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Simple question
 I have two sample types.
 Which genes represented on my microarray are

differentially expressed?

 Assuming my experiments are done well…
 arrayQualityMetrics

…and all uninteresting variation is accounted for…
 background correction, normalization (rma, vsn, normexp)

…what could possibly be so difficult?



Statistical Issues
NOT UNIQUE
to Microarray Data

 Scale of data
 log transformation

 Test statistic
 How do I find differences in expression?

 Statistical significance
 How unusual are my observed data?



Statistical Issues
RELATIVELY UNIQUE
to Microarray Data (although often relevant in other settings)

 Multiplicity
 Is the ability to test tens of thousands of genes

simultaneously always helpful?
 Expense

 Microarray experiments are fairly expensive, often
resulting in small sample sizes.

 How do I interpret my results?
 My ‘interesting gene list’ is really long…what do I

do with it?



Synthesis

 How do we use the unique features of
microarray data to address the more classic
statistical problems?



Scale of data: logs
 Fold changes are often the preferred

quantification of differential expression.  Fold
changes are essentially ratios.

 Notation for describing fold change is
sometimes problematic: e.g. -2 mean 1/2, -3
means 1/3.  Note that this would mean there
are no values between -1 and 1.

 Ratios are not symmetric around 1 (the
obvious ‘null’ value), making statistical
operations difficult.



Scale of data: logs

 The intensity distribution of ratios has a fat
right tail.

 Logs of ratios are symmetric around 0:
 Average of 1/10 and 10 is about 5.
 Average of log(1/10) and log(10) is 0.
 Averaging ratios is in general a bad idea.



Statistical tests - example
 The two-sample t-statistic

is used to test equality of
the group means µ1 and µ2.

 The p-value pg is the
probability under the null
hypothesis (here: µ1=µ2)
that the test statistic is at
least as extreme as the
observed value Tg.
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Statistical tests -
Variations on the theme
 Standard t-tests: assumes Normally distributed data in

each class (almost always questionable), equal
variances within classes

 Welch t-test: as above, but allows for unequal variances
 Wilcoxon test: non-parametric, rank-based
 Permutation test: estimate the distribution of the test

statistic (e.g. the t-statistic) under the null hypothesis by
permutation of the sample labels.  The p-value pg is
given as the fraction of permutations yielding a test
statistic that is at least as extreme as the observed one.

 Moderated t-statistic: the one that is often used for
microarray data sets with small sample size (to be
discussed in more detail)





Statistical tests -
Different settings
 Comparison of two classes (e.g. tumor vs.

normal, treated vs. untreated cell line)
 Paired observations from two classes: e.g.

the t-test for paired samples is based on the
within-pair differences

 More than two classes and/or more than one
categorical or continuous factor: linear
models
 Linear model framework encompasses two class

problems described above



Example



Multiple testing: the problem
 Thousands of hypotheses are tested

simultaneously.
 Increased chance of false positives.
 E.g. suppose you have 10,000 genes on a chip and

not a single one is differentially expressed.  You
would expect 10000*0.01=100 of them to have a p-
value < 0.01.

 Multiple testing methods help to account for this
extra amount of ‘chance’ findings.



Multiple hypothesis testing



Controlling Type I Error Rates

 Family-wise error rate (FWER)
 FWER is defined as the probability of at least one Type I error (false

positive) among the genes selected as significant.

 False discovery rate (FDR)
 FDR is defined as the expected proportion of Type I errors (false

positives) among the rejected hypotheses.
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FWER:
The Bonferroni Correction

 Suppose we conduct a hypothesis test for
each gene g=1,…,m, producing an observed
test statistic Tg and an unadjusted p-value pg.

 Bonferroni adjusted p-values:

 Selecting all genes with             controls the
FWER at level α, i.e. Pr(V>0)≤α.

      

! 

( 
p g = min(mpg,1).

    

! 

( 
p g " #



Example:
Bonferroni correction



FWER:
Alternatives to Bonferroni
 There are alternative methods for FWER p-

value adjustment which can be more
powerful.

 The permutation-based Westfall-Young
method takes the correlation between genes
into account and is typically more powerful
for microarray data.

 The Bioconductor package multtest
facilitates many approaches to multiple
testing correction.



FDR:
Benjamini-Hochberg
 FDR: the expected proportion of false positives

among the significant genes.
 Ordered unadjusted p-values:
 To control FDR = E(V/R) at level α, let

Reject the hypotheses Hrj for j=1,…j*.
 Is valid for independent test statistics and for some

types of dependence.  Tends to be conservative if
many genes are differentially expressed.
Implemented in multtest.
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FDR:
Benjamini-Hochberg



FWER or FDR?
 Choose control of the FWER if high

confidence in all selected genes is desired.
Loss of power due to large number of tests:
many differentially expressed genes may not
appear significant.

 If a certain proportion of false positives is
tolerable, then procedures based on FDR are
more flexible.  The researcher can decide
how many genes to select based on practical
considerations.



