
(c) Bartosz Walter

Object-oriented metrics 1

ObjectObject--oriented metricsoriented metrics

Bartosz Walter
<Bartek.Walter@man.poznan.pl>

Advanced Object-Oriented Design

Lecture 4

AgendaAgenda

1. Motivation and goals

2. Complexity metrics

3. Metrics for Object-Oriented Design (MOOD suite)

4. Metrics suite by Chidamber-Kemerer

5. Metrics by R. Martin

6. Law of Demeter

AgendaAgenda

Goals

GoalsGoals for OO for OO metricsmetrics

Why OO metrics?
� the instrumentarium changes: localization, 

encapsulation, information hiding, inheritance, and 
object abstraction techniques

� they are supposed to be better suited for measuring
OO systems than traditional ones

� they are better related to external attributes of OO 
systems, like fault-proneness or maintainability

AgendaAgenda

Complexity metrics

Cyclomatic Complexity Cyclomatic Complexity ((McCabeMcCabe, 1976), 1976)

Idea
to evaluate the complexity of an algorithm

Definition
� the number of independent paths within a procedure (method) 
� the count of test-cases needed to test the method comprehensively

Remarks
� lower CC may imply decreased testing and increased understandability 

or that decisions are deferred through message passing, but not that 
the method is not complex

� CC measures methods, not classes (due to inheritance), but combined 
together with other measures it may also evaluate the complexity of a 
class

� CC values greater than 20 suggest the method is too complex

Formula
CC = E – V + 2 



(c) Bartosz Walter

Object-oriented metrics 2

ExampleExample

source: http://www.dcs.qmw.ac.uk/~norman/papers/qa_metrics_article

AgendaAgenda

MOOD suite

Metrics Metrics for for ObjectObject--Oriented Design Oriented Design (MOOD)(MOOD)

� Defined in 1995 by F. B. e Abreu

� System-level

� Expressed as quotients (percentages) ranging from 
0% to 100%
� numerator represents the actual use of one of those 

mechanisms for a given design 

� denominator, acting as a normalizer, represents the 
hypothetical maximum achievable use for the same 
mechanism on the same design

� Dimensionless

� Independent of system size

� Make no reference to programming language

Metrics Metrics for for ObjectObject--Oriented Design Oriented Design (MOOD)(MOOD)

Refer to basic structural mechanisms of the object-
oriented paradigm 

� Encapsulation
� Method Hiding Factor (MHF)

� Attribute Hiding Factor (AHF)

� Inheritance
� Method Inheritance Factor (MIF)

� Attribute Inheritance Factor (AIF)

� Polymorphism
� Polymorphism Factor (PF)

� Message passing
� Coupling Factor (CF)

Attribute andAttribute and MethodMethod HidingHiding FactorFactor

AHF and MHF are measures of the use of the information 
hiding concept that is supported by the encapsulation 
mechanism

Xd – a member

Xh – hidden member

Xv – visible member

Xd = Xh + Xv

Attribute Hiding FactorAttribute Hiding Factor

source: F.B. e Abreu, ECOOP 1995



(c) Bartosz Walter

Object-oriented metrics 3

Attribute Hiding FactorAttribute Hiding Factor

source: F.B. e Abreu, ECOOP 1995

Attributes should be hidden

as much as possible. Ideally 

all attributes would be hid-

den (being only accessed

by the corresponding class 
methods)

Method Hiding FactorMethod Hiding Factor

source: F.B. e Abreu, ECOOP 1995

Method Hiding FactorMethod Hiding Factor

source: F.B. e Abreu, ECOOP 1995

Very low MHF indicate an 

insufficiently abstracted 

implementation.

