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Aleksandra Świercz
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1. INTRODUCTION

1.1 Genome sequencing and the role of

bioinformatics

For many ages people were attempting to find the structure of living organisms. They

were looking for their origins and the rules for the evolution of the organisms. First

simple experiments were limited to observations how individuals paired. In next steps

one discovered the connections between features of the offspring and their parents.

Soon many entirely new problems arose which are interdisciplinary in nature. The

growing amount of information that was coming from different laboratories all over

the world and need of an integration and exploration of all these data brought up

to a creation of a new field computational molecular biology. The construction of

computer science tools allowed for an analysis of huge amount of biochemical data

and a development of mathematical and computer science methods expanded the

range of experiments. Owing to that, determining the structure of organism genomes

was possible. Revealing the sequence of nucleic acids and the structure of proteins

led to learning their functions and to discovering origins of diseases, development of

vaccines and drugs, and also obtaining different species of plants or cattle, e.g. more

resistant to diseases or more fertile.

The analysis of molecules was firstly focused on deoxyribonucleic acids (DNA),

as a main carrier of genetic information. Sequence analysis of DNA, in particular,

has become an increasingly essential issue over the past few years, as we can see that

nearly every research project in molecular biology involves sequence analysis and

comparison [SK95, AH04]. Furthermore, the ultimate goal of the Human Genome

Project [HGP03] was to sequence accurately the entire human genome. The basic

approach to accomplish this task includes, from the computational point of view,

three main parts: mapping, assembling and sequencing [Wat95, SM97, Gus97, Pev00,
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FC03]. In the sequencing stage one can obtain the sequences of a length equal to

a few hundreds of nucleotides. Next, during the assembling step, already sequenced

chains are merged together into contigs, which are often whole genes. In the last

step – mapping – the already assembled sequences are placed into proper place on a

chromosome. In the case of sequencing of smaller genomes the last step is omitted

and only the sequencing (called small scale sequencing) and assembling steps (called

large scale sequencing) are performed.

Popular method of reading the DNA sequence in the small scale is gel electrophore-

sis (chain termination method) [MG77, SNC77], which does not need any computer

analysis and generates not very long sequences, which are not resistant to experi-

mental errors. The contaminants of the experiment may be caused by primers which

stick to a second site of the sequence or by other molecules disturbing the PCR re-

action and lead to wrong image of the gel. To increase the confidence of the results

obtained in the experiment one can repeat many times the chain termination reac-

tion or provide greater overlap of each nucleotide. The second option can be done

by another approach, sequencing by hybridization, which reads longer sequences, but

needs algorithmic computations due to large amount of data.

Sequencing by hybridization (SBH) was proposed in 1988 by Ed Southern [Sou88].

During the hybridization experiment the set of all fragments (oligonucleotides) that

compose the original sequence is detected. In the standard approach all the fragments

have the same length. The aim of the sequencing process is to reconstruct an original

sequence of a known length from the fragments. Finding the solution can be done

in polynomial time if there are no errors in the hybridization experiment [Pev89].

Unfortunately, two types of errors can appear in the input set of fragments: a negative

error, if there is the lack of an oligonucleotide in the set despite of the presence of

the fragment in the original sequence, and a positive error, if in the set an extra

oligonucleotide appears, absent in the original sequence. In the case of errors in the

input set, the problem of sequence reconstruction is computationally hard. Several

approaches were devoted in recent years to overcome these difficulties [Pev89, BS88,

LFK+88, BKK+97, BFK+99, BFK+00, BKK02, ZWZ03, BGK04] but still a great

effort is needed to fulfill demands of biologists.

Recently, a novel isothermic approach to SBH was proposed [BFKM99]. This new

method uses oligonucleotide libraries of equal melting temperatures (thus, differing
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by oligonucleotide lengths) and, as explained later, may lead to overcoming one of

the drawbacks of the standard SBH approach (with equal length oligonucleotide li-

brary). The latter sometimes cannot handle excessive rate of errors being a result of

the biochemical phase of the SBH approach. Solving the isothermic sequencing by

hybridization problem is similar to its standard counterpart, polynomially solvable

in the case when there are no errors in the input set and computationally hard in the

case of errors [BFKM00, BFKM04].

The next step of recognizing the sequence of genome – assembling – is also com-

putationally hard. The assembling problem is much more complicated than the se-

quencing process because of larger amount of data it has to operate on and it must

allow an inexact matches of neighboring fragments in the solution. Apart from this,

the fragments can come from two sequences: the original sequence and its reverse

complementary one, which was not the case in the sequencing step, where all the

oligonucleotides had the same orientation (were coming from the same sequence).

A novel approach to large scale sequencing was proposed by 454 Life Sciences

company [MEA+05]. In the classical approach DNA sequence assembling rely on

merging the sequences coming from the sequencing step into a chain of a length up

to a few millions of nucleotides. Input sequences are overlapping neighbors with

a great shift and the average coverage, which is the average value of the number of

fragments that cover each nucleotide in the sequence, is eight. In case of the large scale

sequencing proposed by 454 Life Sciences company, the sequence recovery is divided

into two stages. First one, which is done automatically by a Genome Sequencer

20 System, can obtain sequences of length about 100 nucleotides. These medium

size chains are strongly overlapping every position and each place of the sequence

is covered 30 times on average. Moreover, as the input for the second stage we get

(together with the sequences) rates of confidence for a position of each nucleotide in

the sequence. The greater the variance of nucleotides in the sequence, the greater the

confidence that nucleotides were correctly obtained.

From the above overview one may see the great importance and influence the com-

putational methods have on the genome sequencing projects. Without a development

of the appropriate computational approaches, genome sequencing and recognition

would be impossible in general.
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1.2 Aims and scope

Approaches known from literature (described deeper in Chapter 3) leave a room for a

further improvement to meet the demands of practitioners. The general goal of this

thesis is to meet these requirements and propose new efficient and robust computa-

tional approaches for the first (sequencing) and the second (assembling) stages of the

genome discovery process.

The sequencing in the small and large scales are the problems prone to exper-

imental errors. New biochemical approaches (described in the following chapters)

were recently proposed, which are supposed to diminish the number of errors. In the

small scale sequencing the novel isothermic approach was developed, which decreases

the number of negative errors by equalizing conditions of forming duplexes for all

the fragments used in the experiment. In the large scale sequencing (assembling) the

454 genome sequencing was applied which increases the coverage of nucleotides and

decreases the cost of the experiment.

For isothermic sequencing by hybridization and 454 genome sequencing problems

none effective algorithms exist. These new approaches seem to be promising and thus

there is a need to develop new methods and compare them to the already existing

ones. These problems are computationally hard and exact methods solving instances

of these problems may need too much time of computations or would never finish.

The aim of this work is to analyze the sequencing problem and to propose heuris-

tics, which are time-cost effective and construct solutions close to the optimum ones.

Next, the novel algorithms are compared in a computational experiment with the

previous ones.

The organization of this work is as follows. Chapter 2 consists of basic terms

of computer science and biochemistry, and of theoretical formulations of introduced

problems. In Chapter 3 the already existing in the literature methods are described

for different biochemical approaches, among them for the standard sequencing by hy-

bridization (with equal-length oligonucleotides) and for the one with universal bases.

Next, a new biochemical approach to isothermic SBH and the algorithm for the ideal

case of SBH with isothermic libraries of oligonucleotides are presented. In the next

section, the classical approach to large scale sequencing is presented, which is more

commonly called the assembling. In the last section of this chapter the existing
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approaches are summarized.

In Chapter 4 two new heuristic algorithms for the isothermic sequencing prob-

lem are presented. The tabu search one, which is a local search heuristic, and the

genetic algorithm one, an evolutionary based method, both consider the specificity

of the data – oligonucleotides of different length. These approaches may be also

of value when designing new algorithms for the assembling stage of genome read-

ing. In the genetic algorithm, the proposed new crossover operator that inherits

some features of the structured weighted combinations [Glo94] may also be of value

for some other combinatorial optimization problems for which the solution can be

represented as a permutation, Traveling Salesman Problem (TSP) being one of the

examples. It is in detailed described in a separate section (4.3). These methods are

next compared in an extensive computational experiment, preceded by preliminary

tests for tuning algorithms’ parameters. The instances used for the comparison were

prepared from real DNA sequences coding human proteins, taken from GenBank

(http://www.ncbi.nlm.nih.gov/Genbank/index.html). The way of their preparation

is also described in the chapter.

In Chapter 5 the isothermic approach to SBH is compared to standard SBH. The

newly proposed algorithm for the standard sequencing has been based on the genetic

algorithm for the isothermic sequencing (presented in Chapter 4). Such corresponding

construction of the algorithms assures a credible comparison of the approaches, inde-

pendent of program implementation. Next, these two algorithms have been compared

also with other algorithms dedicated to the standard SBH problem. A particular type

of errors coming from biochemical experiment, repetitions in the original sequences,

is considered in more details. The extensive computational tests proved that the

new proposition outperforms other existing algorithms in the literature and handles

in a good way the case of repetitions (notorious hard case for DNA sequencing by

hybridization).

A WWW bio-portal was created as a part of this work, where one can download

the spectra for standard and isothermic DNA sequencing by hybridization, which

were used in the computational experiments. There, also all the details referring to

sequencing by hybridization are available: description of the approaches, literature

and the program solving the isothermic sequencing problem with the tabu search

algorithm. The details of the WWW bio-portal are put into Appendix A while the
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portal can be found at http://bio.cs.put.poznan.pl.

Chapter 6 begins with description of the assembling problem. Next, novel algo-

rithms for genome assembling are proposed which search for such a path in a graph

that pass through all vertices. Finally, the results of computational experiment are

presented. Data used for testing come from real biochemical experiments.

Chapter 7 concludes the results of the dissertation.

The thesis is complemented by 3 Appendices which contain, respectively, the de-

tails concerned with the WWW bio-portal (Appendix A), the accession numbers of

the sequences from the GenBank which were used in the computational tests (Ap-

pendix B), and the detailed results of the tests of the hybrid genetic algorithm ded-

icated to isothermic and standard sequencing by hybridization problems (Appendix

C).



2. BASIC DEFINITIONS

In this chapter basic notions from computer science and biochemistry, necessary to

understand approaches and algorithms presented later on, are recalled. Since the

formulated problems are of combinatorial nature, complexity issues arising in the

context of such problems are coming first. Next, basic definitions from graph the-

ory used for modeling the DNA sequencing problems in question and present basic

algorithmic approaches are discussed. The chapter is complemented by necessary

concepts of biochemistry allowing for a more formal presentation of the problem.

2.1 Basic notions of computer science

2.1.1 Computational complexity

The DNA sequencing problem in its formal setting belongs to the class of combina-

torial problems. Without going into unnecessary details the latter can be thought of

as a domain of problems which are characterized by a finite set of parameters taking

values from a finite sets [GJ79, B la88].

Combinatorial problems can be divided into two classes depending on a form of

the solution: decision and optimization ones [GJ79, B la88]. Note that both classes

of problems can be represented as the class of search problems. The latter is bigger

than only a union of the two classes and includes also “pure” search problems, as for

example the problem of sorting. Decision problems are in the form of a question for

which the answer is “yes” or “no”. On the other hand, optimization problems require

a complete solution reached by maximizing or minimizing a criterion function. It is

clear that for any optimization problems there exists a corresponding decision ver-

sion. Moreover, the decision version of a problem is not harder than its optimization

version. Consider for example the knapsack problem. We have n elements in set

A = {a1, a2, ..., an} and for each element ai ∈ A the size s(ai) and the profit w(ai) is



2. Basic definitions 12

defined, as well as constants b, the size of a knapsack and y, the threshold value of

the profit.

In the decision version of the problem we ask: Is there a subset A′ ⊆ A such that
∑

ai∈A′ s(ai) 6 b and
∑

ai∈A′ w(ai) > y?

In the optimization version we look for a subset A′ ⊆ A with a maximum profit

and such that
∑

ai∈A′ s(ai) 6 b.

The set of all instances of decision problem Π is denoted by DΠ and the subset

YΠ ⊆ DΠ contains all the instances for which the answer is “yes”. An instance I of

problem Π is obtained by assigning values to all the problem parameters. It can be

written as a string of the parameters decoded with the use of symbols over a finite

alphabet. A similar definition can be also given in case of an optimization problem.

The length of this string is the size of the instance. If numbers occurring in the

problem instance are represented in binary or in any other base greater than 1, and

in the symbol string coding data there are no unnecessary symbols, such an encoding

scheme is reasonable. In the following, the reasonable scheme of encoding instances

and the realistic computer model (like e.g. deterministic Turing machine) is assumed.

Computational time of an algorithm solving a problem depends on the instance size

of the problem. If the time function of an algorithm can be bounded by a polynomial

depending on the instance size, we call such an algorithm polynomial in time. Other

algorithms, for which the time function cannot be polynomially bounded are called

exponential in time. If the computational time of an algorithm can be expressed by a

polynomial function dependent both on the instance size and on the greatest number

from the instance, the algorithm is pseudo-polynomial in time.

Unfortunately, not for all combinatorial problems polynomial algorithms exist.

This can be analyzed by studying complexity of the problem in question. From what

we said it follows that when studying the hardness of an optimization problem we can

limit ourselves to its decision counterpart being not harder than the original problem.

Thus, further complexity will be presented for decision problems only.

If the correctness of a solution of a problem can be verified in time polynomially

dependent on the instance size, such a problem belongs to class NP. However, the

verification of the solution of the problem in polynomial time does not mean that

the problem is polynomially solvable. If the problem can be solved in polynomial

time it belongs to class P, where P⊆NP. Till now it has not been proven that P6=NP.
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Computationally hardest problems in class NP are classified as NP-complete prob-

lems. They are solved with exponential-time or pseudo-polynomial-time algorithms.

An NP-complete problem for which any pseudo-polynomial-time algorithm does not

exist is strongly NP-complete.

A proof that a decision problem Π1 is NP-complete consists of a construction of

a polynomial transformation f : DΠ2
→ DΠ1

of a known NP-complete problem Π2 to

the considered one in such a way:

• for every instance I2 ∈ DΠ2
the answer is “yes” if and only if the answer for

f(I2) ∈ DΠ1
is also “yes”

• the time of calculating the function f for every instance I2 ∈ DΠ2
is bounded

from above by a polynomial in the size of I2.

It is not possible to solve a problem proven to be NP-complete with a polynomial-

time algorithm on condition P6=NP. Proving that a problem is strongly NP-complete

consists in construction of pseudo-polynomial transformation of some strongly NP-

complete problem to the considered one. The pseudo-polynomial transformation

proceeds in time having as upper bound a polynomial dependent on the instance size

and on the greatest number from the instance. Moreover, the greatest number of the

instance cannot increase exponentially, the instance size cannot decrease exponen-

tially, and the answer for the instance before the transformation is “yes” if and only

if the answer for the instance after the transformation is also “yes”.

Optimization problems for which their decision counterparts are proven to be

NP-complete belong to the class of NP-hard problems. Similarly, if a decision version

of a problem is strongly NP-complete, its optimization version belongs to the class

of strongly NP-hard problems. However it is possible that the decision problem is

solvable by a polynomial-time algorithm while its optimization counterpart is NP-

hard/strongly NP-hard.

One of the examples of NP-complete problems is the knapsack problem, which

was already defined in this section [GJ79].

2.1.2 Graph theory

Graphs are extremely useful in formulating and solving a broad class of problems with

a discrete set of parameters. We will use them in solving DNA sequencing problems.
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Basic notions are recalled below.

A graph can be directed or undirected [CLRS01, CL86]. A directed graph or digraph

G is an ordered pair G = (V,E), where V is a finite set of vertices (sometimes called

nodes) in G and E is a set of ordered pairs of elements from the set V , called arcs

or directed edges. An arc (u, v) ∈ E is a directed edge from u to v; vertex u is a

direct predecessor of v and vertex v is a direct successor of u. In the directed graph

the arc which starts and ends at the same vertex is called loop. We can define the

out-degree in the digraph, which is the number of arcs starting from this vertex, and

the in-degree which is the number of arcs, that finish in this vertex.

An undirected graph G is an ordered pair (V,E), where V is a finite set of vertices

in G and E is a set of unordered pairs of vertices, called edges. In an undirected

graph an edge (u, v) is equal to an edge (v, u). A degree of a vertex in the undirected

graph is the number of adjacent edges.

A path of length k from vertex u to vertex v in graph G = (V,E) is a series of

vertices 〈v0, v1, v2, ..., vk〉 such that u = v0, v = vk and (vi−1, vi) ∈ E for i = 1,2,...k. If

all the vertices in the path are different, the path is called simple. A cycle in a graph

is a path 〈v0, v1, v2, ..., vk〉, where v0 = vk and it contains at least two arcs/edges.

Moreover if the vertices v1, v2, ..., vk are different, the cycle is called simple. A graph

without any cycles is called acyclic. A simple cycle, which contains all the vertices

from V , is called a Hamiltonian cycle. A simple path containing all the vertices from

V is called Hamiltonian path. If a path passes by all the arcs/edges from graph G

exactly once then it is called an Eulerian path. Moreover, if the path form a cycle

then, such a cycle is called Eulerian. An example of a directed graph, Hamiltonian

and Eulerian (directed) paths is presented in Figure 2.1.

A digraph is bipartite if set V can be partitioned into two sets V1 and V2 in such

way that every arc from set E connects two vertices, one from set V1 and the other

from set V2. Hereafter, it is assumed that an arc starts from a vertex in V1 and enters

a vertex from V2. A complete bipartite graph is denoted Km,n, where m = |V1| and

n = |V2|.

A network is a digraph without loops and has two specified vertices: source s with

the in-degree equal to zero and sink t with the out-degree equal to zero.

A graph is a p-graph if for any ordered pair of vertices (x, y) there exist at most

p parallel arcs from x to y. The adjoint G′ of a graph G = (X,V ) is the 1-graph
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Fig. 2.1: An example of a digraph G = (V,E). The set of vertices is V =

{v1, v2, v3, v4, v5}. The set of arcs: E = {(v1, v2), (v2, v5), (v3, v1),(v3, v4),

(v4, v5),(v5, v3)}. A Hamiltonian path (one of the possible paths) is a series

of vertices: 〈v1, v2, v5, v3, v4〉. There exist more than one Eulerian path and

one of them is: 〈v3, v1, v2, v5, v3, v4, v5〉. In graph G neither Hamiltonian

nor Eulerian cycle exist.

whose vertices represent arcs of G and which has an arc from x to y if and only if the

terminal endpoint of the arc x is the initial endpoint of the arc y in the graph G. A

graph is a directed line-graph if and only if it is an adjoint of a 1-graph.

A digraph is connected if for every pair of its vertices u and w we can find a

sequence of vertices 〈v1, v2, ..., vk〉 such that v1 = u and vk = w, and {(vi, vi+1) ∈

E ∨ (vi+1, vi) ∈ E}, i = 1, 2, ..., k − 1. A graph is complete if for every two distinct

vertices x and y at least one of the arcs (x, y) or (y, x) is present in the graph.

A complete symmetric graph has both arcs (x, y) and (y, x) for every two distinct

vertices x and y. A multigraph is a graph that allows parallel arcs and loops.

A tree is a graph for which its underlying undirected graph is acyclic and con-

nected. Root r in directed tree T is a vertex, such that T contains a path from r to

any other vertex v and there is no path from any vertex v 6= r to vertex r. Vertices

of T having out-degree equal to 0 are called leaves.

The Traveling Salesman Problem (TSP) is defined for a graph in which vertices

correspond to the cities which the salesman has to visit. All pairs of vertices are

connected by arcs and a cost is assigned to every arc, which corresponds to the

distance between the two cities. The salesman has to visit all the cities traversing

the smallest total distance, which is equivalent to finding a Hamiltonian cycle in the

graph with the smallest total cost. It is also possible to assign another cost with an
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arc which stands for example for a road toll. In such a graph a Hamiltonian cycle

is looked for with the minimization of both costs (the criteria can be weighted –

depending on a problem). Yet another is defined by a graph where, besides costs on

the arcs, profits are assigned to nodes and the salesman has to maximize the total

profit on visited nodes (here, not all vertices must be included in the path), while not

exceeding the assumed cost of the cycle (Selective Traveling Salesman Problem).

2.1.3 Basic algorithms

In this section basic algorithmic approaches will be described, used to solve com-

binatorial problems, which will be further on applied and customized for the DNA

sequencing problems.

Genetic algorithm is an algorithm that simulates natural evolution process of

a population. The method was first proposed by Holland in [Hol75] and has been

applied to many different combinatorial problems [AL97, VMOR98]. The algorithm

starts with an initial population of individuals. All individuals are evaluated by

the fitness function. Next, the individuals are selected to the pool of parents from

which the next generation will be created. The selection process, based on the fitness

value, rewards the individuals with the highest fitness value while unfit members of

the population die away. Such procedure (treatment, conduct) ensures that individ-

uals from the consecutive populations are more fit, and finally the algorithm will

converge to the local or global optimum. The common selection procedures can be

stochastic (roulette wheel selection, stochastic remainder without replacement selec-

tion, stochastic remainder with replacement selection), deterministic (deterministic

selection, tournament selection) or a mixture of both above approaches (part sum

selection).

To the fittest individuals from the parent population genetic operators are applied

and this results in the creation of a new offspring population. The genetic operators

are crossover operator, which inherits some features from parents, and mutation,

which occurs very seldom and is changing randomly one of the feature in aparent. The

goal of the crossover is to keep good characteristics while the objective of the mutation

is to introduce diversity in the population. The individuals from the offspring are

next selected for a new generation. The process of the reproduction is repeated until

a stopping criterion is met, usually it is a number of iterations without improvement
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of the objective function.

Tabu search is the algorithm based on local search, proposed by Glover [GL97].

The method searches deterministically for local optimum, but on the other hand,

allows jumping into another place in the solution space. It can be reached by searching

in a local neighborhood and choosing the best move. The general idea of the algorithm

is as follows. For each solution x, its neighborhood N(x) can be determined, which

is composed of all the solutions one move apart from x. Starting from an initial

solution, the method chooses the best solution in the consecutive neighborhoods

usually increasing a value of the objective function at the same time. In order to

extend the search in the feasible solution space, beyond the local optimum area, the

algorithm can restart from a different, randomly selected point of the space.

Tabu search allows also for such moves which do not increase the objective function

value. Considering the maximization problem max{γ(x) | x ∈ S}, where γ is the

objective function and S is the solution space, the transition from y to x can result

in a negative increment ∆ = γ(x) − γ(y). Then, in the next iteration there is the

tendency to improve the objective function value by returning to the local optimum

– the solution y. For preventing such cycles the tabu list is introduced, which stores

the list of forbidden moves. The goal of the tabu list is not to eliminate all the moves

from the list but to make all such moves less probable. Each move deteriorating the

objective function is put into the tabu list for a particular number of iterations. It

means that obtaining the solution from which we ”came”, is hardly probable. Since

keeping the transformations (moves) may prevent from acceptance legal solutions

which have not been considered yet, an additional rule based on an aspiration criterion

was introduced, which is an ’exception from the rule’. The additional rule defines

that forbidden moves can be accepted if an aspiration criterion is fulfilled. Usually,

the aspiration criterion is fulfilled when the solution found is the best among the

solutions found so far or when a neighborhood is empty.

2.2 Basic concepts of biochemistry

This section contains basic issues of biochemistry necessary to formulate in an exact

manner the problem of DNA sequencing.

Deoxyribonucleic acid (DNA) is a double helix: two chains are twisted together
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and joined by hydrogen bonds. Each chain in the double helix is composed of

molecules called nucleotides. Nucleotides contain sugar (deoxyribose), phosphoric

acid and nitrogenous base (Figure 2.2). They differ only in their nitrogenous base

(adenine – A, cytosine – C, guanine – G, thymine – T). The order of bases codes

genetic information, symbolically written as a string of letters A, C, G, and T. The

double helix is joined by double or triple hydrogen bonds between bases in nucleotides.

’A’ from one chain is paired with ’T’ from the other chain and respectively ’G’ with

’C’ (Figure 2.3). This rule of pairing is called complementarity (sometimes also called

Watson-Crick principle, following Chargaff’s rule, cf. [Wat95]) and it ensures that

knowing a sequence of nucleotides in one chain one can always determine a com-

plementary sequence of bases in the other chain. The length of a DNA fragment is

expressed in the number of nucleotides or bases and is denoted as base pairs (bp).

For example, the length of the human genome (Homo sapiens) is about 3 ∗ 109 bp ,

mouse (Mus musculus) – 3, 3 ∗ 109 bp, fly (Drosophila melanogaster) – 1, 4 ∗ 108 bp ,

bacteria (Escherichia coli) – 4, 64 ∗ 106 bp. A short fragment of a DNA sequence is

called an oligonucleotide.

As it was pointed in Introduction, the process of genome recognition may be

divided into three stages: mapping, assembling and sequencing. Mapping is the

step of reading the DNA sequence where the restriction map is build. The whole

DNA chain is digested with the restriction enzymes in particular sites, which are

characteristic for the enzyme used in this experiment. The sites where the enzymes

cut the sequence are next marked on the restriction map. This map is used at the

end to build the sequence from the fragments of length up to 106 nucleotides, coming

from the assembling step.

In the assembling step the long fragments of the DNA sequence (even 106 nu-

cleotides) are constructed from sequences (of length up to a few hundreds of nu-

cleotides) coming from the sequencing stage. Here, computational methods are used

to combine the short sequences into longer fragment or fragments, called contigs.

Depending on the method which was chosen for the sequencing, the input sequences

can contain different rate of errors (wrongly read nucleotides) and may come from

both strands of the DNA helix. Thus, the problem is hard to solve and there is need

for developing efficient algorithms for the assembling problem.

The sequencing step is the stage of reading the DNA sequence on the lowest level.
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Fig. 2.2: The structure of DNA [HGR]

Before the sequencing, there are a few steps required for preparation of a fragment

of DNA. First, a DNA sequence of an organism is isolated. Next, it is replicated

(copied) with the use of special molecules (called vectors), like for example plasmids

or BACs. After the replication, the copied chains are disjoined into single strands of

the helix. These strands are cut into shorter fragments (of length up to a few hundred

nucleotides) with a shotgun method, and some of the fragments are sequenced.

There are a few approaches used for reading the order of the nucleotides in the

fragments, among them gel electrophoresis, pyrosequencing (which will be described

later on), and sequencing by hybridization (SBH). The latter is composed of two

phases: biochemical (the hybridization) and computational ones. Let us note, that

the computational phase of SBH is similar to the assembling stage, thus, the impor-

tance of designing good algorithms for SBH exceeds by far this particular approach.

The hybridization experiment is based on the principle that a one-strand DNA

fragment hybridizes (joins) with the complementary fragment of the other strand. Its
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Fig. 2.3: The hydrogen bonds between pairs of complementary bases

aim in the standard DNA sequencing is to detect all subsequences (oligonucleotides)

of a given length l (usually l is equal 8-10 nucleotides) that are contained in the target

sequence of length n. For this purpose a library of all possible 4l short DNA sequences

of length l is prepared. The large number of oligonucleotides that has to be placed

on a square plate, made of glass or silicon, needs an advanced chip (microarray)

technology [Sou88, FRP+91].

The DNA chip consists of as many cells as many oligonucleotides in the library

are. The library of oligonucleotides is constructed on the plate. Depending on the

technology, length of the oligonucleotides, and the quality of the prepared microarrays

[MLB+96, Agi06], for each oligonucleotide the square with the side of size 10 - 65 µm

is dedicated, and the size of the plate depends on the size of the cells. For example,

to prepare a chip with all tetranucleotides (oligonucleotides of length 4) one must

prepare a plate composed of 256 cells arranged in the square 16 × 16 (Figure 2.4).

Each cell is filled with a different oligonucleotide according to a special procedure.

In the first step 1/4 of the cells are provided with adenine, and the other quarters

with cytosine, guanine, and thymine, respectively. These nucleotides are sticked to

the surface and they are the beginning of the oligonucleotides. In the next steps each

oligonucleotide is extended by 1 nucleotide. At the end the plate is filled with all

possible oligonucleotides of a given length, each of them is sticked to a different place
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Fig. 2.4: The construction of a microarray chip.
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on the plate. A position of an oligonucleotide can be determined on the basis of the

coordinates of the chip.

The chip with the library of oligonucleotides that are capable to take part in

the hybridization experiment, is introduced to a solution (in a chemical sense) with

many copies of the examined DNA sequence (single stranded), which are labeled

fluorescently or radioactively. Under favorable hybridization conditions these DNA

sequences hybridize with oligonucleotides from the array complementary to fragments

of the sequence. (Note, that we have many copies of the sequence, each hybridizing

with a different oligonucleotide.) After the reaction, on the fluorescent image of

the chip the most intensive spots are the places where the DNA sequence joined

entire oligonucleotides. Knowing coordinates of these points one can determine the

oligonucleotides which are the fragments of the examined DNA sequence (they are

complementary to the oligonucleotides from the most intensive points). The set of

these oligonucleotides is called spectrum. The computational phase of the sequencing

process is to reconstruct the examined sequence from the oligonucleotides in the

spectrum, which is to determine the order of the elements in the spectrum.

