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Introduction

Many scientific and engineering problems are described in the form of ordinary
differential equations. If such equations cannot be solved analytically, we use com-
puters and approximate methods (algorithms) to solve them, usually providing all
calculations in floating-point arithmetic. This arithmetic is a fast way to perform
calculations, butitis also error-prone and therefore particular attention must be paid
to the reliability of the computed results.

There are two kinds of errors caused by floating-point arithmetic: representation
errors and rounding errors. From the mathematical point of view, a real number is
represented by an infinite decimal or a binary fraction. In a computer such a real
number must be approximated by a finite fraction, which causes the representation
error. If we have a lot of real numbers as our data, then already at the beginning of
computations we have errors which will be propagated further. The second kind of
errors, i.e. rounding errors, occur during each floating-point operation. Although
each such operation on modern computers is of maximum accuracy, the result after
only a small number of operations can be completely wrong. In classical numerical
analysis the error of each individual floating-point operation is estimated, but it is
impossible to do it if millions floating-point operations are performed in a com-
puter. It is regrettable, the author believes, that many people do not allow for the te-
dious fact that the computed results could be inaccurate, not because of the method
applied, but also because to the arithmetic used.

While solving ordinary differential equations on a computer (in the form of an
initial value problem — see Chapter 2 for the exact definition), we apply approxi-
mate methods, which in turn introduce the third kind of errors — the errors of me-
thods. In interval algorithms this kind of errors are included in the interval solutions
obtained. Thus, applying interval methods for solving the initial value problem in
floating-point interval arithmetic we can obtain solutions in the form of intervals
which contain all possible numerical errors. But one should know that the floating-
-point interval arithmetic is not an antidote for all problems which accompany com-
putations on computers. One inconvenience of this arithmetic is the wrapping effect
(see Example 1.5 in Section 1.1) and further efforts should be done by scientists to
eliminate it.

This monograph consists of five parts. In Chapter 1 some preliminaries of inter-
val arithmetic are presented. Sections 1.1 and 1.2 deal with mathematical funda-
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mentals of interval arithmetic. In Section 1.4 some hints for realizing floating-point
interval arithmetic in any computer language are given and an implementation of
it in the Delphi Pascal programming language is presented. In Chapter 2 a mathe-
matical background of the initial value problem is described. This is the problem
for which some interval methods presented in the next sections have been deve-
loped. It concerns one-step interval methods of Runge-Kutta type presented in
Chapter 3 and multistep interval methods described in Chapter 4. For any interval
algorithm presented in this monograph a proof of a relevant theorem on the in-
clusion of the exact solution in interval solutions is given and the widths of interval
solutions are estimated. The computational complexities of interval methods are
also studied (see Sections 3.6 and 4.6 for details). In Sections 3.7 and 4.7 numerical
experiments with interval methods considered are presented (for selected problems)
and some comparison between the interval methods are given. Other interval me-
thods known are briefly discussed in Chapter 5.



Chapter 1

Preliminaries of Interval Arithmetic

1.1. Real and Complex Interval Arithmetic

Verified numerical computing requires a mathematical tool to describe ope-
rations performed on computers. Such a mathematical tool, called interval arith-
metic, was developed by R. E. Moore [133, 134], C. Alefeld and J. Herzberger [5],
and A. Neumaier [146]. In this chapter we present only the basic definitions of real
and complex interval arithmetic and give some examples. The last section of this
chapter deals with a practical implementation of floating-point interval arithmetic
on computers.

A real interval, or simply an interval, is a closed and bounded subset of real
numbers R:

[x]=[§,)?]={xeR:§§xS)?}, 2.1

where x and X denote the lower and upper bounds of the interval [x], respecti-
vely. An interval is called a point interval if x = x. The set of real intervals will be

denoted by IR. Since intervals are sets, the well-known terms such as equality
(=), subset (<), propersubset (<), superset (o), proper superset (o), member-
ship (e), union (U), and intersection (n) are defined in the usual sense of set
theory. .

For intervals we also define the inner inclusion relation (c) . We have

[x]c [y], if y<x and x < y. (1.2)

About an interval [x], which satisfies (1.2), we say that it is contained in the in-
terior of [ y]. Another relation called the Aull of intervals is defined as follows:

[x]u [¥]= min{z, X} , max{)_c, )7}]
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Let us note that this relation differs from the union of intervals defined in the com-
mon set theory sense.

Example 1.1

Let [x]=10,3], and [y]=[0,5]. We have 2 e[x], 4 ¢[x], [x]< [v], and
[v]> [x]. Moreover, [y]u [6,7]=[0,7], but [y]u [6,7]=[0,5]u [6,7]. We
also have [x] N [y]=[x], and [x]u [¥]= [y]. Letus note that the interval [x] is
not contained in the interior of [y], since x = y. u

For an interval [x] it is easy to define the terms width (sometimes called dia-
meter), radius and midpoint.

w(x]) = x - x,
AMD=X;5,
rmun—fgf

The smallest and the greatest absolute value of an interval [x] are defined as
follows:

<[x]>: min{|x|: X € [x]},

|[x]| = max{|x|: X e[x]} = max{

X

5
It is easy to check that if 0 e [x], then <[x]> = 0. Let us note that both the smallest
and the greatest absolute value of an interval are real numbers, but the absolute
value of an interval [x], denoted by abs([x]), is an interval and is one of elemen-
tary interval functions (see Section 1.2 for details). The width, radius, midpoint, the
smallest and the greatest absolute value of an interval are sometimes called attri-
butes of an interval (see Figure 1.1).

\ 0 m( [|x]) )_f
) .

w(x])

B ™

A
\/

Figure 1.1. Attributes of an interval [x]
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For intervals [x] and [y] we can introduce the distance d([x],[y]) in the
following way:

b

A, ) = max{ - |, |5 7. (13
The distance fulfills all conditions for a metric (it is nonnegative, vanishes if and
only if [x] = [y], and holds the triangle inequality), which means that the set IR
with the metric d is a metric space. It can be proved that this space is a complete
metric space, i.e. each Cauchy sequence is convergent to an element of this space.
The elementary real operations (addition, subtraction, multiplication and di-
vision), i.e. any operation o e {+,—,-, /} can be extended to interval arguments
[x], [»] by defining the result of an elementary interval operation to be the set of
real numbers which results from combining any two numbers included in intervals
[x] and [y]:
[xloly]= {xoy: xelxly e[V} (1.4)

From (1.4) it follows that
[x]+ 9] = [x+ 0 %+ 7]

[x]-D91= - 7.5 9]

[x]-[y]= min{fz’ )_C)_/s )?Z, ﬁ} 5 max{gz, E)_/a )?Z, ﬁ}]a (1.5)

11
[X]/[y]=[X]{:—], 0¢ly]
vy
Example 1.2
Using (1.5) we have
[-1,0]+[0, 7] = [-1, =], -1-[2,5]=[-5, 2],
[1,4]-[1,4]=[-3,3], [-2,3]-[-2, 3] = [-6,9],
1 1 1
LR ba
[2,4]-3=[-1,1], [1,2]/[—2,—1]:{—2,—%]

Let us note that an operation such as [1, 2]/[-2, 1] is indeterminate, since the num-
ber 0 is included into the divisor. u
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All the elementary operations on intervals are inclusion isotonic, i.e.

[xIc [x'], YIc V'] = [xlelylc [X']e[y'], o€+, -/}
Applying interval arithmetic we should know that the distribute law is not ge-
nerally satisfied and in this arithmetic we have so-called the subdistributive law:

[x]-([x]+ [zD < [x]-[¥]+ [x]-[z].

Example 1.3
Let [x]=[L 2], [¥]=[2,3], [z]=[-4, - 3]. We have
[x]-([y]+ [2]) = [-4, 0]  [-6, 3] = [x]-[v]+ [x]-[=]. b

The real interval arithmetic can be extended to complex intervals. If intervals
[x,.], [x;,] € IR, then the set

[x]=[x.]1+i[x;,]1= { X=X, +tix,,: Xx,<[x.],x,, € [xim]} R

where i = +/- 1, is called a complex interval and the set of complex intervals is de-
noted by IC. If [x], [v] € IC, then we get

[.X'] + [y] = [xre] + [yre] + l([xzm] + [yim])a

[x]= 1= [xe 1= [y I+ 0% ] = [Vin D
[x] : [)’] = [xre] : [yre] - [xim] : [yim] + l([xre] : [yim] - [xim] : [yrel])> (16)

_ [xre] ) [yre] + [xim] ) [ytm] . [xim] ) [yre] - [xire] ) [yim]
[x1/[¥]= 3 3 +1 2 >
[yre] "‘[)/,'m] [yre] +[ylm]
0 3 [yre]z + [yim]z'

It should be pointed out that in the division [x]/[y] the terms [y,,]* and [y,,]* are
evaluated using the elementary interval square function (see Section 1.2) instead of
evaluating them by self multiplications. This guarantees that for each [y] with
0¢[y] wehave 0¢[y,J + [y,

B

Example 1.4 [61, p. 40]
Let [y]=[-2,1]+i[1,2]. Then 0= (0, 0) ¢[y], and thus
0 ¢ [yl + ]’ = [L 8]

Using multiplication instead of the elementary square function (defined in Section
1.2) yields 0 €[y, ]1- [V, 1+ [Vin]- [Vin] = [- 1, 8]. Thus, the division would fail. =

There is an important difference between the definitions of elementary ope-
rations for real intervals and those for complex intervals. The continuous image of
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a complex interval is not necessarily another complex interval. Moreover, some-
times we can obtain the effect of overestimation, which is called the wrapping effect
[35, 58,112, 114, 115, 139, 148, 173].

Example 1.5 [61, p. 40]

Let [x] € IC beacomplex interval, and let the interval [y] = [y, )7] € IC be the

point interval and such that y = y = cosa + isina. Multiplication of any x e [x]

with [y] results in a rotation of x by the angle «. Thus, unless « is a multiple
of #/2, theset {x-y: x e[x]} is arectangle with sides not parallel to the coor-
dinate axes. The complex interval multiplication [x]-[y] wraps the given set in
a rectangle with sides parallel to the axes as shown in Figure 1.2. u

ey xelxly

\
\/

Figure 1.2. Wrapping effect caused by an multiplication of some intervals

Effects similar to the one presented in the above example we can get by applying
interval real arithmetic. Understanding the wrapping effect, it will be not take into
account in the next chapters.

In real interval arithmetic a division by an interval containing zero cannot be
performed. This restriction may be removed in so-called extended interval arith-
metic, which is defined in the set of extended real intervals

IR"=IRU {[-,7]: reR}U {[,+ 0]: [eR}U {[-0,+ 0]}

The interval real arithmetic introduced so far has one inconvenience regarding
the division of intervals. Sometimes the definition of the division of intervals is ex-
tended to the following:
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[-o,+ o], if x<0<X or[x]=0or[y]=0,
[f/z,+oo], if ¥20and y<0<7,

[, ¥/ F]u |7/ p,+ 0], if F<0and y<0<T,
[x)/1y1= [-o.5%7], if ¥<0and 0=y<7,

[—oo,z/y]u[z/)_/ﬁoo], if 0<xand y<0<y,

[)_c/)7,+oo], if 0<xand 0=y<y.

In addition to the operation of an extended division, an extended subtraction is
often introduced. If [x] e IR is a point interval and [y] e IR" has at least one
infinite endpoint, we define

[f—)_/,+oo], if [y]= [—oo,)_;],
[x]-[y]= [, + =], if [y]=[-o,+x],
[—oo,f—z], if [y]:[z,+oo].

1.2. Interval Functions

Let ¢: Dc R — R denoteareal-valued elementary function, for instance ab-
solute value, square, square root, exponential function, power function, logarithm,
sine, cosine, tangent, cotangent, arc sine, cosine, tangent or cotangent, hyperbolic
sine, cosine, tangent or cotangent, inverse hyperbolic sine, cosine, tangent or co-
tangent, which is continuous on every closed interval contained in D. It is easy to
extend ¢ to interval arguments [x] € D by the following definition:

oD = {p(xD: xelxli = g[x]qo(xl (1.7)

Since we have assumed that ¢ is continuous, then ¢([x]) is an interval. From
(1.7) it follows that an elementary interval function is inclusion isotonic, i.e.

[x]c [¥] = o(xDc o(yD.

If a real-valued elementary function ¢ is monotonic, then in the case in which
[x] is restricted to the domain D of ¢, we can easy define an adequate interval
elementary function. We have

abs([x]) = [{[x1), ] [x]

], (1.8)
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#((x]) = [¢(x), ¢(¥)], ¢ < farctan, arsinh, In, sinh},
o([x]) = [p(%), olx)]. ¢ € farceot, arcoth},
(P = sar(ixl) = | (0.1 .
VT = sart(txp =[x, VX .
e = exp(lx]) = [eF, '],

[5”,)7"], if 0< x or n odd,

(1.8 cont.)

[x]" = {o,|[x]|”}, if 0 e[x] and 7 even,
[E”,E"], if X< 0 and n even.

Regarding to (1.5) and (1.8), it should be noted that in general we get only
[x]* < [x]-[x] if O e [x]. The example with [x] = [-1, 1], which yields

[-L 17 =[0,11# [-1,1]-[-1,1] = [- 1, 1],

confirms this fact.
For any real-valued function /' : D c R - R we can extend it to interval argu-
ments [x] € D in the same way as for a real-valued elementary function, i.e.

f@xh= U f(x). (1.9)

x €[x]

An enclosure of f([x]) can be easly obtained if we substitute [x] for x inthe de-
fining expression of /', and then evaluate f using interval arithmetic. This kind
of evaluation is called an interval extension of f and is denoted by f ,([x]). It
should be noted that in general we have

S (=D < fiy([xD.

Moreover, one should bear in mind that a real-valued function may have several in-
terval extensions, since it may be defined by several equivalent arithmetic expres-
sions and such expressions do not necessarily yield equivalent interval extensions.

Example 1.6
Let us consider a real-valued function f defined as follows:

2 2 1 1 2
f(x): 7= = + = R
1-x I-xx 1+x 1-x ((A+x)-(1-x)

|x|<1.
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All notations of f are mathematically equivalent, but their interval extensions are
different. Let us specify:

O = —2, fO)= ,
1-x
1 1

2
3 - (4) —
L T (x)_(1+x).(1—x)'

1-x-x

The function f is symmetric, decreasing for x < 0, increasing for x > 0, and

for any interval [x] e (-1,1) we have f([x]) = [f(< [x] >), f(| [x]|)], and hence if

[x]= [— =, %], we get f([x]) = [2, §], But for the interval extensions we have (see
Figure 1.3)
AP = 28] £P 0D = [§.4]
c APWD = [#. ] e AP = [16. 5] .

For computer implementations the definition (1.9) is not good, since in general
it is impossible to find the union over all real numbers x e [x] (computers support
only finite sets of numbers), and we usually use interval extensions to represent in-
terval functions. In general, it is difficult to determine the best possible interval ex-
tension if we have a few mathematical equivalent notations of a real-valued
function. However, it is an empirical fact that the fewer occurrences of [x] within
an interval extension, the better the result of the corresponding interval evaluation.
This fact is confirmed in Example 1.6, where the interval [x] occurs only once in

VAK(EI)

1.3. Floating-Point Interval Arithmetic

In computers real numbers are represented in a form of floating-point numbers
(sometimes also called machine numbers). A floating-point number x is of the
form

x=1tm-b°=£0.mm, ...my -b°,

where m is a signed mantissa of fixed length &, b is the base, and e is the ex-
ponent. For the digits of the mantissa we have 1< m <b-1, and 0<m, < b-1
for i=2,3,...,k. This yields 1/b<m<1 The exponent is bounded by
enin < €< e, Floating-point numbers are usually represented with the base

b=2.
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y A (3 IS (53 AR (R IS (29

[ <

-1 X X 1

Figure 1.3. Different interval extensions as defined in Example 1.6

A floating-point system will be denoted by R. In order to represent real num-
bers by floating-point numbers we should map the set R into R. This mapping,
denoted by ¢ and called rounding, is defined by the two following conditions:

V 0x=xand V x<y=0x<0y.
XeR xX,yeR
The first condition guarantees that the elements of the set R are not changed by
rounding, and the second condition expresses the monotonicity of rounding.

Internal representations of floating-point (machine) real numbers of the Single,
the Double and the Extended types in the Delphi Pascal programming language are
shown in Figure 1.4. The Single and the Double types answer a description of
single- and double-precision floating-point numbers defined by the IEEE 754 stan-
dard [176]. But in Delphi Pascal we recommend using the Extended type (called
longdouble in C++) for which the range and precision are the biggest.
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Single
4 bytes
8 bits 23 bits
crerrrrfrrrrr et PP
T ) exponent 9 mantissa R
sign
Double
8 bytes
11 bits 52 bits
cLrrrrrfrrfrr el
T B exponent v mantissa R
sign
Extended
10 bytes
15 bits 63 bits
crerrrrrrrrfrrrrrrr LT
T . exponent HT mantissa .
< el >
sign i

Figure 1.4. Internal representations of the Single, Double and Extended types

The value v of a number of the Single type is defined as follows:

(-2 2 (Lm), if 0<e< 255,
(-1)*27'%(0.m), if e=0 and m=0,
v=1(-1)'0, if e=0 and m=0,
(-1)*Inf, if e=255 and m=0,
NaN, if e=255 and m= 0,
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where s denotes the sign (0 or 1), /nf'is a state of the computer floating-point unit
(FPU) called infinity, and NaN denotes a state of FPU called not-a-number. The
value v of a number of the Double type is given by

(-1 21 (1Lm), if 0< e< 2047,
(-1)*2712(0.m), if e=0 and m# 0,
v=1(-1)°0, if e=0 and m=0,

(-DInf, if e=2027 and m= 0,
NaN, if e=2047 and m# 0.

For the value v of a number of the Extended type we have

(-1)°2 1) G m), if 0< e< 32767,
v=s (-D%Inf, if e=32767 and m= 0, (1.10)
NaN, if e=32767 and m# 0,

where i is the bit before the mantissa point.