Very high MHF indicate very 

little functionality

ExampleExample

http://jakarta.apache.org/commons/configuration

PropertiesConfiguration

SEPARATORS[] : char = new char [] {'=',':'}
WHITE_SPACE[] : char = new char [] {' ','\t','\f'}
DEFAULT_ENCODING : Logical View::java::lang::String = "ISO-8859-1"
LINE_SEPARATOR : Logical View::java::lang::String = System.getProperty("line.separator")
HEX_RADIX : int = 16
UNICODE_LEN : int = 4
include : Logical View::java::lang::String = "include"
includesAllowed : boolean
header : Logical View::java::lang::String

PropertiesConfiguration()
PropertiesConfiguration(fileName : Logical View::java::lang::String)
PropertiesConfiguration(file : File)
PropertiesConfiguration(url : URL)
getInclude() : Logical View::java::lang::String
setInclude(inc : Logical View::java::lang::String) : void
setIncludesAllowed(includesAllowed : boolean) : void
getIncludesAllowed() : boolean
getHeader() : Logical View::java::lang::String
setHeader(header : Logical View::java::lang::String) : void
load(in : Reader) : void
save(writer : Writer) : void
setBasePath(basePath : Logical View::java::lang::String) : void
unescapeJava(str : Logical View::java::lang::String, delimiter : char) : Logical View::java::lang::String
parseProperty(line : Logical View::java::lang::String) : Logical View::java::lang::String[]
loadIncludeFile(fileName : Logical View::java::lang::String) : void

(from configurat...

MHF = ?

AHF = ?

Attribute and Method Inheritance FactorAttribute and Method Inheritance Factor

MIF and AIF are measures of inheritance. This allows (1) 
expressing similarity among classes, (2) the portrayal of 
generalization and specialization relations, (3) simplification of 
the definition of inheriting classes, by means of reuse.

Xa – available member

Xd – defined member

Xi – inherited member

Xa = Xd + Xi

Xn – new member

Xo – overriden member

Xd = Xn + Xo

Method Inheritance FactorMethod Inheritance Factor

source: F.B. e Abreu, ECOOP 1995



(c) Bartosz Walter

Object-oriented metrics 4

Method Inheritance FactorMethod Inheritance Factor

source: F.B. e Abreu, ECOOP 1995

Low MIF indicate a low 

inheritance reuse ratio.

Very high MIF indicate a 

complicated inheritance tree

Attribute Inheritance FactorAttribute Inheritance Factor

source: F.B. e Abreu, ECOOP 1995

ExampleExample

http://jakarta.apache.org/commons/configuration

MIF = ?

XMLPropertiesConfiguration

XMLPropertiesConfiguration()
XMLPropertiesConfiguration(fileName : Logical View::java::lang::String)
XMLPropertiesConfiguration(file : File)
XMLPropertiesConfiguration(url : URL)
load(in : Reader) : void
save(out : Writer) : void
writeProperty(out : PrintWriter, key : Logical View::java::lang::String, value : Logical View::java::lang::Object) : void
writeProperty(out : PrintWriter, key : Logical View::java::lang::String, values : List) : void

(from configuration)

PropertiesConfiguration

PropertiesConfiguration()
PropertiesConfiguration(fileName : Logical View::java::lang::String)
PropertiesConfiguration(file : File)
PropertiesConfiguration(url : URL)
getInclude() : Logical View::java::lang::String
setInclude(inc : Logical View::java::lang::String) : void
setIncludesAllowed(includesAllowed : boolean) : void
getIncludesAllowed() : boolean
getHeader() : Logical View::java::lang::String
setHeader(header : Logical View::java::lang::String) : void
load(in : Reader) : void
save(writer : Writer) : void
setBasePath(basePath : Logical View::java::lang::String) : void
unescapeJava(str : Logical View::java::lang::String, delimiter : char) : Logical View::java::lang::String
parseProperty(line : Logical View::java::lang::String) : Logical View::java::lang::String[]
loadIncludeFile(fileName : Logical View::java::lang::String) : void

(from configuration)

ExampleExample

http://jakarta.apache.org/commons/configuration

AIF = ?