If the hybridization experiment were executed without any errors, the spectrum

would be ideal and it would be composed of all the oligonucleotides of the same

length l, that can be recognized in the target sequence of length n. The length n

of the sequence can be determined by an additional experiment – polyacrylamide

gel electrophoresis. The ideal spectrum consists of n − l + 1 oligonucleotides. The

goal is to combine all the oligonucleotides from the spectrum in such a way that the

neighboring oligonucleotides are shifted by one nucleotide (see Example 2.1). This is

done in the computational phase.

Example 2.1: Suppose the original sequence to be found is CTTCGACC. The length

of the sequence is n = 8. In the hybridization experiment all the tetranucleotides

(oligonucleotides of length 4) are used. The library of oligonucleotides is composed

of 44 = 256 oligonucleotides: {AAAA, AAAC, AAAG, AAAT, AACA, AACC, ...,

TTTC, TTTG, TTTT}. After the hybridization experiment one can get the spec-

trum, that is the set of oligonucleotides that are parts of the target sequence. In the

ideal experiment we get (after reading the complementary bases) spectrum ={CGAC,

CTTC, GACC, TCGA, TTCG}. See Figure 2.5. �

In the hybridization experiment some errors occur. The errors can be of two types:
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Fig. 2.5: The target sequence is reconstructed from the oligonucleotides from the

spectrum. The neighboring oligonucleotides are overlapping on l − 1 nu-

cleotides and are shifted by one position.

a negative error appears when there is the lack of an oligonucleotide in the spectrum

despite the oligonucleotide can be distinguished in the target sequence, and a positive

error which is an extra oligonucleotide in the spectrum that is not contained in the

target sequence. Mainsprings while negative errors occur in the spectrum are:

• Due to unfavorable conditions, e.g. temperature or salt concentration, the hy-

bridization between the oligonucleotide on the chip and the examined DNA

fragment does not happen. There is no light signal detected during the experi-

ment. The oligonucleotide is not recognized as a part of a sequence. (see Table

2.1, row (1)).

• Some oligonucleotides are contained in the sequence more than once. Since

spectrum is not a multiset, the oligonucleotide appears in the spectrum only

once (see Table 2.1, row (2)). The errors of such type are called repetitions.

There are two sources of positive errors in the spectrum:

• An oligonucleotide, which is not quite complementary to the DNA sequence,

hybridizes partially with it. The light signal is emitted on the chip and the

improper oligonucleotide is added into the spectrum (see Table 2.1, row (3)).

• Sometimes the fluorescent image of the chip is noisy and the oligonucleotide

can be included into the spectrum by mistake. (see Table 2.1, row (4)).
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Tab. 2.1: Examples of an erroneous spectrum. In the first row (1) one oligonu-

cleotide in the spectrum is missing (underlined in the sequence). (2) In

the sequence the same oligonucleotide (underlined) is contained twice. (3)

One positive error in the spectrum. By mistake the oligonucleotide com-

plementary to CTTA hybridizes with a similar fragment in the sequence,

CTT or CTTC. (4) The underlined oligonucleotide, due to a noisy image

of the chip, has entered the spectrum, although it is not similar to any

part of the sequence.

sequence spectrum

(1) CTTCACTTG ACTT, CACT, CTTC, CTTG, TTCA

(2) CTTCACTTC ACTT, CACT, CTTC, TCAC, TTCA

(3) CTTCACTT ACTT, CACT, CTTA, CTTC, TCAC, TTCA

(4) CTTCACTT ACTT, CACT, CTTC, GGCC, TCAC, TTCA

Therefore, as a result of the hybridization experiment, one gets a spectrum, in

which not all the elements are parts of the original sequence and not every element

that is contained in the sequence appears in the spectrum. Usually, no additional

information is provided about the spectrum elements (as, for example, the probabili-

ties of existence of the oligonucleotides in the original sequence, or about precedence

relationships between elements in the spectrum). However, sometimes it is possible to

obtain knowledge about the first oligonucleotide in the original sequence. Examined

DNA fragments are often cut out from a genome with restriction enzymes, and then

are amplified with the polymerase chain reaction (PCR). Restriction enzymes cut a

sequence in the places of known defined fragments of a few nucleotides, while in PCR

some primers are used, which are known beginnings of the amplified fragments.

Selecting suitable parameters for the hybridization experiment, like temperature

or salt concentration, we can eliminate with high probability some types of errors at

the cost of increasing the other type. On the other hand, some types of errors are

systematic, meaning that they are likely to repeat each time an experiment is run.

For example, palindromic sequences tend to form secondary structures which interfere

with hybridization. Therefore, we cannot be sure that all errors of one type are absent

in the spectrum. The number of errors coming from repetitions can be reduced by
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extending the length of the oligonucleotides l. Unfortunately l cannot be increased

to infinity, because the size of the oligonucleotide library grows exponentially with l.

Thus the algorithms should deal with all types of errors.

The assumed temperature is constant during the hybridization experiment. In the

standard DNA sequencing the oligonucleotides from the library are of equal length,

while they differ in the content of G/C and A/T. It is known that duplexes of C/G

rich oligonucleotides are more stable than A/T rich ones. This property may result in

numerous errors of the positive type in the standard hybridization approach. At the

same time the modification of hybridization conditions directed towards diminishing

the number of imperfect duplexes of C/G rich oligonucleotides may result in increasing

the number of missing perfect duplexes of A/T rich oligonucleotides. This means that

the modification that decreases the number of positive experimental errors might

increase the number of negative ones. The duplex formation depends on the base

composition but also on its length. In some models a simple equation was used

to calculate melting temperatures of oligonucleotide duplexes assuming 4 degrees

for every G/C pair and 2 degrees for every A/T pair [WJH+81]. (More accurate

procedure of determining the temperature of the oligonucleotide duplexes is based

on the nearest neighbor model [BFBM86].) Thus, at least formally, it is possible

to compensate lower stability of A/T rich duplexes by increasing their length. It is

known that the above description is not very accurate although it reflects a general

relative stability of different duplexes quite well. Therefore, to form more stable

duplexes with hybridized sequences, a new approach to SBH has been introduced in

[BFKM99] and [BFKM00].

The key idea of this new approach is to obtain a set of oligonucleotides that

differ in base composition and length, and are characterized by a predefined relation

between these two parameters. In a specific case, if in a library the increment of C or

G is twice of A or T, and the sum of increments for all oligonucleotides is constant,

then such a library is called isothermic. In what follows, the sum of increments of

nucleotides forming an oligonucleotide will be called the oligonucleotide temperature.

Isothermic oligonucleotide library follows the experimentally established relation-

ship between the base composition and the duplex stability. Oligonucleotides con-

tained in such a library should form duplexes with their complements in a more

narrow range of experimental conditions (temperature, salt concentration etc.) than



2. Basic definitions 26

that characteristic for an oligonucleotide library with oligonucleotides of the same

length. Therefore, the hybridization experiments performed with isothermic libraries

should result in a smaller number of experimental errors. The use of such libraries

should substantially limit the number of these errors to be considered in the compu-

tational phase of the SBH approach.

A formal definition of the isothermic oligonucleotide library was presented in

[BFKM04]. In this definition wi denotes the increment of a nucleotide of type i

(i ∈ {A,C,G,T}) added to the melting temperature of the oligonucleotide contain-

ing it, and xi denotes the number of appearances of a nucleotide of type i in the

oligonucleotide.

Definition

An isothermic library L of temperature tL is a library of all oligonucleotides satisfying

the relations: wAxA+wCxC+wGxG+wTxT = tL, wA = wT, wC = wG, and 2wA = wC.

Without loss of generality we may assume that wA = wT = 2 and wC = wG = 4.

Let us now discuss properties of isothermic libraries. One can easily realize that

one such a library may be not enough. For example, it is not possible to cover DNA

chains composed of only C and G nucleotides by oligonucleotides from a library of a

temperature not divisible by 4. Moreover, a library of a temperature divisible by 4 is

not sufficient to cover sequences where one nucleotide of A or T type is surrounded

by only G or C nucleotides. But, on the other hand, two isothermic libraries with

temperatures differing by one increment of A or T, i.e. by 2 deg, are sufficient to

perform a proper hybridization experiment with any target sequence and, moreover,

shifts between oligonucleotides from the libraries covering the sequence will be always

less or equal to 1 (the proof can be found in [BFKM04]).

The cardinality of the isothermic library of temperature t is between the cardinal-

ities of the standard libraries involving, respectively, only the shortest (t/4 or ⌈t/4⌉)

or only the longest (t/2) oligonucleotides of equal length.

Pyrosequencing is a novel method of DNA sequencing developed by Mostafa Ron-

aghi ([RKP+96]). This method allows for a sequencing of a single strand of DNA by

synthesizing a complementary strand along it. Each time after a nucleotide A, C,

G, or T is incorporated into a newly created chain, many cascade enzyme reactions
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are triggered what at last ends in light emission. The number of nucleotides of one

type, which joins the complementary sequence in one step, depends on the number

of the consecutive nucleotides of the same type in the sequence. The light signal is

proportional to the number of nucleotides incorporated and is detected on the charged

coupled device (CCD) camera. After each cycle the rest of not joined nucleotides are

washed up and the process is continued with another nucleotide. It is possible to

analyze a large number of samples in the same time. The pyrosequencing process is

fully automated and with relatively low cost comparing to other sequencing meth-

ods. However, this method has serious limitations with short reads, which makes the

process of genome assembling much more complicated.

Recently 454 Life Sciences company has applied the pyrosequencing approach for

assembling short genomes [MEA+05]. In this approach the step of sequencing is done

automatically. The Genome Sequencer 20 System (GS20) is able to resolve hundreds

of thousands of nucleotides per one run. The process of preparation of the sequence

is presented in Figure 2.6.

At the beginning a DNA sequence is isolated, randomly fragmented and the

adapters (short unique sequences) are ligated to both ends of the fragments. Next

the fragments are separated into single strands (see Figure 2.6 (a)). Later on the

DNA fragments are captured by beads in the PCR-mixture of water-in-oil emulsion

in such a way that only one fragment can be attached to a single bead. In every

droplet of the emulsion there is only one bead (see Figure 2.6 (b) and (e)). The DNA

fragments are amplified in each droplet, and at the end of the reaction each bead

is carrying ten millions copies of the DNA sequence, that was attached to it. The

sequences on the beads are prepared for the sequencing process: they are denaturated

(double strands, produced in the PCR reaction, are separated into single ones) and

the primer is added into the beginning of the sequence. Next the beads are placed

in specially prepared wells on a fiber-optic slide, called Pico TiterPlate device (see

Figure 2.6 (f)). This device can contain up to 1.6 million wells, each of them of width

44 µm, and have enough room only for one bead with sequences (see Figure 2.6 (c)).

Into the wells smaller beads of enzymes (sulfurylase and lucyferase) are added which

are necessary for further chemical reactions (see Figure 2.6.d). Such prepared sample

is next used in the GS20.



2. Basic definitions 28

Fig. 2.6: Preparation of DNA fragments for the sequencing experiment: the fragments are sep-

arated into single strands (a); DNA fragments are captured by a bead in water-in-oil

emulsion (b) and in one droplet of the emulsion there is only one bead (e); beads are

placed in Pico TiterPlate device (f) in such way that in a single well there is only one

bead (c) (Adapted by permission from Macmillan Publishers Ltd: Nature, [MEA+05],

2005).
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The instrument which uses the 454 technology is composed of the fluidic part

(sequencing reagents – nucleotides), a flow chamber in which the nucleotides are

introduced into the DNA beads placed in the wells on the Pico TiterPlate device,

the optical part (CCD camera) where the light signal of the sequencing reaction is

detected, and a computer which analyzes the data and presents the output data to

the users (see Figure 2.7).

Fig. 2.7: Sequencing device. The Genome Sequencer 20 is composed of the following

parts: fluidic assembly (A), a flow chamber which includes the fiber-optic slide

with wells and beads (B), a CCD camera-based imaging assembly (C), and a

computer that provides the necessary user interface and instrument control.

Adapted by permission from Macmillan Publishers Ltd: Nature, [MEA+05],

2005.

The process of resolving the DNA fragments proceeds as follows: in the flow cham-
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ber the nucleotides are cyclically delivered, each time only one type of nucleotides

(A, C, G or T) is present. The nucleotides are incorporated to these DNA fragments

for which the complementary nucleotide is next in the reconstruction process. It is

possible that more than one nucleotide of one type in one step is incorporated, if the

DNA fragment contains a sequence of the same nucleotides. Nucleotide incorpora-

tion generates pyrophosphate molecule which together with enzymes: sulfurylase and

lucyferase induces the light emission, which is later on detected on the CCD camera.

The signal intensity of each nucleotide flow, for each well, indicates the number of

nucleotides attached to a single sequence. The image on the CCD camera is next

transfered to the computer, which analyzes the data. At the beginning, the images

are translated into flowgrams ; for each well a different flowgram is made. Next, from

the flowgrams, the DNA sequences are obtained together with quality scores, which

evaluate the confidence of each nucleotide position. After each cycle of nucleotide

flow, the rest of unbinded nucleotides are washed away. The process of incorporating

the nucleotides is repeated for a several cycles of A, C, G, and T flow. After the

reaction millions of sequences are obtained, each of length around 100 nucleotides.

Large scale sequencing, also called sequence assembling , is the next step – after

the sequencing – of recognizing genetic information. The sequences over the alphabet

{A,C,G,T} (the letters stand for four nucleotides) of length up to 700 nucleotides,

obtained in the sequencing step, are merged together into longer contigs or even a

whole genome (for example a genome of a bacteria).

It was already mentioned in this section, that the process of preparing a DNA

chain for the sequencing, causes that the short fragments are coming from both

strands of a DNA molecule. Also due to a shotgun method, which randomly cut

DNA sequences, the fragments randomly overlap the DNA sequence. Some parts

of the sequence may be covered by many sequences, while some parts might not

be covered at all (i.e. due to problems in replication). Usually, the coverage is in

the order of 8-15 fragments. The input sequences generally have different lengths

and there may exist an inclusion relation between them. The solution is a long

sequence (or fragments of the examined sequence, called contigs, if the sequence is

not covered in some parts) which is composed of all the input sequences (or their

reverse complementary counterparts) as substrings. The criterion of an evaluation of

the solution can be for example minimizing its length or maximizing its likelihood.
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In the assembling step the input sequences are outcomes of the DNA sequencing

process. Unfortunately, the input sequences are charged with errors coming from the

biochemical experiment. The errors can be insertions (additional nucleotides), dele-

tions (missing nucleotides) and substitutions (changed nucleotides). Thus, inexact

matches of sequences have to be allowed. Of course, to avoid accident overlaps of se-

quences an error bound of mismatches have to be defined. Another type of problems

in the assembling is that the sequences may come from both strands of a DNA helix

fragment. In this case some of input sequences have the opposite orientation than the

others and they should be matched obeying the rule of complementarity. Some meth-

ods deal with this problem by addition of reverse complementary sequences to the

input ones. In the reconstruction phase only one of the two sequences can be used:

the original or the reverse complementary one. The last phase of the assembling,

when the order of input fragments is already known, consists of creation of a consen-

sus sequence from the multiple alignment of the input sequences. Each character in

a column places a vote for each letter in its set, where a null character is equivalent

to the empty set. For each letter, the votes are gathered. The consensus character

comes from the set of letters that receive the most number of votes. Example 2.2

shows an illustration of the sequence assembling.

Example 2.2: Let the set of input sequences of the assembling process be {ACCT,

ACTC, AGGTG, CAGCCT, GTTCG}. Sequences may come from two strands of

the DNA helix, so we must consider as the possible input also all the reverse com-

plementary counterparts of the sequences. In the reconstruction phase we must use

exactly one of the sequences from the pair. Now the input set can be viewed as com-

posed of the fragments: {{ACCT, AGGT}, {ACTC, GAGT}, {AGGTG, CACCT},

{CAGCCT, AGGCTG}, {GTTCG, CGAAC}}. We assume that in these sequences

errors (like insertions, deletions, and substitutions) may appear, thus, we allow for

inexact matching. A possible result is shown in Figure 2.8. The resulting sequence

(the consensus sequence) is created according to the majority rule: on every position

the sign which appears the most frequently is chosen. �

Sometimes in recognizing the genetic information another step is required (map-

ping) which places the contigs into proper place on a chromosome.
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Fig. 2.8: A possible assembly of sequences in the Example 2.2

2.3 Theoretical formulations of DNA sequencing

and assembling problems

Following introduced biochemical concepts and less formal descriptions, we may now

formulate basic DNA sequencing and assembling problems in a more exact, combi-

natorially oriented manner. We will formulate all the sequencing problems without

errors in the spectrum in the search version and the the other problems in their

optimization versions, since the aim of the thesis is a construction of efficient algo-

rithms for the practical problems, complexity of which being in most cases already

established. We start with the problem of DNA sequencing by hybridization with

standard libraries [BK03]. We distinguish the case of error-free spectra (ideal case)

and of those containing errors.

Definition 2.1: Standard SBH problem without errors in the spectrum – search ver-

sion.

Parameters: Set S of oligonucleotides of equal length l, length n of an original

sequence, where |S| = n − l + 1 and S is the ideal spectrum for the sequence.

Answer: A sequence of length n composed of all elements of S.

Definition 2.2: Standard SBH problem with positive and negative errors – optimiza-

tion version.

Parameters: Set S of oligonucleotides of equal length l, and length n of an original

sequence.

Answer: A sequence of the length 6 n containing the maximum number of ele-

ments of S.
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Next, two definitions are presented of isothermic DNA sequencing by hybridiza-

tion problem in the case without errors in the spectrum and in the case with errors

[BFKM04].

Definition 2.3: Isothermic SBH problem without errors in the spectrum – search

version.

Parameters: Set S of oligonucleotides, each of them of temperature t or t + 2,

length n of an original sequence, where S is an ideal spectrum for this sequence.

Answer: A sequence of length n such that an ideal spectrum for this sequence is

equal to S.

Definition 2.4: Isothermic SBH problem with positive and negative errors – opti-

mization version.

Parameters: Set S of oligonucleotides, each of them of temperature t or t + 2,

length n of an original sequence.

Answer: A sequence of the length not greater than n with a minimum value of

β + |S| − 2α.

α and β denote, respectively, a number of oligonucleotides from the spectrum being

the part of the constructed sequence, and a number of oligonucleotides being members

of the two used isothermic libraries of temperatures t and t + 2 which can be distin-

guished in this sequence (each oligonucleotide adds to β number of its occurrences

in the sequence). The number of positive and negative errors in the constructed

sequence can be defined as, respectively, |S| − α and β − α.

And last but not least there are two definitions of DNA sequence assembling

problem; the first one in the case without errors in the input sequences. This case

is not considered in this work in more details, since it is only a theoretical model.

In general the input sequences contain errors: insertions, deletions and mismatches.

The fragments may also come from different strands of a DNA helix fragment. The

problem becomes more difficult because imperfect matches have to be allowed in

aligning two fragments. The problem where the errors appear in the input fragments

is defined in the last definition.

Definition 2.5: DNA sequence assembling problem without errors – optimization

version.
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Parameters: Multiset S of fragments over the alphabet {A, C, G, T} coming from

the same strand of a DNA helix.

Answer: A sequence of the minimum length, containing all the fragments from

the multiset as the subsequences.

Definition 2.6: DNA sequence assembling problem with errors – optimization ver-

sion.

Parameters: Multiset S of fragments over the alphabet {A, C, G, T} which may

come from both strands of a DNA helix. All the reverse and complementary fragments

to the original ones in the multiset are added into S .

Answer: A sequence of a maximum likelihood value, containing from every pair

of fragments in the multiset (the original fragment or its reverse complementary one)

only one fragment as the subsequence with mismatches allowed.

The above problems will be studied in the following chapters. Firstly, their com-

plexity status will be mentioned together with the presentation of existing methods.

Next, new algorithms will be proposed and compared with the existing ones.



3. PREVIOUS APPROACHES TO

SEQUENCING

3.1 Small scale sequencing

In this chapter, several biochemical approaches and computational methods solving

the second phase of the sequencing problem by hybridization, are presented. In Sec-

tion 3.1.1 the standard approach is described in which equal-length oligonucleotides

are used in the hybridization experiment. Next section discusses the case of oligonu-

cleotides containing universal bases, i.e. the bases which bind to any nucleotide. This

approach allows to increase the length of the examined sequence, but it is difficult

to apply in a laboratory. Another approach presented in Section 3.1.3 minimizes the

number of errors coming from the hybridization experiment by using oligonucleotides

of equal melting temperature (isothermic libraries).

3.1.1 Standard sequencing by hybridization

The DNA sequencing by hybridization was first proposed in 1988 [Sou88] and since

then many proposals of the solution to the computational part of this problem ap-

peared in the literature. Here, the most important algorithms are cited (formal

description of the basic problem was given in Definitions 2.1 and 2.2).

The first algorithm that reconstructs a sequence from the elements of the spec-

trum was presented in [BS88]. It assumes that all the oligonucleotides that can be

distinguished in the examined sequence are in the spectrum, and some elements can

appear more than once if an oligonucleotide is contained in the sequence more than

once. Thus, the cardinality of the spectrum is always equal n− l + 1. The algorithm

builds a tree in which nodes are the elements from the spectrum and the nodes can

be connected by an arc if last l − 1 nucleotides from an oligonucleotide of the first
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node overlap first l − 1 nucleotides from the oligonucleotide of the other node. If an

oligonucleotide is already included in the current path, then it cannot be visited once

again. As the root of the tree the probe which begins the examined sequence is taken.

If it is not known, then each of the oligonucleotides from the spectrum is taken as

the root consecutively. A path which starts from the root and ends in a leaf, and

contains all the elements from the spectrum is a solution. Sometimes it is possible to

obtain more than one solution. Example 3.1 presents the trees which result in finding

solutions.

In [LFK+88] Lysov et al. noticed that the SBH problem without errors (Definition

2.1) refers to a well known problem of searching for a Hamiltonian path in a particular

graph. A directed graph H is constructed in the following way: nodes are the elements

from the spectrum and an arc connects two nodes if l − 1 last nucleotides from the

first node overlap first l − 1 nucleotides from the second one. In such a graph a

Hamiltonian path is looked for (Example 3.1).

Example 3.1: Suppose we have to reconstruct a sequence GTGTAGTC of length

n=8. After simulating the ideal hybridization experiment with the library of oligonu-

cleotides of length l = 3 we get the ideal spectrum, which is composed of |S| = 6

elements, S = {AGT, GTA, GTC, GTG, TAG, TGT}. The method by Bains and

Smith [BS88] builds a tree, starting each time from a different node as the root. Only

two trees which start with ’GTG’ or ’GTA’ finish with a path which crosses all the

elements of the spectrum (see Figure 3.1). The algorithm results in two solutions:

GTGTAGTC and GTAGTGTC.

Considering the same sequence and the spectrum, the algorithm by Lysov et al.

[LFK+88] constructs a directed graph (see Figure 3.2). In such a graph a Hamil-

tonian path is searched for. There exist two Hamiltonian paths and they result in two

solutions: GTGTAGTC and GTAGTGTC.

A decision which sequence to choose can be done after an additional biochemical

experiment which dispels ambiguity of the solution. �

The above methods need an ideal spectrum and their complexity is exponential

in time. A polynomial-time algorithm for DNA sequencing problem by hybridization

with an ideal spectrum was presented by Pevzner in [Pev89], what proved that the

error-free variant of the problem (Definition 2.1) belongs to the class of easily solvable
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Fig. 3.1: A tree constructed with the method by Bains and Smith [BS88]

Fig. 3.2: A directed graph constructed with the method by Lysov et al. [LFK+88]

problems. The algorithm searches for an Eulerian path in a directed graph, but this

time the elements of the spectrum are the labels on arcs, and each arc connects the

nodes which are labeled with the l−1 prefix and l−1 suffix of the arc label. (Example

3.2)

The transformation of the graph where a Hamiltonian path is looked for to the

graph, in which an Eulerian path is searched, changes the complexity of the algorithm.

The class of these labeled graphs in which such a transformation is possible was

widely discussed in [BHKW99]. The graphs which are built from the elements of the

spectrum with the method by Lysov et al. belong to this class and are called DNA

graphs. The graph constructed on the basis of the Lysov’s method is a directed line-

graph of the Pevzner’s graph. For such pair of digraphs searching for a Hamiltonian

path and an Eulerian path, respectively, is equivalent.
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Another algorithm presented in [Pev89] allows for negative errors in the spectrum

(Definition 2.1 with an additional information that only negative errors may appear).

Not in every case it finds a solution, so it can be treated only as a heuristic. In this

method the number of missing elements in the spectrum is first determined, which is

equal to n− l + 1− |S|, and next these oligonucleotides are to be recovered. For this

purpose the problem is transformed to the one of searching for a flow in a network

based on the bipartite graph Km,m. The bipartite graph is constructed from the

vertices of the Pevzner’s graph which have different in- and out-degrees. A vertex for

which this difference is greater than 1 is multiplied in the bipartite graph. Arcs in

the bipartite graph are drawn from the vertices which have greater indegree to the

ones having greater outdegree in the Pevzner’s graph. The cost for an arc is equal to

the minimal shift of the labels of its vertices in their overlap. Therefore, the greatest

value of the overlap between labels is equal (l − 2) and the cost is equal 1, while

the greatest cost is equal (l − 1) when labels don’t overlap at all. Each arc in the

bipartite graph corresponds to a path in the Pevzner’s graph of length equal to the

cost of this arc. To the bipartite graph two vertices are added: the source s, which

is connected with the vertices of a greater indegree and the sink t which is connected

with the other vertices. All arcs in this network have the capacity equal 1. In such a

network we look for a flow of value m − 1 with a minimum cost. If the cost is equal

to the number of missing elements from the spectrum, then to the Pevzner’s graph

the missing arcs (or paths) can be added. Now we are looking for an Eulerian path

in the newly developed graph (see Example 3.2).

Example 3.2: Suppose once more that we have the same sequence and the spectrum

as in Example 3.1. The graph constructed with Pevzner’s method [Pev89] has the

labels of the oligonucleotides from the spectrum on the arcs (see Figure 3.3). There

are two Eulerian paths and reading the labels from the arcs we obtain two possible

solutions: GTGTAGTC, GTAGTGTC.

Let us now consider the case where during the hybridization experiment an error

occurred or the fluorescent chip image is unclear and one of the oligonucleotides is

missing in the spectrum: TGT. We have to count how many nucleotides are missing:

n− l+1−|S| = 1. Next the network is constructed from the vertices with different in-

and out-degrees based on graph from Fig. 3.3, from which an arc ’TGT’ was deleted.

Notice that in the network (Figure 3.4) there are two vertices labeled ’GT’, because



3. Previous approaches to sequencing 39

Fig. 3.3: A digraph constructed with the method by Pevzner [Pev89]

Fig. 3.4: A network for finding missing oligonucleotides in the spectrum [Pev89]

the difference between the in-degree and the out-degree of this vertex is equal two.

The values on arcs in between the vertices are equal to shifts of vertex labels in their

maximum possible overlaps. Now we are searching for a flow of value (m − 1 =) 1

with its cost equal to n− l+1−|S| = 1. There exist two flows with the cost equal to 1,

both between the vertices: (TG,GT) and they are equal to our missing oligonucleotide

’TGT’. After adding this arc to the base graph we can look for an Eulerian path

and find the sequence. Notice that if the missing oligonucleotide is ’GTA’ then it

will not be possible to find missing arc in the network, because the vertex with label

’GT’ will not be considered in the network, due to equal in- and out-degrees. Thus,

reconstructing the original sequence won’t be possible. �

The first exact algorithm that deals with both negative and positive errors in the

spectrum and has no additional information about the elements from the spectrum

was introduced in [BFK+99]. The sequencing problem was formulated as a variant of

the traveling salesman problem, called Selective Traveling Salesman Problem. Simi-

larly as in [LFK+88], the vertices in the graph are labeled with the oligonucleotides.

The graph is complete symmetric and to every arc a cost is assigned equal to the

maximal shift between two labels of the adjacent vertices. With every vertex the
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profit equal to 1 is connected. In such graph a simple path with a maximum profit

is looked for and with a cost not greater than n − l. Example 3.3 illustrates this

method.

Example 3.3: Let the sequence to be reconstructed be the same as in Example 3.1:

GTGTAGTC. Into the spectrum some errors have been introduced: negative one –

AGT, and positive one – CAT, and the spectrum is now composed of 6 elements:

S = {CAT, GTA, GTC, GTG, TAG, TGT}. First, costs of arcs between each pair

of elements are determined (see Table 3.1).