Even if one uses floating-point real numbers with the biggest range and pre-
cision (as the Extended type in Delphi Pascal or the longdouble type in C++), one
should bear in mind that every floating-point number set is finite, not every real
number can be represented exactly in this number set, and that standard input/out-
put procedures of programming languages can produce additional rounding errors.

Example 1.7

The binary representation of the real number 0.1 is infinite. Thus, any represen-
tation of this number in a floating-point number set cannot be exact. Of course, the
representation error depends on floating-point systems used.

Let us consider the Extended type in Delphi Pascal and let us assume that the
number 0.1 has been read (in a console application) by the Readln (or Read)
standard procedure which assigns this number to a variable, say x, of the Extended
type. If we use the Writeln (or Write) standard procedure with parameter x:26,
where 26 is the field width for which the maximum number of significant digits in
the mantissa can be obtained, on the screen we will see quite a good result:

1.0000000000000000E-0001 (1.11)

(with one space before the first digit). In computer memory the x variable occupies
10 bytes in which we have

Ist byte 2nd byte 3rd byte 4th byte Sth byte 6th byte 7th byte 8th byte 9th byte 10th byte
+—— Pt P4t Pt P4t Pt P4¢———P4t——>

11001101110011001100110011001100110011001100110011001100110011001111101100111111
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In order to interpret these bytes we should reverse them:

10th byte 9th byte 8th byte 7th byte 6th byte 5th byte 4th byte 3rd byte 2nd byte 1st byte
4+—P4t——rPr4t——P4+——P4t+———P4t+——P4t——P4t——P4t——P4+—>
00111111111110111100110011001100110011001100110011001100110011001100110011001101

< > »
T‘ >« >
exponent mantissa

sign bit

From (1.10) it follows that the exact decimal value of the exponent is equal to
-4. If we multiply the mantissa by 2%, in binary system we get

0.0001100110011001100110011001100110011001100110011001100110011001101
This binary number is equal to
0.1000000000000000000013552527156068805425093160010874271392822265625

in decimal system. But this decimal number is not equal to 0.1 and we see an repre-
sentation error. It can be checked that a lot of machine numbers, the ones that
follow the machine representation of 0.1 (we present them in decimal notation):

0.1000000000000000000081315162936412832550558960065245628356933593750
0.1000000000000000000149077798716756859676024760119616985321044921875
0.1000000000000000004960224939121182785584096563979983329772949218750
0.1000000000000000005027987574901526812709562364034354686737060546875

0.1000000000000000005434563389583590975462357164360582828521728515625

and the ones that precede this representation:

0.0999999999999999999945789891375724778299627359956502914428710937500
0.0999999999999999999878027255595380751174161559902131557464599609375
0.0999999999999999999539214076693660615546832559630274772644042968750
0.0999999999999999999471451440913316588421366759575903415679931640625

are all displayed by the Writeln (x :26) procedure in the form (1.11). Moreover, one
can empirically prove (using Delphi Pascal) that there are 88 machine numbers of
the Extended type that this procedure displays as (1.11). It is another matter that all
underlined numbers (there are eight such machine numbers: seven that follow the
machine representation of 0.1 and one that proceeds this representation) are wrong
as a result of rounding by the Writeln procedure. L

Modern computers usually implements four kinds of rounding: to the closest
value (to the even number if the distance is the same), toward negative infinity,
toward positive infinity, and toward zero rounding positive numbers down and ne-
gative numbers up. The roundings toward both infinities are very important from
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the point of view of floating-point interval arithmetic, since we use them in the de-
finitions of elementary floating-point interval operations.

A floating-point interval (machine interval) is a real interval whose endpoints
are floating-point numbers. The set of floating point intervals over R is defined as
follows:

= {[x] e IR: I,)_CER}.

The elementary floating-point interval operations are defined in such a way that
for all [x],[y] € IR the resulting interval is the smallest machine interval which
contains [x]eo[y], o€ {+,—,", /}, 1.c.

[x]+[y]=[ (x+y Ax+ ,

)

V(g ,A )_c ],
[x]-[¥]= {min{V(Ez), V(_)_/), V()_CX), V(xy)},
). 827 (). ()} ]

[x]/[y]z{min{V(g/y) (x/7), V(E/z),v(f/f/)},

[x]-[x¥]=

(1.12)
max{A(gZ ,
V

max{A(g/y) A x/y (f/z), A()?/)_})”, 0¢[y],

where V denotes the rounding toward negative infinity (down), and A toward po-
sitive infinity (up).

A complex floating-point interval is an interval whose real and imaginary parts
are floating-point intervals. On the basis of (1.6) and (1.12) the floating-point arith-
metic for complex intervals can be introduced very easily. We omit the relevant de-
finitions, because in this book only real floating-point interval operations will be
applied.

1.4. Animplementation of Floating-Point Interval Arithmetic
in Delphi Pascal

Floating-point interval arithmetic can be implemented in almost any modern
programming language. There are well-known three programming languages, de-
veloped at the Universitit Karlsruhe (Germany), in which floating-point interval
arithmetic is fully implemented: PASCAL-XSC [93], C-XSC [94, 102] and FOR-
TRAN-XSC [178], where the abbreviation XSC stands for an eXtension for Scien-
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tific Computation. In this section we present an implementation of floating-point
interval arithmetic in Delphi Pascal (previously Object Pascal), one of the most po-
pular programming language developed by Borland Software Corporation (Code-
Gear at present).

The implementation of floating-point interval arithmetic has been written in the
form of a unit called IntervalArithmetic. This unit takes advantage of the Delphi
Pascal floating-point Extended type and makes it possible to:

® represent any input numerical data in the form of a machine interval (the ends of
this interval are equal or are two subsequent machine numbers),

® perform all calculations in floating-point interval arithmetic,

® use some standard interval functions,

® give results in the form of proper intervals (if the ends of an interval are not the
same machine numbers, one can see the difference in the output).

The current version of our IntervalArithmetic unit is as follows:

unit Interval Arithmetic;
// Version 2.13
/I (C) Copyright 1998-2009 by Andrzej Marciniak
// Poznan University of Technology, Institute of Computing Science
interface
type interval = record
a, b : Extended

end;
// Basic arithmetic operations
function iadd (const x, y : interval) : interval;
function isub (const x, y : interval) : interval,
function imul (const x, y : interval) : interval;
function idiv (const x, y : interval) : interval,

// Data reading functions

function int_read (const sa : AnsiString) : interval;
function left read (const sa : AnsiString) : Extended,
function right read (const sa : AnsiString) : Extended,
function int_width (const x : interval) : Extended,

/I A procedure for transforming ends of intervals into strings
procedure iends_to_strings (const x : interval;
out left, right : string);

// Basic functions
function isin (const x : interval,

out st : Integer) : interval;
function icos (const x : interval;

out st : Integer) : interval;
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function iexp (const x : interval;

out st : Integer) : interval;
function isqr (const x : interval;

out st : Integer) : interval,

// Interval constants
function isqrt2 : interval,
function isqrt3 : interval;
function isqrt5 : interval,
function isqrt6 : interval;
function isqrt7 : interval,
function isqrt8 : interval;
function isqrt10 : interval;
function ipi : interval;

implementation

uses SysUtils, Math, Dialogs;

type char tab = array [1..80] of Char;

const bit : array [0..7] of Byte = ($01, $02, $04, $08, $10, $20, $40, $80);

1di : array [0..63] of string [65] =

(’1.000000000000000000000000000000000000000000000000000000000000000°,
’0.500000000000000000000000000000000000000000000000000000000000000°,
’0.250000000000000000000000000000000000000000000000000000000000000°,
’0.125000000000000000000000000000000000000000000000000000000000000°,
’0.062500000000000000000000000000000000000000000000000000000000000°,
’0.031250000000000000000000000000000000000000000000000000000000000°,
’0.015625000000000000000000000000000000000000000000000000000000000°,
’0.007812500000000000000000000000000000000000000000000000000000000°,
’0.003906250000000000000000000000000000000000000000000000000000000°,
’0.001953125000000000000000000000000000000000000000000000000000000°,
’0.000976562500000000000000000000000000000000000000000000000000000°,
’0.000488281250000000000000000000000000000000000000000000000000000°,
’0.000244140625000000000000000000000000000000000000000000000000000°,
’0.000122070312500000000000000000000000000000000000000000000000000°,
’0.000061035156250000000000000000000000000000000000000000000000000°,
’0.000030517578125000000000000000000000000000000000000000000000000°,
’0.000015258789062500000000000000000000000000000000000000000000000°,
’0.000007629394531250000000000000000000000000000000000000000000000°,
’0.000003814697265625000000000000000000000000000000000000000000000°,
’0.000001907348632812500000000000000000000000000000000000000000000°,
’0.000000953674316406250000000000000000000000000000000000000000000°,
’0.000000476837158203125000000000000000000000000000000000000000000°,
’0.000000238418579101562500000000000000000000000000000000000000000°,
’0.000000119209289550781250000000000000000000000000000000000000000°,
’0.000000059604644775390625000000000000000000000000000000000000000°,
’0.000000029802322387695312500000000000000000000000000000000000000°,
’0.000000014901161193847656250000000000000000000000000000000000000°,
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’0.000000007450580596923828125000000000000000000000000000000000000°,
’0.000000003725290298461914062500000000000000000000000000000000000°,
’0.000000001862645149230957031250000000000000000000000000000000000°,
’0.000000000931322574615478515625000000000000000000000000000000000°,
’0.000000000465661287307739257812500000000000000000000000000000000°,
’0.000000000232830643653869628906250000000000000000000000000000000°,
’0.000000000116415321826934814453125000000000000000000000000000000°,
’0.000000000058207660913467407226562500000000000000000000000000000°,
’0.000000000029103830456733703613281250000000000000000000000000000°,
’0.000000000014551915228366851806640625000000000000000000000000000°,
’0.000000000007275957614183425903320312500000000000000000000000000°,
’0.000000000003637978807091712951660156250000000000000000000000000°,
’0.000000000001818989403545856475830078125000000000000000000000000°,
’0.000000000000909494701772928237915039062500000000000000000000000°,
’0.000000000000454747350886464118957519531250000000000000000000000°,
’0.000000000000227373675443232059478759765625000000000000000000000°,
’0.000000000000113686837721616029739379882812500000000000000000000°,
’0.000000000000056843418860808014869689941406250000000000000000000°,
’0.000000000000028421709430404007434844970703125000000000000000000°,
’0.000000000000014210854715202003717422485351562500000000000000000°,
’0.000000000000007105427357601001858711242675781250000000000000000°,
’0.000000000000003552713678800500929355621337890625000000000000000°,
’0.000000000000001776356839400250464677810668945312500000000000000°,
’0.000000000000000888178419700125232338905334472656250000000000000°,
’0.000000000000000444089209850062616169452667236328125000000000000°,
’0.000000000000000222044604925031308084726333618164062500000000000”,
’0.000000000000000111022302462515654042363166809082031250000000000°,
’0.000000000000000055511151231257827021181583404541015625000000000°,
’0.000000000000000027755575615628913510590791702270507812500000000°,
>0.000000000000000013877787807814456755295395851135253906250000000°,
’0.000000000000000006938893903907228377647697925567626953125000000°,
’0.000000000000000003469446951953614188823848962783813476562500000°,
’0.000000000000000001734723475976807094411924481391906738281250000°,
’0.000000000000000000867361737988403547205962240695953369140625000°,
’0.000000000000000000433680868994201773602981120347976684570312500°,
’0.000000000000000000216840434497100886801490560173988342285156250°,
’0.000000000000000000108420217248550443400745280086994171142578125);

function iadd (const x, y : interval) : interval;
begin
SetRoundMode (rmDown);
Result.a:=x.aty.a;
SetRoundMode (rmUp);
Result.b:=x.b+y.b
end {iadd};
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function isub (const x, y : interval) : interval,
begin
SetRoundMode (rmDown),
Result.a:=x.a-y.b;
SetRoundMode (rmUp);
Resultb:=x.b-y.a
end {isub};

function imul (const x, y : interval) : interval;
var x1yl, x1y2, x2y1 : Extended,
begin
SetRoundMode (rmDown);
xlyl:=x.a*y.a;
x1ly2:=x.a*y.b;
x2yl:=x.b*y.a;
with Result do
begin
a:=x.b*y.b;
if x2yl<a
then a:=x2yl;
if xly2<a
then a:=x1y2;
if xlyl<a
then a:=x1yl
end;
SetRoundMode (rmUp);
xlyl:=x.a*y.a;
x1ly2:=x.a*y.b;
x2yl:=x.b*y.a;
with Result do
begin
b:=x.b*y.b;
if x2y1>b
then b:=x2y]l;
if x1y2>b
then b:=x1y?2;
if x1yl>b
then b:=x1yl
end
end {imul};

function idiv (const x, y : interval) : interval;
var x1yl, x1y2, x2y1 : Extended,
begin
if (y.a<=0) and (y.b>=0)
then raise EZeroDivide.Create (’Division by an interval containing 0.”)
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else begin
SetRoundMode (rmDown);
xlyl:=x.aly.a;
xly2:=x.a/y.b;
x2yl:=x.b/y.a;
with Result do
begin
a:=x.b/y.b;
if x2yl<a
then a:=x2yl;
if x1y2<a
then a:=x1y2;
if xlyl<a
then a:=x1yl
end;
SetRoundMode (rmUp);
xlyl:=x.aly.a;
x1y2:=x.aly.b;
x2yl:=x.bly.a;
with Result do
begin
b:=x.b/y.b;
if x2y1>b
then b:=x2y1;
if x1y2>b
then b:=x1y2;
if xlyl>b
then b:=x1yl
end
end
end {idiv};

procedure to_fixed point (const awzi

: char_tab;

var significand : AnsiString);

var exponent : Smallint;
i, j, k, code : Integer;
remember, s1, s2, sum : Byte;
sumz : string [2];
begin
exponent:=0;
=L
for i:=16 downto 2 do
begin

if awzi[i]="1"
then exponent:=exponent+j;
2%
end;
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exponent:=exponent-16383;
for i:=80 downto 17 do
if awzi[i]="1"
then begin
remember:=0;
for j:==65 downto 3 do
begin
Val (significand[j], s1, code);
Val (1di[i-17,j], s2, code);
sum:=s1+s2+remember;
Str (sum, sumz);
if sum>9
then begin
significand[j]:=sumz[2];
Val (sumz[ 1], remember, code);

if j=3
then begin
Val (significand[1], s1, code);
sum:=s1+remember;
Str (sum, sumz);
significand[1]:=sumz[1]
end
end
else begin

significand[j]:=sumz[1];
remember:=0
end
end;
Val (significand[ 1], s1, code);
Val (1di[i-17,1], s2, code);
sum:=s1+s2;
Str (sum, sumz);
significand[1]:=sumz[1]
end;
if exponent>0
then for i:=1 to exponent do
begin
j:=Length(significand);
remember:=0;
for k:=j downto j-62 do
begin
Val (significand[k], s1, code);
sum:=2*sl+remember;
Str (sum, sumz);
if sum>9
then begin
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significand[k]:=sumz[2];
Val (sumz[1], remember, code)
end
else begin
significand[k]:=sumz[1];
remember:=0

end
end;
for k:=j-64 downto 1 do
begin

Val (significand[k], s1, code);
sum:=2*s1-+remember;
Str (sum, sumz);
if sum>9
then begin
significand[k]:=sumz[2];
Val (sumz[1], remember, code);
if k=1
then significand:=sumz[ 1 [+significand
end
else begin
significand[k]:=sumz[1];
remember:=0
end
end
end
else if exponent<0
then for i:=1 to Abs(exponent) do
begin
j:=Length(significand);
if significand[1]="1"
then begin
significand[1]:="0’;
remember:=10
end
else remember:=0;
for k:=3 to j do
begin
Val (significand[k], s1, code);
sum:=remember+sl;
sl:=sum div 2;
Str (s1, sumz);
significand[k]:=sumz[1];
remember:=10*(sum mod 2);
if (k=j) and (remember<>0)
then significand:=significand+’5’



