
(c) Bartosz Walter

Introduction to objects 1

Introduction Introduction to to objectsobjects

Bartosz Walter
<Bartek.Walter@man.poznan.pl>

Advanced Object-Oriented Design

Lecture 1

AgendaAgenda

1. Introduction

2. Java 2 collections

3. Unit testing

4. Metrics

5. Refactoring I

6. Refactoring II

7. Refactoring III

8. Refactoring IV

9. Design patterns I

10. Design patterns II

11. Design patterns III

12. Aspect-oriented

programming

13. Secure code

Different aspects of objectDifferent aspects of object--orientationorientation

Encapsulation

Polymorphism

Inheritance

Abstraction

Flexibility

Modularization
Reuse

Responsibility

ObjectObject

Definition 1 (traditional)

Object represents a real-world entity; it holds data and defines

behavior to operate on it

Definition 2 (object-oriented)

Object is an entity responsible for itself.

ExampleExample: : Conference LecturerConference Lecturer

Problem (Shalloway&Trott 2004)

A lecturer gives a lecture at conference. After it is completed, the

attendees are going to listen to some more speeches, but they do not

know where they are held. The lecturer is in charge of informing them

on the subsequent lectures’ locations.

There are different kinds of attendees (students, professionals), who

act differently.

ExampleExample: : Conference Lecturer Conference Lecturer ((cdcd.).)

Solution 1 (functional decomposition)

1. Create a list of attendees for the lecture

2. For each attendee on the list:

a) Find the next lecture the attendee is going to listen to

b) Find location for that lecture

c) Give advice on the way

d) Pass the information to the attendee

Procedures needed

1. Make a list of attendees

2. Get the plan for each attendee

3. Find a way to the next location

4. Main routine to coordinate remaining procedures

(c) Bartosz Walter

Introduction to objects 2

ExampleExample: : Conference Lecturer Conference Lecturer ((cdcd.).)

Solution 2 (object-oriented)

� Make the plan of a building publicly avaliable

� Allow the attendees to find their way themselves

Algorithm for Lecturer

1. Create a collection of attendee instances

2. For every attendee

a) Instruct the attendee to find the next lecture themselves

Algorithm for Attendee

1. Find next lecture’s localization

2. Find a way there

3. Go

ExampleExample: : Conference Lecturer Conference Lecturer ((cdcd.).)

 : Lecturer : Lecturer : Collection : Collection : Attendee : Attendee

1: find next lecture

3: find next lecture

2: take next element

4: find my way

5: go

ExampleExample: : Conference Lecturer Conference Lecturer ((cdcd.).)

Attendee

find next lecture()
find a way()
go()

Lecturer

provide map of building()
notify attendees()

Collection

manages

possesses

Student

find a way()
go()

Professional

find a way()
go()

AbstractionAbstraction

Abstraction

� The program’s ability to ignore some aspects of the information that

it is manipulating, and to focus on the essentials.

� Each object in the system serves as a model of an abstract "actor"

that can perform work, report on and change its state, and

"communicate" with other objects in the system, without revealing

how these features are implemented.

� Processes, functions or methods may also be so abstracted, and

when they are, a variety of techniques are required to extend an

abstraction.

PolymorphismPolymorphism

Polymorphism

� poly (gr. many) morph (gr. form) – coexistence of different

behaviors executed in response to a single method call

� the ability to treat an specific object as a general, abstract entity

Polymorphism in Java

� Abstract classess and their derivatives

� Interfaces and their implementations

� Generic types (parametric polymorphism)

InterfacesInterfaces

myPhone.call()

Phone

call()
answer()

<<Interface>>

Wire Phone

call()
answer()

Mobile Phone

call()
answer()

Sat Phone

call()
answer()

Interface: visible part of the class, defines the responsibility

Principle 1

Programming to interfaces (not classes) supports abstraction

(c) Bartosz Walter

Introduction to objects 3

Multiple interfacesMultiple interfaces

Phone

call()
answer()

<<Interface>>

Wire Phone

call()
answer()

Mobile Phone

call()
answer()
time()

Sat Phone

call()
answer()
time()

Clock

time()

<<Interface>>

Watch

time()

Phone

Phone myPhone = new WirePhone();

myPhone.call();

Multiple interfacesMultiple interfaces

Phone

call()
answer()

<<Interface>>

Wire Phone

call()
answer()

Mobile Phone

call()
answer()
time()

Sat Phone

call()
answer()
time()

Clock

time()

<<Interface>>

Watch

time()

Phone

Phone myPhone = new MobilePhone();

myPhone.call();