Tab. 3.1: Costs of arcs between vertices in the graph from Example 3.3

CAT GTA GTC GTG TAG TGT

CAT - 3 3 3 2 2

GTA 3 - 3 3 1 3

GTC 2 3 - 3 3 3

GTG 3 2 2 - 3 1

TAG 3 2 2 2 - 3

TGT 3 1 1 1 2 -

Next, a complete graph is constructed, see Figure 3.5, where the profit for each vertex

is equal to 1. The method by Blazewicz et al. [BFK+99] searches for a simple path of

a maximum profit and a total cost not greater than n− l = 5, and results in two paths

which consist of 5 elements and are of cost 5. Reading the labels we get the solutions:

GTGTAGTC and GTAGTGTC. �

The algorithm works in exponential time. The complexity of the SBH problem

with errors (Definition 2.2) was analyzed in [BK03] and the authors proved that even

in the case of errors of one type (only positive or only negative ones), the problem

is strongly NP-hard. Therefore, an exact algorithm, like branch and bound proposed

in [BFK+99], may not finish in reasonable time for large instances. Thus, almost all

of the algorithms dedicated to this problem are heuristics, see for example methods

proposed in [BKK02, ZWZ03, BGK04, End04].

In [Kru98] a multistage variant of the SBH method was proposed. A series of

experiments are executed with oligonucleotide libraries containing molecules of in-
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Fig. 3.5: The graph from Example 3.3 constructed with the method by Blazewicz

et al. [BFK+99]. The arcs with the cost equal to 1 are denoted with the

solid arrow, with the cost 2 are denoted with the dashed arrow, and the

ones with the cost equal to 3 are not drawn (but present in the graph) in

order to keep the picture clear.

creasing lengths. The first experiment is performed with the classical DNA chip

containing a full library of oligonucleotides of length l. In the next experiments the

goal is to detect all the oligonucleotides of length 2l which are contained in the ex-

amined sequence. Thus, the library of oligonucleotides on the chip consists of all

concatenated pairs of elements of length l detected in the previous experiment. The

author noticed that every substring of length 2l − k is composed of two oligonu-

cleotides which overlap on k positions. Thus, instead of using the library composed

of all concatenated pairs of oligonucleotides (of length 2l), the library that contains

the elements of length 2l − k is used (these new elements are the concatenations of

two oligoncuelotides, overlapped on k positions). This reduces the size of the library

for the next experiments by restricting the possible merging of two oligonucleotides

only to the probable pairs. Every repetitive substring in the target sequence will be

detected in the experiments with the oligonucleotides of increased length. However,

this method is vulnerable to errors coming from the experiments. Every negative er-

ror is propagated through the next iterations. And every positive error may increase

the cost of the method by increasing the size of the library for further experiments.

In [PS01] an interactive method for sequencing by hybridization, on the basis of

a spectrum in which both positive and negative errors appear, was proposed. The

traditional hybridization experiment is enriched there with a series of comparisons of
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the original sequence to the elements of increasing lengths in order to resolve all the

ambiguities. The method constructs a graph, the same as presented in [LFK+88],

where oligonucleotides are the labels of the vertices and the arcs connect two vertices

if the labels overlap with shift equal to 1. Series of additional queries (being addi-

tional biochemical experiments) about oligonucleotides of increasing lengths, starting

from l, help to get rid of useless vertices, which are positive errors, and to add addi-

tional vertices which are the missing oligonucleotides in the spectrum. When all the

branching points in the graph are resolved, the algorithm stops querying and returns

as a solution the only Hamiltonian path in this graph.

A simple genetic algorithm for SBH with any errors was proposed in [BKK02].

The algorithm starts with an initial population of s individuals. Each individual is a

permutation of all elements from the spectrum. In each individual the best substring

of oligonucleotides is identified, i.e. the one that is composed of the greatest number

of elements from the spectrum and is not longer than n. Next, to each individual a

normalized fitness value is assigned, which is the ratio of the number of elements in

the best substring to the maximum number of elements from the spectrum in any

valid sequence, being n − l + 1. The individuals are then selected as parents with

stochastic remainder method without replacement according to their fitness values.

Next population is formed from these individuals, randomly paired, to which a greedy

crossover is applied. The crossover starts the construction of an individual with the

first oligonucleotide chosen randomly. With 20% of probability the oligonucleotide

that best overlaps the last oligonucleotide in the individual built so far, is added.

Moreover, with 80% of probability the best of the succesors of the last oligonucleotide

in parents of the individual is selected, providing it has not been already used in the

construction. Otherwise, a random oligonucleotide from the remaining ones is chosen.

The crossover stops when all elements are in the individual. These moves are done

until all the individuals in the population are constructed. Every new population is

submitted to the above series of transformations and the steps are repeated until a

given number of iterations without improvement of the best fitness value is met. The

best solution found is given as a result.

In [BY04] another genetic algorithm is presented. The idea of the method is as

follows. During a preprocessing step the oligonucleotides are joined into longer frag-

ments in which two adjacent elements overlap on l−1 positions. If there is more than
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one possible extension of the oligonucleotide, then such oligonucleotides cannot be

joined together. The algorithm next operates on the longer fragments. The solution

is represented as a permutation of the fragments. The number of the individuals in

the population remains constant throughout the algorithm. The fitness of each indi-

vidual is calculated on the basis of the number of overlapped positions between two

adjacent fragments and the length of the sequence. Parents are selected using the pro-

portional selection method, and the individuals with the higher fitness are more likely

selected. Parents are next reproduced with crossover and mutation operators. In the

crossover 3 cutpoints are determined, and each offspring chooses different parts from

parents. This process may create offspring that contains duplicated fragments. Thus,

it is necessary to employ a repair mechanism which throws out duplicated fragments,

and adds omitted ones. Additionally, the repair mechanism improves an individual

with a local search. On the newly created offspring the mutation is performed and

with 10% probability randomly selected oligonucleotides are swapped. An offspring

replaces the worst parent in the population. The algorithm stops when there is no

improvement of the solution. As a result the best solution found, is given.

In [ZWZ03] the algorithm assumes the knowledge about consecutive missing

oligonucleotides in the sequence. The authors first transform the problem with both

types of errors to a problem in which only positive errors appear. They assume that

the error level, which is the number of consecutively missing oligonucleotides, is equal

to δ and 1 6 δ < l. The assumption comes from the observation that for δ > l it is

impossible to reconstruct the original sequence from the spectrum elements. For each

pair of elements (u, v) from the spectrum S for which the shift between u and v is t,

such that 1 < t 6 δ, a path of length t is determined. All the elements from the path

not being in the spectrum are artificial elements and are added to the extended spec-

trum S ′. If δ is too large it will result in adding too many elements to the extended

spectrum. The authors assume that δ 6 3. After this preprocessing step in the

extended spectrum all oligonucleotides which can be distinguished in the examined

sequence, are present. Next, the algorithm for positive errors only is applied to the

extended spectrum. It starts from the adjacency matrix A of size |S ′| × |S ′| with the

entries ’1’ if the elements overlap on l − 1 positions and ’0’ otherwise. Next matrices

Ak are calculated in which the values ak
i,j are the numbers of all k-paths (paths of

length k) from probe si to probe sj. The goal of the algorithm is to maximize k, i.e.
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to maximize the number of elements in the solution. The examined sequence cannot

be longer than n, thus, k 6 n − l. Notice that some elements can be used more

than once in one path, what solves the problem of repeated fragments in the DNA

sequence. As a result the method gives all possible paths of maximum value of k.

A tabu and scatter search method was presented in [BGK04]. The main idea of

the algorithm is to optimize the maximum number of elements in the solution with the

local search heuristic – tabu search – and next in order to improve the results and to

diversify searching in the solution space, the adaptive memory strategy was applied in

the restart process for forming a new initial solution. The tabu search algorithm works

as follows: the initial solution is created with a greedy heuristic, and is composed

of the oligonucleotides from the spectrum which create the sequence of nucleotides

not longer than n. The rest of the oligonucleotides which are not in the solution

are in a set, called trash. Next, a defined number of cycles is performed and each

one consists of a few condensing and extending moves. The goal of the condensing

moves is to condense the oligonucleotides that composes the solution tending to their

maximum overlap. The goal of the extending moves is to insert into the solution

these oligonucleotides which have been rarely used in solutions constructed till now,

or delete frequently used ones. The possible condensing moves are: inserting a probe

from the trash into the solution, shifting a probe in the solution or deleting a probe

from the solution to the trash set, providing the solution is feasible. Inserted and

shifted oligonucleotides are remembered on the tabu list, and are prohibited for a

couple of moves. A collection of the best solutions found during executing the cycles

is stored and later on, during the restart process, it is used to build a new starting

solution. After a few restarts of the local search procedure the algorithm gives as a

result the best solution ever found.

3.1.2 Universal bases

Sometimes it is impossible to reconstruct a target sequence from the library of equal

length oligonucleotides due to errors in a spectrum and ambiguous reconstruction. To

omit some difficulties a new chip design was presented by Preparata et al. [PFU99,

PU01]. The chip consists of longer elements than in the standard chip design and in

the same time the size of the library of all the elements is the same. The elements

design is based on universal bases which are chemical entities and when present in
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the element will engage in the base-pairing relationship with any of the standard

nucleotides (A, C, G, or T). A universal element can be for example: 5-nitroindole

[LB94] or 3-nitropyrrole [BANZ95].

Proposed special pattern of elements is called (s, r) gapped probe and is denoted by

GP (s, r). For fixed parameters s and r the element is of form Xs(U s−1X)r, where X

is one of the standard bases (A, C, G, or T) and U is the universal base. For example,

the pattern GP(3,2) is of the form: XXXUUXUUX. A simple algorithm presented in

[PFU99] is a heuristic, because not in every case it finds a target sequence. Despite

of it, it is vulnerable to errors. The procedure starts with a known prefix of length

s(r + 1). With every iteration it tries to increase by 1 the length of a hypothetical

sequence. To do it, the method searches for elements which (s(r + 1) − 1) prefix

matches the suffix of the hypothetical sequence. The set of these elements is called

M0. If there is only one extension of the hypothetical sequence, then the symbol

is appended to the sequence. In other case all possible extensions are put into set

B0. It must be decided which of these symbols are correct. Afterwards, set M1

is constructed which consists of all the elements shifted by s to the elements in M0,

which at the same time match the hypothetical sequence. In set B1 there are symbols

which are possible extensions of the hypothetical sequence caused by elements from

M1. If B0 ∩ B1 is a single symbol, then the hypothetical sequence is extended with

it. Otherwise, in the similar way sets Mi and Bi are determined for all i 6 r. If

there exists such i that intersection of sets B0 to Bi contains only one symbol, then

there exists an unambiguous extension. Otherwise the algorithm stops and returns

the current sequence. The process of the reconstruction of a sequence with this

algorithm is presented in Example 3.4.

Example 3.4: Suppose we have a sequence GCTACTAGAG. The set of gapped (2,1)

- probes detected during the hybridization without errors is S = {ACUA, AGUG,

CTUC, CTUG, GCUA, TAUA, TAUT}. The prefix is assumed to be known, and it

is GCTA. In the first step we look for all the elements that match the hypothetical

sequence, which is the known prefix. Thus, in the set M0 we get {CTUC, CTUG}

and possible extensions of the sequence are B0={C, G} (see Figure 3.6 (a)). Next,

we search for elements shifted by s = 2 nucleotides to the elements in M0 and we

get the set M1 = {ACUA, AGUG} and possible extensions to the sequence: B1={C,

G} (see Figure 3.6 (b)). There are two possible extensions B0 ∩ B1 = {C, G} and
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Fig. 3.6: An example of a reconstruction of a sequence from the spectrum composed

of gapped elements.

the algorithm stops here (i = r). More sophisticated algorithm would develop all the

possible extensions and find the sequence as presented in Figure 3.6 (c). �

Later on the reconstruction of a sequence using tandem spectra was proposed,

which combines direct and reverse spectra [HPY03]. The direct spectra are of the

form as used in [PFU99]: Xs(U s−1X)r, while the reverse spectra are opposite to

them: (XU s−1)rXs. The usage of both spectra should result in better performance

because when some elements in the spectrum are erroneous, the extensions of the

sequence may be supported by elements from the reverse spectrum.

Another algorithm was presented in [HHHS03]. The authors proposed an alterna-

tive chip design which instead of a deterministic periodic structure uses randomized

elements in which locations of some specified bases were chosen randomly. The ele-

ments are prepared in the following way. The length of each element is l = c ∗ k + 1,

where c is a sufficiently large integer and k is the number of known nucleotides (A,

C, G, T). Next the subsets Ai are formed, where i = 1...βk and β is a constant that

depends on error rate. For each subset a set of random k positions are chosen out of

{1,2,...,ck} and form all possible 4k+1 probes, with known nucleotides on the chosen

positions. The total number of elements used in the experiment is equal βk4k+1,

and it is a union of Ai sets. The sequence that can be unambiguously reconstructed

with high probability may be of length α 4k

βk
where α is a constant that depends on
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the error rate. The algorithm presented in [HHHS03] is noise resistant, what means

that even despite of positive and negative errors in the spectrum the sequence can be

usually unambiguously reconstructed.

Although universal bases have been successfully generated in a laboratory [LB94,

BANZ95], it is still unclear how they hybridize in longer oligonucleotides and in the

case there are many universal bases. The presently available products do not seem

to be sufficiently well behaving for de novo sequencing.

In [PO04] the authors analyze the problem of DNA sequencing using universal

bases once again, but this time instead of universal bases, which are ideal but not

practically reachable, they use their substitute, degenerate bases, which are uniform

mixtures of the four natural bases. The number of degenerate bases in the element

is limited since each degenerate base causes a reduction of the number of hybridizing

DNA strands to the element on the microarray chip by the factor of 4 and it results in

deterioration of the hybridization signal. In the model of the standard hybridization it

is assumed that all Watson-Crick complementary pairs have identical hybridization

strength. It is well known (it was already mentioned in Section 2.2) that the hy-

bridization strength depends not only on the G/C or A/T content in oligonucleotide

duplexes ([WJH+81]), but also on the position of a particular base in the oligonu-

cleotide duplex (nearest neighbor model [BFBM86]). Thus, the authors deduce that

the position of a degenerate base has an effect on the hybridization signal. Following

this, the binding-energy detection threshold is a set of the lowest values compatible

with the selection for the bases occurring in the degenerate positions. Unfortunately,

the binding energy values associated with a degenerate base position in the probing

patterns are spread, what makes degenerate bases non-universal. The degenerate

bases are replaced with semi-degenerate bases, which are mixtures involving two sub-

sets separately: A/T (weak bases) and G/C (strong bases). At that time the binding

energy values are in a more narrow range.

3.1.3 Isothermic sequencing by hybridization

In the computational part of the isothermic sequencing problem by hybridization, as

the input data we get spectrum S composed of elements of two isothermic libraries

differing by two degrees, and the length of the examined sequence n (cf. Sections 2.2

and 2.3). The objective in case of errors in the spectrum is to find a sequence that
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is composed of the oligonucleotides from the spectrum with the minimum number of

positive and negative errors. This solution is mostly equivalent to a solution obtained

when maximizing the number of oligonucleotides in the solution. Note, that for equal-

length libraries in the standard SBH both criteria are equivalent. For the isothermic

sequencing in some cases maximizing the number of oligonucleotides in the solution

would prefer different sequence than the one looked for.

The complexity of the problem was widely examined in [BK05]. It was proven

that in case of positive or negative errors only, or errors of both types in the spectrum,

the problem is strongly NP-hard. However, if the spectrum is ideal the isothermic

SBH problem is solvable in polynomial time. The corresponding algorithm for the

sequencing without errors is as follows [BK05]:

A directed graph G is constructed on the basis of the spectrum, and after some

transformations the algorithm searches for a path corresponding to a DNA sequence.

The first and the last oligonucleotide are assumed to be known. If there is lack of

knowledge about the first and the last oligonucleotide, all the possible pairs of the

oligonucleotides are taken respectively. In graph G oligonucleotides are on the vertices

and arcs connect two vertices if their oligonucleotides are of equal length and they

overlap with the shift by one letter, providing it does not produce a negative error. If

one oligonucleotide oi is contained in the other one oj and is shifted to the left, then

all the arcs entering oj and leaving oi are deleted and the arc from oi to oj is added.

On the other hand, if oi is contained in oj, but shifted to the right, then the arcs

entering oi and leaving oj are deleted and the arc from oj to oi is added. Every arc

entering the vertex corresponding to the first oligonucleotide or leaving the vertex

which corresponds to the last oligonucleotide are deleted. Next, some deletions of

arcs are made and some temporary arcs are added to G in order to make graph G

a line graph. Graph G is then transformed to its original graph H, and now the

oligonucleotides correspond to the arcs in graph H. The algorithm searches for an

Eulerian path in the directed graph H, provided that the transitions corresponding

to temporary arcs in G are forbidden.

In [BF05] another method to isothermic SBH problem was proposed, which com-

bines multistage approach with isothermic libraries. (Multistage variant of SBH

method was first proposed in [Kru98] and it was applied to standard libraries.) This

approach decreases the number of experimental errors, especially the negative ones.
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In the first experiment two isothermic libraries are used, of temperatures respectively

t and t + 2. The library for the next experiment is composed of all pairs of concate-

nated oligonucleotides coming from the previous experiment, for which the overlap

fragment is of temperature k or k + 2. As a result from the hybridization experiment

a spectrum is obtained, and it is composed of oligonucleotides of temperatures 2t− k

and 2t − k + 2. If it is necessary, the temperature for the experiment is further in-

creased. Otherwise, the problem is solved with an algorithm for the isothermic SBH,

for example a tabu search algorithm presented in [BFS+04].

3.2 Assembling – large scale sequencing

Assembling, also called large scale sequencing, is the next step of recognizing genetic

information. In the classical approach, sequences of length up to 700 nucleotides

obtained in the sequencing step are merged together into longer contigs or even a

whole genome (for example a bacterial of viral genome) – cf. Definitions 2.5 and

2.6. Sometimes another step is required (mapping) which places the contigs into the

proper places on a chromosome.

In the novel approach (454 sequencing – cf. Section 2.2), the sequencing step is

done by a machine and we can receive sequences of length around 100 nucleotides.

With these sequences an additional information is associated about the quality of

every nucleotide in the sequence. Every position in the result contig is covered here

by more sequences than in the classical approach. However, this approach is less

robust with respect to repetitions in the genome. If the repeated part is longer than

100 nucleotides, then the fragments will not cover the whole ambiguities and the

sequence cannot be fully reconstructed.

The algorithms solving the assembling problem are usually composed of three

parts. First part consists in aligning input fragments. Due to errors coming from

the experiment the alignment algorithm must allow for inexact matchings (some

deletions, insertions or substitutions are possible). In the second part, the fragments

are joined together into a longer sequence, of possibly the shortest length. And finally,

a consensus sequence is determined, by voting of the fragments on every place in the

sequence (see Example 2.2 in Section 2.2). Although there exist many algorithms

solving the assembling problem, some of them are parts of commercial packages and
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the details about the algorithms are not published. Here, a few of the most known

algorithms are presented. In general they are designed for the classical large scale

sequencing, but the last method is dedicated to the assembling of shorter fragments.

The algorithm from [KM95] assembles sequences with errors (insertions, deletions

and substitutions of nucleotides) coming from both strands of a DNA fragment. At

the beginning the reverse complementary sequences to every fragments in the input

set are added. Next, all the pairs of the sequences are compared to determine their ap-

proximate overlaps of some statistical significance. The complete graph is created in

which vertices are labeled with these sequences and arcs correspond to their overlaps.

Some of the arcs are culled according to the minimum match significance threshold,

thus the graph is more sparse. The orientation of the fragments is determined by a

heuristic algorithm finding a maximum weight spanning tree in the graph (only the

half of the vertices are considered corresponding either to the original fragments or

to the reverse complementary ones). The solution to the problem is a Hamiltonian

path with the maximum total significance score.

The method proposed in [IW95] applies the Pevzner’s algorithm for the standard

sequencing by hybridization [Pev89]. Every input sequence is represented as a col-

lection of n − l + 1 oligonucleotides of length l composing the sequence, where n

is the length of the sequence. Next, the Pevzner’s graph is constructed from these

collections and the Eulerian path is looked for. A big value of l is preferred in order

to retain the information about the input fragments. This method works properly

only for error-less instances (Definition 2.5), however, the authors show how to adapt

their algorithm for the case of errors coming from the sequencing phase and from

fragment orientation (Definition 2.6). To the input set the reverse and complemen-

tary fragments are added and at the end two complementary sequences are produced.

In case of repetitions or errors in the input sequences, the algorithm allows to use

some arcs more than once (repetitions) or to not visit them at all (errors in the se-

quences). Therefore, a variation of an Eulerian tour is applied in a similar way as in

the Selective Traveling Salesman problem.

In the method presented in [JL96], the authors model the sequence assembling

problem as a variant of the shortest common superstring problem. Given the set

of fragments, the goal is to find the shortest sequence having all the fragments as

substrings. In this problem the fragments are coming only from one strand, and
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may contain at most k errors each. The algorithm merges two strings into a longer

contig in every iteration. The pair of elements is chosen for which the ratio between

the length of the contig and the sum of lengths of the fragments in this contig is

the smallest. The method allows at most k errors in aligning the strings. In the first

phase of the algorithm the fragments are merged into small groups of a few fragments

tightly overlapping each other. The output of the last phase is one string composed

of all the fragments.

In [PTW01] the authors presented another method based on the Pevzner’s ap-

proach of finding an Eulerian path in a graph [Pev89]. The method can deal with

sequencing errors in the input fragments as well as with long repeats. The first step

of the algorithm consists in elimination of errors by some modification of the input

sequences. The input fragments are decomposed to the oligonucleotides of length l

(the set of them all is called spectrum), where l is much smaller than the length of the

fragments. The multiplicity of appearance of each oligonucleotide in the spectrum

is calculated and if the number for an oligonucleotide is higher than M (which is

a threshold) then it is marked as solid, otherwise it is marked weak. If there is a

mutation in the fragment then a series of oligonucleotides is weak. An error correc-

tion procedure transforms weak oligonucleotides into solid ones and reduces at the

same time the number of possible oligonucleotides in the spectrum. Next, a graph is

created out of oligonucleotides from the spectrum on the base of Pevzner’s approach.

For each fragment the path representing it in the graph is remembered. At the end,

the Eulerian path is searched for having all the remembered paths as the subpaths.

The method presented in [BKJ+04] can deal both with errors coming from the

sequencing step and with fragments coming from both strands of a DNA helix. At the

beginning, to the set of fragments the reverse complementary sequences are added.

The heuristic searches for pairs of fragments which have common parts and may

overlap each other. And next, for every such pair, their shift and the corresponding

error rate are calculated. The graph is constructed, where vertices are labeled with

the fragments and two fragments are connected if the shift was determined and the

error rate does not exceed a feasible value (bound). To make the graph more sparse

some of the arcs are deleted on the basis of the following rule. The arc (i, j) with

the corresponding shift dij is deleted if there exists vertex k for which arcs (i, k) and

(k, j) with the shifts, respectively dik and dkj, summing up to dij, may be found. The
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deleted arc (i, j) increases weights of arcs (i, k) and (k, j). At the end, the path is

searched for, which has maximum weights and includes half of the vertices (for every

pair: a fragment and its complementary counterpart, only one can be included in a

path).

In [CPT04] the method for sequencing with short reads is presented. The input

fragments are of length 100-200 bp and may contain sequencing errors. The algo-

rithm is based on the algorithm presented in [PTW01]. In the first phase of the

algorithm the sequencing errors are corrected. The input fragments are divided into

oligonucleotides of length l (15-20), which are marked as solid if they appear more

than M times or as weak otherwise. To resolve the sequencing errors the dynamic

programming algorithm was proposed. With increase of the length of the input frag-

ments, the expected number of errors also increases, and the size of the search space

becomes prohibitive. After the error correction phase, the graph is constructed from

the oligonucleotides and the Eulerian path is searched for.

3.3 Summary of the existing approaches

From the analysis of this chapter it follows that there is no universal approach to

sequencing and assembling stages of the genome recognition problem. Perhaps gel

electrophoresis based approach is the most widely used for the moment in biochemical

laboratories. In the future, most probably the pyrosequencing method (454 sequenc-

ing) will take the lead among sequencing approaches. However, for the moment it

has some drawbacks, e.g. it is expensive and reads only short fragments, what makes

the process of genome recognition much more complicated. Thus, it seems that the

DNA sequencing by hybridization (SBH) approach is a good alternative for other

sequencing methods in both its versions: with standard or isothermic oligonucleotide

libraries. What is more, good algorithms for the computational phase of SBH may

be a perfect starting point for design of the assembling algorithms, especially for the

short reads coming from the novel pyrosequencing approach.

Thus, one may formulate the following goals for the research described in the

thesis:

Design novel competitive algorithms for the DNA sequencing by hybridization,

prove their advantage over existing procedures, and use the elaborated ideas to con-
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struct a novel algorithm for the assembling stage.

The realization of the above goals is described in the next chapters of the thesis.



4. NEW ALGORITHMS FOR DNA

SEQUENCING BY HYBRIDIZATION

WITH ISOTHERMIC LIBRARIES

As it was mentioned earlier the goal of this work is to construct new, efficient and

robust methods for DNA sequencing. In particular, the goal is to develop new al-

gorithms for sequencing by hybridization with newly proposed isothermic libraries.

Let us recall (Definition 2.4) that in its mathematical formulation the problem con-

sists in finding a sequence of the length not greater than n with a minimum value

of β + |S| − 2α, given set S of oligonucleotides (spectrum), each of them of temper-

ature t or t + 2, and length n of an original sequence. In this formulation α and β

denote, respectively, the number of oligonucleotides from the spectrum being parts of

the constructed sequence, and the number of oligonucleotides being members of the

two used isothermic libraries of temperatures t and t + 2 which can be distinguished

in this sequence (each oligonucleotide adds to β a number of its occurrences in the

sequence). The number of positive and negative errors in the constructed sequence

can be defined as, respectively, |S| − α and β − α.

Determining the number of errors for every intermediate solution is very time

consuming, and since all the proposed hereafter algorithms are heuristics, and can

accept a little inaccuracy, this criterion was substituted with the same criterion as

for the standard sequencing – maximizing the number of oligonucleotides from the

spectrum in constructing the solution.

In this chapter two new algorithms devoted to isothermic sequencing problem by

hybridization are described: tabu search (Section 4.1) and hybrid genetic algorithm

(Section 4.2). Next the proposition comes of applying some features of the genetic

algorithm for solving Traveling Salesman Problem (Section 4.3). In Section 4.4 the

preliminary tests for tuning parameters of the algorithms are presented and in Section
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4.5 preparation of spectra is described. In Section 4.6 both algorithms are compared

together in extensive computational tests.

4.1 Tabu search algorithm

Tabu search for isothermic sequencing by hybridization is based on the algorithm

which was presented in [Swi02, BFS+04] and has the following structure. The spec-

trum is divided into two parts: an ordered collection of elements which is a current

solution and an unordered set of remaining oligonucleotides, called trash set. At each

stage of the computations the oligonucleotides from the solution produce a DNA se-

quence with length not greater than n. Only the moves that lead to feasible solutions,

i.e. with the sequence not longer than n, are considered in this method. The algo-

rithm starts with an initial solution constructed by a greedy heuristic. As the first

oligonucleotide in the initial solution the first oligonucleotide from the spectrum is

chosen and it is marked as used. Next, every combination of pairs of unused oligonu-

cleotides from the spectrum is checked, and the first oligonucleotide from the pair

with the best sum of overlaps is added at the end of the solution. This oligonucleotide

is marked as used. The process of adding the oligonucleotides is repeated until the

length of the sequence composed of the oligonucleotides is not longer than n. The

process of constructing the initial solution is repeated for all oligonucleotides from

the spectrum as the first oligonucleotide in the solution. After that the best solution,

i.e. the one having the greatest number of oligonucleotides from the spectrum, is

taken as the initial solution for the tabu search algorithm.

In the tabu search method three types of moves are initially defined: an insertion

of an oligonucleotide from the trash set into the solution, a shift of an oligonucleotide

from one position to another in the solution, and a deletion of an oligonucleotide

from the solution to the trash set. The moves performed on single oligonucleotides

are usually not sufficient to produce a solution of a good quality, thus operations on

clusters have been also proposed. A cluster is a group of neighboring oligonucleotides

in the solution linked together in such a way that the overlap p of every pair of

neighbors is p > l(or)− 1, where l(or) is the length of the right oligonucleotide in the

pair. A list of clusters is updated after every move since moves like insertions, shifts

or deletions can change clusters. Now, the set of moves is defined as: the insertion
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of an oligonucleotide, the shift of an oligonucleotide or a cluster, the deletion of

an oligonucleotide or a cluster. Note, that clusters exist only in the solution; after

deleting a cluster all the oligonucleotides from the cluster are put to the trash set as

separate elements.

Some constraints have been added to provide that oligonucleotides which fit to-

gether very well will not be easily separated:

• a cluster may be shifted only if it does not break any cluster;

• an oligonucleotide may be shifted if it is not a part of a cluster and it does not

break any cluster;

• an oligonucleotide may be deleted if it is outside a cluster or on one of cluster

ends.