XMLPropertiesConfiguration

DEFAULT_ENCODING : Logical View::java::lang::String = "UTF-8"
(from configurat...

PropertiesConfiguration

SEPARATORS[] : char = new char [] {'=',':'}
WHITE_SPACE[] : char = new char [] {' ','\t','\f'}
DEFAULT_ENCODING : Logical View::java::lang::String = "ISO-8859-1"
LINE_SEPARATOR : Logical View::java::lang::String = System.getProperty("line.separator")
HEX_RADIX : int = 16
UNICODE_LEN : int = 4
include : Logical View::java::lang::String = "include"
includesAllowed : boolean
header : Logical View::java::lang::String

(from configurat...

Polymorphism FactorPolymorphism Factor

PF is a measure of polymorphic overriding. By allowing to bind
a common message call to one of several class instances, 
polymorphism allows

� to build flexible systems

� refinement of the taxonomy without side-effects

Mo – overriden methods

Mn – new methods

DC– descendant classes

Polymorphism FactorPolymorphism Factor

source: F.B. e Abreu, ECOOP 1995



(c) Bartosz Walter

Object-oriented metrics 5

Polymorphism FactorPolymorphism Factor

source: F.B. e Abreu, ECOOP 1995

Very low PF indicate 

structural design.

High PF indicate a 

complicated inheritance tree

PF

ExampleExample

http://jakarta.apache.org/commons/configuration

PF = ?

XMLPropertiesConfiguration

XMLPropertiesConfiguration()
XMLPropertiesConfiguration(fileName : Logical View::java::lang::String)
XMLPropertiesConfiguration(file : File)
XMLPropertiesConfiguration(url : URL)
load(in : Reader) : void
save(out : Writer) : void
writeProperty(out : PrintWriter, key : Logical View::java::lang::String, value : Logical View::java::lang::Object) : void
writeProperty(out : PrintWriter, key : Logical View::java::lang::String, values : List) : void

(from configuration)

PropertiesConfiguration

PropertiesConfiguration()
PropertiesConfiguration(fileName : Logical View::java::lang::String)
PropertiesConfiguration(file : File)
PropertiesConfiguration(url : URL)
getInclude() : Logical View::java::lang::String
setInclude(inc : Logical View::java::lang::String) : void
setIncludesAllowed(includesAllowed : boolean) : void
getIncludesAllowed() : boolean
getHeader() : Logical View::java::lang::String
setHeader(header : Logical View::java::lang::String) : void
load(in : Reader) : void
save(writer : Writer) : void
setBasePath(basePath : Logical View::java::lang::String) : void
unescapeJava(str : Logical View::java::lang::String, delimiter : char) : Logical View::java::lang::String
parseProperty(line : Logical View::java::lang::String) : Logical View::java::lang::String[]
loadIncludeFile(fileName : Logical View::java::lang::String) : void

(from configuration)

Coupling FactorCoupling Factor

CF is a measure of dependability of individual classes on each 
other.

Coupling FactorCoupling Factor

source: F.B. e Abreu, ECOOP 1995

Coupling FactorCoupling Factor

source: F.B. e Abreu, ECOOP 1995

Low CF suggest low 

functionality, limited to few 

classes.

High CF indicate a poor 

design.

ExampleExample

CF = ?

http://jakarta.apache.org/commons/configuration

PropertiesConfiguration
(from configuration)

BaseConfiguration
(from configuration)

Rel oa dingStrategy
(from reloading)

URL
(from net)

AbstractFileConfiguration
(from configuration)

#strategy

-sourceURL

Map
(from util)

-store

MapConfiguration
(from configuration)

#map

Syste mConf igu ration
(from configuration)



(c) Bartosz Walter

Object-oriented metrics 6

AgendaAgenda

Metrics by Chidamber & Kemerer

Metrics suite Metrics suite by by ChidamberChidamber--KemererKemerer

� Defined by S. R. Chidamber i C. F. Kemerer in 1991

� Class-level

� Includes six metrics:
� Response For Class (RFC)

