+1

source: http://www.dcs.gmw.ac.uk/~norman/papers/qa_metrics_article

Metrics for Object-Oriented Design (MOOD) Metrics for Object-Oriented Design (MOOD)

Refer to basic structural mechanisms of the object-

= Defined in 1995 by F. B. e Abreu oriented paradigm
= System-level = Encapsulation
= Expressed as quotients (percentages) ranging from = Method Hiding Factor (MHF)
0% to 100% = Attribute Hiding Factor (AHF)
= numerator represents the actual use of one of those = |nheritance
mechamsms for agiven design) = Method Inheritance Factor (MIF)
= denominator, acting as a normalizer, represents the = Attribute Inheritance Factor (AIF)

hypothetical maximum achievable use for the same
mechanism on the same design

= Dimensionless
= Independent of system size
= Make no reference to programming language

= Polymorphism

= Polymorphism Factor (PF)
= Message passing

= Coupling Factor (CF)

Attribute and Method Hiding Factor Attribute Hiding Factor

AHF and MHF are measures of the use of the information

hiding concept that is supported by the encapsulation 10ne, AHTIPUE Hiding Factor (ANF) Mot
mechanism GNU Newdar Sacrs Centerline
TC TC
‘ A (C)) AV(C) X4 —amember
AHF = Z’T:Cl LR Z’T:(] : X, — hidden member
ZH Ad (C:) Zi:l Ad (Q) X, - visible member
X=X+ X,
Ic Ic
M (C, M (C,
MHF = Zr:l W) -1_ 21:1 (C)

C - Ic
> MC) > M)

source: F.B. e Abreu, ECOOP 1995

Object-oriented metrics

(c) Bartosz Walter

Attribute Hiding Factor

AHF Attributes should be hidden
as much as possible. Ideally
| all attributes would be hid-

‘ den (being only accessed

| by the corresponding class

| methods)

J

PERRHNARSIRBOERKEERRE

source: F.B. e Abreu, ECOOP 1995

Method Hiding Factor

Wethod Hiding Factor (MHF)

source: F.B. e Abreu, ECOOP 1995

Method Hiding Factor

0 |
i)

o |
L) |
0 |
0 |
0

02 /
o1

0+

1 —

WHF Very low MHF indicate an
insufficiently abstracted

‘I implementation.

| Very high MHF indicate very
‘ little functionality

\

owouw
- r

" HHH
AHRBIYRRCERRBERY S

source: F.B. e Abreu, ECOOP 1995

PropertiesConfiguration

[BISEPARATORS]] : char = new char [|{'=',":} =7
BSWHITE_SPACE] : char = new char [1{'',\t,\f} MHF =7
BSLINE_SEPARATOR : Logical o = System.getProperty("l ") AHF =?

BEHEX_RADIX : int = 16
[BBUNICODE LEN :int=4

include : Logical View.java:lang ::String = "include”

includesAllowed : boolean
header : Logical View:java:1ang::String

[I®PropertiesConfiguration()

[B®PropertiesConfiguration(fileName : Logical View:javat:lang::String)
[BPropertiesConfiguration(file : File)

8PropertiesConfiguration(url : URL)

Sgetinclude() : Logical View:java:lang::String

S : Logical javazlang) : wid

[BsetincludesAllowed(includesAllowed : boolean) : void
[SgetincludesAllowed() : boolean

I8getHeader() : Logical View:java:lang::String

o g

: Logical View] +void

B®ioad(in : Reader) : woid
[I®save(writer : Writer) : void
[

unescapeJava(str : Logical

: Logical View:java:fang:: < void

|B¥parseProperty(line : Logical

delimiter : char) : Logical View:java:lang:String
Logical

fileName : Logical View:java: void

&

http://jakarta.apache.org/commons/configuration

Attribute and Method Inheritance Factor

MIF and AIF are measures of inheritance. This allows (1)
expressing similarity among classes, (2) the portrayal of
generalization and specialization relations, (3) simplification of
the definition of inheriting classes, by means of reuse.

MIF =

X, - available member

X, - defined f
d

Ic 1c
Zf:l AJI(CJ —1- Zi:1 ‘F‘da‘(ci)

TC 7c
ZH M, (C) ZH M (C,) | X-inherited member
Xo= X+ X,

X, — new member

IDWEICIND WET (S

X, - overriden member

c - Ic
2 AC) Y ALC)

X=X, + X,

Method Inheritance Factor

Methad Inheritance Factor

source: F.B. e Abreu, ECOOP 1995

Object-oriented metrics

(c) Bartosz Walter

Method Inheritance Factor

G Low MIF indicate a low
— inheritance reuse ratio.