The algorithm tends to maximize the number of elements from the spectrum in the

solution. This criterion, called the global criterion function, leads to a reconstruction

of a desired sequence, however, it cannot objectively evaluate all the moves, since

deletions and shifts would be then chosen only if insertions are not possible. The

function that can evaluate all the moves is the condensation function, which calculates

the ratio between the number of oligonucleotides in the solution to the length of the

solution measured in nucleotides. The usage of the condensation function leads to

a transformation of a weak initial solution into a series of well matched clusters.

However, using only this function would cause at the end the creation of one cluster

only, while the length of the corresponding sequence would be much less than n.

Thus, it is necessary to combine both of the criteria in a series of cycles, which at the

end will give a solution composed of many elements from the spectrum well matched

in clusters. The basic moves are the condensing ones. If a maximal value of the

condensation function is achieved by more than one move, the algorithm selects the

move resulting in a greater number of oligonucleotides in the solution. Hence, the

insertion is the most preferred move with shifts, with deletion of an oligonucleotide

and deletion of a cluster being next.

After a given number (condens) of condensing moves without an improvement

of the global criterion function, the method executes a selected number (extend) of

extending moves. Extending moves are feasible moves based on frequency memory
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instead of the condensation function. This memory is a structure that remembers

the number of times the oligonucleotides have been in solutions (for example, if an

oligonucleotide has not been in any solution so far its frequency value is equal to

0, while if an oligonucleotide has been all the times in the solution, the value is

equal to the number of performed moves of the method). Extending moves can be

of two types: the moves that insert the oligonucleotides being in solutions the most

rarely and the moves that delete the most frequent oligonucleotides. The inserting

moves are preferred to the deleting moves – deletions are performed only in the case

where no insertion is possible. After the execution of the selected number of the

extending moves, the method returns to the normal scheme with the condensation

as the criterion function. The values condens and extend were tested in preliminary

tests in order to choose the best combination of the parameter values (see Section

4.4).

Inserted or shifted oligonucleotides are remembered on a tabu list for a given

number of iterations (ltabu – see Section 4.4 for details). The list is checked if an

attempt to shift or to delete an oligonucleotide is made, and such moves are prevented

if the oligonucleotide is on the list. This procedure makes impossible to reverse

immediately the extending moves. The clusters are not remembered on the tabu list

since they likely change after each move. Even if the method gets into a cycle of

the same moves, it will stay there for a short time, until the next cycle of extending

moves. An element from the tabu list may be shifted or deleted together with the

cluster containing it. The element from the tabu list may also be deleted if there is

no other feasible move. In such case the oligonucleotide which was the longest time

on the tabu list is chosen.

To increase the quality of the solution, the algorithm does not stop after a given

number of cycles (C) consisting of condensing and extending moves but restarts the

search process. A new starting solution is generated on the basis of the frequency

values, by the choice of oligonucleotides having lowest frequencies. After that, most

of the variables are set to initial values (tabu list, frequency memory). The algorithm

stops after a selected number of restarts (R) and gives as the result the best solution

found, i.e. the one containing the greatest number of oligonucleotides.
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4.2 Hybrid genetic algorithm

Another new approach developed for the problem in question was a genetic algorithm.

In general, its effectiveness depends on how the following features are defined: initial

population, population size, genetic operators, fitness criteria, and stopping criteria.

Below these issues are addressed as well as the implementation of the proposed ge-

netic algorithm for the computational phase of the isothermic SBH problem (see also

[BOSW06]).

Initial Population: The initial population consists of s randomly generated indi-

viduals, where s is the population size and is kept constant through the generations.

s is one of the control parameters (see preliminary computational experiments in

Section 4.4 for details).

Encoding of Solutions (Individuals): As each individual represents a solution

in the genetic algorithm, it is important to define how a solution is encoded into

an individual. Generally there are two types of encoding of a solution: a binary

representation or a permutation representation. Considering the fact that a DNA

sequence is formed from a number of oligonucleotides, a permutation of 1, 2, . . . , |S| is

chosen to represent an individual. In this representation, each integer corresponds to

an oligonucleotide from the spectrum. Every permutation is decoded into a nucleotide

sequence which is usually longer than n and its best subsequence (in terms of the

largest number of oligonucleotides) with a length not longer than n, is selected as the

solution.

Fitness: The fitness of an individual is defined as the number of oligonucleotides

from the spectrum used to form the best subsequence, which is not longer than n.

Hence, the individual with the largest number of oligonucleotides in the subsequence

has the highest fitness. Note, that maximizing the number of oligonucleotides in the

solution is not trivial due to the restriction that we need a sequence which is not

longer than n. This implies that the genetic algorithm should construct sequences so

that the overlap between oligonucleotides is maximized. This information is further

used in the crossover operator and it will be explained below.



4. New algorithms for SBH with isothermic libraries 59

Selection: Individuals from a current population are selected on the basis of their

fitness values to form the mating pool for the reproduction step. The aim of the

selection is to keep good individuals and eliminate the bad ones from one generation

to another. This selection is performed by the use of the part sum selection procedure

[PS00]. This procedure has some components of proportional selection schemes, like

the roulette wheel selection, and of remainder schemes, like the deterministic selection

(see also [Mic96] for details). Firstly, for each individual the probability of selecting

this individual for the parent population is evaluated according to its fitness value.

Then, in a deterministic way, the individuals are selected. This procedure consists of

the following steps:

1. Let fi be the fitness value of an individual i, i = 1, 2, ..., s, f be the mean value

of the fitness for all individuals in the population,

f =

s
∑

i=1

fi

s
.

2. Calculate the expected count of each individual, denoted by array Fp

Fp[1] = f1/f

Fp[i] = fi/f + Fp[i − 1], i = 2, 3, . . . , s.

3. Generate a random number r from the range (0,1].

4. Assign value 1 to variables i and count. The next step is repeated until count =

s.

5. If r < Fp[i] then put the individual i into array select, increment r and count

by 1; else increment i by 1.

We note that some individuals may be selected more than once and some not at

all with this procedure, and the following example illustrates that.
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Example 4.1: Consider the instance where we have four individuals in the popula-

tion (s = 4). Their fitness and values in array Fp are presented in Table 4.1. Assume

that r = 0.75. Assignment of the individuals into array select is presented in Table

4.2. We see that while individuals 1 and 2 are selected only once, individual 4 is

selected twice, whereas individual 3 is never selected. �

Tab. 4.1: Fitness of individuals and array Fp from Example 4.1.

i fi Fp[i]

1 4.50 1.29

2 2.50 2.00

3 1.00 2.29

4 6.00 4.00

f 3.50

Tab. 4.2: Selected individuals are stored in array select.

i count Fp[i] r r < Fp[i] select[count] increment

1 1 1.29 0.75 yes 1 r, count

1 2 1.29 1.75 no - i

2 2 2.00 1.75 yes 2 r, count

2 3 2.00 2.75 no - i

3 3 2.29 2.75 no - i

4 3 4.00 2.75 yes 4 r, count

4 4 4.00 3.75 yes 4 count = s

Reproduction: New solutions (offspring) for a next generation are obtained by

applying the crossover and mutation operators to the mating pool obtained in the

previous step. The crossover rate c and the mutation rate m were determined during

the preliminary computational experiments to set the best combination of parameters

(see Section 4.4). In both the crossover and the mutation operators, the concept of
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overlap degree in used, which is the number of nucleotides overlapping in two adjacent

oligonucleotides. Further, the total overlap degree of a sequence is defined as the sum

of overlap degrees of all neighboring oligonucleotides in the sequence.

Crossover: Crossover operators from the literature which are known to be working

well for other problems were not considered here since they do not fit into this prob-

lem so well. In particular, Traveling Salesman Problem (TSP) is closely related to

isothermic SBH problem. However, TSP crossover operators, like crossover operators

developed for other combinatorial optimization problems for which the solution can

be represented as a permutation, are designed without incorporating problem specific

information. For example, in the graph for the TSP problem, the cities are on the

vertices and with an arc two parameters may be connected: a distance between two

cities, and a cost – road toll – of traveling from one city to another. Even though

some of TSP crossover operators do take the distance into account, they ignore the

cost of the travel. In isothermic SBH problem, both the total overlap degree and the

temperature of the newly created solution are important information, since in case

of oligonucleotides rich in A/T nucleotides (longer ones) the overlap degree must be

higher (and the temperature lower) than for G/C rich ones. A crossover operator

that incorporates both of these information will enhance the new solution obtained

after the crossover operation. After experimenting with several crossover operators

to incorporate these problem specific information, the following one has been chosen

as the best crossover operator for this problem. The construction of a new individual

departs from the classical crossover operator, and it is based on the pattern of struc-

tured weighted combination [Glo94] (more general approach allowing to incorporate

these ideas into solving TSP are presented in Section 4.3).

Customary operations are replaced by weighted linear combination of vectors that

preserve discrete relationships and feasibility of conditions. The approach is called

structured weighted combination [Glo94] and it is based on tree properties:

• Property 1 – representation. Each vector is a set of votes for particular decision.

For example, it may be a decision of assigning a particular binary value ’0’ or

’1’ to a variable or if the solution is represented as a permutation – a decision

of establishing the precedence relationship between a pair of elements.

• Property 2 – trial solution. A process is defined which translates the vector (for



4. New algorithms for SBH with isothermic libraries 62

example a permutation of elements) into a feasible solution.

• Property 3 – update. Defined rules are applied to the vectors, such that the

Properties 1 and 2 continue to hold. The vectors vote for particular features,

depending on weights assigned with them. For example, votes coming from the

vector with higher value of weights are applied more often.

These properties imply that the decisions made upon the time are deterministic,

and are based on the decisions made upon time. The weights of each vector are eval-

uated during computational process depending on the decision outcome. The vectors

that have the highest values of the weights are enabled to have greater influence in

the current decisions. This ensures that the total influence of each vector over time is

proportional to the assigned weights and that new vectors will have greater weights.

In the crossover operator, the process is not going randomly, as it usually goes in

genetic algorithms but it is based on the concept of structured weighted combinations.

The individuals are treated as vectors, in which precedence relationship between the

oligonucleotides is established. The offspring choses from the vectors (parents) the

best votes, which are the orders of the elements in the individuals. Both the overlap

degree and the temperature of the obtained sequence are taken into account, and the

child inherits the best characteristics from his parents. Such algorithmic construction

process that uses “voting evaluations” based on the composition of the parents and

the problem objective is also a basic feature of path relinking [GL93].

The crossover operator is applied to the parents population with a rate of c (c·m in-

dividuals in the population undergo crossover). It builds a new individual (offspring)

from two parents selected randomly. For the offspring, the first oligonucleotide is

randomly selected, call it oi, and let of and ol denote the first and the last oligonu-

cleotide in the offspring, respectively. Initially, of = ol = oi. The crossover operator

selects next oligonucleotides by applying the following rules :

1. Identify the oligonucleotides in both of the parents which are preceding and

succeeding oligonucleotide oi and which are not in the offspring yet. Select

the one that fits better with oi. If there is a tie, select one randomly. The

function used here evaluates the fitness of temporary solutions so that they

can be compared. The function (fit) is defined as the total overlap degree

(tod) of a sequence (which is the sum of overlap degrees, od, of all adjacent
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oligonucleotides) divided by the temperature (t) of the sequence constructed so

far. If the selected oligonucleotide is the succeeding (preceding) one, then place

it after (before) oi in the offspring. Update of and ol accordingly. Figure 4.1

illustrates this step.

Fig. 4.1: Creation of the offspring – first step. Predecessors and successors of

oligonucleotide oi are first identified in both of the parents. Note, that

there is no successor of oi in parent A. The one with the highest value of

fit joins the offspring.

2. If all the preceding and succeeding oligonucleotides are already in the offspring,

then select the oligonucleotide with the highest overlap degree with oi among

the oligonucleotides not used so far.

3. Now the crossover operator considers the newly formed offspring and takes the

first and the last oligonucleotides of this offspring instead of oi in the above

description. The predecessors of of (the first oligonucleotide in the offspring)

and the successors of ol (the last oligonucleotide in the offspring) which are not

in the offspring yet are identified in the parents. The one that fits better with
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the offspring is selected. If there is a tie, one is selected randomly. This step

is illustrated in Figure 4.2. If there is no unused oligonucleotides, apply Step

2 appropriately modified to of and ol, respectively. Step 3 is repeated until all

oligonucleotides are in the offspring.

Fig. 4.2: Creation of the offspring – third step. Predecessors of the first oligonu-

cleotide in the offspring (of ) and successors of the last oligonucleotide in

the offspring (ol) are first identified in both of the parents. ol has no

successor in parent A. The one with the highest value of fit joins the

offspring.

One of the aims in developing the above crossover operator is to keep the best

characteristics of the parents in terms of the neighboring oligonucleotides. If two

oligonucleotides are adjacent to each other in both parents, which are having good

fitness values, then we want to keep this structure in the offspring. The other aim of

this operator is to keep the length of the new sequence created at minimum. Note,
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that this crossover operator produces only one offspring which will be a feasible

solution so that we do not need a repair mechanism to deal with infeasible solutions.

As mentioned earlier, this crossover operator was chosen due to the significant

improvement of the results among several other crossover operators that were tested.

One of the tested operators, for example, looked only in the parents for the best suc-

cessor of the oligonucleotide that appeared in the offspring instead of searching in the

parents for the best predecessor or successor of the newly formed offspring. Another

operator created four offspring instead of producing one offspring from two parents.

In addition to testing different crossover operators, various functions for evaluating

the best move (fit) were also tested. In the chosen crossover operator (and in some

others tested) the following functions were tried: the number of oligonucleotides in

the offspring divided by the length of the sequence, the total overlap degree of the

sequence (tod), the number of oligonucleotides in the offspring divided by the tem-

perature of the sequence (t), total overlap degree of the sequence (tod) divided by the

length of the sequence. The function that best harmonized with the crossover opera-

tor was the total overlap degree of the sequence (tod) divided by the temperature of

the sequence (t).

Mutation: The following mutation operator is applied to both the parents and the

offspring population with a rate of m (it means that in m · s · |S| individuals in the

population the mutation occurs).

Select an individual randomly. Find the oligonucleotide with the smallest sum

of overlap degrees with both of its neighbors (if more than one exist, select the first

one found). Swap this oligonucleotide with the adjacent oligonucleotide that has the

lower overlap degree with it. If both of the adjacent oligonucleotides have the same

overlap degree, select one at random. If the selected oligonucleotide is the first (last)

oligonucleotide in the permutation, then move the selected oligonucleotide to the end

(beginning) of the permutation list. Figure 4.3 illustrates how the oligonucleotides

are swapped.

Creation of the next generation: The next generation is composed of all indi-

viduals from the offspring population and depending on the value of the parameter c

(c · s individuals, coming from the crossover operation, are in the offspring) the rest
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Fig. 4.3: Firstly, for each oligonucleotide, overlap degrees with its adjacent oligonu-

cleotides are evaluated. Next, an oligonucleotide with the smallest sum

of overlap degrees with its neighbors, is selected (oa). Then, the oligonu-

cleotide is swapped with its neighbor that has a smaller overlap degree

with it (oa−1).

of the individuals with the best fitness value are taken from the parents population.

Stopping criterion: Stopping criterion is chosen as the number of generations

without improvement (iter) of the criterion function – the number of oligonucleotides

composing a solution, (see the preliminary computational experiments – Section 4.4,

for details).

4.3 Structured crossover in TSP

The approach presented in Section 4.2 is of more general feature and, after some

adaptation, can be also used for solving other combinatorial problems, especially the

ones having a solution represented as a permutation of elements (i.e. in TSP – cities,



4. New algorithms for SBH with isothermic libraries 67

which a salesman has to visit). The best features of the hybrid genetic algorithm

are selected and described how they can be involved in solving Traveling Salesman

Problem.

The crucial elements of the algorithm are the crossover operator, which inherits

some features of the structured combinations of individuals (vectors), weights, as-

signed to vectors, which votes for the individual in the selection procedure, and the

way how the pairs of parents are selected from the pool of the selected individuals.

Let us now consider classical TSP [B la88]. We have set C = {c1, c2, . . . , cn} of the

cities, and distance dij ∈ N between every pair of cities ci, cj ∈ C. The goal is to find

such an order < ck[1], ck[2], . . . , ck[n] > that Equation 4.1 is minimized.

n−1
∑

j=1

dk[j],k[j+1] + dk[n],k[1] (4.1)

The cities can be represented as vertices in a complete graph. With each arc

a cost is assigned, which is a distance between two vertices (cities). In such graph

a Hamiltonian cycle of minimum cost is searched for. However, in many process

models, among them the biological ones, instead of looking for a Hamiltonian cycle,

a Hamiltonian path is searched for. Here, in this example, a Hamiltonian path will

be searched for.

An individual (a vector) is represented as a permutation of all the cities. The

fitness (fi) is calculated for every individual, and it is the cost of the travel through

all the cities. The lower fi, the better the individual is. The fitness is the weight of

the vector and is treated as the basis for the selection procedure. If the weight of the

vector is higher (the value of fitness fi is lower), then the individual is selected more

often as a parent for the next generation. The selection procedure can be for example,

part sum selection procedure or other method known in the literature (roulette wheel

selection, stochastic remainder with replacement).

Let us assume that we have 5 cities, and the distances between the cities are

presented in Table 4.3. The algorithm starts with the initial population of individuals,

randomly created. For example the individuals may be: P1 =< 1, 2, 3, 4, 5 > , P2 =<

5, 4, 3, 2, 1 > , and P3 =< 1, 4, 2, 5, 3 > . Let us calculate the fitness fi for each

individual. The results are gathered in Table 4.4.

With the aid of the selection procedure, we select the individuals as parents for

the next generation: P3 and P1, P3 and P2, and P1 and P2. Three pairs are selected,
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Tab. 4.3: The cost of traveling between two cities.

1 2 3 4 5

1 - 5 2 10 30

2 5 - 60 50 10

3 2 60 - 50 10

4 10 50 50 - 5

5 30 2 5 5 -

Tab. 4.4: The fitness values of the individuals.

individual fitness

P1 f1 = 5 + 60 + 50 + 5 = 120

P2 f2 = 5 + 50 + 60 + 5 = 120

P3 f3 = 10 + 50 + 10 + 5 = 75

because from one pair of parents only one offspring is created. Pairing of the indi-

viduals should cause that the greatest diversity in the population is kept (the pairs

of parents can not be repeated), and the possibility of the greatest improvement is

ensured (individuals of the best fitness fi are paired together). Now, the crossover

operator works as follows:

1. Take a random city as the first element in the new offspring.

2. Check the successors of the last element and predecessors of the first element in

the offspring in both parents, and choose the best one. The function fit that

compares possible successors and predecessors of the newly created offspring

checks for example for the smallest cost (dij) of the travel, if the city joins the

trip. Notice, that in the first iteration of this step the first element is also the

last one.

3. If there is neither successor nor predecessor which can be joined to the solution

(the possible elements might have already been used in the solution), take the

best one which has not yet been used. Return to step number 2 unless all the

cities are in the offspring.
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An example, how new offspring are created is presented in Table 4.5.

Tab. 4.5: Creation of the new offspring. The element, which was randomly chosen

first is marked in the column ‘individual’ as bold. In offspring O1 city

2 was chosen first. Next, the predecessors of ‘2’ and successors of ‘2’ in

parents P3 and P2 were considered for the smallest distance. Thus, the

possible extensions of offspring < 2 > were < 2, 3 >, < 1, 2 >,< 2, 5 >,

and < 4, 2 >. The smallest distance was for < 1, 2 > and city 1 was added

to the offspring. The rest of the creation process runs accordingly.

offspring parents individual fitness

O1 P3, P1 < 1,2, 5, 3, 4 > 70

O2 P3, P2 < 2, 5,4, 3, 1 > 67

O3 P1, P2 < 1, 2, 3, 4,5 > 120

Analyzing the results presented in Table 4.5, we can see that the fitness values

(fi) of two offspring were improved (O1, O2). Further application of the crossover

operator may decrease the value of fi. In order to increase the possibility of finding a

global optimum (instead of a local one) one should use sufficiently large population of

individuals to keep the diversity, and introduce to the genetic algorithm a mutation

operator, which can work randomly or deterministically (i.e. changing the worst

overlap in an individual).

It should be noted, that the formulation of the crossover operator differs from the

structured weighted combination introduced in [Glo94]. In the original algorithm for

TSP the authors propose what follows: the solution is represented as a vector, being

a permutation of all the cities, and the votes decide about precedence relationships

between the cities. To every vector a weight is assigned and the vote from a vector

is stronger if it has higher weight (a function that evaluates possible extensions of

an offspring is a combination of the weight and the cost of a vote). In the algorithm

presented above, and also in the algorithm presented in Section 4.2, the weight – here

it is the fitness function – decides how many times the individual will be selected as

parent. The votes here are also the precedence relationships between the elements

in the individual but they are once again evaluated with the function (fit) to check
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which one of the votes coming from parents is the best. The decision of choosing a

particular element depends only on the result of a comparison and not on the weights

of individuals.

4.4 Tuning parameters

After developing the two algorithms (tabu search one and genetic algorithm one) for

our main problem (SBH with isothermic libraries allowing errors in spectra) some

preliminary tests were performed to set the best values for the parameters used in

these algorithms. A full factorial experimental design could be preferred here since it

allows to explore parameter interactions. However, it also requires too many runs due

to all parameter combinations so only a few levels were tried for each parameter. An

alternative to this method is the approach presented here in which certain parameter

values are fixed and then the best value of one parameter at a time could be found.

This method ignores the interactions between all parameters but allows for more

levels to be tried for each parameter. This method is especially suited to problems

for which we do not know which levels of the parameters should be considered in a

full factorial experimental design, like the isothermic SBH problem.

For the tabu search algorithm the following values were taken for the preliminary

test: condens ∈ 〈5, 11〉; extend ∈ 〈4, 10〉; C ∈ 〈300, 600〉; R ∈ 〈4, 6〉; ltabu ∈ 〈25, 35〉.

The following steps were taken to find the best combinations of the parameters: 40

instances were taken with the spectra coming from sequences of length 400 nucleotides

and containing 10% of negative errors and 10 % of positive errors. Mean values for

all the results were checked to obtain the best parameters. condens value was tested

first and all the other parameters were set to their border values. Thus, two values

for each parameter were tested. condens ∈ 〈5, 11〉 was tested with the increment of 1.

The best values were {9, 10}. Next, extend ∈ 〈4, 10〉 was taken with the increment

of 1 and the best values were reached in range 〈6, 8〉. Thus, for next tests to choose

other parameters, values ∈ {6, 7, 8} were used. Number of cycles C ∈ 〈300, 600〉

with the increment of 100 was examined next and the best values of this parameter

were in the set {400, 500, 600}. Value of R was set to 4, since after forth restart a

better solution was never found. For the ltabu ∈ 〈25, 35〉 with the increment of 5 it

seems that the best value was 30. In a smaller range, for these chosen values of the
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parameters, more tests were peformed and finally the following values were chosen:

• The number of condensing moves, condens, was set to 10.

• The number of extending moves, extend, was set to 7.

• The number of cycles composed of condensing and extending moves, C, was set

to 400. This value hardly rely on the combination of parameters condens and

extend.

• The number of restarts, R, was set to 4.

• The length of the tabu list ltabu was set to 30.

For the genetic algorithm the following values were taken: c ∈ 〈0.5, 1.0〉; m ∈

〈0.0001, 0.1〉; s ∈ 〈50, 300〉; iter ∈ 〈50, 300〉. 40 spectra coming from sequences of

400 nucleotides with 20% of positive errors and 20% of negative errors were tested

and mean values for all the results were checked to obtain the best parameters. The

crossover parameter c was tested first and similarly to the experiment described above

all other parameters were set to their border values. The crossover rate was taken

as c ∈ 〈0.5, 1.0〉 with the increment of 0.05; the best range of values was found to

be 〈0.9, 1.0〉. Hence, three values for c, namely {0.9, 0.95, 1.0}, were used for next

tests to choose other parameters. Next, the mutation rate m was tested in three

different ranges: m ∈ 〈0.0001, 0.001) with the increment of 0.0002, m ∈ 〈0.001, 0.01)

with the increment of 0.002, and m ∈ 〈0.01, 0.1) with the increment of 0.02. The

best values for m were observed to be {0.001, 0.01}. For the population size s, the

interval s ∈ 〈50, 300〉 with the increment of 50 was used and the best range was

found to be s ∈ 〈150, 200〉. The stopping criterion iter was tested in increments

of 50, however, since no significant improvements were observed, the value 50 was

chosen. Subsequently, for the ranges of the parameters obtained in the above tests,

more tests were performed with small variations of chosen values and the following

values for the parameters were finally selected:

1. The size of the population (s) was chosen as the half of the sequence length, with

the exception of 200-nucleotide sequence for which the size of the population

was the same as the length of the sequence (for example: the sequence with 500

nucleotides has 250 individuals in each population).
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2. The crossover rate (c) was set to 0.9, which means that 0.9·s individuals undergo

crossover.

3. The mutation rate (m) was set to 0.001 and it means that the mutation is

applied to the individuals from the parents and the offspring populations with

frequency 0.001·s · |S|.

4. The number of the iterations (iter) without improvement of the criterion func-

tion (i.e. the number of oligonucleotides composing a solution) was set to 50.

The preliminary experiments suggest a very small mutation rate (m=0.001) and

the mutation improves the result in some of the cases. In Table 4.6 the results of

testing different instances with and without mutation operator are presented. Each

value in the table is the mean value for 40 instances. The average improvement of

the value of the similarity between the original sequence and the sequence obtained

with the genetic algorithm (function that calculates the similarity value is described

in more details in Section 4.6) for all tested instances with mutation operator when

m=0.001 is equal to 1.18.

Tab. 4.6: Average similarity of the sequence obtained during computations to the

original sequence for two values of m (m=0 means that mutation never

occurs) and average improvement of the similarity value for m=0.001.

errors n m=0 m=0.001 improvement

±20% 200 99.26 99.34 0,08

400 99.12 100.00 0,88

500 98.98 99.79 0,81

600 96.86 99.81 2,95

average 98,555 99,735 1,18

Note, that the above parameter values cannot be taken separately as optimal

values, these parameter values work well together, and if any of the parameters will

be changed, the rest of the parameters should be tuned appropriately.
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4.5 Preparation of spectra

All the sequences used in the experiments were obtained from the GenBank, Na-

tional Institute of Health in USA. They are DNA sequences coding human proteins.

Instances created on the base of these sequences were used also for testing the algo-

rithm presented in [BGK04] in the computational experiments in Sections 4.6 and

5.2, and form a certain standard testbed when comparing SBH algorithms. The

accession numbers in GenBank of the sequences are given in Appendix A (cf. also

http://bio.cs.put.poznan.pl/, where these sequences and the way they were obtained

are described in more details). The sequences were grouped in two sets. First set,

let us call it set A, consists of the sequences which contain no repetitions of oligonu-

cleotides, neither from standard libraries nor from isothermic ones. In set B the

sequences contain repetitions of oligonucleotides from both libraries (see Figure 4.4).

Fig. 4.4: The scheme illustrating how the spectra are prepared.

Sequences for the computational experiments are prefixes of the above sequences
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taken from GenBank. These prefixes are strings of nucleotides of lengths 200, 400,

500, and 600. Simulated hybridization experiments were made by extracting oligonu-

cleotides of length 10 nucleotides – for standard libraries – and oligonucleotides whose

melting temperatures t and t+2 were 26oC and 28oC – for isothermic libraries. These

values of temperatures and of lengths were chosen in order to compare the results of

the proposed algorithms for isothermic SBH with the algorithms for standard SBH

[ZWZ03, BGK04], that used spectra with oligonucleotides of the same length l = 10.

Two libraries of temperatures 26 and 28 degrees have a similar cardinality as one

library of the length equal to 10.

Note, that there is a large difference between average repetition rates in the stan-

dard and isothermic spectra. In order to check these rates, 1000 randomly chosen

sequences coding human proteins were obtained from GenBank and two spectra for

each sequence (a spectrum with oligonucleotides of length 10, and the second one

with oligonucleotides of temperature 26 and 28 degrees) were created, taking prefixes

of those sequences of length for 600 nucleotides. For each spectrum the number of

the oligonucleotide repetitions was calculated, and next the average repetition rates

were determined. For the standard spectra it was equal about 4 and with the range

〈1, 17〉, while for the isothermic spectra it was equal 16.5 with the range 〈4, 30〉.

The higher value of repetitions in isothermic libraries probably comes from the fact

that the repeated parts in the sequences are rich in G and C, and in this case the

oligonucleotides of constant temperature are shorter than the ones with constant

length. (For example, the substring GCGGCCCGC appearing twice in a sequence

causes three repetitions in the isothermic spectrum: GCGGCCC, CGGCCCG, GGC-

CCGC, while none in the standard spectrum with l = 10). The averages and range

values are preserved in the sequences from Set B.