Multiple interfacesMultiple interfaces

Phone

call()
answer()

<<Interface>>

Wire Phone

call()
answer()

Mobile Phone

call()
answer()
time()

Sat Phone

call()
answer()
time()

Clock

time()

<<Interface>>

Watch

time()

Clock

Clock myClock = new Watch();

myClock.call();

Multiple interfacesMultiple interfaces

Phone

call()
answer()

<<Interface>>

Wire Phone

call()
answer()

Mobile Phone

call()
answer()
time()

Sat Phone

call()
answer()
time()

Clock

time()

<<Interface>>

Watch

time()

Clock

Clock myClock = new MobilePhone();

myClock.call();

Inheritance vsInheritance vs. . interfacesinterfaces

Wire Phone

call()
answer()

Mobile Phone

call()
answer()
time()

Phone

call()
answer()

<<Interface>>

� WirePhone and MobilePhone

are Phones. They both can

call and answer.

� WirePhone and MobilePhone

share the type only.

Watch

time()

WallClock

time()

� WallClock is a kind of a Watch.

It inherits almost all characteristics

of a Watch.

� WallClock inherits both type and

implementation.

Class inheritance vsClass inheritance vs. . interface inheritanceinterface inheritance

Class inheritance: inherits type and implementation

Interface inheritance: inherits only type

Watch

time()

WallClock

time()

DigitalClock

time()
display()

<<Interface>>

Clock

time()

<<Interface>>
WallClock

time()

HandWatch

time()
display()

(c) Bartosz Walter

Introduction to objects 4

EncapsulationEncapsulation

Definition

� Ensures that users of an object cannot change the internal state of the

object in unexpected ways; only the object's own internal methods are

allowed to access its state.

� Each object exposes an interface that specifies how other objects may

interact with it.

Principle 2

Localize variability within a system and encapsulate it.

Comments

Encapsulation is about hiding:

� (popular) Encapsulation is about hiding access to data

� (general) Encapsulation is about hiding design decision that are likely

to change: type, implementation, behavior, data.

Type encapsulationType encapsulation

Example

Collection manages Attendees, ignoring

the existence of a Student and a

Professional

Attendee protects deriving types from its

clients

Collection

Attendee

find next lecture()
find a way()
go()

manages

Student

find a way()
go()

Professional

find a way()
go()

Object encapsulationObject encapsulation

Example

only Collection accesses Attendees;

Lecturer has no knowledge of them

Attendee

find next lecture()
find a way()
go()

Lecturer

provide map of bui lding()
notify attendees()

Collection

manages

possesses

Data Data encapsulationencapsulation

Example

� Attendees cannot change their names

� creation of invalid objects is explicitly

prohibited

Attendee

Attendee()
find next lecture()
find a way()
go()
return name()
set name()

Attendee attendee = new Attendee();

Attendee.setName(”Smith”);

Data Data encapsulationencapsulation

Attendee

Attendee(name : String)
find next lecture()
find a way()
go()
return name()

Attendee attendee = new Attendee(”Smith”);

Example

� Attendees cannot change their names

� creation of invalid objects is explicitly

prohibited

EncapsulationEncapsulation

What is wrong?

Collection attendees = lecturer.getAttendees();

attendees.add(new Attendee(”George Bush”)); // freely modifiable

attendees.remove(new Attendee(”Tony Blair”)); // freely modifiable

At tendee

Collection

add(at t : Attendee) : Object
remove(att : Attendee) : Object
size() : int

manages

Lecturer

attendees : Collection

getAttendees() : Collection

possesses

(c) Bartosz Walter

Introduction to objects 5

EncapsulationEncapsulation

Collection attendees = lecturer.getAttendees();

attendees.add(new Attendee(”George Bush”)); // exception

lecturers.add(new Attendee(”George Bush”));

Attendee

Collection

add(att : Attendee) : Object
remove(att : Attendee) : Object
size() : int

manages

Lecturer

attendees : Collection

<<read-only>> getAttendees() : Collection
add(att : Attendee) : Object
remove(att : Attendee) : Object

return
Collections.unmodifiableCollection(attendees);
or
return attendees.clone();

Different types of relationsDifferent types of relations: : associationassociation

� Phone belongs to the User

� Both Phone and User can change their counter-parties

� User knows their Phone, while Phone ignores its User

� Phone and User exist independently

User Phone+possesses

Different types of relationsDifferent types of relations: : compositioncomposition

� Book is composed of Pages.

� Page is a part of Book.

� Page cannot exist independently from a Book

� Book is responsible for Pages (adds, removes etc.)