‘ Very high MIF indicate a
| | complicated inheritance tree

/ \

/ \

— -

FRRPRAARMRSRHIERKREERNS

source: F.B. e Abreu, ECOOP 1995

Attribute Inheritance Factor

Attribute Inheritance Factor (AlF)

100%

90%

80% Centerline
SunC++

70%
................... New
6005 enMat
50%
40%
30%

20%

10%

0%

source: F.B. e Abreu, ECOOP 1995

PropertiesConfiguration

®PropertiesConfig uration()

SPropert Logical
SPropertiesConfiguration(file : File)
SPropertiesConfiguration(url : URL)

Sgetinclude() : Logical View:java::lang :String
Ssetinclude(ine : Logical View:java::lang ::String) : void
PsetincludesAlloved(includesAllowed : boolean) : void
®getincludesAllowed() : boolean

SgetHeader() : Logical View:java:lang::String

o Logical oid
®load(in : Reader) : void

Ssave(writer : Writer) : void

MIF =?

Logical “wid
o Logical delimiter : char) : Logical View:java:lang::String
Bp: ope Logical) : Logical
& Logical lang < wid

XMLPropertiesConfiguration

®XMLPropertiesConfiguration()

SXMLPropertiesC Logical)

SXMLPropertiesConfiguration(ile : File)

®XMLPropertiesConfiguration(url : URL)

i oad(in : Reader) : void

Ssave(out : Writer) : void

BwriteProperty(out : PrintWriter, key : Logical value : Logical Object) : void
BwriteProperty(out : PrintWriter, key : Logical View:java:lang::String, values : List) : void

http.//jakarta.apache.org/commons/configuration

AIF=7?

PropertiesConfiguration

BJSEPARATORS]]: char = new char [I{'=",}

BIWHITE_SPACE]] : char = new char [I{ .\t \f}
BJDEFAULT_ENCODING : Logical View:java:lang::String = "ISO-8859-1"
BJLINE_SEPARATOR : Logical View:ja = operty("line separator”)
BSHEX_RADIX :int = 16

BJUNICODE LEN :int=4

Minclude : Logical View:java:lang::String = “include”

BincludesAllowed : boolean

Bheader : Logical View:java::lang::String

‘ XMLPropertiesConfiguration

[®PDEFAULT ENCODING : Logical ing = "UTE-E" |

http.//jakarta.apache.org/commons/configuration

Polymorphism Factor

PF is a measure of polymorphic overriding. By allowing to bind
a common message call to one of several class instances,
polymorphism allows

= to build flexible systems

= refinement of the taxonomy without side-effects

M, - overriden methods

3 M,C)

PF =—+
ZH [ﬂ{,j(C,)xDC(CE_)]

M, - new methods

DC - descendant classes

Polymorphism Factor

P ism Factor (PF)

100%

90% +

80% +

60% +
50% +
40% +
30% +

20% + NIHCL
o NewMat Motif
o b
e o ET SunCt+ Centerline

source: F.B. e Abreu, ECOOP 1995

Object-oriented metrics

(c) Bartosz Walter

PropertiesConfiguration

®PropertiesConfig uration()

SPropert Logical
SPropertiesConfiguration(file : File)
SPropertiesConfiguration(url : URL)

s Sgetinclude() : Logical Vi v:lang St
PF Very low PF indicate SSctncie(ine - LogcalvView marlong S0ig) vid
T structural design.