Both types of errors were then added to such generated spectra. Numbers of

positive and negative errors were calculated according to the cardinalities of the

spectra because a spectrum cardinality varies for each sequence. In sets AM and AT

spectra contain 5% or 20% of every type of errors. The notation 400±20% means

that a spectrum prepared from a sequence of length 400 nucleotides contains 20%

of random positive errors (different from the oligonucleotides already present in the

spectrum) and the same number (20%) of random negative errors. In other words,

20% of randomly chosen oligonucleotides of the original spectrum are missing (so
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called negative errors) and in addition 20% of oligonucleotides in the spectrum are

erroneous (so called positive errors). As a result, the cardinality of this new erroneous

spectrum is the same as the old correct one. Spectra with ±20% of errors contain the

same positive and negative errors as spectra with ±5%, plus 15% of extra ones. This

ensures that obtaining a sequence from a spectrum with the higher error rate is not

easier than from the spectrum with less errors. Spectra were sorted alphabetically,

thus no information about the order of oligonucleotides in the sequences was kept.

From the instances in sets B.1M – with equal-length oligonucleotides and B.1T

– with equal-temperature oligonucleotides, two sets B.2M and B.2T were generated

by adding into the spectra 5% of random positive errors and up to 5% of random

negative errors.

4.6 Computational experiment

In this section, the evaluation of the performance of the algorithms is presented. Com-

putational experiments were performed on a PC with Pentium 4, 2.2 GHz processor

and 512 MB of RAM. The algorithms were implemented in ANSI C language. The

solutions obtained with the algorithms can be evaluated in two ways. Firstly, during

computations, while no information about the order of oligonucleotides is provided,

the number of oligonucleotides composing the solution determines the quality of the

solution, because this is the main criterion function used in the heuristics. Secondly,

once computations are over, the sequence generated by the algorithm is compared

to the original one, which results in the similarity value. In the real world it is in

general impossible, but in the experiments presented here we know the sequences

being bases for the spectra. The similarity is quantified according to the Needleman-

Wunsch algorithm [NW70] (cf. also the Smith-Waterman algorithm, [Wat95, SM97]).

The algorithm evaluates the similarity of two sequences (the examined one and the

solution) on the basis of three parameters: m (match of nucleotides), d (mismatch)

and g (gap in a sequence). Let Apt be the score of the alignment of two sequences,

counted in points: for every match of nucleotides in the alignment m = 1 point, for

every mismatch, d = −1, and for every gap in the alignment g = −1 point. n1 and n2

are the lengths of two compared sequences, and min and max values are calculated

as follows:



4. New algorithms for SBH with isothermic libraries 76

if n1 > n2 then min = n2d + (n1 − n2)g

max = n1m + (n1 − n2)g

else min = n1d + (n2 − n1)g

max = n2m

Then, the alignment score, expressed as percentage is computed according to the

equation:

100 · Apt−min

max−min

Example 4.2 illustrates the way of computing the alignment score.

Example 4.2: Let us consider two sequences ACCTACTT and CCGTACTA, with

lengths n1 = n2 = 8. The best alignment of these sequences is presented in Figure

4.5. In the alignment there are two gaps, one mismatch and 6 matches. Calculating

the score of the alignment, where for every match 1 point is given, and for every

mismatch and gap 1 point is subtracted, the score is equal to 3 points. To obtain

the alignment score expressed as percentage, the values min and max are calculated.

min = n1 ·d+(n2−n1) ·g = 8 ·(−1)+(8−8) ·(−1) = −8 and max = n2 ·m = 8 ·1 = 8.

Now, the alignment score is equal to 100 · Apt−min

max−min
= 100 · 3−(−8)

8−(−8)
= 68, 75[%]. �

Fig. 4.5: An example of the alignment of two sequences.

Basing on the above criteria, the performance of the proposed algorithms is com-

pared to those of the earlier algorithms used for the standard DNA sequencing by

hybridization problem. For the isothermic sequencing the only existing algorithm

accepted spectra without errors, and the comparison was not possible. The best

algorithms proposed for standard DNA sequencing problem with both positive and
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negative errors were considered, namely the tabu search algorithm which uses a scat-

ter search for diversification by Blazewicz et al. [BGK04], the algorithm by Zhang

et al. [ZWZ03], and the enhanced genetic algorithm by Bui and Youssef [BY04]. In

the following, each entry of the tables presented summarizes the results of the tests

for 40 different sequences obtained from the GenBank (for the preparation of spectra

see Section 4.5), except for the algorithm by Zhang et al., where a greater number

of instances were tested for one entry, but it was not tested for all the cases consid-

ered here, and the algorithm by Bui and Youssef, where the tests were performed on

different sequences under the same conditions of errors in the spectrum.

In Table 4.7, the results of the five algorithms are compared. The instances that

were used contained no errors coming from repetitions (Sets AM and AT, and the first

two algorithms used the instances, which where created under the same conditions

– the error rate and the length of the sequences). There are a few measures for the

evaluation of the obtained sequence, which can be divided into two main types:

• one type shows how much the solution is valuable for biologists and here we

have: the similarity of the obtained sequence to the original one and the number

of original sequences reconstructed by the algorithm, and

• the second one determines how does the algorithm work: the quality of the

solution expressed by the number of oligonucleotides composing the solution

and the number of optimal solutions derived by the algorithm (in the sense of

the criterion function used).

Moreover, for two algorithms, tabu search and genetic algorithm, additional mea-

sure is given – the deviation which shows how the results of the similarity value for

particular instance differ from the average value. Note, that in these tests the original

sequences were known as they were DNA sequences taken from GenBank, but the

comparisons of the sequences were calculated after the algorithms have finished the

computations. Each entry of the rows with the heading “No. of original sequences”,

is composed of two numbers a/b and it means that among b instances tested, the algo-

rithm found original sequences for a of them – with 100% of similarity. The cases for

which the results were not given by the authors, are denoted by mark ‘-’. The mea-

sure usage of the oligonucleotides in the solution is compared only for the algorithms,

for which the maximization of the usage of oligonucleotides is the criterion
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Tab. 4.7: Comparison of the algorithms for the isothermic sequencing with the algorithms

designed for standard sequencing. Tests performed on sets AM and AT, except

for the first two algorithms, for which different instances were tested under the

same conditions (error rate, length of the sequence).

length of the sequence 200 400 500 600

error rate ±5% ±20% ±5% ±20% ±5% ±20% ±5% ±20%

Standard sequencing

Method by Zhang et al. [ZWZ03]

Similarity [%] 100.0 - 100.0 - - - - -

No. of original sequences 90/90 - 80/80 - - - - -

Enhanced genetic algorithm [BY04]

Similarity [%] - 97.6 - 92.9 - 92.0 - -

No. of optimal solutions - 26/40 - 13/40 - 13/40 - -

Tabu and scatter search [BGK04]

Usage of oligonucleotides [%] 99.9 99.9 99.9 99.7 99.8 99.6 99.8 99.4

Similarity [%] 99.9 98.4 98.9 95.7 95.8 92.4 95.8 88.5

No. of optimal solutions 39/40 39/40 37/40 28/40 33/40 27/40 32/40 20/40

No. of original sequences 39/40 38/40 37/40 28/40 32/40 27/40 32/40 19/40

Isothermic sequencing

Tabu search

Usage of oligonucleotides [%] 96.8 96.1 96.6 95.3 96.0 95.5 96.2 95.1

Similarity [%] 85.2 78.7 75.9 69.7 75.6 70.2 76.5 68.8

No. of optimal solutions 6/40 2/40 0/40 0/40 2/40 0/40 1/40 1/40

No. of original sequences 8/40 3/40 2/40 0/40 3/40 0/40 2/40 0/40

Deviation [%] 274.2 324.5 211.9 161.9 268.2 199.3 302.6 153.9

Genetic algorithm

Usage of oligonucleotides [%] 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.9

Similarity [%] 99.5 99.2 99.5 99.0 99.6 98.9 98.5 96.1

No. of optimal solutions 40/40 40/40 40/40 40/40 40/40 40/40 40/40 40/40

No. of original sequences 39/40 38/40 39/40 39/40 39/40 37/40 39/40 37/40

Deviation σ [%] 1.7 0.4 5.9 11.9 3.0 8.6 23.7 35.0
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function. For these methods the criterion function was the number of oligonucleotides

used for composing the solution, thus it is very important to obtain a high value of

the usage. The value 100% means that the number of oligonucleotides used for the

construction of solutions is the same as the number of proper oligonucleotides in the

spectra. For example, if in a spectrum there were 200 oligonucleotides and the error

rate were equal 5% (it means that there are 10 negative errors and 10 positive errors),

then the solution composed of 190 oligonucleotides would have 100% of the usage.

The first algorithm, described in [ZWZ03], is mostly designed for positive errors

in addition to some repetitions that can occur in a sequence. However, it works well

with a small rate of negative errors – up to 5%. Note, that the algorithm assumes

that the maximum number of consecutive missing oligonucleotides is equal 3 (the

shift between two neighboring oligonucleotides is not greater than 4). The other

algorithms do not have such additional knowledge. As the output of the algorithm,

one gets all the sequences with the maximum value of the number of oligonucleotides

used in the solution, however, it is not said how the sequence is chosen to be the

correct one. It is assumed here that one of the sequences is with 100% similarity

value, thus the average value of similarity in Table 4.7 is 100%. This algorithm was

not tested by the authors for instances with higher rate of negative errors nor for

longer sequences.

The enhanced genetic algorithm [BY04] was tested only for the cases with 20%

error rate. The method works quite well with the similarity of the obtained sequence

to the original one on average not lower than 92%. The number of original sequences

found for the 200-nucleotide sequences is equal to 26, and for the longer sequences

only 13 out of 40.

The method described in [BGK04] seems to work well for hard instances, with

high rate of both types of errors. The quality value – the usage of oligonucleotides

– is very high for all the cases and mostly it is higher than 99.5%. However, even

though the similarity is quite high (for sequences of 200-nucleotide length and the

error rate in the spectrum 5%, the similarity is above 99%), the number of original

sequences found decreases sharply with the increase of the length of the sequence;

for sequences with 600 nucleotides in the case of 20% error rate, only 19 out of 40

original sequences were found with total average similarity value 88.5%. One should

notice that the tested instances are derived from longer sequences and contain higher
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error rate (±20%) in comparison with the algorithm presented in [ZWZ03], and since

more oligonucleotides are missing in the spectrum, the sequencing problem is more

difficult. The tabu and scatter search algoritm works better than the enhanced genetic

algorithm comparing either the similarity value or the number of original sequences

found.

For the last two algorithms in Table 4.7, an additional measure of the performance

of the algorithms is also presented: the deviation of the similarity values from the

average similarity value. It is defined as the square root of the variation according to

the function:

σ =

√

∑b

i=1(xi − x)2

b − 1

where xi are the consecutive values of the similarity, x is the mean value, and b is the

number of tested instances (b = 40).

The tabu search algorithm for isothermic sequencing is presented in the following

rows. The qualities of the solutions solved with the algorithm are contained in the

range (95%-97%), which are worse than the qualities for the tabu and scatter search

algorithm. This has an effect on the similarity values which are in range < 68.8% −

85.2% > and it is not satisfying result. Also the original sequences were rarely found,

in the case of 5% error rate in the spectrum and the length of the sequence 200

nucleotides only 8 out of 40 sequences were found, while for 20% error rate and the

sequences longer than 200 nucleotides the original sequences were never reached. The

deviation of the similarity values is rather high for every tested case, and it comes

from the fact that the range of the similarity values is too wide. One can obtain the

original sequences or the sequences which are not similar to the original one. This

strongly depends on the instance.

The results of the genetic algorithm are presented in the last few rows. The

initial solution is generated randomly what may cause the difference of the results

for different runs of the algorithm (It was not the case for the tabu search algorithm,

where the initial solution was generated deterministically with the greedy heuristic).

Thus, the algorithm was tested 10 times for every instance, each time starting from

a different population of individuals. The results of more detailed tests are presented

in Tables C.1-C.8 in Appendix C and the analysis of the results is placed in the

next paragraphs. Each entry in Table 4.7 under the similarity and the usage of
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oligonucleotides is the average of 400 tests (40 instances multiplied by 10 runs). On

the other hand, if within 10 times for every instance the algorithm found the original

sequence or the optimal solution at least once, the number of original sequences or the

number of optimal solutions was increased respectively. If the value is for example

equal 36/40, it means that for four tested instances the algorithm could not find

the optimal solution or the original sequence for any of the 10 runs. The algorithm

works very well for all the instances, giving high similarity rate ranging from 96%

in the worst case to almost 100%. For the hardest instances: sequences of length

600 and ±20% error rate, 96% of similarity and 37 original sequences (out of 40) are

outstanding results. It should be noted here, that for these instances the criterion:

the usage of oligonucleotides in the solution is very high (on average it is equal to

almost 100%) and at least once every instance was solved optimally. The reason

for the difference between values of the two criteria: the usage and the similarity, is

the existence of more than one optimal solution derived from an instance. Without

an additional (biochemical) information about the original sequence, it cannot be

indicated which one is better because they are equivalent with respect to the data

provided to the algorithm. One might notice that the deviation is much smaller than

for the tabu search algorithm. For the hardest instances it rises up only to 35%. This

case is more difficult and the results are not as obvious as for easier cases, shorter

sequences, thus, many different sequences were obtained from one spectrum. This

rather high value of deviation follows the reason that despite the algorithm found 37

original sequences (with the similarity equal to 100%), there were a few sequences

with rather small similarity value, which was around 60%.

More detailed results of the computational experiment of the genetic algorithm

for isothermic libraries are presented in Appendix C . The length of tested sequences

varies from 200 to 600 nucleotides and the error rate in the spectrum is equal to ±5%

and ±20%. The algorithm was tested with 40 instances, 10 times for each spectrum.

The results in Tables C.1-C.8 are the average values of 10 runs for each instance.

In Tables C.1-C.4, where the error rate is ±5%, the most significant is that the us-

age is always equal to 100% and this follows optimal usage of oligonucleotides in every

case. However, similarity of the obtained sequence to the original one is not always

optimal. It is coming from the fact that from the same number of oligonucleotides

from the spectrum, it is possible to obtain more than one sequence of nucleotides.
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Very difficult instance to solve turned out to be the spectrum coming from the se-

quence number 4. In this case, the algorithm never found the original sequence

despite the optimal usage in every case, what may be a result of the absence of a key

oligonucleotide(s), which might differentiate two similar parts of the sequence. Also

the sequence number 20 was difficult to reconstruct for every length of the sequence.

Analyzing Table C.4, where the sequences are longer, one might see that usually

repeating the computations may help in finding the original sequence. In this table

we can also observe the increase of the deviation. It follows the fact that there exist

more than one solution, and the differences between the obtained sequences and the

original one are greater. But only an additional biochemical experiment can point

out the correct sequence out of a few output ones, since the quality of the solution

(usage of the oligonucleotides) is the same for different sequences.

Tables C.5-C.8 contain the results of the computational experiment with the spec-

tra with ±20% error rate. Only for the sequences of length 200 nucleotides the usage

of oligonucleotides is almost in every case optimal. However, for longer sequences the

average value of usage is higher than 99%. The decrease of these few oligonucleotides

in the solution often results in lower similarity of the obtained sequence to the original

one. An exception is one instance in Table C.8 for the sequence number 34, where

despite the number of oligonucleotides was lower than optimum, the similarity was

still 100%. In these tables, similarly to Tables C.1-C.4, we can see again that some-

times from the optimal number of the used oligonucleotides we can get more than

one possible sequence (see for example sequences number 4 and 20 in every table,

or sequences 10,19, and 33 in Table C.8). Sometimes, even though the experiment

was repeated, the algorithm didn’t find the original sequence. For ±5% error rate

only the sequence number 4 was this case, what can be caused by the occurence of a

repeated fragment shorter than l in the sequence.

Table 4.8 presents a comparison of CPU times for the algorithms working with

isothermic sequencing, tested under the same conditions. In Table 4.8 each entry is

the mean value for all the results.

It is very significant that the genetic algorithm works for a similar period of time

for the same length of the sequence but different error rate (Table 4.8). Although it

works longer than the tabu search algorithm for the case with ±5%, it is much faster

while error rate increases, and the results are better in both cases (cf. Table 4.7). It
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Tab. 4.8: CPU time of computations [s].

Tabu search Genetic algorithm

n ±5% ±20% ±5% ±20%

200 3.5 9.7 6.5 8.5

400 18.0 74.7 23.9 30.8

500 30.0 125.5 46.5 53.6

600 45.9 199.9 80.9 91.6

might be due to the different functions used to compare the intermediate solutions

in the algorithms. The function is more sophisticated and time consuming for the

genetic algorithm and although the algorithm works more slowly for easier instances,

it is much more effective what results in shorter time of finding the best solutions

for harder instances. In the tabu search algorithm, the function for evaluating inter-

mediate solutions was the condensation, i.e., the number of oligonucleotides in the

solution divided by the length of the produced sequence. In the genetic algorithm,

different functions were tested (as explained in Section 4.2), including the condensa-

tion within the crossover operator. Among the functions that were tested, the best

one appeared to be the combination of overlaps between neighboring oligonucleotides

and the temperature of the sequence. It indirectly takes the length of oligonucleotides

into consideration. This function provides very good results – almost all obtained se-

quences are optimal from the criterion function point of view, because the number

of oligonucleotides is almost the same as the number of proper oligonucleotides in

the spectrum. Moreover, they are also optimal from the biochemical point of view,

because similarity to original sequences is almost 100% (cf. Table 4.7). For the tabu

search algorithm the quality of the solution, although is very high (95%-97%), does

not lead to high similarity of the obtained sequence, when compared to the original

one.

At last, the algorithms were tested on the set B in which sequences contain rep-

etitions of oligonucleotides. The case in which repetitions occur is more difficult to

solve because there are more possibilities of obtaining solutions which are of the same

value of the criterion function (they are equal in mathematical sense) but sequences

can be very different from the original one (see Example 4.3 for details illustrating
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that phenomenon).

Example 4.3: Let a sequence be composed of some fragments which we label as A,

X, B, X, and C (see Figure 4.6 (1)). Notice that fragment X is repeated twice in

Fig. 4.6: An example of an erroneous reconstruction of a sequence in case of repe-

titions of oligonucleotides in the sequence.

the sequence. Let in the spectrum be all the oligonucleotides that are contained in the

original sequence – the repeated oligonucleotides appear only once in the spectrum.

Now, during the reconstruction process the algorithm finds a sequence in which frag-

ments B and C are swapped (Figure 4.6 (2)). The solution is composed of almost all

oligonucleotides from the spectrum (depending on how long the oligonucleotides are).

Unfortunately, the similarity is low (only the first part of the sequence composed of A

and X well matches the original sequence). Suppose that in the spectrum some errors

appear. Now the reconstruction of a sequence is presented on Figure 4.6 (3). The

second repeated part X could not be fully reconstructed due to repetitions and lack of

some oligonucleotides in the spectrum. Part X’ which is the end of X and together

with C is now in the beginning of the solution. Next parts A, X, B, and X” come,

X” being the beginning of part X. The reconstructed sequence is shorter than n and

additionally another element D (which is a positive error) joins the solution. The us-

age of elements from the spectrum in the solution is now greater than 100%, because

among all the proper oligonucleotides from the spectrum, additional one, enters the

solution. The similarity value of the obtained sequence to the original one is again

very low. �
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Analyzing the above example we can see that some solutions which are wrong for

the biologists are preferred while concerning the global criterion function. Without

an additional experiment it is not possible to choose the solution which is similar to

the original sequence.

The preliminary tests for the spectra with repetitions were made for the genetic

algorithm with isothermic libraries (sets B.1T and B.2T) and for the tabu and scatter

search algorithm [BGK04] for the standard libraries (sets B.1M and B.2M). The

genetic algorithm was chosen for the isothermic libraries because it was better in

the case of no repetitions. It was tested once again ten times for every instance to

start from different random initial solutions (cf Table 4.9). More detailed tests are

presented in Tables C.9 and C.10 in Appendix C.

Tab. 4.9: Results of tests for sets B.1 – sequences of length 600 with repetitions of

oligonucleotides without additional errors in spectra – and for sets B.2 –

sequences of length 600 with repetitions of oligonucleotides and additional

up to 5% of negative and 5% of positive errors

Algorithm Set B.1 Set B.2

Tabu and scatter search Usage of oligonucleotides [%] 99.86 99.55

Standard libraries Similarity [%] 88.45 82.63

No. of optimal solutions 33/40 23/40

No. of original sequences 14/40 10/40

Running time [s] 84.30 129.95

Genetic algorithm Usage of oligonucleotides [%] 99.99 100.00

Isothermic libraries Similarity [%] 78.12 78.44

No. of optimal solutions 39/40 35/40

No. of original sequences 9/40 6/40

Running time [s] 90.63 108.67

Deviation 59.38 61.65

Analyzing the results from Tables 4.7 and 4.9, we can state that the genetic algo-

rithm with isothermic libraries deals very well with the instances where no repetition

of oligonucleotides appears, while in the case with repetitions the tabu and scatter
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search method with standard libraries works better. This might be for the following

reason: isothermic libraries cause so many repetitions that solving the problem is

much more difficult. In the description of the preparation of set B (sequences with

repetitions of oligonucleotides) it was mentioned that the average number of repe-

titions in set B.1M is 4 for standard libraries and in set B.1T is 16 for isothermic

libraries for the same sequences. Although isothermic libraries cause fewer experi-

mental errors, they give more repetition errors than standard libraries, because an

isothermic library consists of elements shorter than 10 nucleotides for the GC rich

sequences. We may notice that the genetic algorithm solved most of the sequences

at least once optimally (see no. of optimal solutions). However, the similarity is very

low – 78.12% – and only for 9 instances the algorithm found the original sequence.

Although the usage of oligonucleotides in the solution for tabu and scatter search

method is similar to the usage for genetic algorithm and less solutions were solved

optimally, the similarity of obtained sequences to the original ones were 10% greater

and the number of the original sequences also increased.

The results for set B.2, where positive and negative errors were added, are slightly

worse for both of the algorithms. Surprisingly, in case of the genetic algorithm the

usage of oligonucleotides is equal 100% but only 35 out of 40 instances were solved

optimally. This follows the single presence of many repeated oligonucleotides in the

spectrum. The solutions found by the algorithm were composed of more oligonu-

cleotides than the optimal number of elements from the spectrum, what means that

some positive errors were included in the solution. Looking at the more detailed

results of the genetic algorithm tests in Table C.10 in Appendix C, one might notice

that, for example, for sequences No. 11, 17, 36 and 39 the usage of oligonucleotides

is more than 100% and the similarity is on average equal 65%. The deviation is also

very high what suggests that the sequence obtained by the algorithm is very distant

from the original sequence, while the solution is better than the optimal one com-

paring the criterion function. This situation did not occur in set B.1T because there

were no positive errors and the algorithm could use only the proper oligonucleotides.

The value of the deviation of the similarity is higher for sets B.1T and B.2T

than for set AT. This follows the fact that obtaining the proper (original) sequence

strongly depends on the instance and sometimes more than one sequence with very

low similarity was found (compare for example in Table C.9 in Appendix C sequences
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No. 21, 23, 33, and 34 where some sequences had 100% similarity but the average

value was 85% or lower). In Tables C.9 and C.10 only in one case (No. 13) the

original sequence was obtained in all ten runs of the algorithm. In most of the cases

the algorithm never found the sequence or it found it only in one run (cf. sequence

No. 2 and 9 in Table C.9). Thus, there is a quite low probability that the algorithm

may find the original sequence. Only an additional biochemical experiment can reveal

the ambiguities.

Following the above discussion, one might suppose that connecting the standard

libraries causing less repetitions with the hybrid genetic algorithm would give the

best results. Although there were a few different genetic algorithms applied to this

problem [BKK02, BY04], a new one, which outperforms the existing algorithms, is

proposed in the next chapter. The revised hybrid genetic algorithm is based on the

main pattern of the approach described in Section 4.2 but adopted to handle standard

libraries.



5. COMPARISON OF TWO

APPROACHES TO SEQUENCING

BY HYBRIDIZATION: THE

STANDARD AND ISOTHERMIC

ONES

In the previous chapter the isothermic approach was presented. The tests of the new

algorithms proposed for this approach showed that this approach is prone to errors

coming from repetitions (especially in the sequences rich in G/C content, where

the length of the oligonucleotides decreases). The genetic algorithm designed for

isothermic libraries outperformed the existing algorithms for standard sequencing in

the case of the sequences without repeated regions. On the other hand, in the case of

the repetitions in the spectra the algorithm rarely found original sequences although

the maximization of the criterion function, which is the number of oligonucleotides in

the solution, reached optimum. It cannot be surely stated what is the reason of the

worse results for isothermic libraries in the case of repetitions in the spectra. Is it a

higher repetition rate in case of isothermic libraries or is the algorithm not working

well enough to solve the problem? This chapter answers both questions. In order

to compare in reliable way the two approaches to sequencing by hybridization: the

standard and the isothermic ones, once again a genetic algorithm was implemented.

This time the aim was to keep the new algorithm as similar to the algorithm from

Section 4.2 as possible, but adopted for the equal-length oligonucleotide libraries.

In this chapter the genetic algorithm devoted to standard SBH problem (cf. Def-

inition 2.2) is described (Section 5.1). In Section 5.2 the algorithms for different

approaches are compared together in tests on the same sequences.
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5.1 Revised hybrid genetic algorithm for

standard sequencing by hybridization

problem

The revised hybrid genetic algorithm is based on the main pattern of the approach

described in Section 4.2 but adopted to handle standard libraries (see also [BGS+06]).

As before the data coming from the hybridization experiment are the spectrum S

– here a set of oligonucleotides of the same length l – and the length of the original

sequence n.

Initial population consists of s randomly generated individuals. s is the population

size, and it is kept constant during computations.

Individual (chromosome) is a permutation of |S| indices of oligonucleotides from

the spectrum. Every permutation is decoded into a sequence, usually longer than

n, and its best subsequence of length not greater than n, i.e., including the largest

number of oligonucleotides from the spectrum, is a potential solution.

Fitness (objective function) is the number of oligonucleotides from the spectrum

used to form the best subsequence, which is not longer than n.

Selection. Individuals from a current population are selected on the basis of their

fitness values to form the mating pool for the reproduction step. This selection is

performed by using the part sum selection procedure in the implementation.

Reproduction. New individuals (offspring) in next generations are obtained by ap-

plying the operators: structured crossover and mutation to the mating pool obtained

in the previous step, with the probability, respectively, c and m. Thus, in the next

generation c · s new individuals will be created with structured crossover and at most

m · s · |S| new individuals will come from mutation. The probabilities (c,m) were

determined during our preliminary tests to set their best combination.

Structured crossover. Two parents are chosen randomly from the mating pool.

The first oligonucleotide in the offspring is chosen randomly. This oligonucleotide, oi,

is identified in both of the parents. The construction of the child from this starting

point departs from that of classical crossover operations, and uses a strategic design

that accords with the concept of structured combinations as discussed in Section

4.2. The construction proceeds as follows. The successors of oi and the predecessors
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of oi in the parent individuals are considered. The one that fits better in front

of oi (for the predecessors in the parent chromosomes) or at the end of oi (for the

successors in the parent chromosomes) is placed at the proper position in the offspring.

The new oligonucleotide together with oi in the offspring now form a block. In the

next steps instead of oi, the terminal oligonucleotides of the block are considered

and predecessors of the first oligonucleotide of the block and successors of the last

oligonucleotide of the block are checked in the parent individuals. If there is neither

unused successor nor unused predecessor in the parent individuals, then the best fit

oligonucleotide from the remaining individuals is chosen. The best fit oligonucleotide

is the one with the highest value of the ratio of the number of oligonucleotides in

the block to the length of the sequence. This in fact means that the newly built

sequence should be the shortest. The procedure of creating the individual is stopped

when all oligonucleotides from the spectrum are in the block. In this formulation one

child is created from two parents. As previously mentioned, the process of creating

this new offspring is different from the classical genetic algorithm, where most of the

process goes randomly. New structured crossover operator incorporates the idea of

structured combination by treating the individuals as vectors to establish precedence

relationships between oligonucleotides. Selection of an oligonucleotide at each step

can be compared to choosing the best vote from two vectors (parents). Hence, the

offspring inherits the best characteristics (votes) from parents (vectors).

Mutation can occur both in the parents and in the offspring population with the

probability m. The individual to be mutated is selected randomly. In this individual

the oligonucleotide with the lowest overlap degree is found (if more than one exist,

the first one is chosen). This oligonucleotide is swapped with its neighbor that has

lower overlap degree with it. If the selected oligonucleotide is the first (last) one

in the individual, then it is swapped with the last (first) oligonucleotide. The new

individual then replaces the old one.

Creation of the next generation. Apart from the newly created individuals, the

best individuals from the parent population go on to the next generation.

Stopping criterion is a chosen number of generations in which no improvement

occurs in the objective function.

After the preliminary tests a set of best parameter values was established. The

cardinality of the population has been set to the half of the length of the target
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sequence. For the shortest sequences s is equal to 100 individuals, and for the longest

sequences 300 individuals. The probability that mutation of each oligonucleotide in

the chromosome occurs is m = 0.001, and the probability that structured crossover

occurs for any two individuals is c = 0.9, where the stopping criterion has been set

to be 50 generations without improvement of the objective function.