� Weighted Method per Class (WMC)

� Depth of Inheritance Tree (DIT)

� Number Of Children (NOC)

� Lack of Cohesion of Methods (LCOM)

� Coupling Between Objects (CBO)

ResponseResponse for for ClassClass

Idea
to measure potential communication between the class and other 
classes

Definition
the count of methods that can be invoked in response to a message 
sent to an object of the class

Remarks
� A class with larger response is considered more complex
� High RFC suggests that testing and debugging of the class becomes

complicated

Formula
RFC = M + Msubclasses

ExampleExample

RFC = ?

http://jakarta.apache.org/commons/configuration

BaseConfigurationXMLReader

BaseConfigurationXMLReader()
BaseConfigurationXMLReader(conf : Configuration)
getConfiguration() : Configuration
setConfiguration(conf : Configuration) : void
getParsedConfiguration() : Configuration
processKeys() : void

(from configuration)

HierarchicalConfigurationXMLReader

HierarchicalConfigurationXMLReader()
HierarchicalConfigurationXMLReader(config : HierarchicalConfiguration)
getConfiguration() : HierarchicalConfiguration
setConfiguration(config : HierarchicalConfiguration) : void
getParsedConfiguration() : Configuration
processKeys() : void

(from configuration)

ConfigurationXMLReader

ConfigurationXMLReader()
parse(systemId : Logical View::java::lang::String) : void
parse(input : InputSource) : void
getFeature(name : Logical  View::java::lang::String) : boolean
setFeature(name : Logical  View::java::lang::String, value : boolean) : void
getContentHandler() : ContentHandler
setContentHandler(handler : ContentHandler) : void
getDTDHandler() : DTDHandler
setDTDHandler(handler : DTDHandler) : void
getEntityResolver() : EntityResolver
setEntityResolver(resolver : EntityResolver) : void
getErrorHandler() : ErrorHandler
setErrorHandler(handler : ErrorHandler) : void
getProperty(name : Logical View::java::lang::String) : Logical View::java::lang::Object
setProperty(name : Logical View::java::lang::String, value : Logical  View::java::lang::Object) : void
getRootName() : Logical  View::java::lang::String
setRootName(string : Logical  View::java::lang::String) : void
fi reElementStart(name : Logical View::java::lang::String, attribs : Attributes) : void
fi reElementEnd(name : Logical  View::java::lang::String) : void
fi reCharacters(text : Logical View::java::lang::String) : void
getException() : SAXException
parseConfiguration() : void
getParsedConfiguration() : Configuration
processKeys() : void

(from configuration)

Weighted Methods Weighted Methods per per ClassClass

Idea
to measure the complexity of a class

Definition
� the count of methods implemented within a class (unweighted)
� or the sum of complexities of its methods (weighted)

Remarks
� WMC predicts of how much time and effort is required to develop and 

maintain the class
� classes with high WMC are more specific, thus reducing reuse

Formula
WMC = M, or 
WMC = Σ CCM

Depth of Inheritance TreeDepth of Inheritance Tree

Idea
to measure complexity of inheritance-related hierarchies

Definition
� DIT is the maximum number of steps from the class node to the root of 

the tree and is measured by the number of ancestor classes

Remarks
� The deeper a class is within the hierarchy, the greater the number 

methods it is likely to inherit making it more complex to predict its 
behavior. 

� Deeper trees constitute greater design complexity, since more methods 
and classes are involved, but the greater the potential for reuse of 
inherited methods.