Focusing analyses
 More is not always better!
 Suppose you use a focused array with 500 genes

you are particularly interested in.
 If a gene on this array has an unadjusted p-value of

0.0001, the Bonferroni-adjusted p-value is still 0.05.
 If instead you use a genome-wide array with 50,000

genes, this gene would be much harder to detect.
Roughly 5 genes can be expected to have such a
low p-value simply by chance.

 Therefore, it may be worthwhile to focus on genes of
particular biological interest from the beginning.



Pre-filtering
 What about pre-filtering genes according to criteria

not specific to the experiment to reduce the
proportion of false positives?

 This can be useful since genes with low intensities
in most of the samples or low variance across the
samples are less likely to be interesting.

 In order to maintain control of the Type I error, the
criteria must be independent of the distribution of the
test statistic under the null hypothesis.



Pre-filtering

 Common filters:
 Low intensity across all (or most) samples
 Low variance/IQR across samples

 The Bioconductor package genefilter can
be used for pre-filtering.



Few replicates:
moderated t-statistics

 With the t-test, we estimate the variance of
each gene individually.  When there are only
a few replicates (say 2-5 per group), the
variance estimates are unstable.

 The Bioconductor packages limma and
siggenes offer moderated t-statistics as an
aid for this problem.



limma:
Linear Models for Microarray Analysis

 Highly used Bioconductor package for
microarray data analysis

 Handles data import, some QA, background
correction, normalization, linear modeling,
multiple testing correction, sorting and
display of results

 In particular, applies linear models to
microarray data.
 Linear models encompass the two-sample

problem we have discussed to this point.



Why limma?
Statistical reasons

 While limma provides convenient handling
and linear modeling capabilities for
microarray data, linear model parameters can
be estimated using all standard statistical
software.

 The statistical novelty and power for limma
are harnessed in the eBayes() function.

 In particular, eBayes() provides moderated
t-statistics and resultant corrected p-values.



Linear models
 yj = µj + β1jx1 + β2jx2 +…+ βkjxk

 x’s are covariates
 βj’s are measures of the effect of the covariate for gene j
 Often covariates represent treatments applied to cell lines or

samples from individuals with different disease types
 Must specify a design matrix and a contrast matrix

 Design matrix indicates which samples have been applied to
each array

 Contrast matrix specifies which comparisons you would like to
make between the samples



Ordinary t-statistics
 Assume a simple model with only one covariate of interest

yj = µj + βjx
 Then the ordinary t-statistic to evaluate differential

expression for gene j is

where      is the estimated coefficient in the linear model for
the jth gene, uj is the unscaled standard deviation and sj

2 is
the sample residual variance.

 The p-value is then calculated according to a Student’s t
distribution with fj degrees of freedom.
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eBayes():
Empirical Bayes variance adjustment

 General Bayesian paradigm:
 Bayesian statistical analyses begin with ‘prior’

distributions describing beliefs about the values of
parameters in statistical models prior to analysis
of the data at hand

 Bayesian analyses require specification of these
parameters

 So called ‘Empirical Bayes’ methods use the data
at hand to guide prior parameter specification

 Then given the data, these prior distributions are
updated to give posterior results



eBayes():
Empirical Bayes variance adjustment

 Instead of usual t-statistics comparing two sample
types, limma returns moderated t-statistics

 The interpretation of the usual and moderated
statistics is the same, except the standard errors for
the moderated statistics are shrunk toward a
common value

 Moderated t-statistics lead to p-values, but the
degrees of freedom increase reflecting the strength
in borrowing information across genes



eBayes():
Empirical Bayes variance adjustment

 Assume an inverse Chi-square prior for the
true gene-specific residual variances with
mean s0

2 and degrees of freedom f0.
 Then the posterior residual variances are

given by
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eBayes():
Empirical Bayes variance adjustment

 The moderated t-statistic is then

which follows a t distribution with f0+fj
degrees of freedom under the null
hypothesis.
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eBayes():
Empirical Bayes variance adjustment

 Summarize please?
 In a signal-to-noise ratio paradigm, we are all familiar with the

idea of not wanting to attribute mistaken biology to signals
that appear large only by random chance

 A misleadlingly small estimate of the variance will cause the
same problem, and the empirical Bayes adjustment helps
address this problem.

 Also, degrees of freedom (and therefore power for statistical
inference) increase by harnessing information across all
genes.

 All of these contribute to effective identification of differentially
expressed genes, particularly when sample sizes are small.



Moderated t-test



Summary

 Classic statistical concerns such as suitable
scale of data for analysis, appropriate test
statistics, and statistical significance are all
relevant.

 Additionally, the multiplicity of genes and the
expense of microarray data often leading to
small sample sizes must be accounted for.



Summary

 Log transforming data improves suitability of
data for linear model analysis.

 Pre-filtering and multiple testing methods
help address problems in simultaneously
examining thousands of genes.

 Moderated t-statistics are helpful when
sample sizes are small.



Next lecture and labs

 Practical steps to using limma and other
Bioconductor packages

 A few options for what to do with the resultant
gene lists



Slides largely adapted from

 Wolfgang Huber
 Anja von Heydebreck

 Sandrine Dudoit
 Axel Benner
 Rafael Irrizary
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