5.2 Computational experiment

The revised hybrid genetic algorithm was tested on the same sets A and B as the

algorithms for standard sequencing in the previous chapter. The algorithm is com-

pared with other algorithms dedicated to standard sequencing: tabu and scatter

search presented in [BGK04], enhanced genetic algorithm presented in [BY04], and

the algorithm presented in [ZWZ03], and the results of the comparison are presented

in Table 5.1. Test of the first two algorithms are performed on set AM and of the

two other algorithms – on the sets prepared under similar conditions – sequences do

not contain any repeated oligonucleotides. The algorithm from [ZWZ03] assumes ad-

ditional knowledge of consecutively missing oligonucleotides, which was not the case

for the other algorithms.

Analyzing the results of tests performed with the spectra prepared from the se-

quences without repetitions of oligonucleotides, one can notice that the revised hy-

brid genetic algorithm works very well even for very hard instances – for sequences of

length 600 nucleotides and 20% of error rate. In almost all of the cases it finds target

sequences, composed of 100% of the proper oligonucleotides. It happens that a high

rate of usage of oligonucleotides in the solution does not mean that the obtained se-

quence is similar to the examined one, due to the existence of more than one optimal

solution. However, analyzing more detailed results placed in Appendix C in Tables

C.11 - C.18 we can be sure that if the solution was composed of the proper number

of elements from the spectrum, then at least one sequence was the original one or

with high similarity (above 99.8%) to the original one. For such high results only

few oligonucleotides are wrong or wrongly ordered, usually at the ends of sequences.

Also the deviation shows that there are only small differences in the similarity values.

The highest value is for the case of 200-nucleotide sequence and ±20% of errors in

the spectrum. When comparing this result with Table C.15 one can see that for a
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Tab. 5.1: Comparison of results of different algorithms for standard sequencing. Se-

quences have no repetitions – set AM

length of the sequence 200 400 500 600

error rate ±5% ±20% ±5% ±20% ±5% ±20% ±5% ±20%

Revised hybrid genetic algorithm

PC Pentium 4, 2.0 GHz, 512 MB RAM

Usage of oligonucleotides [%] 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.98

Similarity [%] 100.00 99.84 100.00 100.00 99.85 99.80 99.87 99.81

No. of optimal solutions 40/40 40/40 40/40 40/40 40/40 40/40 40/40 40/40

No. of original sequences 40/40 40/40 40/40 40/40 40/40 39/40 40/40 39/40

Deviation 0.00 11.77 0.00 0.00 0.59 0.39 0.41 2.31

Running time [s] 4.3 6.3 11.9 20.5 18.1 27.2 25.7 44.2

Tabu and scatter search [BGK04]

PC Pentium 4, 2.0 GHz, 512 MB RAM

Usage of oligonucleotides [%] 99.93 99.93 99.90 99.67 99.83 99.64 99.84 99.36

Similarity [%] 99.87 98.44 98.96 95.70 95.76 92.41 95.82 88.50

No. of optimal solutions 39/40 39/40 37/40 28/40 33/40 27/40 32/40 20/40

No. of original sequences 39/40 38/40 37/40 28/40 32/40 27/40 32/40 19/40

Running time [s] 5.6 9.0 47.4 68.5 82.9 125.5 127.6 186.3

Enhanced genetic algorithm [BY04]

PC Pentium 4, 2.4 GHz, 512 MB RAM

Similarity [%] - 97.60 - 92.90 - 92.00 - -

No. of optimal solutions - 26/40 - 13/40 - 13/40 - -

Running time [s] - 1.5 - 8.6 - 15.1 - -

Method by Zhang et al. [ZWZ03]

SGI Origin 2100

Similarity [%] 100.00 - 100.00 - - - - -

No. of original sequences 90/90 - 80/80 - - - - -

Running time [s] 1.6 - 19.0 - - - - -
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sequence number 13 only in 4 out of 10 runs the algorithm gave as a result the

original sequence (100% similarity) while in the other runs sequences of 55% similarity

composed of the same number of oligonucleotides were returned.

The overall results are improved significantly as compared to the previous algo-

rithms, especially in the number of generated original sequences. The algorithm in

[ZWZ03] generates as the output all possible solutions for an instance and one of the

output sequence is the original one, but the authors do not provide that informa-

tion (cf. the comment for this algorithm in Section 4.6). Another case, which was

mentioned in Section 3.1.1 in the description of the algorithm is that the spectrum

is extended with artificial elements such that all the negative errors are eliminated

and only the positive errors are present in the spectrum. For all the pairs of oligonu-

cleotides for which the distance (the shift) d is not greater than δ, 1 < d 6 δ the

path of length d is constructed, where shifts between consecutive oligonucleotides are

equal 1. For every such a pair of oligonucleotides the spectrum is extended with d−1

oligonucleotides from the path. The authors assume that δ 6 3, but they did not

show how the computation time would change if δ is increased to l. The time could

grow drastically and there would be too many output sequences due to many positive

errors in the extended spectrum.

In Table 5.2 the genetic algorithms for the two approaches to sequencing by hy-

bridization are compared for set A, the revised hybrid genetic algorithm and the

genetic algorithm, which was presented in Chapter 4.2. The numbers of optimal

solutions are the same for both genetic algorithms – at least in one run for each algo-

rithm the optimal usage of oligonucleotides was reached. The average values of the

usage are similar and in most of the cases the optima are reached. Differences start

when comparing the similarity of the obtained sequences to the original ones. For

the standard libraries the genetic algorithm usually solved each instance optimally

and the differences between the sequences, if appeared, were very small (see the de-

viation values). In the case of isothermic libraries at least one of the sequence was

never solved optimally despite a few runs for every instance. However, the average

similarity values are also very high and they are better than for the other algorithms

dedicated to standard or isothermic libraries, see Table 4.7.

Next, the algorithms were tested on the instances from sets B.1M and B.2M,

where sequences contain repetitions, and the possibility of obtaining more than one
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Tab. 5.2: Comparison of results of genetic algorithms for different approaches to SBH.

Sequences have no repetitions – set A

length of the sequence 200 400 500 600

error rate ±5% ±20% ±5% ±20% ±5% ±20% ±5% ±20%

Revised hybrid genetic algorithm for standard libraries

PC Pentium 4, 2.0 GHz, 512 MB RAM

Usage of oligonucleotides [%] 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.98

Similarity [%] 100.00 99.84 100.00 100.00 99.85 99.80 99.87 99.81

No. of optimal solutions 40/40 40/40 40/40 40/40 40/40 40/40 40/40 40/40

No. of original sequences 40/40 40/40 40/40 40/40 40/40 39/40 40/40 39/40

Deviation 0.00 11.77 0.00 0.00 0.59 0.39 0.41 2.31

Running time [s] 4.3 6.3 11.9 20.5 18.1 27.2 25.7 44.2

Genetic algorithm for isothermic libraries

PC Pentium 4, 2.0 GHz, 512 MB RAM

Usage of oligonucleotides [%] 100.00 100.00 100.00 99.96 100.00 99.98 100.00 99.93

Similarity [%] 99.53 99.15 99.47 98.95 99.60 98.89 98.47 96.08

No. of optimal solutions 40/40 40/40 40/40 40/40 40/40 40/40 40/40 40/40

No. of original sequences 39/40 38/40 39/40 39/40 39/40 37/40 39/40 37/40

Deviation σ [%] 1.72 0.39 5.87 11.92 3.01 8.57 23.68 35.01

Running time [s] 6.5 8.5 23.9 30.8 46.5 53.6 80.9 91.6

solution with the same value of the criterion function increases. The results of tests

performed on the instances from sets B are presented in Table 5.3. For the tabu

and scatter search algorithm and for the genetic algorithm they are the same as in

Table 4.9. Comparing these results, we can notice that the revised hybrid genetic

algorithm is much better than the other algorithms, especially for the number of

optimal solutions and the number of original sequences found. Also the similarity

is a few per cent higher than the results of tabu and scatter search algorithm. The

usage of oligonucleotides is very high for all the algorithms, however, optimal solutions

were more frequently reached by two genetic algorithms – for standard and isothermic

libraries.

For the revised hybrid genetic algorithm the usage of oligonucleotides in the so-

lution is on average equal to 100% and the instances were solved optimally. For
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Tab. 5.3: Results of the computational tests of the algorithms for standard and isothermic

sequencing. Set B.1 – sequences with repetitions only. Set B.2 – sequences with

repetitions and additional negative and positive errors up to 5%

Set B.1 Set B.2

Revised hybrid genetic algorithm with standard libraries

Usage of oligonucleotides 100.00 100.00

Similarity [%] 92.75 91.23

No. of optimal solutions 40/40 40/40

No. of original sequences 34/40 30/40

Deviation 72.63 63.99

Running time 37.65 41.85

Tabu and scatter search [BGK04] with standard libraries

Usage of oligonucleotides [%] 99.86 99.55

Similarity [%] 88.45 82.63

No. of optimal solutions 33/40 23/40

No. of original sequences 14/40 10/40

Running time [s] 84.30 129.95

Genetic algorithm with isothermic libraries

Usage of oligonucleotides [%] 99.99 100.00

Similarity [%] 78.12 78.44

No. of optimal solutions 39/40 35/40

No. of original sequences 9/40 6/40

Deviation 59.38 61.65

Running time [s] 57.42 64.78
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the detailed computational results of the experiment see Tables C.19 and C.20 in

Appendix C. In Table C.20 only for two sequences No. 16 and 20 the usage of

oligonucleotides exceeded 100%. In these cases the obtained sequence was never

found although the similarity is very high 97%-98%. It is the result of holes in

the seqeunce, which could not be reconstructed due to negative errors coming from

repetitions, and they were filled with some oligonucleotides being positive errors in the

spectrum. The rest of the sequence was properly obtained. For the genetic algorithm

dedicated to isothermic libraries the situation in which the usage of oligonucleotides

exceeded 100% took place more often (cf. 6 spectra in Table C.10). For these cases

the similarity was on average equal to 73%. The reason of this is a higher repetition

rate in these spectra, and what follows, more possibilities to construct the solutions

and including positive errors.

For standard libraries there were many spectra for which the reconstruction of a

sequence from one spectrum led in every run to the same original sequence: in Table

C.19 – 13 spectra and in Table C.20 – 9 spectra. For isothermic libraries there is only

one spectrum (no. 13) for which genetic algorithm resulted in the original sequence

in all 10 runs (cf. Tables C.9 and C.10). Moreover, it was also more difficult to find

the optimal solution in case of isothermic libraries, than in the case of standard ones.

In Table C.10 we can see that there are 10 instances which were not solved optimally

at least once, among them there are 5 spectra for which the optimal solution was

never found.

Summing up the results of the computational experiment for two different ap-

proaches to sequencing by hybridization, performed with genetic algorithms based on

the similar scheme, we can state that optimal solutions were found with both algo-

rithms, slightly more frequently for standard libraries, when in the spectra repetitions

occur. However, for the isothermic libraries the reconstruction led very often to many

different sequences, what was noticeable by high deviation values. The genetic al-

gorithm found then different solutions with the same criterion function for different

runs of the algorithm. Usually, at least one of the sequences was the original one. In

the case of repeated parts in the original sequences, both algorithms had problems

in the reconstruction, even though the solutions were optimal from the point of view

of the criterion function. The genetic algorithm for isothermic libraries only in less

than a quarter of all the instances obtained the proper sequence. This is the result
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of the property of the isothermic libraries which contain shorter oligonucleotides in

case they are rich in ’G’, ’C’ nucleotides. This in turn causes more repetitions in the

parts of sequences rich in G and/or C.

Following the above remarks one may say that the revised hybrid genetic algorithm

for standard libraries is the best suited for solving the SBH problem, especially for

sequences with repetitions. It overcomes by far other approaches known from the

literature.

To this end let us also mention that the sequence which is the result of the

algorithm should be confirmed with additional biochemical experiment. Sometimes

it may be necessary to use some longer oligonucleotides in the reconstruction part –

or when the sequence is very repetitive, combine the isothermic approach with the

multistage one.



6. ASSEMBLING – LARGE SCALE

SEQUENCING

The assembling problem was formulated in Section 2.3 in two versions: in case of no

errors in the input sequences and in general case, when the sequences may come from

two strands of the DNA molecule and there may be some sequencing errors in the

input fragments. In the next section, the algorithm is proposed, which incorporates

the novel approach to sequencing – pyrosequencing: the input fragments are shorter

than in the classical assembling and the vector of quality scores for every nucleotide

in the sequence is provided (see Section 2.2 for the description). In Section 6.2 the

results of computational test are presented.

6.1 New algorithm for the assembling problem

As the input to the assembling problem we have a multiset of fragments over the

alphabet {A, C, G, T}. The lengths of the fragments differ depending on the bio-

chemical method of sequencing which was chosen and are in the range from a few

dozens or so (Solexa’s approach, see at: www.solexa.com) up to a few hundreds of

nucleotides (Sanger’s approach [SNC77]) and there may exist the inclusion relation

between them. The algorithm presented in this section is designed especially for

the sequences of rather high quality and of length about 100 nucleotides, which are

coming from 454 Sequencer. But in general the method may be used for sequences

with different lengths. The output is a sequence having all the input fragments as

the subsequences. The criterion for the evaluation of the solution can be its length,

which is minimized, or its likelihood, which has to be maximized.

If there are no errors coming from the experiment and the fragments are from one

strand of a DNA helix then we have an ideal case. This case is not considered here in
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more details, since it is only of a theoretical nature. In general, the input sequences

contain errors: insertions, deletions and substitutions of nucleotides. The fragments

may also come from different strands of a DNA helix. The problem becomes more

difficult because imperfect matches have to be allowed when aligning two fragments.

Unfortunately, both of these problems are NP-complete. The first problem with-

out errors in the input set is the shortest common superstring problem. Errors in the

input fragments make the second problem even more difficult to solve. As the output

one usually gets a number of contigs (the contig being a few up to a few thousand

fragments overlapping together) instead of one sequence.

The proposed algorithm solving the DNA sequence assembling problem is divided

into three parts. The first part builds an overlap graph for all the input sequences. It

requires as the parameters, values of the minimum overlap between two sequences and

of the error bound, the latter being the percentage of the mismatches allowed in the

overlap of two sequences. The comparison is done also for the reverse complementary

sequences to the input ones, due to the possibility that the fragments may come from

both strands of a DNA helix. In the second phase, a graph is constructed with the

fragments as the vertices and two vertices are connected with an arc if there is a

feasible overlap between the two fragments. Next, a path is searched for which passes

through all the vertices (either the original fragments or their reverse complementary

ones). Usually, it is not possible to make one path in the graph and as the output

several paths are returned. At the end, in the third part, the consensus sequence is

determined by voting of fragments on every position of the alignment.

Building the overlap graph requires a comparison of all the pairs of fragments

which is O(n2), where n is the number of input fragments. Determining a possible

overlap of two fragments with the Smith-Waterman algorithm ([Wat95], cf. also

Needleman-Wunsch algorithm [NW70] in Section 4.6) takes time O(k2), k being the

length of the longer sequence. The complexity of this problem makes it impossible

to determine whole overlap matrix for big instances. For example, if we want to

recover the genome of a bacteria which is of length around 2 Mbp with the fragments

of 100bp and average overlap being 15, then we get around 3 · 105 fragments. The

time of computations is extremely long, and there is need to limit the comparison of

time consuming Smith-Waterman algorithm only to the promising pairs of sequences.

In order to narrow the range of compared fragments, the sequences are divided into
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smaller subsequences shifted by 1 nucleotide, called windows of the length l and then

coded with hashing function. Only the windows which are in the minimum overlap

area (it is a parameter for the algorithm) are considered and only the ones which

are of good quality. The quality of a window is calculated on the basis of quality

score which is obtained from the flowgram by the 454 Sequencer. If the quality of

at least one nucleotide does not exceed the minimum quality (another parameter of

the method) value, then such a window is not reliable and is rejected. If the number

of the same windows for a pair of sequences exceeds a bound given by a parameter,

and the order of the windows is the same, then such a pair is marked as promising.

Next, for all the promising pairs of fragments, the overlap together with an error of

mismatches are calculated. If there is the inclusion relation between two sequences

(with some mismatches allowed) then this fact is remembered.

The alignment of two sequences is calculated according to the Smith-Waterman

algorithm. For every match of nucleotides the value m is added to the score, for every

mismatch the penalty d is added to the score and for every gap, g. Generally m = 1,

d = −1, g = −1. However, the gaps usually appear in bunches and should be scored

more accurately with the convex gap function: γ(n): for all n, γ(n + 1) − γ(n) <

γ(n) − γ(n − 1), where n is the number of gaps. The first gap is punished with

the highest penalty and for every next one the smaller punishment is given. Such

an approach is difficult to achieve in practice because it requires on every position

checking the number of gaps which is currently given. At every iteration we have

to go back n steps in the worst case and the complexity of counting the score is

O(N2M), where N and M are the lengths of the sequences, and N > M . Instead,

affine gaps are commonly used in practice, which try to approximate the convex gap

function. In this approach, the first gap is punished with the highest penalty and

every next one has the same, smaller, penalty. The function is defined as follows:

γ(n) = d + (n − 1) · e, where d is the value of the opening gap and e is the value

of the extended gap. In this case, to compute the optimal alignment, we have to

remember at the similarity matrix entry (i, j) the best score if the gap is open, and

the best score if the gap is not open. We increase the memory space because we

have to remember additional matrices, but do not increase polynomially the time

complexity, which was the main problem for the convex gap function.

Having the score of alignment: the offset of overlapping of two sequences and the
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error rate, we can construct now a graph in which the vertices are the fragments and

the arcs connect the vertices for which the alignment score was calculated and the

values of the offset and the error rate are in the range of feasible values. Next, some

additional operations has to be done within the graph, which help to lengthen the

path, which will be searched for in the graph. The hashing algorithm could have

omitted some pairs of sequences, not marking them as promising. These three steps

are necessary to repair the lack of arcs or the excess of some vertices:

• If there is the inclusion relation between sequence a and b, such that a ⊆ b,

then a is deleted from the input set, together with sequence ~a (the reverse and

complementary sequence to sequence a). The arcs from the predecessors of a

and to the successors of a are becoming the predecessors and the successors

of b.

• If there is an arc a −→ b, then there should also be an arc between the reverse

and complementary fragments to sequences a and b: ~b −→ ~a. If the arc ~b −→

~a is not present, then the alignment between ~b and ~a is calculated and the

appropriate arc is added to the graph.

• If vertex a has got two successors a −→ b and a −→ c, then the relation b ? c

is also checked.

After recovering the missing arcs and deleting the unnecessary vertices in the

graph, we can now search for a path in this graph. Starting from any vertex, we

construct a path by joining as long as possible the vertices with the smallest shift

and the highest similarity between the fragments. The path is constructed in both

directions: by adding the predecessors and successors of the path. Such a path

is constructed for every vertex as the starting point. The longest path is chosen,

and all the vertices from the path (and their reverse complementary counterparts)

are deleted. If there are still some vertices left in the graph, another paths are

constructed, until the length of a path is greater than the minimum path length.

Now, we are having a set of paths and some spare (or ’not fixed’) sequences. The

algorithm performs two steps as long as any changes can be made in the set of paths.

Step 1. Check whether it is possible to connect two paths obtained in the previous

part of the algorithm. Calculate the alignments between the extreme fragments in
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the paths, and, if possible, connect two paths. For example, checking for the possible

matching of two paths z and y, for which the beginning and ending sequences are

respectively a, b for path z and c, d for path y, requires checking of the alignment

of the pairs of sequences: (b, c), (d, a), (b, ~d), (~c, a). If there is a feasible alignment of

sequences:

• (b, c), then join paths z and y

• (d, a), then join paths y and z

• (b, ~d), then join paths z and ~y

• (~c, a), then join paths ~y and z

Step 2. Match one of the fragments, which were not included in any paths, to any

of the already built paths on both of its sides. If the lengthening of the path with

fragment a is possible, then join a with the path, delete a and ~a from the set of

unused fragments, and perform Step 1. Otherwise, stop.

The last part of the algorithm consists in reconstruction of the consensus sequence

(or the parts of the final sequence, if there is more than one path) from the paths

obtained in the previous step. In order to this all the sequences have to be aligned

due to the offset which was calculated at the beginning. On every position of the

consensus sequence, the fragments, which overlap that position, are voting on the

proper nucleotide, and the one (A, C, G or T) with the greatest support wins.

As the result the algorithm returns the consensus sequence or shorter contigs,

being the parts of the sequence, which was looked for. Usually, the sequencing errors

and the lack of sufficient coverage on every position in the sequence, do not allow to

reconstruct the whole sequence. Instead, the solution is composed of contigs which

are not overlapping each other. To reconstruct the whole genome usually next phase

is required, called finishing. It may be based on searching in the database of known

genomes, for example in GenBank, for a sequence similar to the searched one and if

it is found, the contigs may be put on the proper place. The holes in between the

contigs can be read with additional biochemical experiment. If the DNA sequence

of an organism is not similar to any known sequences, then extra actions have to be

carried out, like marking the places of some characteristic points of the sequence (see:

mapping, in Section 2.2) or detecting the distance between some of the fragments from

the sequencing phase.
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6.2 Computational experiment

The algorithm was tested on the data which come from the real experiment performed

with 454 Genome Sequencer in the Lawrence Livermore National Laboratory in Joint

Genome Institute. The genome which was recovered in the experiment is the genome

of bacteria Prochlorococcus marinus. The length of the genome is about 2 Mbp. The

sequencing step in 454 Genome Sequencer resulted in 150 000 sequences of length

about 100 nucleotides. Together with the sequences, one gets the quality of every

nucleotide in the sequence. The fragments contain sequencing errors and are coming

from both strands of DNA helix. Thus, at the beginning, the algorithms added to the

input set the reverse and complementary sequences, and the cardinality of the set was

doubled. The most often type of sequencing errors is the result of erroneous reading

of the intensity signal on the CCD camera, and what follows the erroneous length of

uniform nucleotide string, for example, instead of AAAA the sequencer reads it as

AAAAA. But insertions, deletions and substitutions also appear in the sequences.

For the computational experiment, smaller sets of input sequences were prepared

to compare the behavior of different methods designed for the genome assembling

problem. For a large set of fragments most of the methods does not perform correctly,

either they did not appear to finish the computations in reasonable time or the result

was very miserable. Thus, the cardinalities of the input sets were equal to 500,

1000, 2000, 5000, 10000, 20000, and 50000 sequences. In the cases up to 10000

input fragments, the sequences were coming from one contig. In the latter cases the

fragments were composing at most a few contigs. The final sequence was known, it

was published in [CAK+06]. Although, it was used only for the comparison of the

contigs which were the results of execution of different programs.

The new algorithm was implemented in Ansi C language. The test of all the algo-

rithms were carried out on SUN Fire 6800 in the Poznan Supercomputing and Net-

working Center. The assembling programs which were used for comparison are widely

known, although not all of them have the documentation about the algorithm which

was implemented. The compared methods are: PHRAP (http://www.phrap.org/

/index.html), CAP3 [HM99], TIGR (http://www.tigr.org/software/assembler/) and

ASM [BKJ+04].

The measures which could compare the methods are the number of contigs ob-
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tained by the method, the quality of the largest contig, the coverage, and the time

of computations. The quality of the output sequence was calculated by the Smith-

Waterman algorithm [Wat95, SM97], which searches for the best alignment of two

sequences: the input one and the largest obtained contig. This algorithm was de-

scribed in more details in Section 4.6. The coverage is the percentage of the length

which was covered by the largest contig. The results are presented in Tables: 6.1

(PHRAP and ASM applications), 6.2 (CAP3 and TIGR applications), and 6.3 (the

new algorithm). For the cases where the algorithms resulted in more than one contig,

the coverage and quality values are presented for three longest contigs.

Tab. 6.1: Results of the computational experiment for algorithms PHRAP and ASM. The data

are coming from a real sequencing experiment. ∗ number of contigs, which are necessary

to cover the whole sequence

PHRAP ASM

No. of se-

quences

Quality

[%]

Coverage

[%]

No. of

contigs∗
Time [s] Quality

[%]

Coverage

[%]

No. of

contigs∗
Time [s]

500 96.50 92.73 5 1.6 94.43 76.5 8 7.7

88.85 7.98 84.26 25.73

91.91 5.13 97.78 5.34

1000 97.18 96.40 10 3.4 96.23 96.46 6 31.8

98.56 6.12 80.38 5.05

88.85 3.95 97.92 2.11

2000 99.66 71.80 14 7.0 97.20 48.86 18 128.0

99.69 25.28 90.15 26.86

50.00 4.12 97.53 23.94

5000 99.54 20.82 36 17.1 96.82 19.74 28 794.6

99.61 20.80 97.20 19.79

99.56 18.14 97.08 17.92

10000 99.72 24.11 72 34.3 96.91 17.68 74 3380.9

99.75 10.92 96.82 9.66

99.56 8.87 97.20 9.68

20000 94.69 11.46 150 78.2 97.42 10.72 147 11783.3

99.63 7.18 90.83 9.23

99.72 6.47 97.04 8.31

PHRAP and ASM algorithms were tested for the instances with up to 20000 input
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Tab. 6.2: Results of the computational experiment for algorithms CAP3 and TIGR. The data are

coming from a real sequencing experiment. ∗ number of contigs, which are necessary

to cover the whole sequence

CAP3 TIGR

No. of se-

quences

Quality

[%]

Coverage

[%]

No. of

contigs∗
Time [s] Quality

[%]

Coverage

[%]

No. of

contigs∗
Time [s]

500 99.50 41.42 7 8 98.7 22.34 31 2.6

99.33 26.44 97.87 16.02

88.08 24.9 98.52 14.01

1000 91.55 27.26 11 17.3 98.56 12.78 52 6.6

99.93 21.97 99.26 11.91

99.50 20.48 98.74 11.05

2000 99.91 23.86 16 34.5 99.06 12.95 90 13.1

99.80 15.04 99.26 8.44

99.93 11.01 99.21 7.42

5000 99.91 9.67 33 88.6 99.00 5.68 198 44.4

99.83 8.8 99.06 5.25

99.34 8.59 99.11 4.02

10000 99.67 6.55 76 179.7 99.00 2.78 394 140.3

99.70 5.32 99.09 2.57

99.91 4.73 99.56 2.34

sequences. The results of tests for CAP3 and TIGR algorithms are presented here

only for the instances with up to 10000 sequences. This is because of poor results –

for the largest input set the algorithms gave as output many contigs for which the

coverage is lower than 7%. These methods were beaten by ASM, PHRAP and the

new algorithm, thus further results are not considered. The new algorithm is still in

testing phase and the results presented here are for the instances of size up to 50000

input sequences. However, preliminary tests were performed also for the complete

spectrum of all 150000 input fragments, from which one can obtain the whole genome

of Prochlorococcus marinus bacteria (but divided into contigs). The results seem very

promising, but the algorithm still need further research.

Analyzing the results in Tables 6.1-6.3 one may notice very easily, that the new

algorithm produces one contig for the instances up to 10000 fragments, which cover
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Tab. 6.3: Results of the computational experiment for the new algorithm. The data are coming

from a real sequencing experiment. ∗ number of contigs, which are necessary to cover

the whole sequence

The new algorithm

No. of sequences Quality [%] Coverage [%] No.of contigs∗ Time [s]

500 91.93 100 1 2.0

1000 93.49 100 1 5.0

2000 94.29 100 1 10.0

5000 94.83 100 1 31.0

10000 94.89 100 1 113.0

20000 94.20 42 10 746.0

96.23 20

95.03 20

50000 95.18 10 31 5926.0

92.56 10

97.27 9

the entire sequence. The quality of the obtained contig is slightly worse than for other

methods, and it is around 92%-95%. The lower quality value is caused by imperfect

creation of the consensus sequence from the alignment, and can be easily corrected by

a group of experts during their finishing work. A part of the algorithm that concerns

forming the consensus sequence from the alignment will be soon further developed.

Usually, with the increase of the cardinality of input sets, there are more contigs

given as the output of the methods execution. PHRAP was the fastest method for

every tested case and gave the contigs of high similarity to the sequence that was

looked for. Moreover, for the small input sets, the longest contig of the consensus

sequence covered almost whole target sequence (92%-96%). ASM resulted also in

long contigs for these sets, with high quality, and for the other sets only slightly

worse than for PHRAP program. However, the time of computations exceeded by far

any of the tested algorithms. The method, if tested for the instance of whole genome

(e.g. genome of bacteria: 150000 sequences), would not finish in reasonable time.

The other methods, CAP3, TIGR, and the new algorithm, work in similar time,

but give very different results. TIGR terminated with the outcome of many small

contigs. CAP3 produced the contigs of very high quality but much shorter than for
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the PHRAP or the new algorithm. The new algorithm outperforms other methods

in both: the coverage and the number of generated contigs. On the other hand, the

quality is slightly lower than for other ones and still need some improvements.