(c) Bartosz Walter

Object-oriented metrics 7

ExampleExample

DIT = ?

http://jakarta.apache.org/commons/configuration

AbstractConfiguration
(from configurat ion)

AbstractFileConfiguration
(from configuration)

BaseConfiguration
(from configuration)

CompositeConfigurat ion
(from configuration)

DataConfiguration
(from configuration)

PropertiesConfiguration
(from configuration)

SubsetConfiguration
(from configuration)

SystemConfiguration
(from configurat ion)

MapConfiguration
(from configurat ion)

BaseWebConfiguration
(from web)

AppletConfiguration
(from web)

Number of ChildrenNumber of Children

Idea
to measure potential impact of modification in a class

Definition
� NOC is the number of immediate subclasses (implementations) of the 

class

Remarks
� The greater NOC, the greater the likelihood of improper abstraction of 

the parent and may be a case of misuse of subclassing. 
� The greater NOC, the more testing the class demands.
� The greater NOC, the greater the reuse since inheritance is a form of 

reuse. 

ExampleExample

NOC = ?

http://jakarta.apache.org/commons/configuration

AbstractConfiguration
(from configurat ion)

AbstractFileConfiguration
(from configuration)

BaseConfiguration
(from configuration)

CompositeConfigurat ion
(from configuration)

DataConfiguration
(from configuration)

PropertiesConfiguration
(from configuration)

SubsetConfiguration
(from configuration)

SystemConfiguration
(from configurat ion)

MapConfiguration
(from configurat ion)

BaseWebConfiguration
(from web)

AppletConfiguration
(from web)

Lack of Cohesion of Methods Lack of Cohesion of Methods ((Chidamber Chidamber & & KemererKemerer, 1993), 1993)

Idea
to measure dissimilarity of methods by instance variable or class 
attribute

Definition
Take each pair of methods in the class and determine the set of fields 
they each access. If the sets are disjoint, the count P increases by one. 
If they share at least one field access, Q increases by one. After 
considering each pair of methods: 

Formula
LCOM1 = (P > Q) ? (P – Q) : 0

Remarks
� LCOM1 gives value of 0 for different classes
� the definition is based on method-data interaction, which may not be a 

correct way to define cohesiveness in the object-oriented world
� LCOM1 is defined on variable access, it's not well suited for classes that 

internally access their data via properties

Lack of Cohesion of Methods Lack of Cohesion of Methods ((HendersonHenderson--SellersSellers, 1996), 1996)

Idea
to measure dissimilarity of methods by instance variable or class 
attribute

Definition
m a number of methods in a class 
a a number of attributes in a class
mA a number of methods that access the attribute A
sum(mA) sum of all mA over all the attributes in the class 

Formula
LCOM3 = (m – sum(mA) / a) / (m – 1) 

Remarks
� LCOM3 values varies from 0 to 2
� LCOM3 > 1 indicates lack of cohesion and the class should be split
� If m = 1 or a = 0, then LCOM3 is undefined and displayed as 0

ExampleExample

LCOM = ?



(c) Bartosz Walter

Object-oriented metrics 8

Coupling Between ObjectsCoupling Between Objects

Idea
to measure class dependency on other non-ancestor classes

Definition
� CBO is the number of non-inherited classes associated with the target 

class
� It is counted as the number of types that are used in attributes, 

parameters, return types, throws clauses, etc. 
� Primitive and basic system types (e.g. java.lang.*) are not counted

Other coupling metrics

� Data Abstraction Coupling (DAC): the total number of referred types in 
attribute declarations. Primitive types, system types, and types inherited 
from the super classes are not counted. 

� Method Invocation Coupling (MIC): the relative number of classes that 
receive messages from a particular class. 