1.4. An Implementation of Floating-Point Interval Arithmetic in Delphi Pascal

end
end;
if awzi[1]="1"
then significand:=’-"+significand
else significand:="+’+significand,
if DecimalSeparator=",
then while (significand[ Length(significand)]="0")
and (significand[Length(significand)- 1]<>’,") do
significand:=Copy(significand, 1, Length(significand)- 1)
else while (significand[Length(significand)]="0")
and (significand[Length(significand)-1]<>".”) do
significand:=Copy(significand, 1, Length(significand)- 1)
end {to_fixed point};

function int_read (const sa : AnsiString) : interval;

var X, pX, nx : Extended,
sal, sx : AnsiString;
1] : Integer;
tab : array [1..10] of Byte absolute x;
eps : array [1..10] of Byte;
epsx : Extended absolute eps;
epsw : Word absolute eps;
digits, rev_digits : char_tab;
X : interval;
sep : Char,
begin
sal:=sa;
if DecimalSeparator=",
then sep:=",’
else sep:=".";

if (Pos(’.’, sal)>0) and (DecimalSeparator=",")
then sal[Pos(’.’, sal)]:=",";
x:=StrToFloat(sal);
if Pos(’e’, sal)>0
then sal[Pos(’¢e’, sal)]:="E’;
while sal[1]="" do
Delete (sal, 1, 1);
while sal[Length(sal)]="" do
Delete (sal, Length(sal), 1);
if (sal[1]<>’-") and (sal[1]<>’+)
then Insert "+, sal, 1);
while (sal[2]="0") and (Length(sal)>2) and (sal[3]<>’¢’) and (sal[3]<>'E")
and (sal[3]<>sep) do
Delete (sal, 2, 1);
if (sal[Length(sal)]="E’) or (sal[Length(sal)]="+") or (sal[Length(sal)]="-")
then sal:=sal+’0’
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else if PosCE’, sal)=0
then sal:=sal+’E0’;
if Pos(sep, sal)=0
then Insert (sep+’0’, sal, Pos(’E’, sal));
sx:=Copy(sal, PosC’E’, sal)+1, Length(sal)-Pos(CE’, sal));
sal:=Copy(sal, 1, PosCE’, sal)-1);
j:=StrTolnt(sx);
if >0
then for i:=1 to j do
begin
Insert (sep, sal, Pos(sep, sal)+2);
Delete (sal, Pos(sep, sal), 1);
if Pos(sep, sal)=Length(sal)
then sal:=sal+’(’
end
else if j<0
then for i:=j to -1 do
begin
Insert (sep, sal, Pos(sep, sal)-1);
Delete (sal, Pos(sep, sal)+2, 1);
if sal[2]=sep
then Insert (0, sal, 2)
end;
while (sal[Length(sal)]="0") and (sal[Length(sal)-1]<>sep) do
sal:=Copy(sal, 1, Length(sal)-1);
for i:=1 to 10 do
for j:=7 downto 0 do
if tab[i] and bit[j] = bit[j]
then digits[8*i-j]:="1"
else digits[8*i-j]:="0";
for i:=1 to 10 do
for j:=1 to 8 do
rev_digits[8*(i- 1)+j]:=digits[80-8*i+j];
sx:="0’+sep
+’000000000000000000000000000000000000000000000000000000000000000°;
to_fixed point (rev_digits, sx);
if sal=sx
then begin
iX.a:=x;
ix.b:=x
end
else begin
for i:=18 to 80 do
rev_digits[i]:="0’;
rev_digits[17]:="1";
rev_digits[1]:="0";
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for i:=1 to 2 do
begin
eps[i]:=0;
for j:==1 to 8 do
if rev_digits[8*(i-1)+j]="1"
then eps[i]:=eps][i] or bit[8-j]
end;
epsw:=Swap(epsw);
epsw:=epsw-63;
epsw:=Swap(epsw);
for i:=1 to 2 do
for j:=7 downto 0 do
if eps[i] and bit[j] = bit[j]
then rev_digits[8*i-j]:="1"
else rev_digits[8*i-j]:="0";
for i:=1 to 10 do
for j:==1 to 8 do
digits[8*(i-1)+j]:=rev_digits[80-8*i+j];
for i:=1 to 10 do
begin
eps[i]:=0;
for j:=1 to 8 do
if digits[8*(i-1)H]="1"
then eps[i]:=eps[i] or bit[8-]]
end;
PX:=X-epsX;
nx:=x+epsx;
i:=Length(sal)-Pos(sep, sal);
j:=Length(sx)- Pos(sep, sx);
if j>i
then i:=j;
while Length(sal)-Pos(sep, sal)<i do
sal:=sal+’0’;
while Length(sx)-Pos(sep, sx)<i do
sx:=sx+°0’;
i:=Pos(sep, sal);
j:=Pos(sep, sx);
if j>i
then i:=j;
while Pos(sep, sal)<i do
Insert (0, sal, 2);
while Pos(sep, sx)<i do
Insert (0, sx, 2);
if sx[1]="+
then if sal<sx
then begin
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iX.a:=px;
ix.b:=x
end
else begin
ix.a:=x;
ix.b:=nx
end

else if sal<sx

end;
Result.a:=ix.a;
Resultb:=ix.b
end {int read};

then begin
ix.a:=x;
ix.b:=nx
end
else begin
iX.2:1=pX;
ix.b:=x
end

function left read (const sa : AnsiString) : Extended,
var int_number : interval;

begin

int_number:=int_read(sa);
Result:=int_number.a

end {left read};

function right_read (const sa : AnsiString) : Extended,
var int_number : interval;

begin

int_number:=int_read(sa);
Result:=int_number.b

end {right read};

function int_width (const x : interval) : Extended;

begin
if x.a=x.b

then Result:=0

else Result:=x.b-x.a

end {int width};

procedure iends_to_strings (const x
out left, right : string);

procedure modify mantissa (const i

var s, sl : string;

begin

: interval;

: Integer;

var mantissa : string);
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if i>=0

then Insert ("+’, mantissa, 21)

else Insert (°-’, mantissa, 21);
Str (Abs(i), sl);
if i<10

then s:="000’+s1

else if i<100

then s:="00’+s1

else if i<1000
then s:="0’+s1
else s:=sl;
Insert (s, mantissa, 22)
end;
function take up (var fl_str : string) : string;
var s, sl : string;

code, i, k : Integer;
finished : Boolean;
begin
finished:=False;
k:=19;
repeat
s:=Copy(fl_str, k, 1);
Delete (l_str, k, 1);
Val (s, i, code);

i:=itl;
if i<10
then begin
Str (i, s);

Insert (s, fl_str, k);
finished:=True
end
else begin
Insert 0, fl_str, k);
ki=k-1
end
until finished or (k<4);
if not finished
then begin
s:=Copy(fl_str, 2, 1);
Delete (1l _str, 2, 1);
Val (s, i, code);
i:=itl;
if i<10
then begin
Str (i, s);
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Insert (s, fl_str, 2)
end
else begin
Insert (1°, fl_str, 2);
s:="0’;
for k:=4 to 19 do
begin
sl:=Copy(fl_str, k, 1);
Delete (fl_str, k, 1);
Insert (s, fl_str, k);
s:=sl
end;
s:=Copy(fl_str, 21, 5);
Delete (l_str, 21, 5);
Val (s, i, code);
1:=1-1;
modify mantissa (i, fl_str)
end
end;
Result:=fl_str
end;
function take down (var fl_str : string) : string;
var s : string;
code, i, k : Integer;
finished : Boolean;
begin
finished:=False;
k:=19;
repeat
s:=Copy(fl_str, k, 1);
Delete (1_str, k, 1);
Val (s, i, code);
i=i-1,;
ifi>-1
then begin
Str (i, 8);
Insert (s, fl_str, k);
finished:=True
end
else begin
Insert 9, fl_str, k);
k:=k-1
end
until finished or (k<4);
if not finished
then begin
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s:=Copy(fl_str, 2, 1);
Delete (fl_str, 2, 1);
Val (s, i, code);
1:=i-1;
if i>0
then begin
Str (i, s);
Insert (s, fl_str, 2)
end
else begin
s:=Copy(fl_str, 4, 1);
Insert (s, fl_str, 2);
for k:=4 to 18 do
begin
s:=Copy(fl_str, k+1, 1);
Delete (fl_str, k+1, 1);
Insert (s, fl_str, k)
end;
Delete (fl_str, 19, 1);
Insert (°9’, fl_str, 19);
s:=Copy(fl_str, 21, 5);
Delete (l_str, 21, 5);
Val (s, i, code);
1:=1-1;
modify mantissa (i, fl_str)
end
end;
Result:=fl_str
end;
var code : Integer;
Y, Z : Extended,
fixed number: AnsiString;
begin
if x.a<=x.b
then if x.a>=0
then begin
Str (x.a:26, left);
Delete (left, 20, 1);
Val (left, z, code);
if x.a<z
then left:=take down(left);
Str (x.b:25, right);
fixed_number:=right;
y:=left read(fixed number);
Val (right, z, code);



34 Chapter 1. Preliminaries of Interval Arithmetic

if (x.b>=z) and (x.a<>x.b) and (y<>x.b)
then right:=take up(right)
end
else if x.b<=0
then begin
Str (x.a:25, left);
fixed_number:=left;
y:=right_read(fixed number);
Val (left, z, code);
if (x.a<=z) and (x.a<>x.b) and (y<>x.a)
then left:=take up(left);
Str (x.b:26, right);
Delete (right, 20, 1);
Val (right, z, code);
if x.b>z
then right:=take down(right)
end
else begin
Str (x.a:25, left);
fixed_number:=left;
y:=right_read(fixed number);
Val (left, z, code);
if (x.a<=z) and (y<>x.a)
then left:=take up(left);
Str (x.b:25, right);
fixed number:=right;
y:=left _read(fixed number);
Val (right, z, code);
if (x.b>=z) and (y<>x.b)
then right:=take up(right)
end
end {iends to_strings};

function isin (const x : interval;
out st : Integer) : interval;
var is_even, finished : Boolean;

k : Integer;
d,s,w,wl,x2 :interval,
begin
if x.a>x.b

then st:=1

else begin
$1=X;
Wi=X;
x2:=imul(x,X);
k=1,

is_even:=True;
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finished:=False;
st:=0;
repeat
d.a:=(k+1)*(k+2);
d.b:=d.a;
s:=imul(s,idiv(x2,d));
if is_even
then w1:=isub(w,s)
else wl:=iadd(w,s);
if (w.a<>0) and (w.b<>0)
then if (Abs(w.a-w1.a)/Abs(w.a)<le-18)
and (4bs(w.b-w1.b)/Abs(w.b)<le-18)
then finished:=True
else
else if (w.a=0) and (w.b<>0)
then if (4bs(w.a-wl.a)<le-18)
and (Abs(w.b-w1.b)/Abs(w.b)<le-18)
then finished:=True
else
else if w.a<>0
then if (Abs(w.a-w1.a)/Abs(w.a)<le-18)
and (Abs(w.b-wl.b)<le-18)
then finished:=True
else
else if (4bs(w.a-wl.a)<le-18)
and (Abs(w.b-wl.b)<le-18)
then finished:=True;
if finished
then begin
if wl.b>1
then begin
wl.b:=1;
if wl.a>1
then wl.a:=1
end;
if wl.a<-1
then begin
wl.a:=-1;
if wl.b<-1
then wl.b:=-1
end;
Result=w1
end
else begin
wi=wl;
k:=k+2;
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is_even:=not is_even
end
until finished or (k>MaxInt/2);
if not finished
then st:=2
end
end {isin};

function icos (const x : interval;
out st : Integer) : interval;
var is_even, finished : Boolean;

k : Integer;
d,c,w,wl, x2 :interval;
begin
if x.a>x.b

then st:=1

else begin
c.a=1;
c.b:=1;
Wi=c;
x2:=imul(x,X);
k=1,

is_even:=True;
finished:=False;
st:=0;
repeat
d.a:=k*(k+1);
d.b:=d.a;
c:=imul(c,idiv(x2,d));
if is_even
then w1:=isub(w,c)
else wl:=iadd(w,c);
if (w.a<>0) and (w.b<>0)
then if (Abs(w.a-w1.a)/Abs(w.a)<le-18)
and (4bs(w.b-w1.b)/Abs(w.b)<le-18)
then finished:=True
else
else if (w.a=0) and (w.b<>0)
then if (Abs(w.a-wl.a)<le-18)
and (Abs(w.b-w1.b)/Abs(w.b)<le-18)
then finished:=True
else
else if w.a<>0
then if (Abs(w.a-w1.a)/Abs(w.a)<le-18)
and (A4bs(w.b-wl.b)<le-18)
then finished:=True
else
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else if (Abs(w.a-wl.a)<le-18)
and (Abs(w.b-wl.b)<le-18)
then finished:=True;

if finished
then begin
if wl.b>1
then begin
wl.b:=1;
if wl.a>1
then wl.a:=1
end;
if wl.a<-1
then begin
wl.a:=-1;
if wl.b<-1
then wl.b:=-1
end;
Result=w1
end
else begin

wi=wl;

k:=k+2;

is_even:=not is_even

end
until finished or (k>MaxInt/2);
if not finished
then st:=2
end

end {icos};

function iexp (const x : interval;
out st : Integer) : interval;
var finished : Boolean,

k : Integer;
d, e, w, wl : interval;
begin
if x.a>x.b

then st:=1

else begin
c.a=1;
eb:=1;
w:=e,;
k:=1;
finished:=False;
st:=0;
repeat

d.a:=k;
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d.b:=k;
e:=imul(e,idiv(x,d));
wl:=iadd(w,e);
if (Abs(w.a-w1.a)/Abs(w.a)<le-18)
and (Abs(w.b-w1.b)/Abs(w.b)<le-18)
then begin
finished:=True;
Result=w1
end
else begin
w=wl;
k:=k+1
end
until finished or (k>MaxInt/2);
if not finished
then st:=2
end
end {iexp};

function isqr (const x : interval;
out st : Integer) : interval;
var minx, maxx : Extended,
begin
if x.a>x.b
then st:=1
else begin
st:=0;
if (x.a<=0) and (x.b>=0)
then minx:=0
else if x.a>0
then minx:=x.a
else minx:=x.b;
if Abs(x.a)>Abs(x.b)
then maxx:=Abs(x.a)
else maxx:=Abs(x.b);
SetRoundMode (rmDown);
Result.a:=minx*minx;
SetRoundMode (rmUp);
Result.b:=maxx*maxx
end
end {isqr};

function isqrt2 : interval;

var i2 : AnsiString;

begin
12:=1.414213562373095048’;
Result.a:=left read(i2);
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i2:="1.414213562373095049’;
Result.b:=right_read(i2)
end {isqrt2};

function isqrt3 : interval;

var i3 : AnsiString;

begin
13:=71.732050807568877293;
Result.a:=left_read(i3);
13:=1.732050807568877294’;
Result.b:=right_read(i3)

end {isqrt3};

function isqrt5 : interval;

var 15 : AnsiString;

begin
15:="2.236067977499789696’;
Result.a:=left read(i5);
15:="2.236067977499789697’;
Result.b:=right_read(i5)

end {isqrtS};

function isqrt6 : interval;

var 16 : AnsiString;

begin
16:=72.449489742783178098’;
Result.a:=left read(i6);
16:=72.449489742783178099’;
Result.b:=right_read(i6)

end {isqrt6};

function isqrt7 : interval;

var i7 : AnsiString;

begin
17:="2.645751311064590590’;
Result.a:=left read(i7);
17:=2.645751311064590591°;
Result.b:=right_read(i7)

end {isqrt7};

function isqrt8 : interval;

var 18 : AnsiString;

begin
18:=72.828427124746190097’;
Result.a:=left_read(i8);
8:="2.828427124746190098’;
Result.b:=right_read(i8)

end {isqrt8};
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function isqrt10 : interval;

var 110 : AnsiString;

begin
110:="3.162277660168379331’;
Result.a:=left_read(il0);
110:="3.162277660168379332;
Result.b:=right_read(i10)

end {isqrt10};

function ipi : interval;

var ipistr : AnsiString;

begin
ipistr:="3.141592653589793238’;
Result.a:=left read(ipistr);
ipistr:="3.141592653589793239’;
Result.b:=right_read(ipistr)

end {ipi};

initialization

finalization
SetRoundMode (rmNearest)
end.

The IntervalArithmetic unit needs some comments. It is obvious that the func-
tions iadd, isub, imul and idiv perform elementary floating-point interval operations
(addition, subtraction, multiplication and division, respectively). Within these func-
tions the standard Delphi Pascal procedure SetRoundMode is used, which sets the
floating-point unit (FPU) rounding mode either toward negative infinity (down, by
the predefined constant mrDown) or toward positive infinity (up, by the predefined
constant mrUp). In both these cases the SetRoundMode procedure changes the
10-th and 11-th bits of the FPU control register (word) substituting 01 for rounding
down and 10 for rounding up (see Figure 1.5).

In all graphical user interface (GUI) applications numerical data are entered in
the form of strings. Thus, it is necessary to convert these strings to numerical
values. In the Delphi Pascal programming language there are a number of functions
and procedures to perform such conversions. In the IntervalArithmetic unit to obtain
amachine interval from a string containing a numerical value we have implemented
the function int_read. This function is rather complicated, although it executes an
algorithm which can be described in a quite accessible way.

Let a be anumber one enters into a GUI application and let x be a variable of the
Extended type which stores a within the application. Let us denote by sa a variable
of long string type (4nsiString) which stores the sequence of characters entered for
the number a. Let sx be a long string type variable which stores the fixed-point de-
cimal machine representation of a, i.e. the value of x obtained from its internal (ma-
chine) representation. If the number « is entered in the floating-point notation, then
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we should convert sa to the fixed-point notation. Note that taking into account the
range of the Extended numbers, the strings sa and sx can be very long, but they will
have less than 5,000 characters, which is not too many in comparison to the ma-
ximum number of characters in such strings. In order to perform the conversions
into strings containing the fixed-point numbers, within the function int_read the
array /di of constant strings is used (see the listing of IntervalArithmetic unit). This
array contains decimal values (in the form of strings) of all possible powers of 2 for
the mantissa of the Extended type numbers (from 2° to 2°%). Of course, these
powers could be calculated within the function int read, but using the constant
strings makes the execution of this function faster.

bit bit bit bit
15 g 7 0
\ \ ‘ ‘IC‘ RC ‘ PC \ \ ‘PM‘UM‘OM‘ZM‘DM‘IM‘

exception masks:
invalid operation
—— denormalized operand

zerodivide
overflow
———— underflow
precision
-~ precision control:
~— rounding control: 00 = 24 bits (single precision)
infinity control (0 = to nearest or even 01 = reserved
(obsolete): 01 = towards — infinity 10 = 53 bits (double precision)
0 = projective 10 = towards + infinity 11 = 64 bits (extended precision)
1 = affine 11 = chop off
D reserved

Figure 1.5. FPU control register

If sa = sx, then the number a is exactly represented in the computer memory and
the width of machine interval for this number is equal to 0 ([x, x] is such an inter-
val).

If sa # sx, then the machine representation of a, i.e. x, differs from a. From an
analysis of the internal representation of the Extended type numbers it follows that
if the exponents are equal, then two subsequent machine numbers differ in 2°%.
Thus, adding 1 to the last bit of the internal representation of the mantissa of x, and
performing possibly a modification of the exponent, we obtain the next subsequent
machine number with reference to x. Similarly, if we subtract 1 from the last bit of
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the internal representation of the mantissa of x, we get the previous subsequent
machine number with reference to x".
We assign the obtained values to the following variables:

nx —in the case of the next subsequent machine number,
px —in the case of the previous subsequent machine number.

Moreover, let us introduce:

snx — the long string type variable containing decimal fixed-point value of nx,
spx — the long string type variable containing decimal fixed-point value of px.