@setincludesAlloved(includesAllowed : boolean) : void
®getincludesAllowed() : boolean
st :geﬂ-leadev()'mglcalwew]a\a lang::String
\ High PF indicate a o e v
; H : 9,
0 complicated inheritance tree R -
0 ‘ | ket Logical delimiter : char) : Logical View:java:lang::String
Bp: ope Logical) : Logical
| ed Logical “lang:: < void
\

PF=?

e

XMLPropertiesConfiguration
S
——

SXMLPropertiesConfiguration()
N SXMLPropertiesC Logical
SXMLPropertiesConfiguration(file : File)
QoL OURE YRR BRREEERYE $XMLPropertiesConfiguration(url : URL)
h Sioad(in : Reader) : void
Ssave(out : Writer) : void
BwriteProperty(out : PrintWriter, key : Logical value : Logical Object) : void
BwriteProperty(out : PrintWriter, ke : Logical View:java:lang::String, values : List) : woid

source: F.B. e Abreu, ECOOP 1995

http.//jakarta.apache.org/commons/configuration

Coupling Factor Coupling Factor

CF is a measure of dependability of individual classes on each

other. L0095 - Coupling Factor (COF)
IC TC 20%
Zf:l [Z i f‘S'_C‘HC"WT((\;.C;)] 80%
(WOF = - = Tc 70%
C= - 2 N %
IC"-TC -2 x Z-;=1 DC(C) ﬁz
40%

- . . . 0% NewMat
g G2 GAC =G - _
is_client(C_,C,) = A=(C.—=C,) 1% m Mol e Conterine
0 otherwise o
source: F.B. e Abreu, ECOOP 1995

BaseC ~stor Map
(from configuration) ‘ (from uil) CF = 9
L
COF Low QF syggc.astl low smap
I — functionality, limited to few
u f “ classes.
3 |
- . P Fi -sourceURL |y MapConfiguration
‘E “ | ngh CF indicate a poor ‘ (from configuration) } } (from net) (immcnm:g:wo:n
0 | .
all | design. \
|
o | #strategy
b \ Syse mConfiguration
02 = O (from configuration)
ot — PropertiesConfiguration
0 T (from configuration) ReloadingStrategy
SULRKANGREGEEGRREEDE D ooy

source: F.B. e Abreu, ECOOP 1995

http.//jakarta.apache.org/commons/configuration

Object-oriented metrics

(c) Bartosz Walter

Metrics by Chidamber & Kemerer

Metrics suite by Chidamber-Kemerer

= Defined by S. R. Chidamber i C. F. Kemerer in 1991
= Class-level
= Includes six metrics:

= Response For Class (RFC)

= Weighted Method per Class (WMC)

= Depth of Inheritance Tree (DIT)

= Number Of Children (NOC)

= Lack of Cohesion of Methods (LCOM)

= Coupling Between Objects (CBO)

Response for Class

Idea

to measure potential communication between the class and other
classes

Definition
the count of methods that can be invoked in response to a message
sent to an object of the class

Formula

RFC=M+M

subclasses

Remarks

= Aclass with larger response is considered more complex

= High RFC suggests that testing and debugging of the class becomes
complicated

Example

ConfigurationXMLReader

B ConfigurationXMLReader)
Sparse(sysemid : Logical Viewsjava:lang::Sting) : void
Sparsenput : nputSovice) : void RFC =7
Logical boolean .
Logical value : boolean) : void
®getContentHandler() : ContentHandler
SceiContentHandlerhandler : ContentHandier) void
®getDTDHandler(: DTDHandler
See(DTDHandler(handler : DTDHandlen) : void
SgetentityResolver() : EntityResolver
S EntityResolver(resolver : EntityResolver) : void
SgetEnorHandler() : EmorHandler
SceiEnorHandlerhandler : EnorHandlen : void
Logical Logical Object
value : Logical void
®getRootName() : Logical View:java:1ang:Sting
<. Logical void
Logical atwibs: Atibutes) : void
Logical void
Logical void
SgetException() : SAXException
PparseConfiguration : void
SetParsedConfiguration(: Configuration
@processkeys) : void

HierarchicalConfigurationXMLReader BaseConfigurationXMLReader

SHierarchicalConfiguralionXMLReader(SeaseConfigurationXMLReader()
Hierarchical Read

MgetConfiguration() : Hierarchical Configuration BgetConfiguration() : Configuration

Seet Hierarchical void Se:Configuration(conf : Configuration) : void

SgetParsedConfiguration(: Configuration SqetParsedConfiguration() : Configuration

Bprocesskeys) : void Borocessceys) : void

http.//jakarta.apache.org/commons/configuration

Weighted Methods per Class

Idea
to measure the complexity of a class

Definition
= the count of methods implemented within a class (unweighted)
= or the sum of complexities of its methods (weighted)

Formula —
WMC =M, or
WMC =% CC,,

Remarks

= WMC predicts of how much time and effort is required to develop and
maintain the class

= classes with high WMC are more specific, thus reducing reuse

Depth of Inheritance Tree

Idea
to measure complexity of inheritance-related hierarchies

Definition
= DITis the maximum number of steps from the class node to the root of
the tree and is measured by the number of ancestor classes

Remarks

= The deeper a class is within the hierarchy, the greater the number
methods it is likely to inherit making it more complex to predict its
behavior.