ExampleExample

CBO = ?

http://jakarta.apache.org/commons/configuration

PropertiesConfiguration
(from configuration)

BaseConfiguration
(from configuration)

Rel oa dingStrategy
(from reloading)

URL
(from net)

AbstractFileConfiguration
(from configuration)

#strategy

-sourceURL

Map
(from util)

-store

MapConfiguration
(from configuration)

#map

Syste mConf igu ration
(from configuration)

AgendaAgenda

Metrics by R. C. Martin

Metrics suite Metrics suite by R. by R. MartinMartin

� Defined by R. Martin in 1994

� Package and class-level

� Metrics consider dependency vs. stability trade-off

� Includes five metrics:
� Efferent Coupling (Ce)

� Afferent Coupling (Ca)

� Instability (I)

� Abstractness (A)

� Normalized Distance from Main Sequence (D)

Efferent CouplingEfferent Coupling

Idea
to measure the given module’s dependency (incoming dependency) on 
external modules

Definition
� Ce is the number of classes inside a module that depend upon classes 

outside the module

Remarks
� High Ce indirectly suggests module’s instability (independence)
� Highly efferent modules have little responsibility to other packages, but 

reversely depend on them
� Preferred values range from 0 to 20
� Example: GUI components

Formula
Ce = number of types, on which the module depends

Afferent CouplingAfferent Coupling

Idea
to measure the dependency of external modules (outgoing dependency) 
on the given module

Definition
� Ca is the number of classes and interfaces outside a module that 

depend upon classes and interfaces within the module

Remarks
� High Ca indirectly suggests module stability (responsibility)
� Highly afferent packages bear large responsibility to other modules
� Difficult to change without affecting dependent modules
� Preferred values range from 0 to 500
� Example: bussiness objects, controllers

Formula
Ca = number of types, which depend on the module



(c) Bartosz Walter

Object-oriented metrics 9

ExampleExample

http://jakarta.apache.org/commons/configuration

PropertiesConfiguration
(from configuration)

BaseConfiguration
(from configuration)

Rel oa dingStrategy
(from reloading)

URL
(from net)

AbstractFileConfiguration
(from configuration)

#strategy

-sourceURL

Map
(from util)

-store

MapConfiguration
(from configuration)

#map

Syste mConf igu ration
(from configuration)

InstabilityInstability

Idea
to measure package stability (dependency on other 
packages)

Definition
� I is the relation of efferent (outcoming) couplings to all couplings

Formula
I = Ce / (Ce + Ca) 

Remarks
� Packages that contain multiple outgoing but few incoming dependencies

(I is close to 1) are less stable because of the consequences of changes 
in these packages. 

� Packages containing more incoming dependencies are more stable (I is 
close to 0) because they are more difficult to change. 

� Designs of packages should intentionally be made as stable (0.0; 0.3) or 
unstable (0.7;1.0) as possible.

AbstractnessAbstractness

Idea
to measure the degree of how abstract data types are used

Definition
� The number of abstract classes (and interfaces) within a package 

divided by the total number of types in a package 

Formula
A = TAbstract I (TAbstract+ TConcrete)

Remarks
� Abstract classes are responsible (changes to them propagate to 

dependents) and stable

Main sequenceMain sequence

source: R. Martin, 1994

Instability

A
b
st
ra
ct
io
n

M
ain Sequence

� in ideal case: A + I = 1

� A = 0 and I = 1:  concrete classes 

that cannot be extended

� A = 1 and I = 0: purely abstract 

classes

� other: a trade-off between A and I 

Normalized Distance from Main SequenceNormalized Distance from Main Sequence

Idea
to measure the balance between abstractness and stability

Definition
� D is a perpendicular distance from the ideal balance of I and A

Formula
D = | A + I – 1 | 

Remarks
� Any class with D far from zero should be re-examined and restructured
� The metric is subject to statistical analysis

AgendaAgenda

Law of Demeter



(c) Bartosz Walter

Object-oriented metrics 10

Law Law of Demeter of Demeter ((Lieberherr Lieberherr & & HollandHolland, 1989), 1989)

Idea
� to restrict long message calls chains

� „only talk to your (immediate) friends”

� „never talk to strangers” 

� an object should avoid invoking methods of a member object returned
by another method

Operation[] op = customer.getAccount().getHistory().getEntriesAt(aDate);

Operation[] Customer Account History Operation[]

public class Customer {

public Operation[] operationsAt(Date date) {

`

}

}

Law Law of Demeterof Demeter

Definitions
Client: Method M is a client of method N of class C, if inside M message N is 
sent to an object of class C, or to C. If N is specialized in one or more 
subclasses, then M is only a client of N attached to the highest class in the
hierarchy. Method M is a client of some method of class C. 