Thus, we have four long strings: sa, sx, snx and spx. If a positive number is en-
tered, it is sufficient to check which of the following string relation pairs are ful-
filled:

Spx <sa < Ssx Or sx <sa <snx.

If the first pair of the inequality is fulfilled, then the interval [px, x] is the floating-
-point interval representing the given (non-machine) number a. In the second case
we have to choose the interval [x, nx].

Let us note that for a positive number a the inequalities

spx <sa and sa < snx

are always fulfilled (if the introduced number is exactly represented in a computer,
then sa = sx, and moreover we have spx <sx <snx). Thus, in practice it is sufficient
to determine only the long strings sa and sx, and to check the correctness of one of
the following inequalities:

sa <sx or sx <sa.

In the case of a negative number a, if the first inequality is true, then the interval
[x, nx] should be taken as the floating-point interval representation of the non-ma-
chine number a, and if the second inequality is fulfilled we should take the interval
[px, x].

In many problems the input data are not given in a form of real numbers, but in
a form of real intervals. For instance, such a situation occurs if the data are obtained
from some measurements. In such a case it is necessary to represent a real interval,

! Instead of these operations we can add a variable eps to x and subtract eps from x,
where the value of eps is determined by the internal (normalized) form of the mantissa
equals 1 and by the exponent smaller in 63 from the exponent of the internal representation
of x. The determination of the value of eps is possible for each variable x of the Extended
type which absolute value is in 2% (approximately 5-10%°) greater from the minimal positive
number within this type. Taking into account that this number is approximately equal to
3.6:10*"", it is enough to assume 10 **° as the lowest range of considered values.
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say [a, b] (a < b), by a floating-point interval, say [x, y], where x and y are machine
numbers (x <y), and where x < a and b < y. In the IntervalArithmetic unit we have
the function left read, which for a given real number a, entered as a string, finds
the largest machine number x of the Extended type for which x < a. We also have
the function right read, which for a given real number b, also entered in a form of
a string, finds the smallest machine number y of the same Extended type for which
b < y. Thus, the obtained machine interval [x, y] contains the given real interval
[a, b].

The function int width, present in the IntervalArithmetic unit, is a simple
function for calculating the width of a given interval.

When for the output one uses standard Delphi Pascal functions or procedures,
the obtained (on the screen or printer) floating-point values are rounded. If such
functions or procedures are used for presenting left and right ends of intervals one
can see that both the ends are equal, although in fact they differ on positions that
are not displayed. In the IntervalArithmetic unit we have the procedure called
iends to strings which prevents such a situation. For a given machine interval this
procedure gives the left end and the right end of the interval in the form of strings.
If the ends of the interval are not the same machine numbers, one can see the diffe-
rence in the displayed string.

Example 1.8

Although the procedure iends to strings is designed primarily for using in GUI
applications, one can just as well use it in console applications.

Let us assume that x is a variable of the interval type, and let sa be an
AnsiString string. After executing the instructions:

sa:="0.1";
x:=int_read(sa);

the variable x stores the interval containing the real number 0.1 (the ends of this
interval are two subsequent machine numbers). [f we use the standard Delphi Pascal
Str procedure to get the strings containing ends of this interval, i.e. execute the
following instructions:

Str (x.a:25, left);
Str (x.b:25, right);
Writeln (’x = [, left, , °, right, °]’);

(left and right are variables of the string type), on the display we obtain
x=[1.0000000000000000E-0001, 1.0000000000000000E-0001]

and one can expect that the real number 0.1 are exactly represented in computer me-
mory. Using the procedure iends _to_string and the function int width (to display
the interval width), i.e. executing the instructions:
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iends to_strings (X, left, right);
Writeln (Cx = [, left, °, °, right, ’]");

5 9

Writeln (width =, int_width(x):10);
on the display we get

x =1 9.999999999999999E-0002, 1.0000000000000001E-0001]
width = 6.8E-0021

and we see that the machine interval is included within the interval displayed. =
In the IntervalArithmetic unit there are also three standard (basic) Delphi Pascal

functions for calculating the interval sine, the interval cosine and the interval expo-
nential function. All these algorithms are based on the relevant Taylor series, i.e.

3.5 2n+1
SINX = X - ()t .,
31 s (2n+1)!
2 4 2n
cosx=1-—+—- ... +(-1)" ...,
217 4 (2n)!
2 n
P PR S el
2! n!

where | x | < . In the functions isin, icos and iexp the argument x is an interval.
The subsequent interval terms of the series are added until the relative error be-
tween the sum calculated so far and the next term is less than 10™'® or the number
of terms added are greater than MaxInt/2, where MaxInt is a constant predefined
in the Delphi Pascal language. In the second case the output parameter st is equal
to 2. In a similar way one can write other standard interval functions.

The function isqr calculates the square of a given interval on the basis of (1.8).

At the end of the unit presented there are given the functions isqrt2, isqrt3,
isqrt5, isqrt6, isqrt7, isqrt8, isqrt10 and ipi that return intervals containing V2 ,
«/qf;, ﬁ, \/g, \/7, «/%, «/ﬁq and 7z, respectively.
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The Initial Value Problem

The initial value problem consists in finding the function y = y(¢), such that

y'=f & y@), »(0) =y, (2.1

where 1 € [0, a], y € RV and f: [0, a] x RV~ R". If ¢ € [¢,, t, + a], then introducing
a new independent variable r=1t - ¢, we have

Ay _dydr

dy
y _dt_dT dt_dT_f(T’y(T)),

where 7 € [0, a]. It means that in such a case we obtain an equation of the form
(2.1). Further, we will assume that the solution to the initial value problem (2.1)
exists and is unique.

From the theory of ordinary differential equations it is known that the solution
to (2.1) exists and is unique if the function f is determined and continuous with
respect to ¢ and there exists a constant L > 0, called the Lipschitz constant, such that
for each ¢ € [0, a] and all y,, y, € R” we have

| 7. v)-re v |< Ll yi-»|

In a lot of monographs and lecture books on differential equations, also in those
concerning numerical methods for solving the initial value problem, other well-
-known theorems are presented that guarantee the existence and uniqueness of the
solution to (2.1) [38, 62].

Below we present a few examples of the initial value problem that will be used
to verify the interval methods presented in the next chapters.

Example 2.1

The commonly used test problem is the following:

Y=, y0)=1 (2.2)
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This problem has the exact solution of the form

y = exp(Ar).
For A=0.5and t=0.1-i, wherei=1, 2, ..., 10, the numerical values of the solu-
tion are given in Table 2.1. A graph of the solution is presented in Figure 2.1. =

Table 2.1. The approximate (with 15 digits after decimal point)
exact solution to (2.2) with A=0.5

t () t )
0.1 1.051271096376024 0.6 1.348858807576003
0.2  1.105170918075648 0.7 1.419067548593257
0.3  1.161834242728283 0.8 1.491824697641270
0.4 1.221402758160170 0.9 1.568312185490169
0.5 1.284025416687742 1.0 1.648721270700128

1.7

1,625

1.35

1,175

1 I A . R R— [ e e—
0 01 02 03 04 05 06 07 08 09 1

Figure 2.1. The solution to (2.2) with 4= 0.5

Example 2.2

The motion of the Moon in a rotating coordinate system is described by the Hill
equations of the form [37, 69, 117, 180]
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dy;
FARRIIEE [=1,2,3,

T
dyy K 2
?Z 2My5—(—3—3M Yi»

i (23)
dys '
D5 oMy, - Sy,
dr V4 1”3 N
dys ( K 2)

Do _ | E LMy,
dr 1”3 Y3

where

2. 2. 2 ,
rEA Yy tyy, T=(v= V(- 1),

' my + m

M= ,
(v—v')?

, k=G
v-v
and where vis the mean motion of the Moon, v’ — the mean motion of the Sun,
G — the gravitational constant, m, — the mass of the Earth, m, is the mass of the
Moon, and ¢, is an initial moment. For the equations (2.3) we can formulate the

initial conditions as follows:
yi(zo) =Y, 1=1,2,...,6. (2.4)

Of course, we can assume that 7, = 0 and consider the equation (2.3) in an interval
[0, 7.

If we consider the motion on a plane, then the equations (2.3) — (2.4) are as
follows:

dy,

- = s l: 19 23

dr Yi+2

d

ﬁ: 2My4 - [%— 3M2j Vs

dr r (2.5)
dy_4 = —2 My - x

dr = V3 }’3 Y2,

ni(T)= v\ 1=1,2,3,4
If we take M = 0, then the initial value problem (2.5) has the following solution:
y = i cos, Yy = %/;sinr,

(2.6)
¥ = —%/;sinz', V4 = Yk cosr.
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For k=1, 7,=0, y,(0) =1, »,(0) = 0, y5(0) = 0 and y,(0) = 1 the numerical values
of the solution at some moments 7 are given in Table 2.2. The obtained orbit is
presented in Figure 2.2. L

Table 2.2. The approximate (with 15 digits after decimal
point) exact solution of (2.5)
with M =0 and x=1

2 y1(D) =47 (D) =-3(9)
0.05 0.998750260394966 0.049979169270678
0.1 0.995004165278026 0.099833416646828
1.0 0.540302305868140 0.841470984807897
2.0 -0.416146836547142 0.909297426825682
3.0 -0.989992496600446 0.141120008059867
4.0 -0.653643620863612 -0.756802495307928
5.0 0.283662185463226 -0.958924274663139
6.0 0.960170286650366 -0.279415498198926
. V2
0.5
o
-0.51
-1 T . T 1 M
-1 -05 0 0.5 1

Figure 2.2. The orbit obtained for x=1and M =0
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Example 2.3
Let us consider the following system of first-order differential equations:
VI=3Int 2y, vy =40+, 2.7)
with the initial conditions
»n0)=0, »(O)=1 (2.8)
The solution of the problem (2.7) - (2.8) is of the form

exp(5t) — exp(-t)
3

exp(5t) + 2exp(-t)
3 .

2.9)

(1) = s n()=
Numerical values of the functions y,(t) and y,(t) for some #-values are given in
Table 2.3, and a graph of both functions are presented in Figure 2.3. u

Table 2.3. The approximate (with 15 digits after decimal
point) exact solution of the initial
value problem (2.7) — (2.8)

! n(?) (1)
0.05 0.110931997395676 1.062161421896390
0.10 0.247961284221390 1.152798702257349
0.15 0.418764013395872 1.279471989820930
0.20 0.633183691793688 1.451914444871670

»®U=1,2)
1.6
- —
— —_—
1.2 —
0.8
0.4
0 \ \ \ 1t
0 0,1 0.2
i1l — — - vl2]

Figure 2.3. The solutions y[1] = y,(t) and y[2] = y,(t) of the problem (2.7) — (2.8)
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Example 2.4

Let us consider the motion of a simple pendulum described by the equation
Q"+ u? sing = 0, (2.10)

where ¢ = ¢(t), u= g/ L, and where g is the gravitational acceleration at the
Earth’s surface and L denotes the pendulum length. If we assume that the angle ¢
is small, i.e. sing ~ ¢, then the equation (2.10) can be reduced to the equation of
simple harmonic motion

0"+ 1P = 0 (2.11)

with the solution ¢(¢) = ¢, cos(ut), where ¢, isaninitial angle. Denoting y, = ¢’,
¥, = ¢ and assuming that ¢'(0) = 0, ¢(0) = ¢,, we can transform (2.11) into the
following systems of differential equations of the first order:

vi=-w'y, ¥h=n (2.12)

with the initial conditions
11(0)=0, »,(0)= ¢,. (2.13)
For g=9.80665,L =1 and ¢, = 7z /6 the exact solution is presented in Table 2.4
and in Figure 2.4. u

Table 2.4. The approximate (with 15 digits after decimal
point) exact solution of the initial
value problem (2.12) — (2.13)

t n(®) ()
0.05  -0.255689725696726  0.517193440672640
0.1 -0.505123598987129 0.498134152516948
0.5 -1.639658832231953 0.002627285350445
1.0 -0.016454781143167  -0.523572409500308
1.5 1.639493700427002  -0.007881591454600

2.0 0.032907905107624 0.523493313861694
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2
1,5
1

0,5

0,6

0,4

0,2

-0,2

-04

-0,6

Figure 2.4. The solution of the problem (2.12) — (2.13)

»n@®

\

0 02 04 06 08

»(0)

1

1,2

14

1.6

A\

\

N/

0 02 04 06 08

1

1.2

14

1,6

1.8



Chapter 3

Interval Methods of Runge-Kutta Type

3.1. Conventional Runge-Kutta Methods

Runge-Kutta methods have been originally developed by C. Runge [165] to-
wards the end of the nineteenth century and generalized by W. Kutta [101] in the
early twentieth century. Although early studies were devoted entirely to the so-
called explicit Runge-Kutta methods, further interest extended to implicit methods
which are recognized as appropriate for so-called stiff differential equations [38,
63].

In order to construct Runge-Kutta methods one should consider the relation

Y= 2@+ [ f@x@ndr, o> 1, G

tk
which is equivalent to the differential equation

y' =)
for¢t>1t. Ifin (3.1) we take ¢,., = ¢, + h instead of ¢, we get
eyt
W)= 300+ [ 1w w0z 6.2
Uk
Changing variables, from (3.2) we have

1

Ptgan) = 20+ h[ St + e v + ey
0

where & =t - t,. If we substitute the integral else for a sum we obtain
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m
Ptga) = () + Y wif (4 + 6,y + ) + By (h), (3.3)
i=1
where w; and ¢, are some coefficients and £, (/) is an approximation error. If we
assume that ¢, = 0, then the first term in the sum occurring in (3.3) is of the form

w, f(t,, ¥(t,). Taking into account the second term with f(¢, + c,h, ¥(¢, + c,h)) and
the fact that

V(g + ) = () + heo f (4, y(G) + -,

we can substitute y(¢, + ¢, ) else for y(z,) + he, f(¢,, ¥(2)).
We can apply the same procedure to the next terms of the sum occurring in
(3.3). If we denote

ki(h) = f (. y(4)),

i-1
k()= f| t + eh,y(t) + Y age ()|, i> 1,

j=1
where
i-1
G = ajj s i>l, ¢=0, (3.4)
j=1
or, in another way, a,, = ¢,, a, =c¢; - ¢,, ..., a;;, = ¢; - ¢; |, then the equation (3.3)
can be rewritten in the form
m
V() = () + hz wik;(h) + Ry, (h), (3.5)

i=1

where the error R,,(4) includes £, (/) and the errors following from the approxima-
tions of y(z, + ¢, ) by the first two terms of the Taylor series. If we omit R,(%) and
substitute an approximation y, for the exact value y(¢,), then from (3.5) we can de-
termine y,,, which is an approximation of y(¢,,,). This leads to the explicit m-stage
Runge-Kutta methods given by the following formula:

m
Vir1 = Vi T hz WiKif » (3.6)
i=1

where
Kie = S s i)
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i-1
Klk:f tk+Clh,yk+hZ ayK]k 5 i:2,3,...,m, (37)
Jj=1

and where the coefficients w;, ¢; and a; are some parameters. It is convenient to
present these coefficients in a form of an array, called the Butcher table:

0
%) ay
G as asz,
Cn A ) A, m-1
Wy W, Win-1 Wi

If we do not assume that ¢, = 0, then from (3.3) we can get more general, im-
plicit m-stage Runge-Kutta methods in which

m
K = S| et hoyg v Y agy |, i=1.2,m, (3.8)
j=1

where
m

Ci = alj (39)
j=1
In this case the Butcher table is of the following form:

¢ a ap Aim
&) ay ay Ay
cm aml am2 amm

W) W, W

The local truncation error of step k + 1 for a Runge-Kutta method (explicit and
implicit) of order p can be written in the form [38, 41, 62, 77, 97]
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Tea1(h) = w(ty, (1 ))h”“ + O(hP*?) =

1 p+2 (3.10)
+1) P+ g
= kfl ()( )"'k+1 @ )( REE 0<6<1.

From the conditions rlgi)l(O) 0 (for/=1,2, ..., p) follow the equations for de-
termining the coefficients w;, ¢; and a;. Unfortunately, there are fewer equations
than the number of unknowns, and usually we consider some special cases.

It can be proved [38, 62, 77] that if p,, (m) denotes the maximum order of the
m-stage explicit Runge-Kutta method, then we have

Pmax(M)=m, m=1,2,3,4,
Pmax(m)=m-1, m=5,6,7,
Pmax(M)=m-2, m=38,9,
Pmax(m)<m-2, m210.

In the case of implict Runge-Kutta methods for each m there exists a method with
maximum order p = 2m.

The simplest explicit Runge-Kutta method we get for m =1. In this case we have
w, = 1 and the method is of the form

Vi1 = Vi + b (G, vi)s (3.11)

which is called the Euler method.
If m =2, then we have the following equations for the coefficients [38, 62, 77,
97]:

1
wi+w, =1, w2c2=5

It is obvious that the cases w, = 0 and ¢, = 0 are impossible. If we take ¢, # 0 as
a parameter, then
2¢, - 1 1

. Wy=—. (3.12)

Wy =
! 202

26’2

Thus, we have the infinite number of two-stage methods of the second order. Two
most popular methods are as follows:

.c2:—

Via1 = Vi + hioy,
j (3.13)

h h
Kik = S, Vi)s Kop = f[tk Ykt 5K

which is called the Euler improved method,
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h
Vi1 = Vit E(Klk + Kok )s (3.14)
Ky = W vi)s Kop = f (g + hy v + hicyy),

which is called the Euler-Cauchy method.
If m = 4, then we get the following system of equations for the parameters (see
e.g. [97)):
Wi+ Wyt wyt+wy=1,

1
11%1%) + W3C3 + WyCy = E,

1
ch% + W3C32 + W4C§ = E,

1
W3a3pCy + Wylagrey + agscs) = e

3 3 3_1
WhCy + wWi3C3 + WyCq = Z,

1
W30y €303y + WaCq(agncy + agses) = PY
1

2 2 2
W3a3yCy + wy(agncs + agscy) = TS

1
Wadyq3a3nC) = 2

It is self-evident that the coefficients w,, a,;, a5, and ¢, must be different from zero.
If we take ¢, and c; as parameters, then we get a two-parameter family of solutions.
If we assume that ¢, = ¢; and ¢, = 1, then we obtain a family with the following
Butcher table:

0

1 1

2 2

1 3-1 1

2 6t ot

1 0  1-3t 3t
12 1
< 30t
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For ¢ = 1/3 we obtain one of the most popular Runge-Kutta methods of the fourth
order, simply called the Runge-Kutta method:

h
Vis1= Vi + g(’flk + 2K + 2K3) + Kap ),

h h
Kig = f (g, vi)s Kop = f(tk Yt EKlk)a (3.15)

h h
K3j = f(tk to it 5’(2/() s Kap = g+ h, yi + hicyy).

