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Simple question

e | have two sample types.

e Which genes represented on my microarray are
differentially expressed?

e Assuming my experiments are done well...
arrayQualityMetrics

...and all uninteresting variation is accounted for...
background correction, normalization (rma, vsn, normexp)

...what could possibly be so difficult?



Statistical Issues ooe
NOT UNIQUE °
to Microarray Data

e Scale of data
log transformation

e [est statistic
How do | find differences in expression?

e Statistical significance
How unusual are my observed data?



Statistical Issues oo
RELATIVELY UNIQUE
tO M icroarray Data (although often relevant in other settings)

e Multiplicity

Is the ability to test tens of thousands of genes
simultaneously always helpful?

e Expense

Microarray experiments are fairly expensive, often
resulting in small sample sizes.

e How do | interpret my results?

My ‘interesting gene list’ is really long...what do |
do with it?



Synthesis

e How do we use the unique features of
microarray data to address the more classic
statistical problems?



Scale of data: logs

e Fold changes are often the preferred
qguantification of differential expression. Fold
changes are essentially ratios.

e Notation for describing fold change is
sometimes problematic: e.g. -2 mean 1/2, -3
means 1/3. Note that this would mean there
are no values between -1 and 1.

e Ratios are not symmetric around 1 (the
obvious ‘null’ value), making statistical
operations difficult.



Scale of data: logs

e The intensity distribution of ratios has a fat
right tail.

e Logs of ratios are symmetric around O:
Average of 1/10 and 10 is about 5.
Average of log(1/10) and log(10) is O.
Averaging ratios is in general a bad idea.



Statistical tests - example

e The two-sample t-statistic
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Statistical tests - 33
Variations on the theme

e Standard t-tests: assumes Normally distributed data in
each class (almost always questionable), equal
variances within classes

e Welch t-test: as above, but allows for unequal variances
e Wilcoxon test: non-parametric, rank-based

e Permutation test: estimate the distribution of the test
statistic (e.g. the t-statistic) under the null hypothesis by
permutation of the sample labels. The p-value p is
given as the fraction of permutations yielding a test
statistic that is at least as extreme as the observed one.

e Moderated t-statistic: the one that is often used for
microarray data sets with small sample size (to be
discussed in more detail)



Permutation tests

true class labels: test statistic
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Statistical tests - 33
Different settings

e Comparison of two classes (e.g. tumor vs.
normal, treated vs. untreated cell line)

e Paired observations from two classes: e.qg.
the t-test for paired samples is based on the
within-pair differences

e More than two classes and/or more than one
categorical or continuous factor: linear
models

Linear model framework encompasses two class
problems described above



Example

Golub data, 27 ALL vs. 11 AML samples, 3,051 genes.

Histogram of t histogram of p—values
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t-test: 1045 genes with p < 0.05.



Multiple testing: the problem

e Thousands of hypotheses are tested
simultaneously.

e Increased chance of false positives.

e E.g. suppose you have 10,000 genes on a chip and
not a single one is differentially expressed. You
would expect 10000*0.01=100 of them to have a p-
value < 0.01.

e Multiple testing methods help to account for this
extra amount of ‘chance’ findings.



Multiple hypothesis testing

# true null hypotheses
(non-diff. genes)

# false null hypotheses
(diff. genes)

Fram Berjarmini & Hochberg (1985).
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Controlling Type | Error Rates

e Family-wise error rate (FWER)

FWER is defined as the probability of at least one Type | error (false
positive) among the genes selected as significant.

FWER =Pr(V > 0)

e False discovery rate (FDR)

FDR is defined as the expected proportion of Type | errors (false
positives) among the rejected hypotheses.

VIR, if R>0,

FDR = E(Q) with Q =-
0, ifR=0.




FWER: '+
The Bonferroni Correction

e Suppose we conduct a hypothesis test for
each gene g=1,...,m, producing an observed
test statistic 7, and an unadjusted p-value p,,

e Bonferroni adjusted p-values:
pg =min(mp,,1).

e Selecting all genes with p, <a controls the
FWER at level o, i.e. Pr(V>0)=o.



Example: T
Bonferroni correction

Golub data, 27 ALL vs. 11 AML samples, 3,051 genes.

Histogram of t histogram of p—values
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98 genes with Bonferroni-adjusted p, < 0.05 < p, < 0.000016



FWER: 43
Alternatives to Bonferroni

e There are alternative methods for FWER p-
value adjustment which can be more
powerful.

e The permutation-based Westfall-Young
method takes the correlation between genes
iInto account and is typically more powerful
for microarray data.

e The Bioconductor package multtest
facilitates many approaches to multiple
testing correction.



FDR: 13
Benjamini-Hochberg

e FDR: the expected proportion of false positives
among the significant genes.

e Ordered unadjusted p-values: p.4<=p,o <...< P,
e To control FDR = E(V/R) at level a, let

J*=max{j:p, <(j/m)a}.

Reject the hypotheses H,; for j=1,.. j".

e Is valid for independent test statistics and for some
types of dependence. Tends to be conservative if
many genes are differentially expressed.
Implemented in multtest.



FDR:
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Golub data: 681 genes with BH—-adjusted p < 0.05.



FWER or FDR?

e Choose control of the FWER if high
confidence in all selected genes is desired.
Loss of power due to large number of tests:
many differentially expressed genes may not
appear significant.

e If a certain proportion of false positives is
tolerable, then procedures based on FDR are
more flexible. The researcher can decide
how many genes to select based on practical
considerations.