= Deeper trees constitute greater design complexity, since more methods
and classes are involved, but the greater the potential for reuse of
inherited methods.

Object-oriented metrics

(c) Bartosz Walter

ubsetC bstractCs i
(from configuration) (from configuration)

CompositeConfiguration
(from configuration)

DIT=?

DataC

BaseC ‘

MapConfi
(from web)

SystemConfiguration
(from configuration)

AppletConfiguration
(from web)

AbstractFileConfiguration
(from configuration)

PropertiesConfiguration
(from configuration)

http.//jakarta.apache.org/commons/configuration

Number of Children

Idea
to measure potential impact of modification in a class

Definition
= NOC is the number of immediate subclasses (implementations) of the
class

Remarks

= The greater NOC, the greater the likelihood of improper abstraction of
the parent and may be a case of misuse of subclassing.

= The greater NOC, the more testing the class demands.

= The greater NOC, the greater the reuse since inheritance is a form of
reuse.

ubsetC bstractCt i
(from configuration) (from configuration)

CompositeConfiguration
(from configuration)

NOC =?

DataC

BaseC ‘

MapConfi
(from web)

SystemConfiguration
(from configuration)

AppletConfiguration
(from web)

AbstractFileConfiguration
(from configuration)

PropertiesConfiguration
(from configuration)

http.//jakarta.apache.org/commons/configuration

Lack of Cohesion of Methods (Chidamber & Kemerer, 1993)

Idea
to measure dissimilarity of methods by instance variable or class
attribute

Definition
Take each pair of methods in the class and determine the set of fields
they each access. If the sets are disjoint, the count P increases by one.
If they share at least one field access, Q increases by one. After
considering each pair of methods:

Formula

LCOM1=(P>Q)?(P-Q):0

Remarks

= LCOMT1 gives value of O for different classes

= the definition is based on method-data interaction, which may not be a
correct way to define cohesiveness in the object-oriented world

= | COM1 is defined on variable access, it's not well suited for classes that
internally access their data via properties

Lack of Cohesion of Methods (Hendersol

-Sellers, 1996)

Idea
to measure dissimilarity of methods by instance variable or class
attribute
Definition
m a number of methods in a class
a a number of attributes in a class

mA a number of methods that access the attribute A
sum(mA) sum of all mA over all the attributes in the class

Formula

LCOM3 = (m—sum(mA) a)/ (m-1)

Remarks

= L COM3 values varies from 0 to 2

= LCOM3> 1 indicates lack of cohesion and the class should be split
= Ifm=1ora=0,then LCOM3is undefined and displayed as 0

0-public class FileChangedReloadingStratesy Jas: pAblic void setRetrsshDelay(long refresiDelay) {
1 implamants Reloadingstrategy { el this_refreshbelay = refreshDelay;

private static final Seeing JIE PROTOCOL = 'arvs |1)
private static final int DIFAULT REFRESH DELAF = 5000; i3
protected TileConfiguracion confifurarions 505 protected void vpdstslastHodifiedqr (
Protected long lastHodt tisd: T
protected Tong 1astChecked; s
Drotected long refreskbelay = DEFAVLT REFRESH DRAY; |2

public void setConfigaration(FilsConfiguration conf) (|55
Ehio.contigurasion = conts =
, =

public void inic() { = i 1t et Erea() > LaseHossEa
e ity retuen file lastllodified(] » lasciodified;

61
))

s protected File gerFila() (

configuracion. getURL() 1= mal) ¥
XOWURL (con figuration. getURL() |
configuracion. gecFile(r;

public boolean relsadingRequived(] {
boolean raloading = false;
long now = System currensTimeNillis(): |
if (mow > lastChecked + refreshDelay) { Gl)

lastChecked = now: P
if (hasChangedit} 69 private File fileFromURL(URL url)(
reloading = true; 20 Af (JAR PROTOCOL.equals furl.getProtocel()i)(
¥ 7 String path = url.getPath();
return reloading: 7
¥ 73

ils. fileFromtRL(

public void reloadingPerfornedi]{ 75
updavelastiodifiedl); =
) i retwrn mul;

public long getRefrashbelay (] (25) else {
veturn vefreshbelay: wetwrn Configuravionlleils. #1aFroulRELiurl]