In order to reduce the number of equations for coefficients in the case of implicit
Runge-Kutta methods, one can consider the following methods:

® semi-implicit

¢ =day | an 0 0
c, ay, ay, 0
cm aml amZ amm
w, w, w,
® diagonally implicit
G =dn | an 0 0
4] a ayp = day
Cm aml am2 amm = all
w, w, W,
® symmetric (dy, sy, mjr1 T A5 = Wy ju1 =W))
cl all alZ = WZ - am, m-1 al,nrl = WZ - amZ alm = Wl - aml
&) ar a o Ay 1 TWy T Ay Ay T W T Ay
cm aml am2 am, m-1 amm
W, w, W1 =W, w,, =W,
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The simplest implicit Runge-Kutta method we obtain when m =1. In this case
wy = 1,¢; = a;; = 1/2 and we get the method of the second order, called the im-

plicit midpoint rule:
Vis1 = Vi + hKy,

h h
Kif = f(tk + = Ykt Kk

j (3.16)
2 2 '

If we take m = 2, then from the conditions r,gr)l(O) =0 for/=1,2,3,4(see
(3.10)) we get the following equations to determine the coefficients (see e.g. [97]):

wi+wy =1,
wicy + WhCy = E,

2 21
wicq + Wl = E,

1
wiayc + apey) + wy(agier + axe) = re

3 3 1
wicp + W) = e

1
wicr(ag e + ajpep) + wacp(agic) + axey) = 3’
1

2 2 2 2
wiagcf +appey) + wy(ayiep +axc) = T

1
(may; + mpag a1 + ajpcp) + (Wagy + waag Nagc + axe;) = EYh

Solving this equations we get an implicit Runge-Kutta method of the fourth order,
called the Hammer-Hollingsworth method, with the Butcher table of the form:

1_43 1 1_43
2 6 4 6
LINETY I DR (3.17)
276 | 47 6 4
1 1
2 2
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If we consider the case of m =2 and p = 3, then for the semi-implicit methods
we get the following equations for determining the coefficients:

Wy + Wy = 1,
1
WIC| + WGy = E,

1
W1C12 + Wng = E,
(3.13)

1
wiay ¢ + wy(agic) + axey) = pe
= a1,

Cy = Ay t+ay,
6112 = 0

Assuming that ¢, is a parameter and 2¢, -1 # 0, ¢, - ¢, # 0 we get a one-parameter
family of solutions with the Butcher table of the form

Cl Cl 0
1 _ 1
2 6(2¢ - 1) 3(1-2¢;) 2 2(2¢-1)

26’1 -1 201 -1

1-

2( _I_IJ 2( _1_1]
T T 62 - 1) T T 62 - 1)

Taking ¢, = 1 we have the following semi-implicit method of the third order:

h
Vi+1= Vit Z(Klk +3K24),

(3.19)
h h 2h
Kig = f G+ hy yi + hicye), Kop = fl i + 3 Ve T 3Rt R

Adding to (3.18) the equation

ax = 4]
we get two diagonally implicit methods of the third order (called the Alexander me-
thods) with the following Butcher table:
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N | —
I+

+

ol |5

N | —

I+

“15 oz

l\)|>—

(3.20)

+l

*

V3
6

1
2

1
2

l\)|>~

In order to obtain two-stage (m = 2) symmetric Runge-Kutta methods of the
third order (p = 3) we should solve the system of equations of the form:

W1+W2=1,

Wi + WhCy =

chlz + WzC% =

1

b

W= N

1
wi(agic + ape) + wa(age) + axe) = e

aq=aptap=atw-ay,

Gy =ax)t+ay,

wp = Wy,

from which we get the method with the following Butcher table:

IR LA )
27 6 4 47 6
1_3 | 1_483 1 (3.21)
—F— | = F— 4
2 6 4 6
1 1
2 2

Let us note that in fact the method (3.21) is the Hammer-Hollingsworth method

(3.17) of the fourth order.

An example of a three-stage semi-implict method of the fourth order is the But-
cher method with the following table:
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0 0 0 0

1 1 1

— - — 0

2 4 4

0 0 . 0 (3.22)
r 2 1
6 36

For m = 3 and p = 4 we can obtain diagonally implicit methods of Alexander
with the Butcher table of the form (see e.g. [38]):

1 V3 |1 3
PR A ’
1 NE) 1 3
2 | 3¢ rEe ! (323)
1 3 243 43 1 3
P R A
1 L R
8¢? 42 82

where = cos 10°, —cos 50° or —cos 70°.
Also known are symplectic Runge-Kutta methods. In general, symplectic me-
thods (not only the Runge-Kutta methods) concern the Hamilton equations
dp _ oH  dg; oH

= 5 =, i:1,2,...,N,
dt aq; dt  Jp;

1
where H = H(p,, ... , Px> 4;- --- » 4y)- The coefficients of symplectic Runge-Kutta
methods fulfill the conditions [166]

Wlal] + W]a]l = Win, i, j = 1, 2, ce.,m. (324)

Taking into account (3.24) we can significantly reduce the number of equations for
finding the coefficients. It should be noted that all symplectic Runge-Kutta methods
are implicit and that there is no relation between symmetric and symplectic Runge-
-Kutta methods.
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The implicit midpoint method (3.16) and the Hammer-Hollingsworth method
(3.17) are examples of symplectic Runge-Kutta methods.

The function ¥ (¢, y) = ¥(t, y(f)), occurring in (3.10), depends on coefficients
w;, ¢;, a; and on partial derivatives of f(z, y). The form of (¢, y) is very compli-
cated and cannot be written in a general form for an arbitrary p. Since this form is
very important from the point of view of interval methods developed, below we
present adequate formulas.

For the explicit Runge-Kutta methods we have:

ep=m=1
1
l//s(t y)= _ySa (3.25)
®op=m=2
" f N
we(t, y) = (1 - 3W202)ys TS We Z =YL, (3.26)
®op=m=3

w(t,y)= [1 4 Wc3 + W33 )]ys

N
1 3 3 2 af,
+—(wc + Wyes - 3wycla )E 2
6 262 2¢3 243 32k_1a

yi'+

2, +§ 2’1,

S| v+
Oty = Oy

N
(3 3
+ E WrCy + WhC3 — 2W36’2C3a32
k=1

é’fc é)fk
iy Wsczasz
Z 5)//

4
ws(t, y) = [1 5 Wyc + s + wyc )]ys

120

1
+ ﬁ[wzcé‘ + w3c§1 + W4CZ‘ - 4w3c§a32 - 4w4(cga42 + c§a43)] X

IV
X
5)/1« B
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1
+ g[wzcg + w3c§ + w4cff - 3w3c§c3a32 - 3w4c4(c%a42 + c32a43)] X
N

N
.y o%f, -y L ol
=\ 91y = vk

=1

1
+ E[W3023a32 + W4(Cz3a42 + 05043) - 3W4C§a32a43] X

é’f; é’fk i
Z 5)’1

1
+ Z[chg + W3C§ + W4Cj1t - 2W3C2C§a32 - 2W4C4%(C26142 + 036143)] X

N

N N
XZ — s_.|.z 20’)0’) ;’) +20’7 > sé7 fp filvp+
Pt R Ve L VR (R LR SR TR

1
) w3c%a32 + w4c§a42 + w4c3a43(c32 - 20ya3, )] X

N N 2
é’f é’ fk H ﬂ fk "
XZasZ Até Zag yl’fl+
o19Yk t J’1 =, ON9Yp
p_
1 2 2
5 W3CC3A3p + WyCyChdyy + W4C4a43(03 202“32)

N N N
» 2’1, Zafky+z 2’1, IR ATAN
Oty = O 1215)’1(5)’1[):15)/1; Pk

+

+

k=1

1
+ g[wzcg + w3c§ + w4ci - 4w3c%a322 - 4W4(02a42 + c3a43)2} X
N N 2
ﬂ -f:g 14,0
X
Z Z 5y, 0 Yy
k=11=1
N
1 afS afk é’fl "
W4Cd32d43 Vp>
Z 27 IZ—:1 Oy &= vy

where

(3.27)
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" 0”fs ﬁfs
_+ ———— ,
s At Zé,ykfk
k=1
) N 2 N N
" fS ﬂﬂ af‘S fS "
= + + ,
WSR2 S S D ) S ik ) G
=1 k=11=1 k=1
N N N
2*f. /. 2*f,
v K s S
= +3 3
S Z Py, kf" Z Z iy, oy Tk
k=1 k=11=1
N N 3 2
2 f Ss
£y Zﬂykﬂw Spfifk#3), S
k=11=1p= k=
N N 2
o°f. /.
_|_3 S " S m’
kz—:lzz—:laykalf k:lé} g
N N N
2%, /. 2%,
\Y% s K S
wWe=Sliay S a6y Y — fif
ot ~ 0 Dy e o1 oy 0
N

k=1 k=11=1 k=1
N N 2
o°f S5 v
+4 — yi'fy + =Yk
/;1121§yk5y’ kz=15

fs = fs(tay) = fs(tayl(t)ayZ(t)a“' ayN(t))a §= la 23 5 N.
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For the implicit Runge-Kutta methods the function (¢, y) is of the form:

ep=2m=1
1 nr f N
w(t,y)= g( 3wicq )J/s - _chl . (3.28)
ep=2.m=2
2 !H
y(t,y) = —[1— wici +WZC2)]ys
1 2 2 af,
+— -2 + ]+ [ -2 + ]} yr
> {Wl[cl (Clall Czalz) W& (ClaZI Czazz) Z 0,, Vi Yi>
®ep=3m=2,3
ﬂ f !H
vt )= Sy 4 Z .
N 2 N 2
0 0
+ﬁz Js +Z Js filvp+ (3.29)
2 =9ty vk Oy

N
+5_mzﬁfszﬁfk
2 0yt O

where
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ep=4m=2,3,4

N
En V. Pm Ofs v
tyy= 2V O N OTs v
Vsl 2= g% 24 & Oy

N 2 N 2
+7_mz ﬂfs+z 5fsfym+
6 o1 é’té’yk l_lé’yké’
N N
6 &= Oy on
N 3 N 3
Ay Lz{zL
4 ol 0”1‘ é’yk =1 ﬁtﬁykﬁy,
(3.30)
N 3
2°f
£ . fpjﬁ]yz+
2 OVE OOy
N N 2 N 2
Hn N OS5 O W
+— Vo I+
2 kz—lﬂyklzl oty Z Y10y, p
N 2 N 2
v, o ’ ’ o
PN afs ) afkyluz g ];s 3 ﬁfly};f !
o\ CLoyE i oV IR y
N N N N N
Oy y s i+ Pny O Al SN
p,
2 = Oy Oy 2 kzlﬁyklzlﬁylpzlﬁyp

where

m m

O = Zwi ci4 - 4ch3a,]~ ,
i=1 j=1
m m
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3
M ZWl aj; cj—3cha]k R
i= j=1 k=1
m m
21 2
A = Zwici C; —Zchalj ,
i=1 j=1
m m m
ym=Zwichaij c; —Zcha]k ,
i=1 j=1 k=
m m m
vm:ZwiciZaij c; —2cha]k ,
i=1 j=1 k=
2

3.2. Explicit Methods
3.2.1. Basic Formulas

Let us denote:

® 4 and 4, — bounded sets in which the function f(#, y), occurring in (2.1), is
defined, i.e.

A ={teR: 0<¢t<a},
Ay ==y yn) €RY b <y <bi, i=1,2,.., N},

® F(T, Y) — an interval extension of f(¢, y), where an interval extension of the
function

f: RxRY 54, x4, 5> RY

we call a function
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F: IRx IRY 514, x 14, > IRY
such that
(&, y)e(T,Y)= f(t,y) € F(T,Y),
and where IR and IR" denote the space of real intervals, and the space of N-di-

mensional real interval vectors, respectively,
® YT, Y)- an interval extension of (7, y) (see (3.10)),

and let us assume that:

® the function F(7, Y) is defined and continuous for all 7<= 4,and Y = 4,
® the function F(7, Y) is monotonic with respect to inclusion, i.e.

Leha¥c = F(hK) e F(B,5),

® for each 7' 4, and for Y = 4, there exists a constant A > 0 such that
w(F(T,Y)) < AW(T)+ w(Y)), (331
where w(A4) denotes the width of the interval 4 (if A = (4,, 4,, ... , Ay)", then the

® the function 7, Y) is defined forall T 4,and Y= 4,
® the function ¥(7, Y) is monotonic with respect to inclusion.

Fort,=0and y, € Y(0) = Y,, where the interval Y, is given, the explicit m-stage
interval method of Runge-Kutta type is defined as follows [87, 167]:

m
Viwr = Yot hY wiky +(¥(T )+ [-at, ] AP,

~ (3.32)
k=0,1,....,n-1,
where Y, = Y(z,) and Y, depends also on n, K,, = K,(h),
Klk = F(Tlvcs Yk):
= (3.33)
K= F| T+ qh Y+ h) azKy |, i=2.3.....m, '
j=1
o is a constant such that
a= Mh,

where /4, is a given initial step size, and (see (3.10))
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2
P (on)
(p+2)!

The step size 4 of the method (3.32), which fulfills the condition 0 </ < A, is
given by

<M, 0<6<1 (3.34)

k

-y (3.35)
n
where
é;:zz min{é:Oa §2a“‘3§m}a (336)

and where for ¥, = 4, and y, € ¥, the numbers & >0, & >0, ..., £, > 0 are such
that

ht&eF(4,4,)c 4, i=2,3,...,m, (3.37)

and the number &, > 0 fulfills the condition

Yo+ &), wiF (4, A)+ (P(4, A)+[-a, aDif < 4, (3.38)
i=1
We divide the interval [0, 5:1] into n parts by the points ¢, = kh (k=0, 1, ..., n),
whereas the intervals 7, which appear in the methods (3.32) — (3.33), are selected
in such a way that
th=kheT, c[0,&].

On the basis of (3.32) — (3.33) we can present interval methods corresponding
with the conventional explicit Runge-Kutta methods (3.11) and (3.13) — (3.15):

® the interval version of Euler’s method (3.11)
Yeur = Y + hE (T, Y) + (P(T, Yo + [, @] 1,
k=0,1,...,n-1,

(3.39)

where HT, V)= (P(T,Y), (T, Y), ..., (T, Y)) is an interval extension of

W(ta y) = (wl(t’ y)a Wz(f, y): cee wN(t, y)) Wlth ;05(1‘, y) (S = 19 2) tee N) given by
(3.25),
® the interval version of Euler’s improved method (3.13)

Yip1 = Y + hKyy + (P(T, Y + [-a, a]) 12,
h h
Klk = F(Y}c’ Yk)a K2k = F(]}c + E: Yk + EKlkj > (3.40)

k=0,1,...,n-1,
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where ¥(T, Y) is an interval extension of the function ¥(z, y), of which compo-
nents are given by (3.26),
® the interval version of the Euler-Cauchy method (3.14)

h
Yey1= X "’E(Klk + Ky +(P(T V) + -, al)

341
K= F(T, ), Kogo = F(T + h, Y+ hKyp), (34D
k=0,1,...,n-1,
where H(T, Y) is an interval extension of (3.26),
® the interval version of the Runge-Kutta method (3.15)
h
Y1 =Y +g(Klk + 2Ky + 2K3y + Ky )+ (V(T, ) + [, ) 1,
h h
Ky = F(T}, Yy), Kpp = F\ T+, Y+~ Ky |

2 2 (3.42)

h h
K3k = F(Tk+5’ Yk +5K2k) , K4k = F(Tk +h, Yk +hK3k),

k=0,1,...,n-1,

where ¥(T, Y) is an interval extension of the function ¥ (z, y), of which compo-
nents are given by (3.27).

From the classical theory of the Runga-Kutta methods it is known [38, 41, 50,
62, 77, 97] that for a given number m of stages and a given order p from the
equations involving the coefficients w;, ¢; and a;; we can obtain one- or multi-para-
meter families of solutions. If these equations are solved in floating-point interval
arithmetic, then the number of possible families will be significantly greater. Below
we explain this fact on the basis of the two-stage explicit method.

If we assume that ¢, # 0 is a parameter, then the one-parameter family of two-
-stage (m = 2) explicit Runge-Kutta method (with the maximum order p = 2) is gi-
ven by (3.12). The same family we obtain if we take w, # 1 or w, # 0 as parameters.
Now, let us assume that all calculations are carried out in floating-point interval
arithmetic and consider the evaluation of w, = [1/_1/2, Wy ] On the basis of (3.12) we
have

[va’wz]: 2[g21,52]: [V(Zgz)TA(L?Z)]: V(A(zlzz)]’A(v(zlgz)] -G8

If we take w, as a parameter, then on the basis of the same equations we get
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1 1
Ch=—— = ——=¢,.
27 2w, (314), 1 2

2C2

But in floating-point interval arithmetic we have

[C.Z’EZ']: _ 1 _ 1 _
- _V_VQ:V_Vz] [V(ZLVZ),A(ZWZ)]

[\®)

o V(ZV[A(;@)D,A )

Al 2A V(Zlgz) V[2V[A(;EZ)J] |

and we see that in general (_:'2 # ¢, and G # 0.
In Table 3.1 we present the numbers of one-parameter families in floating-point
interval arithmetic.