Supplier: If M is a client of class C then C is a supplier to M. 

Acquaintance Class: A class C1 is an acquaintance class of method M of
class C2, if C1 is a supplier to M and C1 is not one of the following: 
� the same as C2;
� a class used in the declaration of an argument of M
� a class used in the declaration of an instance variable of C2

Preferred-supplier class: Class B is called a preferred-supplier to method M
(of class C) if B is a supplier to M and one of the following conditions holds: 
� B is used in the declaration of an instance variable of C
� B is used in the declaration of an argument of M, including C and its 

superclasses 
� B is a preferred acquaintance class of M. 

StrictStrict form form ofof Law Law of Demeterof Demeter

Strict form
every supplier class of a method must be a preferred supplier

Simply speaking
Every method M of object O may invoke only methods of following kinds 
of objects:
� itself, 
� its parameters, 
� any objects it creates/instantiates,
� its direct component objects. 

WeakWeak form form ofof Law Law of Demeterof Demeter

Weak form
every supplier class of a method must be a preferred supplier or its 
subclass

Simply speaking
Every method M of object O may invoke only methods of following kinds 
of objects:
� itself, 
� its parameters or any subclass of them,
� any objects it creates/instantiates or any subclass of them,
� its direct component objects or any subclass of them. 

Law Law of Demeterof Demeter

Comments

� Resulting software tends to be more maintainable and adaptable

� Responsibility for accessing subparts is passed from the calling method 
to owning object

� LoD reduces coupling

� LoD enforces structure hiding (abstraction)

� LoD promotes type localization and narrowing interfaces

� LoD increases number of delegating methods in intermediate objects

� LoD has been experimentally confirmed to reduce probability of fault 
ratio (Basili, 1996)

Summary of objectSummary of object--oriented metricsoriented metrics

InheritanceSPolymorphism Factor (PF)MO

EncapsulationSAttribute/Method Hiding Factor (AHF/MHF)MO

InheritanceSAttribute/Method Inheritance Factor (AIF/MIF)MO

DependencyPAbstractness (A)M

InheritanceCDepth of Inheritance Tree (DIT)CK

InheritanceCNumber of Children (NOC)CK

M

M

M

CK

CK

CK

CK

MO

?

MC

Src

DependencyPInstability (I)

DependencyPEfferent Coupling (Ce)

DependencyPAfferent Coupling (Ca)

DependencyCCoupling Between Objects (CBO)

CohesionCLack of Cohesion of Methods (LCOM)

ComplexityCResponse for a Class (RFC)

ComplexityCWeighted Method per Class (WMC)

DependencySCoupling Factor (CF)

ComplexityM/CLines of Code (LOC)

ComplexityMCyclomatic Complexity (CC)

FeatureScopeMetric



(c) Bartosz Walter

Object-oriented metrics 11

ReadingsReadings

1. S.R. Chidamber, C.F. Kemerer, 
A metrics suite for object-oriented 
design. IEEE Transactions on 
Software Engineering, Vol. 20, No 6, 
pp. 476-493

2. F. B. Abreu, The MOOD Metrics Set. 
ECOOP 1995 Workshop on Metrics.

3. R. Martin, OO Design Quality Metrics. 
http://www.objectmentor.com/
publications/oodmetrc.pdf 

4. Applying and interpreting OO Metrics. 
NASA SATC, 
http://satc.gsfc.nasa.gov/support/
STC_APR98/apply_oo/apply_oo.html

5. Eclipse Metrics Plugin. 
http://metrics.sourceforge.org

Q&AQ&A