¥ 81)

LCOM=7 |&, '

B R L R U L1 R B IR) et 14 b 1 11
HEEE H

Object-oriented metrics

(c) Bartosz Walter

Coupling Between Objects

Idea

to measure class dependency on other non-ancestor classes

Definition

CBO is the number of non-inherited classes associated with the target
class

Itis counted as the number of types that are used in attributes,
parameters, return types, throws clauses, etc.

Primitive and basic system types (e.g. java.lang.”) are not counted

Ot

her coupling metrics
Data Abstraction Coupling (DAC): the total number of referred types in
attribute declarations. Primitive types, system types, and types inherited
from the super classes are not counted.
Method Invocation Coupling (MIC): the relative number of classes that
receive messages from a particular class.

BaseCt SO Map
({rom configuration) | dromuiy CBO="?

#map

Fi | -sourceURL [ypL
‘ (from net)

MapConfiguration
(from configuration)

‘ (from configuration) ‘

#strategy
SysemConfiguration
= O (from configuration)

ReloadingStrategy
(from reloading)

PropertiesConfiguration
(from configuration)

http.//jakarta.apache.org/commons/configuration

Metrics by R. C. Martin

Metrics suite by R. Martin

= Defined by R. Martin in 1994
= Package and class-level
= Metrics consider dependency vs. stability trade-off
= Includes five metrics:
= Efferent Coupling (Ce)
= Afferent Coupling (Ca)
= Instability (1)
= Abstractness (A)
= Normalized Distance from Main Sequence (D)

Efferent Coupling

Idea

to measure the given module’s dependency (incoming dependency) on
external modules

De

finition
Ce is the number of classes inside a module that depend upon classes
outside the module

Fol

rmula
Ce = number of types, on which the module depends

Re

marks
High Ce indirectly suggests module’s instability (independence)
Highly efferent modules have little responsibility to other packages, but
reversely depend on them
Preferred values range from 0 to 20
Example: GUI components

Afferent Coupling

Idea
to measure the dependency of external modules (outgoing dependency)
on the given module

Definition
= Cais the number of classes and interfaces outside a module that
depend upon classes and interfaces within the module

Formula
Ca = number of types, which depend on the module

Remarks

= High Ca indirectly suggests module stability (responsibility)

Highly afferent packages bear large responsibility to other modules
Difficult to change without affecting dependent modules

Preferred values range from 0 to 500

Example: bussiness objects, controllers

Object-oriented metrics

(c) Bartosz Walter

Example

bstractFi -sourceURL | yRL
(from net)

Map
(from uil)

(from configuration)

MapConfiguration
(from configuration)

|
SysemConfiguration
O (from configuration)

ReloadingStrategy
(from reloading)

PropertiesConfiguration
(from configuration)

http.//jakarta.apache.org/commons/configuration

Instability

Idea
to measure package stability (dependency on other
packages)

Definition
= [is the relation of efferent (outcoming) couplings to all couplings

Formula

I=Ce/(Ce + Ca)

Remarks

= Packages that contain multiple outgoing but few incoming dependencies
(I's close to 1) are less stable because of the consequences of changes
in these packages.

= Packages containing more incoming dependencies are more stable (/is
close to 0) because they are more difficult to change.

= Designs of packages should intentionally be made as stable (0.0; 0.3) or
unstable (0.7;1.0) as possible.

Abstractness

Idea
to measure the degree of how abstract data types are used

Definition
= The number of abstract classes (and interfaces) within a package
divided by the total number of types in a package

Formula
= TAbstract l (TAbstract+ TConcrsts)

Remarks
= Abstract classes are responsible (changes to them propagate to
dependents) and stable

Main sequence

= inideal case:A+1=1

= A=0and/=1: concrete classes
that cannot be extended

= A=1and/=0: purely abstract
classes

Abstraction

= other: a trade-off between A and /

(19)

——4

Instability

source: R. Martin, 1994

Normalized Distance from Main Sequence

Idea
to measure the balance between abstractness and stability

Definition
= Dis a perpendicular distance from the ideal balance of | and A
Formula
D=|A+I-1]
Remarks