To conclude, there is no universal method, which is good for every input data.

Each of the algorithms, except TIGR, surpass the other methods on one of the aspects.

All produce data which are acceptable and need some additional work of experts in

finishing stage. However, only the new algorithm could manage to cover the entire

sequence, which was searched for (in the case of up to 10000 input fragments). The

time consuming, last phase of the algorithm of ordering and joining the contigs did

not cause high increase of time – it can be still comparable with PHRAP.

This also proved, that the algorithm can be used in the real case of the DNA

assembling problem.



7. CONCLUSIONS

The aim of this thesis was to design new efficient algorithms for the problems of

sequencing in small and in large scales, which are time-cost effective and produce

results close to optimum. The proposed two algorithms solving the sequencing by

hybridization problem with isothermic libraries, namely tabu search and hybrid ge-

netic algorithms, satisfy these conditions. Moreover, the genetic algorithm obtained

sequences of high similarity to the target sequences despite of many errors in the

spectrum.

The case of repetitions in sequences was considered in more details. It has turned

out that isothermic libraries, however diminish the number of experimental errors,

increase the errors coming from repetitions. It has been showed, that this type of

error is difficult for solving the problem properly. The use of the entire number

of proper oligonucleotides in the solution does not assure that the sequence will be

properly reconstructed. Although the solutions were of high quality, the similarity

of the obtained sequences to the original ones was quite low, for a few runs of the

program it was around 60%. The ambiguities, which sequence is correct, can only be

resolved with the help of biochemist experts.

Another hybrid genetic algorithm has been designed for the SBH problem with

standard (equal-length) libraries. This time the algorithm worked very well in case

of both experimental errors and the errors coming from repetitions. For the latter,

for more than 75% of tested instances the algorithm returned the original sequence.

The comparison of the approaches to DNA sequencing: the standard one and

the isothermic one, has been performed with genetic algorithms based on a similar

scheme. Optimal solutions were found with both algorithms, slightly more frequently

for standard libraries when repetitions occur in the spectra. For the isothermic li-

braries there were more possibilities of reconstructing different sequences from the

same number of oligonucleotides and this fact resulted in lower average similarity

values and higher deviation of the similarity values than for the standard libraries.
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In the case of repeated parts in the original sequences, both algorithms had problems

in finding original sequences, even though the solutions were optimal – the usage of

oligonucleotides was 100%. The genetic algorithm for isothermic libraries obtained

the original sequence only for less than a quarter of instances, while the one for stan-

dard libraries found the original sequence in 30 out of 40, and 34 out of 40 tested

instances, depending on the error rate in the spectra. Worse results for isothermic

libraries can be explained by the occurence of shorter oligonucleotides (rich in ‘G’

and ‘C’ nucleotides) and what follows higher repetition rate than for the standard

libraries. The revised hybrid genetic algorithm for equal-length libraries is the best

suited for solving SBH problem, especially for sequences with repetitions and it sur-

passes by far other algorithms known from the literature.

Novel ideas applied in the genetic algorithms, like the crossover operator based

on structured combination, can be also of value for other problems, for which the

solution can be represented as a permutation of vertices of a graph. An example of

applying the genetic algorithm scheme to the Traveling Salesman Problem has been

presented.

And finally, the new approach to sequencing – pyrosequencing – has been studied

in details. The data, coming from a real experiment performed on the bacteria

Prochlorococcus marinus, on 454 sequencer, were used in the computational tests.

The first tests, carried out on a part of the whole genome instance, showed that

the proposed algorithm can solve real data, giving as the result one contig of high

similarity to the reconstructed sequence.
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[BFKM04] J. B lażewicz, P. Formanowicz, M. Kasprzak, and W.T. Markiewicz. Se-

quencing by hybridization with isothermic oligonucleotide libraries. Dis-

crete Appl. Math., 145:40–51, 2004.
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A. APPENDIX. BIO-PORTAL

A WWW bio-portal was created and you may find it at: http://bio.cs.put.poznan.pl/.

You may find there some details about the sequencing by hybridization approach (the

main page “SBH”), different libraries of oligonucleotides which may be used in the biochem-

ical experiment (page “library of oligonucleotides”), and the list of articles where this issue

was considered in more details by the bioinformatics group from the Institute of Computer

Science at Poznań University of Technology (page “literature”).

On the main page one can read about the details of the hybridization experiment. The

standard approach is described, which uses the libraries of oligonucleotides of the same

length l. Also the computational complexity of the SBH problem is specified there, for the

case when in the input set of oligonucleotides (spectrum) there are no errors, and in the

case of positive and negative errors in the spectrum (see Figure A.1).

From the page “Download spectra” (see Figure A.2) one may obtain spectra from the

computational experiment done within this work. The spectra were divided into two parts

(Sections: “Spectra derived from real DNA sequences for standard and isothermic sequenc-

ing” and “Spectra for standard DNA sequencing derived from real and random DNA se-

quences”). The first group of spectra was prepared from real DNA sequences, taken from

GenBank (the accession numbers of these sequences are placed in Appendix B). Some

of the sequences did not contain repetitions of oligonucleotides both for standard and for

isothermic libraries (Set A), and the others did (Set B), (see also Figure 4.4). The in-

stances, created on the basis of the sequences were used in the computational experiments

from [BFS+04, BOSW06, BGS+06].

The second group of spectra (“Spectra for standard DNA sequencing derived from real

and random DNA sequences”) was prepared from real DNA sequences as well as from

random sequences, generated according to the uniform distribution. The sequences also

could contain repetitions of oligonucleotides. The results of computational experiments for

these instances were presented in [BKK02, BGK04, BGK05].

All of the sequences were composed of at least 600 nucleotides. The prefixes of the

sequences are of length 100, 200, 300, 400, 500 and 600, and are called original sequences

(the length of the prefixes differs for two groups of spectra). From these original sequences
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Fig. A.1: A screenshot of the site on the bio-portal entitled: “Sequencing by hybridization

(SBH)”.

ideal spectra were generated (by selecting all of the oligonucleotides from the library that

are contained in the sequence) and then errors were randomly added to the spectra.

Spectra contain both negative and positive errors (with error rate ranging from 5% up

to 20%). 5% error rate means that from the ideal spectrum 5% of all the oligonucleotides

were randomly deleted and the same number of oligonucleotides was added (different from

the ones already existing in the spectrum). Spectra were created progressively, which

means that the one with 10% of errors contained the same errors as the spectrum with

5% error rate, plus additional 5% of errors of both types. This provides that the case

with spectra containing less errors (5%) would not be more difficult than the case with

spectra containing more errors (10%). Spectra with 20% of errors were created accordingly.
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Fig. A.2: A screenshot of the site on the bio-portal entitled: “Download spectra”.

At the end oligonucleotides in the spectra were sorted alphabetically due to not provide

information about order of the oligonucleotides.

At the WWW bio-portal you may also find some interesting tools, which were developed

in the bioinformatics group from the Institute of Computer Science, and can be downloaded

from the site. Among others, there are two programs related to the current work, the

implemented tabu search algorithm for SBH problem presented in this work, and ASM

application, which was one of the programs tested for comparison with the new algorithm

for the assembling problem. A screenshot of the page you may find in Figure A.3.
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Fig. A.3: A screeshot of the site on the bio-portal entitled: “Tools”.



B. APPENDIX. ACCESSION

NUMBERS OF SEQUENCES USED

IN TESTS.

Accession numbers of the sequences used for computational tests. Set A – sequences

have no errors coming from repetitions.

NM 016055, NM 016080, NM 152373, NM 002938, BC040844, NM 152763, NG 002692,

BC044213, NG 002660, NG 002481, BC007770, BC015575, BC004538, BC063108,

NG 002361, NG 001569, BC056270, NM 153834, HSA519841, BC053904, BC062471,

BC062325, BC057825, NG 001151, NG 001292, NM 005337, NM 032293, NM 032292,

NM 198197, NM 032423, NM 021807, NM 015435, NM 024622, NM 030633, NM 172366,

NM 177959, NM 005337, NM 003318, AF435957, AF497481

Accession numbers of the sequences used for computational tests. Set B – sequences

contain errors coming from repetitions.

NM 002052, NM 003008, NM 183353, BC008923, BC012982, NG 002363, BC009854,

NM 194310, NM 006402, NM 194300, NM 020690, NM 005745, BC000774, NM 182498,

BC047640, NM 004902, NM 020713, BC062620, NM 032866, NG 000980, BC026171,

NM 000321, BC063041, BC005805, NM 144767, BC001077, NM 032349, BC053852,

NM 021934, NM 015698, BC050425, NM 018046, NM 004663, BC007398, NM 016428,

NM 177423, BC026078, NM 031205, BC041372, NM 033318



C. APPENDIX. ADDITIONAL

COMPUTATIONAL RESULTS

More detailed results of the computational experiment of the genetic algorithm for isother-

mic and standard libraries are presented in this appendix. The length of tested sequences

varies from 200 to 600 nucleotides and the error rate in the spectrum is equal to ±5% and

±20%. The algorithm was tested with 40 instances for every case, 10 times for each spec-

trum. The results in the tables in the second and in the third columns are the average values

of 10 runs for each instance. The values in the column ‘usage of oligonucleotides’ say how

many proper oligonucleotides are used to compose the solution. 100% means that the num-

ber of oligonucleotides in the solution is the same as the cardinality of the spectrum with

negative errors only. The ’similarity’ value is counted according to the Needleman-Wunsh

algorithm and is described in Section 4.6 in more details. The value in the column ‘optimal

usage’ means how many instances were solved with 100% of usage of oligonucleotides out of

10 tested instances, while in the column ‘optimal similarity’ there is the number of instances

solved with 100% of similarity. In the last row of the tables the average values of the usage

of oligonucleotides and the similarity are presented.

The results of the tests are discussed widely in Sections 4.6 and 5.2.
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Tab. C.1: Results of the computational experiment with the genetic algorithm for isothermic

spectra coming from sequences of length 200 and the error rate ±5%

seq. no. usage of oligonucleotides [%] similarity [%] similarity deviation optimal usage optimal similarity

1 100,00 100,00 0,00 10/10 10/10

2 100,00 100,00 0,00 10/10 10/10

3 100,00 100,00 0,00 10/10 10/10

4 100,00 86,35 56,87 10/10 0/10

5 100,00 100,00 0,00 10/10 10/10

6 100,00 100,00 0,00 10/10 10/10

7 100,00 100,00 0,00 10/10 10/10

8 100,00 100,00 0,00 10/10 10/10

9 100,00 100,00 0,00 10/10 10/10

10 100,00 100,00 0,00 10/10 10/10

11 100,00 100,00 0,00 10/10 10/10

12 100,00 100,00 0,00 10/10 10/10

13 100,00 100,00 0,00 10/10 10/10

14 100,00 100,00 0,00 10/10 10/10

15 100,00 100,00 0,00 10/10 10/10

16 100,00 100,00 0,00 10/10 10/10

17 100,00 100,00 0,00 10/10 10/10

18 100,00 100,00 0,00 10/10 10/10

19 100,00 100,00 0,00 10/10 10/10

20 100,00 94,75 11,81 10/10 3/10

21 100,00 100,00 0,00 10/10 10/10

22 100,00 100,00 0,00 10/10 10/10

23 100,00 100,00 0,00 10/10 10/10

24 100,00 100,00 0,00 10/10 10/10

25 100,00 100,00 0,00 10/10 10/10

26 100,00 100,00 0,00 10/10 10/10

27 100,00 100,00 0,00 10/10 10/10

28 100,00 100,00 0,00 10/10 10/10

29 100,00 100,00 0,00 10/10 10/10

30 100,00 100,00 0,00 10/10 10/10

31 100,00 100,00 0,00 10/10 10/10

32 100,00 100,00 0,00 10/10 10/10

33 100,00 100,00 0,00 10/10 10/10

34 100,00 100,00 0,00 10/10 10/10

35 100,00 100,00 0,00 10/10 10/10

36 100,00 100,00 0,00 10/10 10/10

37 100,00 100,00 0,00 10/10 10/10

38 100,00 100,00 0,00 10/10 10/10

39 100,00 100,00 0,00 10/10 10/10

40 100,00 100,00 0,00 10/10 10/10

average 100,00 99,53 1,72
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Tab. C.2: Results of the computational experiment with the genetic algorithm for isothermic

spectra coming from sequences of length 400 and the error rate ±5%

seq. no. usage of oligonucleotides [%] similarity [%] similarity deviation optimal usage optimal similarity

1 100,00 100,00 0,00 10/10 10/10

2 100,00 100,00 0,00 10/10 10/10

3 100,00 100,00 0,00 10/10 10/10

4 100,00 95,47 11,90 10/10 0/10

5 100,00 100,00 0,00 10/10 10/10

6 100,00 100,00 0,00 10/10 10/10

7 100,00 100,00 0,00 10/10 10/10

8 100,00 100,00 0,00 10/10 10/10

9 100,00 100,00 0,00 10/10 10/10

10 100,00 100,00 0,00 10/10 10/10

11 100,00 85,19 219,48 10/10 5/10

12 100,00 100,00 0,00 10/10 10/10

13 100,00 100,00 0,00 10/10 10/10

14 100,00 100,00 0,00 10/10 10/10

15 100,00 100,00 0,00 10/10 10/10

16 100,00 100,00 0,00 10/10 10/10

17 100,00 100,00 0,00 10/10 10/10

18 100,00 100,00 0,00 10/10 10/10

19 100,00 100,00 0,00 10/10 10/10

20 100,00 98,13 3,52 10/10 5/10

21 100,00 100,00 0,00 10/10 10/10

22 100,00 100,00 0,00 10/10 10/10

23 100,00 100,00 0,00 10/10 10/10

24 100,00 100,00 0,00 10/10 10/10

25 100,00 100,00 0,00 10/10 10/10

26 100,00 100,00 0,00 10/10 10/10

27 100,00 100,00 0,00 10/10 10/10

28 100,00 100,00 0,00 10/10 10/10

29 100,00 100,00 0,00 10/10 10/10

30 100,00 100,00 0,00 10/10 10/10

31 100,00 100,00 0,00 10/10 10/10

32 100,00 100,00 0,00 10/10 10/10

33 100,00 100,00 0,00 10/10 10/10

34 100,00 100,00 0,00 10/10 10/10

35 100,00 100,00 0,00 10/10 10/10

36 100,00 100,00 0,00 10/10 10/10

37 100,00 100,00 0,00 10/10 10/10

38 100,00 100,00 0,00 10/10 10/10

39 100,00 100,00 0,00 10/10 10/10

40 100,00 100,00 0,00 10/10 10/10

average 100,00 99,47 5,87
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Tab. C.3: Results of the computational experiment with the genetic algorithm for isothermic

spectra coming from sequences of length 500 and the error rate ±5%

seq. no. usage of oligonucleotides [%] similarity [%] similarity deviation optimal usage optimal similarity

1 100,00 100,00 0,00 10/10 10/10

2 100,00 100,00 0,00 10/10 10/10

3 100,00 100,00 0,00 10/10 10/10

4 100,00 93,15 0,42 10/10 0/10

5 100,00 100,00 0,00 10/10 10/10

6 100,00 100,00 0,00 10/10 10/10

7 100,00 99,94 0,01 10/10 7/10

8 100,00 100,00 0,00 10/10 10/10

9 100,00 100,00 0,00 10/10 10/10

10 100,00 100,00 0,00 10/10 10/10

11 100,00 92,89 117,95 10/10 7/10

12 100,00 100,00 0,00 10/10 10/10

13 100,00 100,00 0,00 10/10 10/10

14 100,00 100,00 0,00 10/10 10/10

15 100,00 100,00 0,00 10/10 10/10

16 100,00 100,00 0,00 10/10 10/10

17 100,00 100,00 0,00 10/10 10/10

18 100,00 100,00 0,00 10/10 10/10

19 100,00 100,00 0,00 10/10 10/10

20 100,00 98,20 2,16 10/10 4/10

21 100,00 100,00 0,00 10/10 10/10

22 100,00 100,00 0,00 10/10 10/10

23 100,00 100,00 0,00 10/10 10/10

24 100,00 100,00 0,00 10/10 10/10

25 100,00 100,00 0,00 10/10 10/10

26 100,00 100,00 0,00 10/10 10/10

27 100,00 100,00 0,00 10/10 10/10

28 100,00 100,00 0,00 10/10 10/10

29 100,00 100,00 0,00 10/10 10/10

30 100,00 100,00 0,00 10/10 10/10

31 100,00 100,00 0,00 10/10 10/10

32 100,00 100,00 0,00 10/10 10/10

33 100,00 100,00 0,00 10/10 10/10

34 100,00 100,00 0,00 10/10 10/10

35 100,00 100,00 0,00 10/10 10/10

36 100,00 100,00 0,00 10/10 10/10

37 100,00 100,00 0,00 10/10 10/10

38 100,00 100,00 0,00 10/10 10/10

39 100,00 100,00 0,00 10/10 10/10

40 100,00 100,00 0,00 10/10 10/10

average 100,00 99,60 3,01
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Tab. C.4: Results of the computational experiment with the genetic algorithm for isothermic

spectra coming from sequences of length 600 and the error rate ±5%

seq. no. usage of oligonucleotides [%] similarity [%] similarity deviation optimal usage optimal similarity

1 100,00 100,00 0,00 10/10 10/10

2 100,00 100,00 0,00 10/10 10/10

3 100,00 100,00 0,00 10/10 10/10

4 100,00 93,82 0,20 10/10 0/10

5 100,00 100,00 0,00 10/10 10/10

6 100,00 100,00 0,00 10/10 10/10

7 100,00 100,00 0,00 10/10 10/10

8 100,00 100,00 0,00 10/10 10/10

9 100,00 100,00 0,00 10/10 10/10

10 100,00 96,10 22,82 10/10 6/10

11 100,00 92,10 93,62 10/10 6/10

12 100,00 100,00 0,00 10/10 10/10

13 100,00 100,00 0,00 10/10 10/10

14 100,00 100,00 0,00 10/10 10/10

15 100,00 100,00 0,00 10/10 10/10

16 100,00 100,00 0,00 10/10 10/10

17 100,00 100,00 0,00 10/10 10/10

18 100,00 100,00 0,00 10/10 10/10

19 100,00 82,25 315,06 10/10 5/10

20 100,00 98,25 1,31 10/10 3/10

21 100,00 100,00 0,00 10/10 10/10

22 100,00 100,00 0,00 10/10 10/10

23 100,00 100,00 0,00 10/10 10/10

24 100,00 100,00 0,00 10/10 10/10

25 100,00 100,00 0,00 10/10 10/10

26 100,00 100,00 0,00 10/10 10/10

27 100,00 100,00 0,00 10/10 10/10

28 100,00 77,88 489,52 10/10 5/10

29 100,00 100,00 0,00 10/10 10/10

30 100,00 100,00 0,00 10/10 10/10

31 100,00 100,00 0,00 10/10 10/10

32 100,00 100,00 0,00 10/10 10/10

33 100,00 98,35 24,50 10/10 9/10

34 100,00 100,00 0,00 10/10 10/10

35 100,00 100,00 0,00 10/10 10/10

36 100,00 100,00 0,00 10/10 10/10

37 100,00 100,00 0,00 10/10 10/10

38 100,00 100,00 0,00 10/10 10/10

39 100,00 100,00 0,00 10/10 10/10

40 100,00 100,00 0,00 10/10 10/10

average 100,00 98,47 23,68
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Tab. C.5: Results of the computational experiment with the genetic algorithm for isothermic

spectra coming from sequences of length 200 and the error rate ±20%

seq. no. usage of oligonucleotides [%] similarity [%] similarity deviation optimal usage optimal similarity

1 100,00 100,00 0,00 10/10 10/10

2 100,00 100,00 0,00 10/10 10/10

3 100,00 100,00 0,00 10/10 10/10

4 100,00 83,20 1,41 10/10 0/10

5 100,00 100,00 0,00 10/10 10/10

6 100,00 100,00 0,00 10/10 10/10

7 100,00 100,00 0,00 10/10 10/10

8 100,00 100,00 0,00 10/10 10/10

9 100,00 100,00 0,00 10/10 10/10

10 100,00 100,00 0,00 10/10 10/10

11 100,00 100,00 0,00 10/10 10/10

12 100,00 100,00 0,00 10/10 10/10

13 100,00 86,00 0,00 10/10 0/10

14 100,00 100,00 0,00 10/10 10/10

15 100,00 100,00 0,00 10/10 10/10

16 100,00 100,00 0,00 10/10 10/10

17 100,00 100,00 0,00 10/10 10/10

18 100,00 100,00 0,00 10/10 10/10

19 100,00 100,00 0,00 10/10 10/10

20 100,00 97,00 13,50 10/10 6/10

21 100,00 100,00 0,00 10/10 10/10

22 100,00 100,00 0,00 10/10 10/10

23 100,00 100,00 0,00 10/10 10/10

24 100,00 100,00 0,00 10/10 10/10

25 100,00 100,00 0,00 10/10 10/10

26 100,00 100,00 0,00 10/10 10/10

27 100,00 100,00 0,00 10/10 10/10

28 100,00 100,00 0,00 10/10 10/10

29 100,00 100,00 0,00 10/10 10/10

30 100,00 100,00 0,00 10/10 10/10

31 100,00 100,00 0,00 10/10 10/10

32 100,00 100,00 0,00 10/10 10/10

33 100,00 100,00 0,00 10/10 10/10

34 100,00 100,00 0,00 10/10 10/10

35 100,00 100,00 0,00 10/10 10/10

36 100,00 100,00 0,00 10/10 10/10

37 100,00 100,00 0,00 10/10 10/10

38 100,00 100,00 0,00 10/10 10/10

39 100,00 100,00 0,00 10/10 10/10

40 99,90 99,60 0,64 8/10 8/10

average 100,00 99,15 0,39
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Tab. C.6: Results of the computational experiment with the genetic algorithm for isothermic

spectra coming from sequences of length 400 and the error rate ±20%

seq. no. usage of oligonucleotides [%] similarity [%] similarity deviation optimal usage optimal similarity

1 99,65 98,80 6,39 6/10 6/10

2 100,00 99,70 0,36 10/10 8/10

3 100,00 100,00 0,00 10/10 10/10

4 100,00 95,16 18,81 10/10 1/10

5 100,00 100,00 0,00 10/10 10/10

6 99,56 96,25 76,89 7/10 7/10

7 100,00 100,00 0,00 10/10 10/10

8 100,00 100,00 0,00 10/10 10/10

9 100,00 100,00 0,00 10/10 10/10

10 100,00 100,00 0,00 10/10 10/10

11 100,00 82,22 210,70 10/10 4/10

12 100,00 100,00 0,00 10/10 10/10

13 100,00 100,00 0,00 10/10 10/10

14 100,00 100,00 0,00 10/10 10/10

15 100,00 99,25 0,00 10/10 0/10

16 100,00 100,00 0,00 10/10 10/10

17 100,00 100,00 0,00 10/10 10/10

18 100,00 100,00 0,00 10/10 10/10

19 100,00 100,00 0,00 10/10 10/10

20 100,00 98,13 3,52 10/10 5/10

21 99,71 91,68 149,56 4/10 4/10

22 100,00 100,00 0,00 10/10 10/10

23 100,00 100,00 0,00 10/10 10/10

24 100,00 100,00 0,00 10/10 10/10

25 100,00 100,00 0,00 10/10 10/10

26 100,00 100,00 0,00 10/10 10/10

27 100,00 100,00 0,00 10/10 10/10

28 99,40 96,75 10,61 5/10 5/10

29 100,00 100,00 0,00 10/10 10/10

30 100,00 100,00 0,00 10/10 10/10

31 100,00 100,00 0,00 10/10 10/10

32 100,00 100,00 0,00 10/10 10/10

33 100,00 100,00 0,00 10/10 10/10

34 100,00 100,00 0,00 10/10 10/10

35 100,00 100,00 0,00 10/10 10/10

36 99,90 99,87 0,06 8/10 8/10

37 100,00 100,00 0,00 10/10 10/10

38 100,00 100,00 0,00 10/10 10/10

39 100,24 100,00 0,00 10/10 10/10

40 100,00 100,00 0,00 10/10 10/10

average 99,96 98,95 11,92
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Tab. C.7: Results of the computational experiment with the genetic algorithm for isothermic

spectra coming from sequences of length 500 and the error rate ±20%

seq. no. usage of oligonucleotides [%] similarity [%] similarity deviation optimal usage optimal similarity

1 100,00 100,00 0,00 10/10 10/10

2 100,00 100,00 0,00 10/10 10/10

3 100,00 79,60 92,16 10/10 0/10

4 99,75 93,22 2,72 5/10 0/10

5 99,34 92,79 102,40 2/10 2/10

6 100,00 100,00 0,00 10/10 10/10

7 100,00 99,92 0,01 10/10 6/10

8 100,00 100,00 0,00 10/10 10/10

9 100,00 100,00 0,00 10/10 10/10

10 100,00 100,00 0,00 10/10 10/10

11 100,00 95,26 89,87 10/10 8/10

12 100,00 100,00 0,00 10/10 10/10

13 100,00 100,00 0,00 10/10 10/10

14 100,00 100,00 0,00 10/10 10/10

15 100,00 100,00 0,00 10/10 10/10

16 100,00 100,00 0,00 10/10 10/10

17 100,00 100,00 0,00 10/10 10/10

18 100,00 100,00 0,00 10/10 10/10

19 100,00 100,00 0,00 10/10 10/10

20 100,00 98,20 2,16 10/10 4/10

21 100,00 100,00 0,00 10/10 10/10

22 100,00 100,00 0,00 10/10 10/10

23 100,00 100,00 0,00 10/10 10/10

24 100,00 100,00 0,00 10/10 10/10

25 100,00 100,00 0,00 10/10 10/10

26 100,00 100,00 0,00 10/10 10/10

27 100,00 100,00 0,00 10/10 10/10

28 100,00 100,00 0,00 10/10 10/10

29 100,00 100,00 0,00 10/10 10/10

30 100,00 100,00 0,00 10/10 10/10

31 100,00 100,00 0,00 10/10 10/10

32 99,96 99,07 7,78 9/10 9/10

33 100,00 99,70 0,00 10/10 0/10

34 100,00 100,00 0,00 10/10 10/10

35 100,00 100,00 0,00 10/10 10/10

36 100,00 100,00 0,00 10/10 10/10

37 100,00 100,00 0,00 10/10 10/10

38 100,00 100,00 0,00 10/10 10/10

39 99,98 97,75 45,56 9/10 9/10

40 100,00 100,00 0,00 10/10 10/10

average 99,98 98,89 8,57
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Tab. C.8: Results of the computational experiment with the genetic algorithm for isothermic

spectra coming from sequences of length 600 and the error rate ±20%

seq. no. usage of oligonucleotides [%] similarity [%] similarity deviation optimal usage optimal similarity

1 99,94 99,90 0,04 8/10 8/10

2 99,11 77,75 160,01 2/10 0/10

3 100,00 100,00 0,00 10/10 10/10

4 100,00 95,69 1,67 10/10 0/10

5 100,00 100,00 0,00 10/10 10/10

6 99,37 98,70 1,13 4/10 4/10

7 100,00 100,00 0,00 10/10 10/10

8 99,81 77,71 154,09 6/10 2/10

9 100,00 100,00 0,00 10/10 10/10

10 100,00 92,20 15,21 10/10 2/10

11 100,00 90,13 97,52 10/10 5/10

12 100,00 100,00 0,00 10/10 10/10

13 100,00 100,00 0,00 10/10 10/10

14 100,00 100,00 0,00 10/10 10/10

15 100,00 100,00 0,00 10/10 10/10

16 100,00 100,00 0,00 10/10 10/10

17 100,00 100,00 0,00 10/10 10/10

18 100,00 100,00 0,00 10/10 10/10

19 100,00 82,25 315,06 10/10 5/10

20 100,00 97,55 11,52 10/10 4/10

21 100,00 100,00 0,00 10/10 10/10

22 100,00 100,00 0,00 10/10 10/10

23 100,00 100,00 0,00 10/10 10/10

24 100,00 100,00 0,00 10/10 10/10

25 100,00 100,00 0,00 10/10 10/10

26 100,00 100,00 0,00 10/10 10/10

27 100,00 100,00 0,00 10/10 10/10

28 99,66 60,96 177,22 2/10 0/10

29 100,00 100,00 0,00 10/10 10/10

30 100,00 100,00 0,00 10/10 10/10

31 100,00 100,00 0,00 10/10 10/10

32 100,00 100,00 0,00 10/10 10/10

33 100,00 90,10 65,34 10/10 4/10

34 99,95 100,00 0,00 9/10 10/10

35 100,00 100,00 0,00 10/10 10/10

36 100,00 100,00 0,00 10/10 10/10

37 100,00 100,00 0,00 10/10 10/10

38 100,00 100,00 0,00 10/10 10/10

39 100,00 100,00 0,00 10/10 10/10

40 99,20 80,21 401,77 5/10 5/10

average 99,93 96,08 35,01
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Tab. C.9: Results of the computational experiment with the genetic algorithm for isothermic

spectra, which come from sequences of length 600 with repetitions

seq. no. usage of oligonucleotides [%] similarity [%] similarity deviation optimal usage optimal similarity