Focusing analyses

e More is not always better!

e Suppose you use a focused array with 500 genes
you are particularly interested in.

e If a gene on this array has an unadjusted p-value of
0.0001, the Bonferroni-adjusted p-value is still 0.05.

e If instead you use a genome-wide array with 50,000
genes, this gene would be much harder to detect.
Roughly 5 genes can be expected to have such a
low p-value simply by chance.

e Therefore, it may be worthwhile to focus on genes of
particular biological interest from the beginning.



Pre-filtering

e \What about pre-filtering genes according to criteria
not specific to the experiment to reduce the
proportion of false positives?

e This can be useful since genes with low intensities
in most of the samples or low variance across the
samples are less likely to be interesting.

e In order to maintain control of the Type | error, the
criteria must be independent of the distribution of the
test statistic under the null hypothesis.



Pre-filtering

e Common filters:
Low intensity across all (or most) samples
Low variance/IQR across samples

e The Bioconductor package genefilter can
be used for pre-filtering.



Few replicates: T
moderated t-statistics

e With the t-test, we estimate the variance of
each gene individually. When there are only
a few replicates (say 2-5 per group), the
variance estimates are unstable.

e The Bioconductor packages 1imma and
siggenes offer moderated f-statistics as an
aid for this problem.



1limma: o
Linear Models for Microarray Analysis

e Highly used Bioconductor package for
microarray data analysis

e Handles data import, some QA, background
correction, normalization, linear modeling,
multiple testing correction, sorting and
display of results

e |n particular, applies linear models to
microarray data.

Linear models encompass the two-sample
problem we have discussed to this point.



Why limma? s
Statistical reasons

e While 1imma provides convenient handling
and linear modeling capabilities for
microarray data, linear model parameters can
be estimated using all standard statistical
software.

e [he statistical novelty and power for 1 imma
are harnessed in the eBayes () function.

e |n particular, eBayes () provides moderated
t-statistics and resultant corrected p-values.



Linear models

o Y= M+ ByXy + ByXy .. ¥ BX,
e X's are covariates
e f’s are measures of the effect of the covariate for gene j

e Often covariates represent treatments applied to cell lines or
samples from individuals with different disease types
e Must specify a design matrix and a contrast matrix

Design matrix indicates which samples have been applied to
each array

Contrast matrix specifies which comparisons you would like to
make between the samples



Ordinary t-statistics

e Assume a simple model with only one covariate of interest
Y = M+ BX

e Then the ordinary t-statistic to evaluate differential
expression for gene j is

ti=pB;lu;s;)

where Bj Is the estimated coefficient in the linear model for
the jth gene, u;is the unscaled standard deviation and sj2 IS
the sample residual variance.

e The p-value is then calculated according to a Student’s ¢
distribution with f, degrees of freedom.



eBayes () : o0
Empirical Bayes variance adjustment

e General Bayesian paradigm:

Bayesian statistical analyses begin with ‘prior’
distributions describing beliefs about the values of
parameters in statistical models prior to analysis
of the data at hand

Bayesian analyses require specification of these
parameters

So called ‘Empirical Bayes’ methods use the data
at hand to guide prior parameter specification

Then given the data, these prior distributions are
updated to give posterior results



eBayes () : o0
Empirical Bayes variance adjustment

e Instead of usual t-statistics comparing two sample
types, limma returns moderated t-statistics

e The interpretation of the usual and moderated
statistics is the same, except the standard errors for
the moderated statistics are shrunk toward a
common value

e Moderated f-statistics lead to p-values, but the
degrees of freedom increase reflecting the strength
in borrowing information across genes



eBayes () : o0
Empirical Bayes variance adjustment

e Assume an inverse Chi-square prior for the
true gene-specific residual variances with
mean s,° and degrees of freedom f,,.

e Then the posterior residual variances are

given by
2 _ToSo +1;5]
J fo + f_/




eBayes () :
Empirical Bayes variance adjustment

e he moderated t-statistic is then
tj=p;/(u;s;)

which follows a t distribution with f,+f,
degrees of freedom under the null
hypothesis.




eBayes () : o0
Empirical Bayes variance adjustment

e Summarize please?

e In a signal-to-noise ratio paradigm, we are all familiar with the
idea of not wanting to attribute mistaken biology to signals
that appear large only by random chance

e A misleadlingly small estimate of the variance will cause the
same problem, and the empirical Bayes adjustment helps
address this problem.

e Also, degrees of freedom (and therefore power for statistical
inference) increase by harnessing information across all
genes.

e All of these contribute to effective identification of differentially
expressed genes, particularly when sample sizes are small.



Moderated t-test

Repeatedly draw 4 ALL and 4
AML samples out of the total 38
samples and apply the usual and
moderated t—test (Bioconductor
package limma) to them. Using a
cut—off of p < 0.05, "true positives”
are defined on the basis of the
analysis of the whole data set
(681 genes with FDR < 0.05).

t—test
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Summary

e Classic statistical concerns such as suitable
scale of data for analysis, appropriate test
statistics, and statistical significance are all
relevant.

e Additionally, the multiplicity of genes and the
expense of microarray data often leading to
small sample sizes must be accounted for.



Summary

e Log transforming data improves suitability of
data for linear model analysis.

e Pre-filtering and multiple testing methods
help address problems in simultaneously
examining thousands of genes.

e Moderated t-statistics are helpful when
sample sizes are small.



Next lecture and labs

e Practical steps to using 1imma and other
Bioconductor packages

e A few options for what to do with the resultant
gene lists



Slides largely adapted from

e Wolfgang Huber
e Anja von Heydebreck

e Sandrine Dudoit
e Axel Benner
e Rafael Irrizary
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