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Simple question
 I have two sample types.
 Which genes represented on my microarray are

differentially expressed?

 Assuming my experiments are done well…
 arrayQualityMetrics

…and all uninteresting variation is accounted for…
 background correction, normalization (rma, vsn, normexp)

…what could possibly be so difficult?



Statistical Issues
NOT UNIQUE
to Microarray Data

 Scale of data
 log transformation

 Test statistic
 How do I find differences in expression?

 Statistical significance
 How unusual are my observed data?



Statistical Issues
RELATIVELY UNIQUE
to Microarray Data (although often relevant in other settings)

 Multiplicity
 Is the ability to test tens of thousands of genes

simultaneously always helpful?
 Expense

 Microarray experiments are fairly expensive, often
resulting in small sample sizes.

 How do I interpret my results?
 My ‘interesting gene list’ is really long…what do I

do with it?



Synthesis

 How do we use the unique features of
microarray data to address the more classic
statistical problems?



Scale of data: logs
 Fold changes are often the preferred

quantification of differential expression.  Fold
changes are essentially ratios.

 Notation for describing fold change is
sometimes problematic: e.g. -2 mean 1/2, -3
means 1/3.  Note that this would mean there
are no values between -1 and 1.

 Ratios are not symmetric around 1 (the
obvious ‘null’ value), making statistical
operations difficult.



Scale of data: logs

 The intensity distribution of ratios has a fat
right tail.

 Logs of ratios are symmetric around 0:
 Average of 1/10 and 10 is about 5.
 Average of log(1/10) and log(10) is 0.
 Averaging ratios is in general a bad idea.



Statistical tests - example
 The two-sample t-statistic

is used to test equality of
the group means µ1 and µ2.

 The p-value pg is the
probability under the null
hypothesis (here: µ1=µ2)
that the test statistic is at
least as extreme as the
observed value Tg.
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Statistical tests -
Variations on the theme
 Standard t-tests: assumes Normally distributed data in

each class (almost always questionable), equal
variances within classes

 Welch t-test: as above, but allows for unequal variances
 Wilcoxon test: non-parametric, rank-based
 Permutation test: estimate the distribution of the test

statistic (e.g. the t-statistic) under the null hypothesis by
permutation of the sample labels.  The p-value pg is
given as the fraction of permutations yielding a test
statistic that is at least as extreme as the observed one.

 Moderated t-statistic: the one that is often used for
microarray data sets with small sample size (to be
discussed in more detail)





Statistical tests -
Different settings
 Comparison of two classes (e.g. tumor vs.

normal, treated vs. untreated cell line)
 Paired observations from two classes: e.g.

the t-test for paired samples is based on the
within-pair differences

 More than two classes and/or more than one
categorical or continuous factor: linear
models
 Linear model framework encompasses two class

problems described above



Example



Multiple testing: the problem
 Thousands of hypotheses are tested

simultaneously.
 Increased chance of false positives.
 E.g. suppose you have 10,000 genes on a chip and

not a single one is differentially expressed.  You
would expect 10000*0.01=100 of them to have a p-
value < 0.01.

 Multiple testing methods help to account for this
extra amount of ‘chance’ findings.



Multiple hypothesis testing



Controlling Type I Error Rates

 Family-wise error rate (FWER)
 FWER is defined as the probability of at least one Type I error (false

positive) among the genes selected as significant.

 False discovery rate (FDR)
 FDR is defined as the expected proportion of Type I errors (false

positives) among the rejected hypotheses.
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FWER:
The Bonferroni Correction

 Suppose we conduct a hypothesis test for
each gene g=1,…,m, producing an observed
test statistic Tg and an unadjusted p-value pg.

 Bonferroni adjusted p-values:

 Selecting all genes with             controls the
FWER at level α, i.e. Pr(V>0)≤α.
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Example:
Bonferroni correction



FWER:
Alternatives to Bonferroni
 There are alternative methods for FWER p-

value adjustment which can be more
powerful.

 The permutation-based Westfall-Young
method takes the correlation between genes
into account and is typically more powerful
for microarray data.

 The Bioconductor package multtest
facilitates many approaches to multiple
testing correction.



FDR:
Benjamini-Hochberg
 FDR: the expected proportion of false positives

among the significant genes.
 Ordered unadjusted p-values:
 To control FDR = E(V/R) at level α, let

Reject the hypotheses Hrj for j=1,…j*.
 Is valid for independent test statistics and for some

types of dependence.  Tends to be conservative if
many genes are differentially expressed.
Implemented in multtest.
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FDR:
Benjamini-Hochberg



FWER or FDR?
 Choose control of the FWER if high

confidence in all selected genes is desired.
Loss of power due to large number of tests:
many differentially expressed genes may not
appear significant.

 If a certain proportion of false positives is
tolerable, then procedures based on FDR are
more flexible.  The researcher can decide
how many genes to select based on practical
considerations.