Table 3.1. The numbers of explicit Runge-Kutta
one-parameter families

Conventional ~ Runge-Kutta methods

m Runge-Kutta in floating-point
methods interval arithmetic

2 1 3

3 2 7

4 4 21
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3.2.2. The Exact Solution vs. Interval Solutions

For the explicit m-stage interval method of Runge-Kutta type we can prove

Theorem 3.1. For the exact solution y(t) of the initial value problem (2.1) we have
wt) e Y, (k=0,1,..,n), where Y, are obtained from the method
(3.32) — (3.33).

Proof (the mathematical induction with respect to k). The assumption of the method
(3.32) — (3.33) states that y, = (0) = y(¢,) € Y,, i.e. the case k = 0 is true. Let us
assume that y(z,) € ¥,. According to (3.5) and (3.10) we have

W) = (e + b)Y wiy () + Ry (h),
i=1

where
Rm (h) =

w(te, y(t) + (3.44)

(p+ D!

is a summarized error of interpolation and integration. But ¥ (¢, y(¢,)) € AT}, Y)),
and from the assumption (3.34) about the method considered it follows that

2
il )wh)h} e

2 omh

(7 2)! < Mh< Mhy = a.

This implies that

(p+2) Ok
L ia COL) el-a,al.
(p+2)!
Hence, taking into account (3.44), we have
R, (h) e (P(Tp, B + [-a, ) hPT

Moreover, f{(t, y) € F(T, Y) foreacht € 4,and y € 4,, and from the induction as-
sumption we have y(¢,) € Y,. Thus, we get

m
V) €Y+ hY WKy + (YT, %) + [~ al) AP
i=1

But on the basis of (3.34) the interval on the right-hand side of membership ope-
ration is equal to Y., . L
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3.2.3. Widths of Interval Solutions

Before we estimate the widths of interval solutions obtained by the method
(3.32), let us consider the widths of intervals K}, given by (3.33). From this formula
and the property (3.31) of the function F it follows that

i—1
W(Ky) < A\ w(T)+ w() + Y Jag [w(K ) |
j=1
Hence,
w(Kiy) £ AT ) + w(ly)),
w(Kpp) € AW(T) + w(¥) + hayy [w(Kiy) <
< AO(T) + w1+ |ay [),
w(Ksy) < AW(T) + W) + hlasy [w(Kyy) + Blazy [w(Ky ) <
< AW(T) + w1+ Al ag; [ A+ Blagy |(1+ B ay, [4)A] =
< AW(T) + WG+ (|asy |+ | as1 phA + | asy | ayy [(hA)*1,

i1
W(Kig) € AGW(T) + w(5)) Y s (hA), (3.45)
Jj=0
where g; denote some constants.

Now, we can prove

Theorem 3.2. IfY, (k=1,2, ..., n) are obtained from (3.32) — (3.33), then

Y.)< Oh? + Rw(¥y)+ S T),
w()< O w(Xp) lzor?axk_IW( 7) (3.46)

------

where O, R and S denote some nonnegative constants.

Proof. From (3.32) we get

W) S W)+ 0w [w(Ki) + D (4, A,) + 2P (3.47)
i=1
The insertion of (3.45) into (3.47) yields
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i-1

W(Ti1) € WOR) + AAOKT) + W) Y. i [ s (hAY +
i=1 j=1

+[W(P (4, A) + 2alh? <

m i-1
<w)| 1+ hAY [w] Y gy (hay |+

i=1  j=0

m i-1
s hAW(T) 1+ hAY || Yy (hA) |+ [w(#(4,, 4,)) + 20007,
i=1  j=0

Since h < hy, then
m i-1 o i1 |
5l o <5 ol =
=1 =0 i=1  j=0

Thus,

W(Yp1) S WA+ 7,8 A) + 7, hAW(T) + [W(P(4,, A)) + 2a]hP*,
k=0,1,....,n- 1

(3.48)

From (3.48) we get
w(X) < wIp)(1+ 7,hA) + 7, h AW(Ty) + [W(#(4, A,)) + 2a]hP*,
w(8) < W)+ 7, hA) + 7, hAW(T) + [W(F (4, A,)) + 2a]h?*! <
< w(Xy)(1+ y,hA)? +

' {J/Mh/l ZIII%XI W(]-l') f [W(T(At’ Ay)) * 2a]hp+l}[1 + (1 + }/mh/l)],
w(B3) < w(H)(1+ 7,hA) + 7,h AW(D) + [W(P(4,, A)) + 2a]hP! <
< w(Xp)(1+ 7,hA)° +

+{ymh/1 max w(7})+[w(5"(At,Ay))+2a]hp”}><
1=0,1,2
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x [1+ (1+ y,,hA) + (1+ y,,hA)*],

1e. foreachk=1, 2, ..., n we have

w(¥) € w(¥p)(1+ 7, h )" +

s Ly

+{7mh/1 max  w(T)+[w(¥(4,, 4 ))+2a]h”+1} X
1=0,1,....k-1

XY (147, =
i=0
k-1
=w(l)d+ 7mhA)k + }/mh/ll max 1w(]})Z: (1+ ;/mh/l)i +
,,,,,, =

k-1

(¥4, 4)+ 21 (L4, hAY.

i=0

_ (4 rhDF -1 L Xk A) -1
ymhA T yuhA

- SXPh ) =1 exp(7, &) - 1

¥ mhA ¥ mhA

W(%) < W) eXp(¥ ) + [eXP(¥ o A) = 1] max  w(Tj)+

+[W(¥ (4, 4)) + 2a]

Since
k-1
D1+ rhaY
i=0
then
< Rw(y)+ S
I=
where

Q= [w(¥(4,4)) +2a]

exXp(V én ) — 1

XP ) | p
mA -

max  w(T;)+ Oh?,
0,1,..., k-1

, R=exp(y, &), S=R-1.
¥, A

m
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3.3. Implicit Methods

3.3.1. Basic Formulas

Let F(T, Y)and ¥(T, Y) be interval extensions of f(¢, y) and #(¢, y), respectively,
and fulfill the same assumptions as in Section 3.2. For #,= 0 and y, € Y¥,, where the
interval Y, is given, an implicit m-stage interval method of Runge-Kutta type, which
solves the initial value problem (2.1), is given by [54 — 57, 121, 122, 125]

m
Yoo = %+ 0 wiky +(W(T %)+ [-a, al) P,

~ (3.49)
k=0,1,...,n-1,
where
m
I<lk = F TIVC + Cih’ Yk + hzaijk , (350)
j=1
a= Mhy, 0<h<h,
and where 5, denotes a given number (initial value of step size).
To find / we apply the following formulas:
T
h:7m, T = TUN{T0, 71y oo v s T b (3.51)
where the numbers 7, >0, 7, > 0, ..., 7,, > 0 should be evaluated in such a way
that
N+ ncl(4,4,)c 4, i=12,...,m, (3.52)
and the number 7, > 0 should fulfill the following condition:
m
Yot 1Y, wF(4, 4,)+ (¥4, 4,)+ -, al)if < 4,, (3.53)

i=1
and where Y, = 4 and y, € ¥,,.
The interval [0, 77;] is then divided into n parts by the points ¢, = kh, where
k=0,1, ..., n, and the intervals 7, occurring in the method should be chosen in
such a way that
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1 = kheT, [0, ]

From (3.50) it follows that in each step k£ we have to solve a nonlinear equation
of the form
X = G(T, X),

where
Tels cIR, X=(X,X,,...,Xy)" el4, c IRV,

G: I4,x14, > IRY.

If we assume that G is a contraction mapping, then the well-known fixed-point
theorem implies that the iteration

XY = g, xDy, 1=0,1,..., (3.54)

is convergentto X", i.e. lim XY = X~ for an arbitrary choice of X© ¢ 14,
>

Let us recall that G is called a contraction mapping if
d(G(T, X(1)), G(T, X)) < ad(Xyy, X(2)),

where d is a metric” and @ < 1 denotes a constant.
For the equation (3.50) the process (3.54) is of the form

m
I+1 I
KV - F Tk+c,.h,Yk+hZa,~jKJ(.k) ,
j=1
i=L2,....m k=0,1,...,n-1, [=0,1,...,

(3.55)

where
K = F(T; + ¢h, %).

The process (3.55) may be modified to the following form:

" In the space IR the metric is defined by (1.3). In the space IR" the metric can be de-
fined by the formula

d(4,B)= max Nd(Ai,Bi),

i=1,2,...,

where 4 = (4,, 4,, ... , 4y)' € IR, B=(B,, B,, ... , By)' € IR", 4; = [‘liezi] and
B; = [b,. bi].
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i—1 m

KD = F s o Yo+ b > KD+ > a kP, (3.56)

j=1 j=i

which should reduce the number of iterations.
Interval methods corresponding with the conventional implicit Runge-Kutta me-
thods (3.16), (3.17), (3.19), (3.20), (3.22) and (3.23) are as follows [55, 175]:

® the interval version of the implicit midpoint rule (3.16)
Yoo = Y+ WKy + (P(T ) + [-a, @),
h h
Klk = F 7—]}+5,Y]{+5K1k , (357)

k=0,1,....,n-1,

where HT, V)= (P (T, 1), U(T,Y), .., ¥, (T, 7)) is an interval extension of

W(t’ y) = (WI(ta y)a wZ(t, y), L) wN(ta y)) Wlth %(ta y) (S = 17 2) LR N) given by
(3.28),
® the interval version of the Hammer-Hollingsworth method (3.17)

h
Ve =Y+ E(Klk + K+ (P ) +[-a, a]) 1,

1_43 h 1 _ /3
T+ | =F~|h Y +—Ky +| —F~—| hK.
k [2 6) k 1k [4 6] 2k

Klk:F 4 5
(3.58)
1 3 1 3 h
KZk:FT}(-I_[Eiijh’Yk [—i—th1k+ sz ,
k=0,1,....n-1,

where H(T, 7) is an interval extension of (¢, y), whose components are given
by (3.30) with m = 2,
® the interval version of the semi-implicit method (3.19)

h
Vi =Y+ Z(Klk +3K0) + (P, Y) + [, a)) i,

Klk = F(]—}{ + h, }7( + hKlk)’

h 2hj

i (3.59)
K =F(T + =Y, -—K; + —K
2k k 3 k 3 1k 3 2k

k=0,1,....,n-1,
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where (T, Y) is an interval extension of (¢, y), whose components are given
by (3.29) with m =2,

® the interval versions of two diagonally implicit methods given by (3.20)

h
Y=Y "’E(Klk + Ky + (P ) +[-a, al) i

1 1
Klk =F ]—}c+[_i£jh’ylc+(_i£)hl<1k R
276 276 (3.60)
1_+3 3 1 3
Ky =F| T, +|=F—|h, Y, F—hK;, +| —t — | hK5; |,
2k k[z 6]k3 1k[2 6] 2k
k=0,1,...,n-1,
where (T, Y) is the same function as in (3.59),
® the interval version of the Butcher semi-implicit method (3.22)
h
Yio =Y+ E(Klk + 4Ky, + Ky + (P (T ) + o, al) 1,
Ky = F(Ti, ),
h h (3.61)
Ko = F| T+ = Y+ - (Kige + Ko |

Ky = F(Ti, Y + hKyp),
k=0,1,....n-1,
where (T, Y) is an interval extension of (¢, y), whose components are given
by (3.30) with m =3,

® the interval versions of Alexander’s diagonally implicit methods of the form
(3.23)

1 1 1
Y =Y +h—K;,+|1-—|Ky, + — K5, |+
k+1 = 1 ng 1k [ 4§2j 2%k 8;2 3k
(P, B+ [-a, a)) 2,
1 3 1 3 (3.62)
Ky=F| T +|—+—|h, Y +| =+ —¢| hKyy |,
1k 3 [2 3 5) i [2 3 §] 1k
h 3 1 3
Ky = F 77c+?Yk—§é7lK1k+[5+§§]thk ,
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1 3
T +| —- =¢|h,
1 23 1 43 1 3
Yo+| =+ — | hKy - | =+ — | hKy + | =+ — ¢ | hK
k [2 3 4] 1k [2 3 C] 2k (2 3§J 3k

where k=0,1,...,n -1, {=cos 10°, —cos 50° or -cos 70°, and where ¥T, Y)
is the same function as in (3.61).

K3k=F

b

3.3.2. On an Inclusion of the Exact Solution
within Interval Solutions

For the methods (3.49) — (3.50) we can prove that the exact solution of the initial
value problem (2.1) belongs to the intervals obtained by these methods.

Theorem 3.3. For the exact solution y(f) of the initial value problem (2.1) we have
) e Y, (k=0,1,..,n), where Y, are obtained from the method
(3.49) — (3.50).

The proof of this theorem is exactly the same as the proof of Theorem 3.1.

3.3.3. Estimations of the Widths of Interval Solutions
Before we estimate the widths of interval solutions obtained by the methods of

the form (3.49), let us consider the widths of intervals K, given by (3.50). From this
formula and properties of the function £ it follows that [54, 122]

m
W) € AD(T) + w1+ hAD | a (K ), (3.63)
j=1
wherei=1form=1,i=1, 2 for m =2, etc. The inequalities (3.63) are of the form

m
xiﬁﬂ+2aijxj, i:1,2,...,m,
1

where «; and ff are some constants. These inequalities can be written as

m
(1_a”)xl_zal]xjgﬂ, i:1,2,...,m. (364)
j=1

JEI
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Form =1, 2, 3 and 4 we get the following solutions of (3.64):
om=1

ne—b (3.65)
1- 0511
where
1- a1 > 0,
om=2
1+ -
< ; ( )(?12 a)zz)ﬂ ’
- 4 245124
1 2 12021 (3.66)
xz I+ ap - a)pB
(1= )1 o) - ajpay;
where
1—a11>0, 1—0.’22>0, (l—all)(l—azz)—a12a21>0,
oem=3
P
- [((1- ap)(1-a33)+ (1+ ay; - azz)ag, +
3
+(1+ azp — axp)agz - axas],
B
Xy £ —[(1- ;1)1 - az:)+ (1+ ajz2 — ar2)H1 +
25 [(A-a)(A-a33)+ (1+ a3 - azz)a) (3.67)
+(1+ az; - ag)axs - aj3a3],
x < W[(l_ a)(1-axp)+ 1+ app - ap)az; +
3
+(1+ o) - aqp)asy — appanl,
where
Wy = (1-ay)(1- ap)(l- asz3) - ajpa303) — 300103, =
- (- o agzasy - (1- ap)apzaz; - (1- az3)ar0;1,
and where

1—a11>0, 1—a22>0, 1—a33>0,
(I-a)(d-ax) - apay >0, (1-a)(1- az3) - aj3a3; > 0,
(1= ax)(1-az3) - axpas, >0, W >0,
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Xy < 5{(1— an)l-as33)(1- ag) +

X2S

X3S

X4S

4
1+ (I+ o34 = agg)ans + (1+ a3 — a33) 4 -
= (1= ayq)as; - a34043 - auglagn +
+ 1+ (I+ apq — agg)azy + (1+ agp - ax)azy -
= (1= ags)a - a0 - aslogs +
+ 1+ (I+ ap3 — asz)auy + (1+ a3y - azp)ays -
= (1= az3)ay - axpas; - aszla, -
= (1= ayg)anasy - (1- az3)aay - (1- axn)azgoys -

= Ap3U3404) — Qsd39043},

B
— (- )(1- az3)(1- agq) +
W,

+[1+ (4 a3 - agg)agz + (1+ ag3 - azz)agy -
= (1= agq)a33 — a34043 — agqlog +
+[1+ (4 g - agg)az + (1+ ag - a)azg -
- (1= agg)an) — arqaq) - agglags +
+ 1+ (1+ a3 - azz)ay + (L+ a3 - o)y -
- (I-az3)aq - apzaz; - azzlaog -
- (- ag)azaz; - (1- azz)agoy; - (1- ap)azsou3 -
- Q13034041 ~ 14031043}

%{(l— 1) (1~ ey )(1- rga) +

+H[1+ (4 agq - agg)any + (1+ agy - ap)ayy -
- (1= agg)aay — apq0p — gqlaz) +
+[1+ (4 g - agg)an + (1+ ag1 - a)ang -
- (- ag)ay) - agas; - aglaz, +
+H[1+ A+ app - ap)ag + (1+ ay - ag)ag -
- (I-ayDay - apay - ajylaz, -
- (1= agg)appan - (1- ag)angayy - (1- ap)ajsay -
- Q04041 ~ A14Q21042 )5

%{(1— ay (1= app)(1- a33) +

(3.68)
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+[1+ (I+ az3 - az3)apn + (1+ a3y - ap)ag; -
- (I1- az3)an - apazy - azslag +
+[1+ (I+ a3 - azz)ag + (1+ a3 - aj)ass -
- (I- as3)ag - ap3a31 - azzlag +
+[1+ (14 ap - azg)az + (1+ ag - a)az; -
- (I-ayay - apay - ajlag -
- (- a)agzazy - (1- axp)azas; - (1- az3)apas) -
- Q03031 ~ 1302132},

where

Wy = (1= )= ayn)(l-az3)(1- ag) -
- (1= ag)l(1- ay)agaz + (1- ap)apzaz; + (1- azz)apas]-
- (- oy )@3a3404p + apa032043) -
- (I- ap)a3a3a041 + a14031043) -
- (1= ag3)(appapay + aga0104) -
- (1- agg)apassas; + apzanasy) -
= aya041[(1- apn)(1- as3) - axzasy ] -
- apnap[(1-a)(1- as33) - apzas]-
- azgog3[(1- )1 - axn) - apay]-
— a1 (a3034041 + Q24031043) — O13(Q01 U340 42 + Q2403041) ~
- aa(ap 13043 + 22303104,
and where
I-a;1>0, 1-ay5p >0, 1-a33>0, 1-ay >0,
(I-ay)(1-ax)-apay >0, (1-a;)(1-as3)-aj3a3 > 0,
(I- )= agq) - aja041 > 0, (1-axn)(1-as3)-apaz; >0,
(1= axp)(1-ag) - aa041 > 0, (1-a33)(1-agq) - azsaq3 > 0,
(1= a1 (1= ax)(1- asz3) - (1= aj)ayasz; - (1- axn)a;zas; -
- (I- az3)apas - apaxas; - apazaz > 0,
(- - axn)d-ag) - (- ay)ayas, - (1- axn)ajsaq -
- (I- agg)apap1 - Q1204041 — Ag02104 > 0,
(I- o)A - az3)(1- ag) - (1- aazsaqs - (1- azz)ajsay -
- (I- aygg) 13031 — a13034041 — 14031043 > 0,
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(1= ap)(d - asz)(1- asq) - (1- axy)azaass - (1- az3)xaa4; -
- (1= agg) 303 — ar303404 — arga3043 > 0,
W, > 0.