Book Chapter

Different types of relationsDifferent types of relations: : inheritanceinheritance

� Jet is a kind of an Aircraft

� Jet inherits all characteristics of an

Aircraft, including type

� Jet is a substitite for an Aircraft

� Jet indirectly accesses an Aircraft

� the relation between Jet and Aircraft is

indistractable

Aircraft

move()

Jet

move()

� Type inheritance

� Behavior inheritance

Different types of relationsDifferent types of relations: : realizationrealization

� Vehicle declares a move() operation

� Car, Boat and Aircraft define move() operation on their own

Vehicle

move()

<<Interface>>

Car

move()

Boat

move()

Aircraft

move()

Inheritance vsInheritance vs. . compositioncomposition

Principle 4

Prefer composition over inheritance

� Relation is changeable at run-

time

� It does not assure the related

objects to exist

� The object at owner side knows

only type (interface) of its party

� Relation is fixed at compile-time

and cannot be distracted

� It prevents from NPE

� Passes to the descendent both

type (interface) and

implementation

� Exhibits internals to descendent

classes

CompositionInheritance

(c) Bartosz Walter

Introduction to objects 6

CohesionCohesion

Cohesion

The cohesion of an object or class is the extent to which the elements

(or characteristics) of the object or class are related to one another.

Cohesive means that a certain class performs a set of closely related

actions, thus its responsibility is clearly defined. A lack of cohesion, on

the other hand, means that a class is performing several unrelated

tasks and should possibly be splitted.

Principle 5

A well-designed object is highly cohesive.

CouplingCoupling

Coupling

The coupling between two objects/classes is the manner and degree

of interdependence between them. Class A is coupled to a class B if A

needs to know B in some way:

� as its member

� as implementation

� as its subclass

� as a parameter, return type or a declared exception in a method

signature

Principle 6

Promote loose coupling. Excessive coupling decreases maintainability

and understandability.

Coupling Coupling ((contcont.).)

Comment

Classes needs to be related to exchange messages, thus some

coupling is unavoidable.

Good design means removing excessive and unnecessary coupling.

What is the acceptable coupling?

Reference objectsReference objects

Identity: Identified by object’s reference (or other explicit identifier)

Cardinality: There exist a single instance (unless it is cached), referenced

simultenously by multiple clients

Mutability: Object is mutable, changes are immediately available to clients

Comparing: objects are equal iff their references (identifiers) are equal

Features

� Reference objects usually represent larger, unique entities with many

atributtes and methods, difficult to create or synchronize, like people,

books, accounts etc.

� They are often created by a dedicated factory, which manages the sole

instance.

Value objectsValue objects

Identity: Identified by an overall value (state) stored within object

Cardinality: There may exist multiple equal (with regard to content) objects

Mutability: Objects are immutable (fixed at creation time and never altered)

Comparing: objects are equal iff they implement same type and they hold

same state (their corresponding attributes are equal)

Features

� Reference objects usually represent smaller, exchangeable entities with

few (often one) atributte, inexpensive at creation, like timestamps,

numbers, money values etc.

� They are usually created by a direct call to a constructor.

CRC CRC cardcard

Collaboration

Responsibility

Class:

(c) Bartosz Walter

Introduction to objects 7

CRC CRC cardcard

Collaboration

� Collection: indirectly notifying the Attendees to find
their next lecture

Responsibility

� Providing access to the building’s plan

� Allowing Attendees to find their way

Class: Lecturer

Example Example 11

Readers’ catalog stores adults and children.

AdultCard ChildCard

Catalog

Card

AdultCard ChildCard

Catalog

Card CardType

Example Example 22

Some of company’s employees are managers.

Employee

getSalary()

Manager

getSalary()

Manager

getSalary()

Employee

getSalary()
getJob()

Job

getSalary()

Worker

getSalary()

Example Example 33

Every child knows his/her mother. Every mother knows her children

Mother Child

0..n11 0..n

Mother

Child

ReadingsReadings

1. J. W. Cooper: Java. Wzorce

projektowe. Helion 2001

2. B. Eckel: Thinking in Java. Helion 2001

3. J. Shalloway, J. Trott: Projektowanie

zorientowane obiektowo. Wzorce

projektowe. Helion 2001/2005

4. E. Gamma et al.: Design patterns.

Elements of reusable software.

Addison-Wesley 1995

5. M. Fowler: Refactoring. Improving

design of existing software. Addison-

Wesley 1999

6. J. Langer: Java style. Patterns for

implementation. Prentice Hall 2000

Q&AQ&A