= Any class with D far from zero should be re-examined and restructured
= The metric is subject to statistical analysis

Law of Demeter

Object-oriented metrics

(c) Bartosz Walter

Law of Demeter (Lieberherr & Holland, 1989) Law of Demeter

Idea Definitions
» torestrict long message calls chains Client: Method M s a client of method N of class C, if inside M message Nis
« ,only talk to your (immediate) friends” sent to an object of class C, or to C. If Nis specialized in one or more
talk to st " subclasses, then M is only a client of N attached to the highest class in the
* onevertaiklostrangers: . hierarchy. Method M is a client of some method of class C.
= an object should avoid invoking methods of a member object returned
by another method Supplier: If Mis a client of class C then Cis a supplier to M.
i Acquaintance Class: A class C7 is an acquaintance class of method M of
pUb“C, class CLfstomer{ . class C2, if C1is a supplier to M and C1 is not one of the following:
public Operation[] operationsAt(Date date) { = the same as C2;
- - - = aclass used in the declaration of an argument of M
‘ Operation[] op = customer.getAccount().getHistory().getEntriesAt(aDate); ‘ = aclass used in the declaration of an instance variable of C2
))) Preferred-supplier class: Class B s called a preferred-supplier to method M
Operation[] Customer Account History Operation[] (of class C) if Bis a supplier to M and one of the following conditions holds:
} = Bisused in the declaration of an instance variable of C
= Bisused in the declaration of an argument of M, including C and its
} superclasses
= Bisa preferred acquaintance class of M.

Strict form of Law of Demeter Weak form of Law of Demeter

Strict form Weak form
every supplier class of a method must be a preferred supplier evgryll supplier class of a method must be a preferred supplier or its
subclass
Simply speaking _ _
Every method M of object O may invoke only methods of following kinds Simply speaking
of objects: Every method M of object O may invoke only methods of following kinds
= tself, of objects:
= ts parameters, = jtself,
= any objects it creates/instantiates, = its parameters or any subclass of them,
= its direct component objects. = any objects it creates/instantiates or any subclass of them,
= its direct component objects or any subclass of them.

Law of Demeter Summary of object-oriented metrics

Src | Metric Scope | Feature
MC | Cyclomatic Complexity (CC) M Complexity
Comments ? | Lines of Code (LOC) m/C C y
= Resulting software tends to be more maintainable and adaptable MO | Attribute/Method Hiding Factor (AHFIMHF) | S =neap
o . . . MO | Attribute/Method Inheritance Factor (AIF/MIF) | S Inheritance
= Responsibility for accessing subparts is passed from the calling method MO | Polymorphism Factor (PF) s Inheritance
to owning object) MO | Coupling Factor (CF) S Dependency
= LoD reduces coupling CK | Weighted Method per Class (WMC) c Complexity
= LoD enforces structure hiding (abstraction) CK | Response for a Class (RFC) [Complexity
= LoD promotes type localization and narrowing interfaces CK | Lack of Cohesion of Methods (LCOM) c Cohesion
. . . - . . CK | Coupling Between Objects (CBO) C Dependency
LoD increases numbgr of delegatlr?g methods in |ntermed!§te objects CK | Depth of nheritance Tree (DIT) ¢ Inheritance
= LoD has been experimentally confirmed to reduce probability of fault CK | Number of Children (NOC) C Inheritance
ratio (Basili, 1996) M | Afferent Coupling (Ca) P Dependency
M | Efferent Coupling (Ce) P Dependency
M | Instability (1) P Dependency
M | Abstractness (A) P Dependency

Object-oriented metrics

(c) Bartosz Walter

1.

S.R. Chidamber, C.F. Kemerer,

A metrics suite for object-oriented
design. IEEE Transactions on
Software Engineering, Vol. 20, No 6,
pp. 476-493

F. B. Abreu, The MOOD Metrics Set.
ECOOP 1995 Workshop on Metrics.

R. Martin, 00 Design Quality Metrics.
http://www.objectmentor.com/
publications/oodmetrc.pdf

Applying and interpreting 00O Metrics.

NASA SATC,
http://satc.gsfc.nasa.gov/support/
STC_APR98/apply_oo/apply_oo.html

Eclipse Metrics Plugin.
http://metrics.sourceforge.org

Object-oriented metrics

11