Using the above results we can estimate the widths of interval solutions for im-
plicit one-, two-, three- and four-stage methods of Runge-Kutta type [54, 55, 122,
175].

Theorem 3.4. IfY, (k=1, 2, ..., n) are obtained from (3.49) — (3.50) with m =1,
then for hy< 2/ A we have

w(Y,) < Oh* + Rw(Yp)+S max w(T)), (3.69)
1=1,2 n

.....

where O, R and S denote some nonnegative constants.

Proof. From (3.49) for m = 1 we have
W(¥e1) € W) + hw(Kpp) + [w(# (4, A)) + 20k’ (3.70)

Applying (3.65) to (3.63) we get

Aw(T}) + w(¥p)]

_ha 3.71)
2

w(Kj) <
1

if ,
1—7;>0 (3.72)

Since 4 < Iy, then from the assumption that 4, <2/ A it follows the inequality
(3.72), and also (3.71). For 4 < h, from (3.71) we have

w(Kyy) < [w(T) + w(¥ )]

2- hyA
The insertion of this estimate into (3.70) yields

W(¥i1) € WXy ) +

> oA [W(T3) + w(¥)l+ [W(#(4, 4,)) + 2alk.

Denoting
24

Vi=—""",
2— oA

we can write the last inequality in the form
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W(¥ep1) < WG+ hA) + iAW) + [P (4, 4,)) + 2a 0,
k=0,1,...,n-1

(3.73)

From (3.73) it follows that
w(3) € w(Xp)(1+ whA) + whaw(Ty) + [w(#(4,, A,)) + 2a 1,
w(¥) < wR)(L+ vhA) + vhAw(T) + [w(¥(4, 4,)) + 201k <
< (W(YO)(1+ hA) + whAw(Ty) + [w(#(4, 4,)) + 2a]h3)(1+ VhA)+
+ WhAW(T)W(P (4, A,)) + 2a]h’ <
< w(XY)(1+ vhA)? +

+ (vlh/l max w(T) + [W(# (4, A)) + 2a]h3j[l + (14 vhA),

w(B) < w(BH)(1+ WhA) + vihAw(Dy) + (WP (4, A)) + 2alh’ <

< [W(YO)(1+ vhA)? +

+ (vlh/l lril(e)vi w(I) + [w(¥(4, 4,)) + 2a]h3j (I+ 1+ vhA)) |[(1+ vihA) +

+ VhAW(T) + [W(P (4, A) + 2a]h’ <
<w(XYp)(1+ vhA) +

+ (vlh/llzn(}’alpfz w(T}) + [W(#(4,, 4,)) + 2a]h3j X

v (1 F 1+ whA)2 1 (14 vlh/l)3)

Thus, foreach k=1, 2, ... , n we have

w(Y,) < w(¥y)+ (1+ vhA)K +
k-1
T (4 A,) 2a]h3] Y. 1+ vhay

+(vlh/1 max
[=0,1,....k i~ 0
1=

But
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k-1 L
Z(1+ vhAY = (I+ v;hA)” -1 < exp(v;khA) .
i=0 Vih/l Vih/l

< exp(vinhA)-1 exp(vl-m*/l)— 1
- Vl‘h/l - Vl'h/l

where, according to (3.51),

m = min{7y, 17;}.

Hence
w(¥,) < Rw(Yp)+S max  w(T))+ Oh?, (3.74)
[=0,1 k

.....

where
exp(vimA) -1

R=exp(vyyA), S=R-1, Q=
4

[W(#(4,, A)) + 2a).

Taking into account that 7, = [0, 0], i.e. w(T,) = 0, the inequality (3.70) follows im-
mediately from (3.74). =

For the two-stage implicit interval method of Runge-Kutta type we can prove

Theorem 3.5. IfY, (k=0, 1, ..., n) are obtained on the basis of the method (3.49)
—(3.50) with m = 2, then for hy such that

1

hop < ming 1, —A| a |’—A| . R
(3.75)
1
/1(| a11|Jr |a22 |)+ /12|012 || a21|
we have
w(Y;) < Oh? + Rw(Xp) + S _ Lnlze,‘).(..,nw(T’)’ (3.76)

where p < 4, and Q, R and S denote some nonnegative constants.
Proof. For m = 2 the formula (3.49) yields
W(¥ 1) € W) +

+h(| W1|W(K1k)+|W2|W(K2k))+[w(IIU(At,A )+ 2alh?, (3.77)

where p < 4and k=0, 1, ..., n - 1. On the basis of (3.63) we have



3.3. Implicit Methods 87

w(Kyi) € Aw(T}) + w(¥y )] + h/l| ap |W(Klk) + h/l| ap |W(K2k)>
W(Kop) € AT+ w1 | ay oo + B o).
From (3.66) it follows that the solution of the inequalities (3.78) is of the form
1- hA|a22 | + hA| ap |
1- hA| ap |)(1 - hA| ar |)— h2A2| ay ” ar |

1—h/1|a11|+h/1|a21|

AW(Ti) + w(X)],

w(Ky) < (
(3.79)

(Kyp) < AW(T) + w(Xp )],
w(Kyy (1—hA|a11|)(1—h/l|a22|)‘h2/12|012||a21| w(Ti) + w(¥
if
h<;, h<;,
A|a11| A|6122|

2 0
1- h/l(|a11 |+ |022 |)+ hA (|a11 ||a22|— |a12||a21 |)> 0.
The first two inequalities are fulfilled from the assumption (3.75) and because of
h < hy. The third inequality also follows from (3.75), because for / < i, we have
1

h<
A(|al1|+|a22 |)+ /12|a12 ||a21|’

ie.
1= hA(|ayy |+ ] ass |) - Ry | @z | > 0. (3.80)

Since /4 < 1 (as a consequence of /i, < 1), then #* < h. Thus, from (3.80) it follows
that
1- h/l(| an |+ |a22 |)— h2/12| apn || any | > 0,

and hence, obviously,
1- h/l(| a |+ |a22 |)— h2A2| ap ||a21 |+ h2A2| ayy ||a22 | > 0.

Taking into account that 4 < &, from (3.79) we get

W(Ki) < 1+ o are | ADW(T) + W)L
(1 - h0A| a |)(1 - h0A| ax |)— h§A2| app ||az1 |

w(Kay) < Lt ot an| ADw(T) + w(X)]
(1— ho/l| a |)(1— ho/l| ay |)— h§A2|a12 || ay |

Using these estimates, from the inequality (3.77) we obtain
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W(¥1) € WY+ vphA) + vahAw(Ty) + [w(P(4,, A,)) + 2a]hP*!,

(3.81)
k=0,1,...,n-1,

where
| w |(1 + hOA| ap |)+ | wy |(1 + h0A| ar |)
(1 - h0A| a |)(1— h0A| axy |)— h02A2| ap ” as) | '

Proceeding further as in the proof of the previous theorem, from (3.81) we get

V) =

w¥) < Rw(lp) + S~ max  w(lj)+ Oh”, (3.82)
=0,1,...,

where

N SA) -1

R=exp(rymid), §=R-1 0= THERE 4, 4,)+ 2a,
V2
m = min{ng, 7, 72}

Since w(T,) = 0, the inequality (3.76) is an obvious consequence of (3.82). u

For the implicit three-stage method we have

Theorem 3.6. IfY, (k=1,2, ..., n) are obtained on the basis of the method (3.49)
—(3.50) with m = 3, then for hy such that

1 1
" Alay | /1|a22| A|

hp < minq 1

(011|+|a22 +/12|a12||a21|’

)
)

(3.83)

(a11|+|a33|

1
(azz|+|a33|)+

1
A+ R+ £y

where

le
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0, = |a12 ||a21|+|a13||a31|+|a23||032 |
£ = |a11 ||azz || a33|+ |6112 || a3 ||a31|+ |a13 || as || asy |,
we have

w(Y.) < Oh? + Rw(Y)+S max  w(T)), (3.84)
[=1,2,....,n

where O, R and S denote some nonnegative constants, and p < 6.

Proof. From (3.49) for m = 3 we get

W(¥r1) = W) = Al wy WK ) + [ [w(Kog) + s [w(Kp)) +

(3.85)
+[W(P(4,, 4))) + 2a1h?,
where p < 6, k=0, 1, ..., n —1. On the basis of (3.50) we have
w(Ky) < Aw(Ti) + w(X )]+
+ h/l(| i [W(Ky) + | g [W(Kag) + | a3 |W(K3k)), (3.86)
i=1,2,3.
From (3.67) it follows that if
1- hAaz|>0, i=1,2,3,
(1-m|ay 1= nday |)- 22 RLay a5 0, 7j=1,2,3 %,
(1- hAlay (1= Al ay, [)(1- hA] ass |)- .
- h2A2(| ap ” ax | + |a13 ” asy | + |a23 ” azp |)—
- h3/13(| a2 ” ar3 ” asy | + |a13 ” a1 ” asy | -
~an | azs || asz |- a1 [ axa || a3y [~z || a2 [ a3 |)> 0,
then the solution of inequalities (3.86) is of the form
w(Ky) < %A[W(Tk) +w(¥)], i=12,3 (3.88)

where

R L e P R e 2
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¥ (1+ nA| ay| - hA| ay; ‘)h/l| ay |- 22| ay | ayl.
iLk,j=12,3, i#k, k+]j, j#Ii,
U = (1- ha| ayy|)(1- 54| ay, |)(1- 2] a3]) -
- hz/lz[(l - | ayy|) axs | aza |+ (1- 14| agy |)) a3 | a3 |+
+(1- na] az3 ) a1 || @z |] -
- h3/13(| a2 || @3 || 31 | * | a3 || 1 || 432 |)

Taking into account the assumption (3.83), the first six inequalities in (3.87) are
self-evident. The last inequality in (3.87) is also an implication of this assumption,
because from the inequality

1
< 2 3
AQ + RO+ £y

ho

it follows that for 4 < , we have
1—h/1(|a11|+|a22|+|a33 |)—h/12(|a12 ||a21|+|a13||a31|+|a23 ||a32 |)—
- h/l3(| apy || axy || a3 | + |a13 || ay || a3 | + |a13 || a; ||a32 |)> 0.

Since 2 <1 (as a consequence of %, < 1), then #* </ and A’ < h. Thus, from the last
inequality it follows that

1- hA(|a11 |+ ] agy |+ | @33 |)— h2A2(| apy || ayi |+ | a3 || azi | + | azs || a3 |)—
-1 A @y s s |+ [ars [ ass | asi |+ | s @ [ asa [) > 0,
and hence — all the more —
1- h/l(| ayy |+ | an |+ ass |)— h2A2(| apy |z |+ |ars|| as1 | + | axs | a3, |)+
+ h2A2(| ayy | ag |+ ||| @33 |+ | a2z | a3 |)—
- h3/13(| ap || ax» || as3 | + |013 || a3 || as) | + |a13 || ) ||a32 |)+

+ h3/13(| apy || a3 || a3y | + |a22 || a3 || a3 | + |a33 || app || as |) > 0.

But the left-hand side of this inequality is equal to the left-hand side of the last in-
equality in (3.87). Taking into account that 4 < A,, from (3.88) we get
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1+ h0[| arn |<1 + h0A| ans |)+ |a13 |(1 + h0A| azy |)+ hg/l2| ary || asy H
W(Klk) < 5 X

x A[w(Ti) + w(X )],

1+ ho| any |(1+ ho/l|a13 |)+ |a23 |(1+ 1’10/1| asy |)+ h§A2|a11 || ass ”
— X

w(K5;) <L
(K2k) o

x APw(Tie) + w(¥p )l

1+ h0-| as; |(1+ h0A| a)n |)+ |a32 |(1+ h0A| an |)+ hé/l2| ay || ar H
w(K3p) < - X

x ADw(Tie) + w(¥p )]l

where

U = (1= hgA|ay|)(1- hpA| a|)(1- Bot| ass) -
- h5A2(| a12||a21| t+ |a13|| a31| + |023||a32|)—
- i3 A @] axs] as|+ a3 a1 asa)
Using these estimates, from the inequality (3.85) we obtain

W) € W)+ v3hA) + vshAW(Ty) + [wW(¥(4;, 4,)) + 2a]hp+1,
k=0,1,...,n-1,

where

vy = %{| Wi |(1 + ho/l“ ara|(1+ ho A a3 )+ [a [(1+ Aot a3, |)] + 15 Al | asy |) t
+|wy |(1 + hOA[| ay [(1+ oA ays |) + | axs |(1+ o | a |)] + A ayy | as3 |)+
o (1 gl s 1 At ) ¢ s (1 ot ]+ 2] ).

Proceeding further, as in the proof of the theorem 3.4, we get

W) S Rw(X)+ S max w(T))+ onr, (3.89)

.....

where

exp(v3mA) -1
V3

R=exp(vsipA), S=R-1, O= [W(#(4,, A,)) + 2a].
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Taking into account that w(7;,) = 0, from (3.89) the inequality (3.84) follows im-

mediately.

Finally, for the implicit four-stage method we can prove

Theorem 3.7. IfY, (k=1,2, ..., n) are obtained on the basis of the method (3.49)
—(3.50) with m = 4, then for hy such that

hy < ming 1,

where

1 1 1
A|a11|’/1|a22|’A|a33|’/1|a44|’
1

A(|a11|+|a22| +/12|a12||021|’

S| e |

A(|“11|+|a33| +A2|“13||a31|’

\,_
+
s
<
N
Q
>

/1(|a11|+|a44|

A(|a22|+|033| +/12|a23||032|,

(3.90)

/1(|a22|+|a44| +/12|a24||a42|’

~| = | = —| —

A|ass | +] aga )+ 4 asy | ass|”

1 1

AO | + KO+ KOy AOy + NFOy + KOsy
1 1

AO5 + KOsy + KO3y AOy + FOy + KO,

1

b
AZ + £E,+ £Ey+ A=,

O = |a11|+|a22|+|a33|,

O, = |6112||‘121|Jr |a13||a31 |+ |‘123 ||a32|,

O3 = |a11 || an || a33|+ |‘112 || axs || asy |+ |a13 || as || asy |,
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Oy = |011|+|022|+|a44|a
Oy = |a12 || ) |+ |a14 || a41|+ |az4 || agp |,
Oy = |011 ” o)) ” Q44 | + |a12 ||az4 ” a4 | + |a14 ” az) ” 275) |,
O3, = |911|+|a33|+|a44|a
O3, = |a13||a31|+ |a14 ||a41|Jr |a34 ||a43 |,
O3z = |011 ” ass ||a44|+ |a13 ” asq ” ayy | + |a13 ” asy ||a43 |
Q41 = |ax | +|ass| +|aul,
Oy = |a23 || azp |+ |a24 ||a42|Jr |a34 ||a43 |,
Oy = |022 || as3 || 44 | t |a23 || a3q || a4 |+ |a24 || azp || ag3 |’
Zy = |ay | +]ax |+ | ass| + | asl.
== |a12 ||021|+|a13 ||a31|+|a14 ||a41|Jr
+|”23||a32|+|a24 ||a42|+|as4 ||a43|>
=3 = |a11 ”azz ||a33|+ |a11 ”azz ||a44|+ |a11||033 ||a44|+
t |a12 ||az3 ||a31|+ |012 ||az4 ||a41 |+ |al3 ||6121||a32 |+
t |a13||a34 ||0141|+ |a14 ||a21||a42 |+ |a14 ||a31||0143|Jr
t |azz || as3 || Q44 | t |az3 || az4 || a4 | t+ |az4 || azp || a43 |,
Zy= |011||a22 ||a34 ||a43|+ |011 ||az3 ||a32 ||a44|+
t+ |011 ||az4 ” as3 ||a42|+ |012 ”021 ” as3 ||a44|Jr
t+ |a12 ” a3 ||as4 ” a41|+ |012 ||az4 ” asy ||a43|+
t+ |a13||a21 ” a3y ||a42|+ |a13 ” ax ” asy ||a44|Jr
t+ |a13 ” a4 ”032 ” as | t |a14 ” a1 ” as ” as3 | +
t |a14 ” o)) ||a33 ” g | t |a14 ” a3 ” asy ”042 |
we have

W) < Oh? + Rw()+ S max  w(T}), (3.91)
1=1,2 n

,,,,,

where O, R and S denote some nonnegative constants, and p < 8.