Focusing analyses
 More is not always better!
 Suppose you use a focused array with 500 genes

you are particularly interested in.
 If a gene on this array has an unadjusted p-value of

0.0001, the Bonferroni-adjusted p-value is still 0.05.
 If instead you use a genome-wide array with 50,000

genes, this gene would be much harder to detect.
Roughly 5 genes can be expected to have such a
low p-value simply by chance.

 Therefore, it may be worthwhile to focus on genes of
particular biological interest from the beginning.



Pre-filtering
 What about pre-filtering genes according to criteria

not specific to the experiment to reduce the
proportion of false positives?

 This can be useful since genes with low intensities
in most of the samples or low variance across the
samples are less likely to be interesting.

 In order to maintain control of the Type I error, the
criteria must be independent of the distribution of the
test statistic under the null hypothesis.



Pre-filtering

 Common filters:
 Low intensity across all (or most) samples
 Low variance/IQR across samples

 The Bioconductor package genefilter can
be used for pre-filtering.



Few replicates:
moderated t-statistics

 With the t-test, we estimate the variance of
each gene individually.  When there are only
a few replicates (say 2-5 per group), the
variance estimates are unstable.

 The Bioconductor packages limma and
siggenes offer moderated t-statistics as an
aid for this problem.



limma:
Linear Models for Microarray Analysis

 Highly used Bioconductor package for
microarray data analysis

 Handles data import, some QA, background
correction, normalization, linear modeling,
multiple testing correction, sorting and
display of results

 In particular, applies linear models to
microarray data.
 Linear models encompass the two-sample

problem we have discussed to this point.



Why limma?
Statistical reasons

 While limma provides convenient handling
and linear modeling capabilities for
microarray data, linear model parameters can
be estimated using all standard statistical
software.

 The statistical novelty and power for limma
are harnessed in the eBayes() function.

 In particular, eBayes() provides moderated
t-statistics and resultant corrected p-values.



Linear models
 yj = µj + β1jx1 + β2jx2 +…+ βkjxk

 x’s are covariates
 βj’s are measures of the effect of the covariate for gene j
 Often covariates represent treatments applied to cell lines or

samples from individuals with different disease types
 Must specify a design matrix and a contrast matrix

 Design matrix indicates which samples have been applied to
each array

 Contrast matrix specifies which comparisons you would like to
make between the samples



Ordinary t-statistics
 Assume a simple model with only one covariate of interest

yj = µj + βjx
 Then the ordinary t-statistic to evaluate differential

expression for gene j is

where      is the estimated coefficient in the linear model for
the jth gene, uj is the unscaled standard deviation and sj

2 is
the sample residual variance.

 The p-value is then calculated according to a Student’s t
distribution with fj degrees of freedom.
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eBayes():
Empirical Bayes variance adjustment

 General Bayesian paradigm:
 Bayesian statistical analyses begin with ‘prior’

distributions describing beliefs about the values of
parameters in statistical models prior to analysis
of the data at hand

 Bayesian analyses require specification of these
parameters

 So called ‘Empirical Bayes’ methods use the data
at hand to guide prior parameter specification

 Then given the data, these prior distributions are
updated to give posterior results



eBayes():
Empirical Bayes variance adjustment

 Instead of usual t-statistics comparing two sample
types, limma returns moderated t-statistics

 The interpretation of the usual and moderated
statistics is the same, except the standard errors for
the moderated statistics are shrunk toward a
common value

 Moderated t-statistics lead to p-values, but the
degrees of freedom increase reflecting the strength
in borrowing information across genes



eBayes():
Empirical Bayes variance adjustment

 Assume an inverse Chi-square prior for the
true gene-specific residual variances with
mean s0

2 and degrees of freedom f0.
 Then the posterior residual variances are

given by
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eBayes():
Empirical Bayes variance adjustment

 The moderated t-statistic is then

which follows a t distribution with f0+fj
degrees of freedom under the null
hypothesis.
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eBayes():
Empirical Bayes variance adjustment

 Summarize please?
 In a signal-to-noise ratio paradigm, we are all familiar with the

idea of not wanting to attribute mistaken biology to signals
that appear large only by random chance

 A misleadlingly small estimate of the variance will cause the
same problem, and the empirical Bayes adjustment helps
address this problem.

 Also, degrees of freedom (and therefore power for statistical
inference) increase by harnessing information across all
genes.

 All of these contribute to effective identification of differentially
expressed genes, particularly when sample sizes are small.



Moderated t-test



Summary

 Classic statistical concerns such as suitable
scale of data for analysis, appropriate test
statistics, and statistical significance are all
relevant.

 Additionally, the multiplicity of genes and the
expense of microarray data often leading to
small sample sizes must be accounted for.



Summary

 Log transforming data improves suitability of
data for linear model analysis.

 Pre-filtering and multiple testing methods
help address problems in simultaneously
examining thousands of genes.

 Moderated t-statistics are helpful when
sample sizes are small.



Next lecture and labs

 Practical steps to using limma and other
Bioconductor packages

 A few options for what to do with the resultant
gene lists



Slides largely adapted from
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 Axel Benner
 Rafael Irrizary
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