1 100,00 64,66 106,23 10/10 0/10

2 100,00 74,05 102,65 10/10 1/10

3 100,00 94,52 46,01 10/10 0/10

4 100,00 95,43 59,37 10/10 7/10

5 100,00 69,30 13,62 10/10 0/10

6 100,00 91,46 70,14 10/10 0/10

7 100,00 68,91 93,92 10/10 0/10

8 99,97 72,91 24,17 9/10 0/10

9 100,00 74,21 122,30 10/10 1/10

10 100,00 74,46 8,92 10/10 0/10

11 100,00 75,88 105,34 10/10 0/10

12 100,00 82,44 76,84 10/10 0/10

13 100,00 100,00 0,00 10/10 10/10

14 99,94 64,12 15,91 6/10 0/10

15 100,00 99,66 0,00 10/10 0/10

16 100,00 85,30 27,74 10/10 0/10

17 100,00 62,87 15,42 10/10 0/10

18 99,91 99,60 0,04 2/10 2/10

19 99,90 91,30 39,07 10/10 0/10

20 100,00 99,66 0,00 10/10 0/10

21 100,00 85,75 135,38 10/10 4/10

22 100,00 79,98 54,78 10/10 0/10

23 100,00 85,95 131,64 10/10 4/10

24 100,00 61,74 40,38 10/10 0/10

25 99,88 97,38 6,55 0/10 0/10

26 100,00 67,67 12,11 10/10 0/10

27 100,00 68,50 22,78 10/10 0/10

28 100,00 71,76 27,38 10/10 0/10

29 100,00 66,76 43,58 10/10 0/10

30 99,96 73,36 24,38 10/10 0/10

31 100,00 81,18 104,51 10/10 0/10

32 100,00 66,29 10,68 10/10 0/10

33 100,00 83,35 192,13 10/10 3/10

34 100,00 76,18 284,03 10/10 3/10

35 100,00 71,61 36,76 10/10 0/10

36 100,00 63,17 128,70 10/10 0/10

37 100,00 76,39 22,99 10/10 0/10

38 100,00 68,77 15,87 10/10 0/10

39 100,00 63,03 31,37 10/10 0/10

40 100,00 75,27 121,65 10/10 0/10

average 99,99 78,12 59,38



C. Appendix. Additional computational results 132

Tab. C.10: Results of the computational experiment with the genetic algorithm for isothermic

spectra, which come from sequences of length 600 with repetitions, with additional

positive and negative errors up to ±5%

seq. no. usage of oligonucleotides [%] similarity [%] similarity deviation optimal usage optimal similarity

1 99,97 79,92 93,13 9/10 0/10

2 100,00 83,98 216,61 10/10 2/10

3 100,00 91,99 54,74 10/10 0/10

4 100,00 85,80 134,46 10/10 4/10

5 100,00 66,13 12,71 10/10 0/10

6 100,00 85,04 25,61 10/10 0/10

7 100,00 66,77 45,17 10/10 0/10

8 99,56 69,48 36,47 0/10 0/10

9 100,00 72,39 84,51 10/10 0/10

10 99,99 73,68 15,37 9/10 0/10

11 100,32 66,50 120,11 10/10 0/10

12 100,00 78,56 29,87 10/10 0/10

13 100,00 100,00 0,00 10/10 10/10

14 99,81 63,09 20,43 0/10 0/10

15 100,00 99,00 0,00 10/10 0/10

16 100,34 83,99 138,77 10/10 0/10

17 100,29 67,35 73,60 10/10 0/10

18 99,88 99,50 0,00 0/10 0/10

19 100,00 98,50 0,00 10/10 0/10

20 100,00 99,66 0,00 10/10 0/10

21 100,00 88,13 141,02 10/10 5/10

22 100,26 92,50 0,86 10/10 0/10

23 100,00 85,95 131,64 10/10 4/10

24 100,00 65,36 44,62 10/10 0/10

25 99,87 96,88 6,89 0/10 0/10

26 99,91 68,47 11,98 6/10 0/10

27 99,91 67,20 20,71 6/10 0/10

28 100,00 69,77 54,02 10/10 0/10

29 99,94 76,31 124,29 10/10 0/10

30 99,86 73,08 17,37 0/10 0/10

31 99,98 76,45 182,55 8/10 0/10

32 100,00 67,06 15,86 10/10 0/10

33 100,00 72,81 50,68 10/10 0/10

34 100,00 80,40 289,31 10/10 4/10

35 100,00 68,27 42,73 10/10 0/10

36 100,14 66,34 113,37 10/10 0/10

37 100,00 76,10 56,85 10/10 0/10

38 100,00 70,03 10,65 10/10 0/10

39 100,14 63,19 30,64 10/10 0/10

40 100,00 82,02 18,28 10/10 0/10

average 100,00 78,44 61,65
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Tab. C.11: Results of the computational experiment with the genetic algorithm for equal-length

spectra coming from sequences of length 200 and the error rate ±5%

seq. no. usage of oligonucleotides [%] similarity [%] similarity deviation optimal usage optimal similarity

1 100,00 100,00 0,00 10/10 10/10

2 100,00 100,00 0,00 10/10 10/10

3 100,00 100,00 0,00 10/10 10/10

4 100,00 100,00 0,00 10/10 10/10

5 100,00 100,00 0,00 10/10 10/10

6 100,00 100,00 0,00 10/10 10/10

7 100,00 100,00 0,00 10/10 10/10

8 100,00 100,00 0,00 10/10 10/10

9 100,00 100,00 0,00 10/10 10/10

10 100,00 100,00 0,00 10/10 10/10

11 100,00 100,00 0,00 10/10 10/10

12 100,00 100,00 0,00 10/10 10/10

13 100,00 100,00 0,00 10/10 10/10

14 100,00 100,00 0,00 10/10 10/10

15 100,00 100,00 0,00 10/10 10/10

16 100,00 100,00 0,00 10/10 10/10

17 100,00 100,00 0,00 10/10 10/10

18 100,00 100,00 0,00 10/10 10/10

19 100,00 100,00 0,00 10/10 10/10

20 100,00 100,00 0,00 10/10 10/10

21 100,00 100,00 0,00 10/10 10/10

22 100,00 100,00 0,00 10/10 10/10

23 100,00 100,00 0,00 10/10 10/10

24 100,00 100,00 0,00 10/10 10/10

25 100,00 100,00 0,00 10/10 10/10

26 100,00 100,00 0,00 10/10 10/10

27 100,00 100,00 0,00 10/10 10/10

28 100,00 100,00 0,00 10/10 10/10

29 100,00 100,00 0,00 10/10 10/10

30 100,00 100,00 0,00 10/10 10/10

31 100,00 100,00 0,00 10/10 10/10

32 100,00 100,00 0,00 10/10 10/10

33 100,00 100,00 0,00 10/10 10/10

34 100,00 100,00 0,00 10/10 10/10

35 100,00 100,00 0,00 10/10 10/10

36 100,00 100,00 0,00 10/10 10/10

37 100,00 100,00 0,00 10/10 10/10

38 100,00 100,00 0,00 10/10 10/10

39 100,00 100,00 0,00 10/10 10/10

40 100,00 100,00 0,00 10/10 10/10

average 100,00 100,00 0,00
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Tab. C.12: Results of the computational experiment with the genetic algorithm for equal-length

spectra coming from sequences of length 400 and the error rate ±5%

seq. no. usage of oligonucleotides [%] similarity [%] similarity deviation optimal usage optimal similarity

1 100,00 100,00 0,00 10/10 10/10

2 100,00 100,00 0,00 10/10 10/10

3 100,00 100,00 0,00 10/10 10/10

4 100,00 100,00 0,00 10/10 10/10

5 100,00 100,00 0,00 10/10 10/10

6 100,00 100,00 0,00 10/10 10/10

7 100,00 100,00 0,00 10/10 10/10

8 100,00 100,00 0,00 10/10 10/10

9 100,00 100,00 0,00 10/10 10/10

10 100,00 100,00 0,00 10/10 10/10

11 100,00 100,00 0,00 10/10 10/10

12 100,00 100,00 0,00 10/10 10/10

13 100,00 100,00 0,00 10/10 10/10

14 100,00 100,00 0,00 10/10 10/10

15 100,00 100,00 0,00 10/10 10/10

16 100,00 100,00 0,00 10/10 10/10

17 100,00 100,00 0,00 10/10 10/10

18 100,00 100,00 0,00 10/10 10/10

19 100,00 100,00 0,00 10/10 10/10

20 100,00 100,00 0,00 10/10 10/10

21 100,00 100,00 0,00 10/10 10/10

22 100,00 100,00 0,00 10/10 10/10

23 100,00 100,00 0,00 10/10 10/10

24 100,00 100,00 0,00 10/10 10/10

25 100,00 100,00 0,00 10/10 10/10

26 100,00 100,00 0,00 10/10 10/10

27 100,00 100,00 0,00 10/10 10/10

28 100,00 100,00 0,00 10/10 10/10

29 100,00 100,00 0,00 10/10 10/10

30 100,00 100,00 0,00 10/10 10/10

31 100,00 100,00 0,00 10/10 10/10

32 100,00 100,00 0,00 10/10 10/10

33 100,00 100,00 0,00 10/10 10/10

34 100,00 100,00 0,00 10/10 10/10

35 100,00 100,00 0,00 10/10 10/10

36 100,00 100,00 0,00 10/10 10/10

37 100,00 100,00 0,00 10/10 10/10

38 100,00 100,00 0,00 10/10 10/10

39 100,00 100,00 0,00 10/10 10/10

40 100,00 100,00 0,00 10/10 10/10

average 100,00 100,00 0,00
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Tab. C.13: Results of the computational experiment with the genetic algorithm for equal-length

spectra coming from sequences of length 500 and the error rate ±5%

seq. no. usage of oligonucleotides [%] similarity [%] similarity deviation optimal usage optimal similarity

1 100,00 100,00 0,00 10/10 10/10

2 100,00 100,00 0,00 10/10 10/10

3 100,00 100,00 0,00 10/10 10/10

4 100,00 100,00 0,00 10/10 10/10

5 100,00 100,00 0,00 10/10 10/10

6 100,00 100,00 0,00 10/10 10/10

7 100,00 100,00 0,00 10/10 10/10

8 100,00 94,06 23,52 10/10 4/10

9 100,00 100,00 0,00 10/10 10/10

10 100,00 100,00 0,00 10/10 10/10

11 100,00 100,00 0,00 10/10 10/10

12 100,00 100,00 0,00 10/10 10/10

13 100,00 100,00 0,00 10/10 10/10

14 100,00 100,00 0,00 10/10 10/10

15 100,00 100,00 0,00 10/10 10/10

16 100,00 100,00 0,00 10/10 10/10

17 100,00 100,00 0,00 10/10 10/10

18 100,00 100,00 0,00 10/10 10/10

19 100,00 100,00 0,00 10/10 10/10

20 100,00 100,00 0,00 10/10 10/10

21 100,00 100,00 0,00 10/10 10/10

22 100,00 100,00 0,00 10/10 10/10

23 100,00 100,00 0,00 10/10 10/10

24 100,00 100,00 0,00 10/10 10/10

25 100,00 100,00 0,00 10/10 10/10

26 100,00 100,00 0,00 10/10 10/10

27 100,00 100,00 0,00 10/10 10/10

28 100,00 100,00 0,00 10/10 10/10

29 100,00 100,00 0,00 10/10 10/10

30 100,00 100,00 0,00 10/10 10/10

31 100,00 100,00 0,00 10/10 10/10

32 100,00 100,00 0,00 10/10 10/10

33 100,00 100,00 0,00 10/10 10/10

34 100,00 100,00 0,00 10/10 10/10

35 100,00 100,00 0,00 10/10 10/10

36 100,00 100,00 0,00 10/10 10/10

37 100,00 100,00 0,00 10/10 10/10

38 100,00 100,00 0,00 10/10 10/10

39 100,00 100,00 0,00 10/10 10/10

40 100,00 100,00 0,00 10/10 10/10

average 100,00 99,85 0,59
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Tab. C.14: Results of the computational experiment with the genetic algorithm for equal-length

spectra coming from sequences of length 600 and the error rate ±5%

seq. no. usage of oligonucleotides [%] similarity [%] similarity deviation optimal usage optimal similarity

1 100,00 100,00 0,00 10/10 10/10

2 100,00 100,00 0,00 10/10 10/10

3 100,00 100,00 0,00 10/10 10/10

4 100,00 100,00 0,00 10/10 10/10

5 100,00 100,00 0,00 10/10 10/10

6 100,00 99,88 0,01 10/10 3/10

7 100,00 100,00 0,00 10/10 10/10

8 100,00 95,05 16,34 10/10 4/10

9 100,00 100,00 0,00 10/10 10/10

10 100,00 100,00 0,00 10/10 10/10

11 100,00 100,00 0,00 10/10 10/10

12 100,00 100,00 0,00 10/10 10/10

13 100,00 100,00 0,00 10/10 10/10

14 100,00 100,00 0,00 10/10 10/10

15 100,00 100,00 0,00 10/10 10/10

16 100,00 100,00 0,00 10/10 10/10

17 100,00 100,00 0,00 10/10 10/10

18 100,00 100,00 0,00 10/10 10/10

19 100,00 100,00 0,00 10/10 10/10

20 100,00 100,00 0,00 10/10 10/10

21 100,00 100,00 0,00 10/10 10/10

22 100,00 100,00 0,00 10/10 10/10

23 100,00 100,00 0,00 10/10 10/10

24 100,00 100,00 0,00 10/10 10/10

25 100,00 100,00 0,00 10/10 10/10

26 100,00 100,00 0,00 10/10 10/10

27 100,00 100,00 0,00 10/10 10/10

28 100,00 100,00 0,00 10/10 10/10

29 100,00 100,00 0,00 10/10 10/10

30 100,00 100,00 0,00 10/10 10/10

31 100,00 100,00 0,00 10/10 10/10

32 100,00 100,00 0,00 10/10 10/10

33 100,00 100,00 0,00 10/10 10/10

34 100,00 100,00 0,00 10/10 10/10

35 100,00 100,00 0,00 10/10 10/10

36 100,00 100,00 0,00 10/10 10/10

37 100,00 100,00 0,00 10/10 10/10

38 100,00 100,00 0,00 10/10 10/10

39 100,00 100,00 0,00 10/10 10/10

40 100,00 100,00 0,00 10/10 10/10

average 100,00 99,87 0,41
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Tab. C.15: Results of the computational experiment with the genetic algorithm for equal-length

spectra coming from sequences of length 200 and the error rate ±20%

seq. no. usage of oligonucleotides [%] similarity [%] similarity deviation optimal usage optimal similarity

1 100,00 100,00 0,00 10/10 10/10

2 100,00 100,00 0,00 10/10 10/10

3 100,00 100,00 0,00 10/10 10/10

4 100,00 100,00 0,00 10/10 10/10

5 100,00 100,00 0,00 10/10 10/10

6 100,00 100,00 0,00 10/10 10/10

7 100,00 100,00 0,00 10/10 10/10

8 100,00 100,00 0,00 10/10 10/10

9 100,00 100,00 0,00 10/10 10/10

10 100,00 100,00 0,00 10/10 10/10

11 100,00 100,00 0,00 10/10 10/10

12 100,00 100,00 0,00 10/10 10/10

13 100,00 73,45 470,61 10/10 4/10

14 100,00 100,00 0,00 10/10 10/10

15 100,00 100,00 0,00 10/10 10/10

16 100,00 100,00 0,00 10/10 10/10

17 100,00 100,00 0,00 10/10 10/10

18 100,00 100,00 0,00 10/10 10/10

19 100,00 100,00 0,00 10/10 10/10

20 100,00 100,00 0,00 10/10 10/10

21 100,00 100,00 0,00 10/10 10/10

22 100,00 100,00 0,00 10/10 10/10

23 100,00 100,00 0,00 10/10 10/10

24 100,00 100,00 0,00 10/10 10/10

25 100,00 100,00 0,00 10/10 10/10

26 100,00 100,00 0,00 10/10 10/10

27 100,00 100,00 0,00 10/10 10/10

28 100,00 100,00 0,00 10/10 10/10

29 100,00 100,00 0,00 10/10 10/10

30 100,00 100,00 0,00 10/10 10/10

31 100,00 100,00 0,00 10/10 10/10

32 100,00 100,00 0,00 10/10 10/10

33 100,00 100,00 0,00 10/10 10/10

34 100,00 100,00 0,00 10/10 10/10

35 100,00 100,00 0,00 10/10 10/10

36 100,00 100,00 0,00 10/10 10/10

37 100,00 100,00 0,00 10/10 10/10

38 100,00 100,00 0,00 10/10 10/10

39 100,00 100,00 0,00 10/10 10/10

40 100,00 100,00 0,00 10/10 10/10

average 100,00 99,34 11,77
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Tab. C.16: Results of the computational experiment with the genetic algorithm for equal-length

spectra coming from sequences of length 400 and the error rate ±20%

seq. no. usage of oligonucleotides [%] similarity [%] similarity deviation optimal usage optimal similarity

1 100,00 100,00 0,00 10/10 10/10

2 100,00 100,00 0,00 10/10 10/10

3 100,00 100,00 0,00 10/10 10/10

4 100,00 100,00 0,00 10/10 10/10

5 100,00 100,00 0,00 10/10 10/10

6 100,00 100,00 0,00 10/10 10/10

7 100,00 100,00 0,00 10/10 10/10

8 100,00 100,00 0,00 10/10 10/10

9 100,00 100,00 0,00 10/10 10/10

10 100,00 100,00 0,00 10/10 10/10

11 100,00 100,00 0,00 10/10 10/10

12 100,00 100,00 0,00 10/10 10/10

13 100,00 100,00 0,00 10/10 10/10

14 100,00 100,00 0,00 10/10 10/10

15 100,00 100,00 0,00 10/10 10/10

16 100,00 100,00 0,00 10/10 10/10

17 100,00 100,00 0,00 10/10 10/10

18 100,00 100,00 0,00 10/10 10/10

19 100,00 100,00 0,00 10/10 10/10

20 100,00 100,00 0,00 10/10 10/10

21 100,00 100,00 0,00 10/10 10/10

22 100,00 100,00 0,00 10/10 10/10

23 100,00 100,00 0,00 10/10 10/10

24 100,00 100,00 0,00 10/10 10/10

25 100,00 100,00 0,00 10/10 10/10

26 100,00 100,00 0,00 10/10 10/10

27 100,00 100,00 0,00 10/10 10/10

28 100,00 100,00 0,00 10/10 10/10

29 100,00 100,00 0,00 10/10 10/10

30 100,00 100,00 0,00 10/10 10/10

31 100,00 100,00 0,00 10/10 10/10

32 100,00 100,00 0,00 10/10 10/10

33 100,00 100,00 0,00 10/10 10/10

34 100,00 100,00 0,00 10/10 10/10

35 100,00 100,00 0,00 10/10 10/10

36 100,00 100,00 0,00 10/10 10/10

37 100,00 100,00 0,00 10/10 10/10

38 100,00 100,00 0,00 10/10 10/10

39 100,00 100,00 0,00 10/10 10/10

40 100,00 100,00 0,00 10/10 10/10

average 100,00 100,00 0,00
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Tab. C.17: Results of the computational experiment with the genetic algorithm for equal-length

spectra coming from sequences of length 500 and the error rate ±20%

seq. no. usage of oligonucleotides [%] similarity [%] similarity deviation optimal usage optimal similarity

1 100,00 100,00 0,00 10/10 10/10

2 100,00 100,00 0,00 10/10 10/10

3 100,00 100,00 0,00 10/10 10/10

4 100,00 100,00 0,00 10/10 10/10

5 100,00 100,00 0,00 10/10 10/10

6 100,00 100,00 0,00 10/10 10/10

7 100,00 100,00 0,00 10/10 10/10

8 100,00 92,08 15,68 10/10 2/10

9 100,00 100,00 0,00 10/10 10/10

10 100,00 100,00 0,00 10/10 10/10

11 100,00 100,00 0,00 10/10 10/10

12 100,00 100,00 0,00 10/10 10/10

13 100,00 100,00 0,00 10/10 10/10

14 100,00 100,00 0,00 10/10 10/10

15 100,00 100,00 0,00 10/10 10/10

16 100,00 100,00 0,00 10/10 10/10

17 100,00 100,00 0,00 10/10 10/10

18 100,00 100,00 0,00 10/10 10/10

19 100,00 100,00 0,00 10/10 10/10

20 100,00 100,00 0,00 10/10 10/10

21 100,00 100,00 0,00 10/10 10/10

22 100,00 100,00 0,00 10/10 10/10

23 100,00 100,00 0,00 10/10 10/10

24 100,00 100,00 0,00 10/10 10/10

25 100,00 99,80 0,00 10/10 0/10

26 100,00 100,00 0,00 10/10 10/10

27 100,00 100,00 0,00 10/10 10/10

28 100,00 100,00 0,00 10/10 10/10

29 100,00 100,00 0,00 10/10 10/10

30 100,00 100,00 0,00 10/10 10/10

31 100,00 100,00 0,00 10/10 10/10

32 100,00 100,00 0,00 10/10 10/10

33 100,00 100,00 0,00 10/10 10/10

34 100,00 100,00 0,00 10/10 10/10

35 100,00 100,00 0,00 10/10 10/10

36 100,00 100,00 0,00 10/10 10/10

37 100,00 100,00 0,00 10/10 10/10

38 100,00 100,00 0,00 10/10 10/10

39 100,00 100,00 0,00 10/10 10/10

40 100,00 100,00 0,00 10/10 10/10

average 100,00 99,80 0,39
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Tab. C.18: Results of the computational experiment with the genetic algorithm for equal-length

spectra coming from sequences of length 600 and the error rate ±20%

seq. no. usage of oligonucleotides [%] similarity [%] similarity deviation optimal usage optimal similarity

1 100,00 100,00 0,00 10/10 10/10

2 100,00 100,00 0,00 10/10 10/10

3 100,00 100,00 0,00 10/10 10/10

4 100,00 100,00 0,00 10/10 10/10

5 100,00 100,00 0,00 10/10 10/10

6 100,00 99,90 0,01 10/10 4/10

7 100,00 100,00 0,00 10/10 10/10

8 100,00 96,70 16,34 10/10 6/10

9 100,00 100,00 0,00 10/10 10/10

10 100,00 100,00 0,00 10/10 10/10

11 99,94 99,31 4,31 9/10 9/10

12 100,00 100,00 0,00 10/10 10/10

13 100,00 100,00 0,00 10/10 10/10

14 100,00 100,00 0,00 10/10 10/10

15 100,00 100,00 0,00 10/10 10/10

16 99,43 99,62 0,02 1/10 1/10

17 100,00 100,00 0,00 10/10 10/10

18 100,00 100,00 0,00 10/10 10/10

19 100,00 100,00 0,00 10/10 10/10

20 100,00 100,00 0,00 10/10 10/10

21 100,00 100,00 0,00 10/10 10/10

22 100,00 100,00 0,00 10/10 10/10

23 100,00 100,00 0,00 10/10 10/10

24 99,94 97,18 71,83 9/10 9/10

25 100,00 99,83 0,00 10/10 0/10

26 100,00 100,00 0,00 10/10 10/10

27 100,00 100,00 0,00 10/10 10/10

28 100,00 100,00 0,00 10/10 10/10

29 100,00 100,00 0,00 10/10 10/10

30 100,00 100,00 0,00 10/10 10/10

31 100,00 100,00 0,00 10/10 10/10

32 100,00 100,00 0,00 10/10 10/10

33 100,00 100,00 0,00 10/10 10/10

34 100,00 100,00 0,00 10/10 10/10

35 100,00 100,00 0,00 10/10 10/10

36 100,00 100,00 0,00 10/10 10/10

37 100,00 100,00 0,00 10/10 10/10

38 100,00 100,00 0,00 10/10 10/10

39 100,00 100,00 0,00 10/10 10/10

40 100,00 100,00 0,00 10/10 10/10

average 99,98 99,81 2,31
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Tab. C.19: Results of the computational experiment with the genetic algorithm for equal-length

spectra coming from sequences of length 600 with repetitions

seq. no. usage of oligonucleotides [%] similarity [%] similarity deviation optimal usage optimal similarity

1 100,00 100,00 0,00 10/10 10/10

2 100,00 87,55 91,94 10/10 3/10

3 100,00 91,29 75,86 10/10 5/10

4 100,00 87,03 75,16 10/10 2/10

5 100,00 85,70 136,40 10/10 4/10

6 100,00 91,46 173,94 10/10 0/10

7 100,00 85,00 150,00 10/10 4/10

8 100,00 90,54 89,49 10/10 5/10

9 100,00 94,85 106,09 10/10 8/10

10 100,00 100,00 0,00 10/10 10/10

11 100,00 91,77 55,39 10/10 10/10

12 100,00 100,00 0,00 10/10 10/10

13 100,00 84,76 91,35 10/10 1/10

14 100,00 89,50 110,25 10/10 5/10

15 100,00 93,72 65,15 10/10 0/10

16 100,00 93,80 6,44 10/10 0/10

17 100,00 90,17 81,38 10/10 0/10

18 100,00 100,00 0,00 10/10 10/10

19 100,00 100,00 0,00 10/10 10/10

20 100,00 94,05 167,86 10/10 0/10

21 100,00 100,00 0,00 10/10 10/10

22 100,00 97,18 7,20 10/10 4/10

23 100,00 85,95 131,64 10/10 4/10

24 100,00 100,00 0,00 10/10 10/10

25 100,00 94,56 16,05 10/10 3/10

26 100,00 84,75 232,56 10/10 5/10

27 100,00 100,00 0,00 10/10 10/10

28 100,00 90,92 82,54 10/10 5/10

29 100,00 100,00 0,00 10/10 10/10

30 100,00 100,00 0,00 10/10 10/10

31 100,00 75,46 120,63 10/10 10/10

32 100,00 92,18 26,20 10/10 3/10

33 100,00 95,52 80,43 10/10 8/10

34 100,00 73,67 301,09 10/10 3/10

35 100,00 97,70 21,16 10/10 8/10

36 100,00 100,00 0,00 10/10 10/10

37 100,00 93,07 192,32 10/10 8/10

38 100,00 87,63 153,14 10/10 5/10

39 100,00 98,55 0,29 10/10 1/10

40 100,00 91,87 63,19 10/10 0/10

average 100,00 92,75 72,63
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Tab. C.20: Results of the computational experiment with the genetic algorithm for equal-length

spectra, coming from sequences of length 600 with repetitions, with additional pos-

itive and negative errors up to ±5%

seq. no. usage of oligonucleotides [%] similarity [%] similarity deviation optimal usage optimal similarity

1 100,00 100,00 0,00 10/10 10/10

2 100,00 70,60 79,44 10/10 0/10

3 100,00 93,03 72,83 10/10 6/10

4 100,00 82,82 52,95 10/10 1/10

5 100,00 85,70 136,40 10/10 4/10

6 100,00 94,12 172,98 10/10 0/10

7 100,00 80,00 100,00 10/10 2/10

8 100,00 90,54 89,49 10/10 5/10

9 100,00 84,55 159,14 10/10 4/10

10 100,00 100,00 0,00 10/10 10/10

11 100,00 94,64 46,59 10/10 0/10

12 100,00 94,50 3,45 10/10 1/10

13 100,00 87,37 104,07 10/10 2/10

14 100,00 93,70 92,61 10/10 7/10

15 100,00 96,33 25,01 10/10 0/10

16 100,34 96,88 0,09 10/10 0/10

17 100,00 92,36 69,36 10/10 0/10

18 100,00 100,00 0,00 10/10 10/10

19 100,00 100,00 0,00 10/10 10/10

20 100,18 98,25 0,00 10/10 0/10

21 100,00 100,00 0,00 10/10 10/10

22 100,00 97,40 6,79 10/10 5/10

23 100,00 90,63 131,64 10/10 6/10

24 100,00 100,00 0,00 10/10 10/10

25 100,00 95,00 14,07 10/10 2/10

26 100,00 81,70 223,26 10/10 4/10

27 99,86 96,12 47,97 6/10 6/10

28 100,00 85,46 52,82 10/10 2/10

29 100,00 100,00 0,00 10/10 10/10

30 100,00 100,00 0,00 10/10 10/10

31 99,77 73,84 190,93 5/10 1/10

32 100,00 93,30 29,94 10/10 4/10

33 100,00 88,79 125,66 10/10 5/10

34 100,00 61,15 5,61 10/10 0/10

35 100,00 89,65 11,90 10/10 1/10

36 100,00 100,00 0,00 10/10 10/10

37 100,00 82,67 300,50 10/10 5/10

38 100,00 90,10 147,02 10/10 6/10

39 100,00 98,79 0,22 10/10 0/10

40 100,00 89,16 67,01 10/10 0/10

average 100,00 91,23 63,99