Proof. For m = 4 the formula (3.49) yields
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4

W(epn) € W)+ Y vy [w(Ky) + Dw(¥ (4, 4,0) + 2a 0P, (3,92
i=1
where p < 8, k=0, 1, ..., n - 1. On the basis of (3.50) we have

4
W(Ky) < AD(T) + WL+ hA Y | ag [k,

~ (3.93)
i=1,2,34
From (3.68) it follows that if
1- hA|a; |> 0, i=1,2,3,4,
(1- h|ay (1 h|a, ) PR ay|ay]. ij=1.2.3.4, i),
(1- 1| ay (1 nA|a, )1 h/l|akk |)
thz[ (1= nt|a ) | g | = (1= 22| | e
+ (1 nd] ay |)‘ a|la; |-
_h3/13(‘aij Hafk |ak,-|+|a,-k| aj; Hakf ‘)> 0,
i,j,k=12,34, i+j, j+k, k#i,
v = (1- halay, |)(1- ha|ay, |)(1- hA| ass |1~ hA| agy ) -
- thz[(l A ayy |)(1- hA| axy ) asa || ass |+ (3.94)

(1 hA|a11|)(1—h/1|a33)a24 ||a42|+
# (1= hafay, |)(1- 7] agg ) azs | asa | +

(
( (1- nalass [) arg | ags |+
(
(

+|1- hA| any

)
+ (1= | axy |)(1- hA| ags [) ars | azy | +
(1 hA|ay, )a12 ||021|]
a

23 ” azq ” aar |+ | |az4 ” asp ” aq3 |)+

|

|

+(1- ha]az))
-h3A3[1 nAay )
+ (1 hA|ay )(| ays | asy || aar |+ | ara | @31 || s |)+

|
(1 - h/l| a3 |)(| ap || a4 || dy |+ |al4 || a; || ag |)+
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# (1= htlagy || a1z | azs  asi [+ |ars a1 s |)]‘

- h4/14[| app |(| a3 || a3q || ag | t+ |az4 || asy || as3 | - |021 || a3y || as3 |)+
+[ays |(| ay || asa | as [+ @z || as2 || aar |- [ a2 [ @31 [ as2 |)+
+ |a14 |(| a1 || a3y || ag3 | + |az3 || as) || ag | - |az3 || az || ayq) |)] >0,

then
w(Ky) < V’ A[w(]}() +w(X)], i=12,3,4, (3.95)

where

V= (1 ~hd|a, ‘)(1 - hA|ag [J(1- hA| ay |)+
ajk ‘ + “’jl D - (| a |+ |ay |)}
ag |+ law )~ n{ a; |+ | |)};m|a,.k B
+:1+h/1 alj\+|a,k|)_hA(\a,.j\+|akk|)}m|al.,|_
- ( ajj ‘)hz/ﬂ ayy || a |-

~ (14 nA| ay |~ hA|ag |)h2/12‘ a H a ‘ -

+(1+hA

—

+{1+hA

—

—

~ (14 hA g |- ht|ay |) 12 A2 || g |+

+ A {‘ H Jk‘(|ak1| |a”|) ‘ﬂ‘("kl| |akk) |akk”all|]+

+|aik||:|akl (‘“!f“‘ y) ak/( ﬂ‘ |“zz|)+‘ jj““kkﬂ+
e[ e | e ) e g =[5} e ] -

33
-h’A (‘ ajk “ (2571 ” all ‘-I— ‘aﬂ Hakj “ aj |),
i, ,k,1=1,2,34, i#j, j+k, k#l, [=#Ii.
and V'is given by (3.94).
The first fourteen inequalities in (3.94) are fulfilled from the assumption (3.90)

and because of % < hy. The last inequality in (3.94) also follows from (3.90), be-
cause for 4 < hy we have
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1

h< ,
AE + A2, + A2+ A5,

ie.
1- hAZ| - hA 5y - hA 55 - hA* 2, > 0.

Since h< hy < 1, then A° < h (s=2,3,4). Thus
- 2 2~ 3 3= 4 4
l—hA.Zl—h A.Zz—h/ld:;—h Ad4>0.

The last inequality in (3.94) is a consequence of the above inequality.
For h < hy from (3.93) we have

W(Kyp) < %{H o[ ara ]+ [ |+ ana ) +
' thzh 912 |(| ax | +[az |)+ | a3 |(| ap | +|azq |)+
+ag |(|“42|+ |ass |)+ |axs || ass |+ | sz || aga [ +] 233 aas |]+
+ A [|ans | asa | + [ ana s |+ [ azs | aa |+
+]ars |(| an || asa |+ [z [ @y |+ | azq | aso |)+
+|ay |(| ax || azs |+ | axs ] asa | + | as; [ ass |)+

+ |azz || a34 || a43 | + |a23 || azp || a44 |+ |az4 || as3 || ag ”} x

x Alw(Ti) + ()],
W(Kyp) < %{1+%A(|a21|+|a23|+ |azs])+
B (s ) ¢ |+ e )+
+| a3 |(|“31 [+ asa |)+ |azg | aar [ +] ang | ags | + |33 | asa |]+
# 1Ay (s | s+ | s |+ | s | aas ) +
+]ars |(| ay [[ass [ +] azg | g [+ a1 | aag |)+
+ag |(| ay [|ag [+ ] axs az1 [+ ass | sy |)+

t+ |021 ” as3 ” Q44 | + |023 ” a3y ” as | + |a24 ” a3 ” a43 ”} x

x A[w(Ti) + w(X )],
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(K ) < %{1+%A(|a3l|+|a32|+|a34 )+
+ h02A2[| a1 |(|6122|+ |a44 |)+ |a31|(| a12|+ |a14 |)+
+|“32|(|a21|+|az4|)+|“22 | aaa [+ [aza [l aai |+ [ a4 ||“42|]+
+ h§A3[| ary |(| ax || a3y | + |az4 || ag | + |a32 || 44 |) +
* |a12|(| a || ags [+ ] aza | sy [+ |asq | a41|)+
+ |a14|(| az ||a34|+ |a22 ||a41 |+ |a31 ” ) |)+
+ |a21|| azy || a42|+ |azz || a31||0144|Jr |a24 ||a32 || aa ”X
x APw(Ti) + w(X )],
W(K4k)g%{1+%A(|a41|+|a42|+|a43 )+
+ h02A2[| a |(|022|+ |ass |)+ | s |(| apy |+ |a13|)+
+|a42|(|a21|+|a23|)+|a22 ||a33|+|a31||a43|+|a32 ||a43|]+
+ h§A3[| ap |(| ) || g3 | + |az3 || asz |+ |a33 || ag |)+
+|a12|(|021||a33|+|az3 ||a41|+|a31||a43 |)+
+|a13|(|a21 ||a42|+|a22 ||031|+ |a32 ||a41 |)+
+ |a21|| az || a43|+ |a22 || ass || ay |+ |az3 || a31|| ag HX
x APw(Ti) + w(X )],
where
V = (1= hA|ayy |)(1- ro| axy [)(1- Hga| ass|)(1- oA asa ]) -
—h02A2(|012||a21|+|a13||a31|+|014 ||a41|+|a23 ||032|+
+ |az4 ||a42|Jr |a34 ||a43|)—
- h3A3(| apz ” a3 ” asz) | + |a12 ” a4 ” ag | + |a13 ||a2l ” asz; | +
t+ |013 ||as4 ||a41|+ |a14 ||021||a42|+|a14 ||031||a43|+

+ |az3 || asq || aqn | + |a24 || asy || as3 |)—



98 Chapter 3. Interval Methods of Runge-Kutta Type

- h3A4(| ap || a3 || az4 || a4 | + |a12 || a4 || az || a43 | +
+ |a13 || az || azq4 || a4 |+ |a13 || a4 || asp || a4 |+
+ |a14 || ax || asp || @43 | + |a14 || a3 || aszy || a4 |)
Using these estimates, from the inequality (3.92) we obtain
w(Y 1) € WA+ vghA)+ vahAw(Ty) + [W(P(4,, A) + 2a0hP*,
k=0,1,...,n-1,

where

and where

Ay = |ap |+ | ags |+ | ara |,

App = |a12 |(|az3|+|a24 |)+|a13|(|a32|+|a34 |)+|a14 |(|a42|+|a43 |)+
+|“22 ||a33|+|azz ||a44|+|a33||a44|,

A3 = |012 |(| a3 ” a3y |+ |az4 ” ag3 | t+ |033 ” a4 |)+
+ |a13|(| a ” a44|+ |az4 ” asp |+ |a34 ” ) |)+
+ |a14 |(| a ||a33|+ |az3 || a42|+ |a32 || a43 |)+
+ |a22 || az4 || a43 | + |az3 || a3 || 44 |+ |a24 || as3 || ag |,

Aoy = | ay | +]axs |+ | ana |,

Ay = |a21 |(|a13|+|a14|)+|a23 |(|a31|+|a34 |)+|a24 |(|a41|+|a43 |)+
+|a11||a33|+|a11||a44|+|a33||a44 |

A3 = |az1 |(| aps || az4 | t |a14 || a43 | t |a33 ||a44 |)+
+|023 |(|a11||a44|+|a14 ||a31|+|a34 ||a41 |)+
+|a24|(|a11||a33|+|a13||a41|+|a31||a43|)+
+ |a11 || az4 ||a43|+ |a13 || a31|| a44|+ |014 || as3 ||a41 |

A31=|a31|+|a33|+|a34|,
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A3 = |a31|<|a12|+|a14 |)+|a32 |(|azl|+|az4 |)+|az4 |(|a41|+ |a42 |)+
+|a11||a22|+|a11||a44|+|a22 ||a44|,
A3z = |a31 |(| ap || a4 |+ |a14 || a4 | t |azz || Q44 |)+
+|a32 |(|a11||a44|+ |a14 ||a21|+|a24 ||a41 |)+
+|a34 |(|a11||a22|+ |a12 ||a41|+|a21||a42 |)+
+ |a11 || a4 ||0142|Jr |a12 || 6121||0144|Jr |a14 || a || a41|»
Ay = | agy |+ | agy |+ | ags ),
Ay = |a41 |(|a12|+|a13|)+|a42 |(|a21|+|a23 |)+|a43 |(|a31|+|a32 |)+
+ay [an [+ @ | ass |+ |ar [ ass |
Agz = |a41 |(| a; || axs | + |a13 || asy | + |a22 || ass |)+
+ | ags |(|a11||a33|+|a13||021|+|a23 ||a31|)+
+|a43 |(|a11||a22|+|a12 ||a31|+|a21 ||a32 |)+
+an [ax [ azs |+ |aiz || @z [|ass [ + [ @13 || a [ a1 |
Proceeding further, as in the proof of the theorem 3.4, we get

V)< Rw(Yy))+S ma T)+ Oh?,
w(Y) € Rw(Xp) 1:0,1ka( N+ 0 (3.96)

.....

where
exp(vamuA) - 1

R= exp(v477:/1), S=R-1, 0=
V4/1

w(#(4,, A,)+2a|.

Taking into account that 7,, = [0, 0], from (3.96) we get (3.92). u

3.4. Finding the Integration Interval in Floating-Point
Interval Arithmetic

If we denote the numbers & (i=0, 2, ..., m) occurring in explicit methods (see
(3.35)—(3.38)) by 7, i.e. as in implicit methods (see (3.51) —(3.53)), then we can
write that in both kinds of methods the step size 4, where 0 < £ < h, should be cal-
culated from the formula [123]
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where
M = min{770ﬂ Mseees nm}v

for explicit methods, and

* .
T = MIN{0, 771, e s T ) »

for implicit ones. According to (3.37), (3.38), (3.52) and (3.53), the numbers
m>0,17,>0,...,7, > 0 are evaluated in such a way that

Yo+ mic; F(4,,4,)c 4, (3.97)

and the number 7, > 0 — from the relation

m
Yo+ o). wF(4, A4)+(¥(4, 4)+ [-a, al)if © 4, (3.98)
i=1
for ¥y c 4, and y, e Y. (In each case the symbol < denotes proper inclusion.)
Since the number 77m > 0 should be found in floating-point interval arithmetic,
let us consider first the relation (3.97). This relation can be written in the form

a+ycch, (3.99)

where yis the unknown number, and where — from one of the assumptions— a c b
(proper inclusion). If

a—[aa b= [bb] c—cc]
then the inclusion (3.99) may be written as
[g+ ye,a+ 75](: [Q,g]
Thus, the number y should be evaluated in such a way that
a+yc>b and a+yc<b.
Four cases are possible:

1° c=0and ¢=0 = y can be an arbitrary number,

2°c>0and c>0 = }/<b_a,
C

3 cc0and 5<0 = y< 229 (3.100)
C
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b-a b-a
4°c<0and c>0 = 7<min{— C—l, _a}.
c c

From (3.100) it follows that to find y in floating-point interval arithmetic we
should complete the following steps:

® calculate the right-hand side of the appropriate inequality treating all values as
intervals with the width equal to 0,

® from the result-interval obtained take the left endpoint (mark it by ),

® accept as y the previous machine number with respect to y. B

In an N-dimensional case we have more calculations, but the idea is the same.
In this case the relations (3.97) are of the form

Yoo+ miciF(4, Ay, Ay ..., A, )C A,
s=12,...,N,

ie.
Tl ale 7l P 1,3

Performing all operations in interval arithmetic, we have

min{QiES,EiFs,CiES,CiFS}, maX{EiES,EZ-Fs,CiES,CiFs}]C

c [éyY 4 Ays:|’

[XSO’ ;SO] + 771'

1.e.

[Xso gmin{e, P, e F G F LG} Yo+ max{e, F L F G F Efs}] c

c {A R A, } s
—Vs s
from which we get two inequalities
pmin{e, ¢ FoGF L GFs >4, - Y,

7 maX{g,-Es, ¢.Fs,GF,, Eii_”s} <4y, - Ys0,

whose right-hand sides are non-negative. From the previous considerations (see
(3.100)) it follows that we must take into account four possibilities:
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1° mln{cF chs,cF cF} max{gE (_:F’S,E;ES,EZ-F} 0 = 7; canbe an
arbitrary number,
2° mln{c F. clEq,c,F ,chS} >0 and max{c Es,gi_S,El«Es,_,_S} >0
A, -Y
= < Vs s0 ,
max{cF cFS,cF ch}
3° mln{c F. clEq,chs,chS}< 0 and max{gl.ﬂ g]*: El«ES,EI-_S}S 0
éyy Y50

= n; < X — ——,
mln{giES,QiFs,ciES,c[Fs}
4° mln{c F. clEq,c,Fs,chS} < 0 and max{giﬂs,giﬁ:s,aﬂs,élz} >0

. éys B ZSO Ays - }_,SO
= 77, < miny — — —, — —
mln{giﬂs, G Fs, GF, ciFS} max{gl.Es, ¢ Fs, GF, ciFs}
From the above relations one should find the numbers 7; (i =2, 3, ..., m for ex-

plicit methods andi =1, 2, ... , m for implicit ones) for eachs =1, 2, ..., N, and then
take the smallest one.

Now, let us consider the inclusion (3.98). In a one-dimensional case this in-
clusion is of the form

a+7/Zc,~+dc b, (3.101)

where a c b (proper inclusion). Note that if the endpoints of d are not sufficiently
small numbers (with respect to their absolute values), then the number ¥ may not
exist.

For a = [g, E], b= [l_), l;], ¢ = [91" El] and d = [c_l, 07] the relation (3.101) may

be rewritten in the form

g+72gi+d,5+72@+3 c[l_a,l;],

Let us note that we are able to evaluate y > 0 only if
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b-a-d>0and b-a-d>0.
Proceeding as previously, we get four possibilities:

1° Z ¢; =0 and Z ¢; = 0 = y can be an arbitrary number,

i i

b-a-d
2°Zgi20and25i>0:> 7<L,

i i

el

b-a-d
3 ) e<0and Y G0 y< 2= (3.102)
2. ZI-:I c

i

1

b-a-d b-a-d
4°Zgi<0and25i>0:>7/<min— 2-£ ‘

b — b
i i 2 l,fi 2 Ci
i i

from which we can determine the number .
In an N-dimensional case the relations (3.101) are of the form

o Tale 3 e 7 7 o]

c [és, Zs]
Hence,

[XSO’ ;SO] +

z-ESﬂ_ViFs}]+ (3.103)
i=1

#[#, - o Py v g o] [éys Ay, ]
Since 0< A, < hy, then
(0. 7o) = |16 |

Thus,
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[fs - aS,S_”s + as][@O,ZO]p _ [Zg - as,?’s + as]{@g,ﬁé’} =
[, - @ Jag (7 g

Taking into account this equality, we can write the relation (3.103) in the form

m
Moy, max{w, Fw,Fo, WF W Fs} < Ay, - Yo (s + ).
i=1

Thus, from the previous considerations (see (3.102)) we have

0°4, -Y- (fs - as)ﬁ{)’ <0 or Ay - Y- (?S N as)zg co-

= the evaluation of 7, is not possible (the initial step size 4, should be de-
creased),

m
1° Z min{w.F ,W.FS,V_ViF ,v_vifs}:
—i—5’—i —s
i=1
m —_— —_—
= Z max{v_viﬂs,v_vl.Fs,WiEs,WiFs} = 15, can be an arbitrary number,
i=
m
20 ) min{w, F L w,FL W E W} > 0
—i =8> —i — S

i=
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= 71 < min - ,

From the above relations we should determine the number 7, for each s = 1,
2, ..., N, and then take the smallest of them.
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3.5. Possible Minimizations of the Widths
of Interval Solutions

The constants O, R and S, occurring in estimations of the widths of interval sol-
utions in the theorems 3.2 and 3.4 — 3.7, depend on the coefficients w;, ¢, and a;,
wherei=1,2,..,m, j=1,2,..,i-1 for explicit methods and j =1, 2, ... , m for
implicit ones. Taking into account (3.4) and (3.9) we can consider these constants

as depending only on w, and a;, i.e.

O=0Ww.,a..), R=R(w.,a..), S=Sw.,a..).

It seems to be interesting to study the existence of such a system of coefficients
w, and a;; that the constants O, R and S will be minimal. As a consequence of the
existence of such a system we would get minimal estimations of the widths of inter-
val solutions.

According to the proof of Theorem 3.2 (see Sect. 3.2.3) for explicit methods we
have .
0= [W(#(4. 4,)) + 20 *P L2l

m

= [w(¥ (4, 4))) + 22]0, (3,104

R= exp(ymf,f,/l), S=R- 17

where

m i-1

Ym=VmW,a.)= Z | Wi | Z ;uij(hOA)]v
i=1 j=0

4; are some constants depending on a;;, and 5:1 is given by (3.36).

The problem of minimizing the function w (¢, y(¢;)) (with respect to coeffi-
cients w; and a;), occurring in (3.10), and hence also w(¥#(4;, 4,)), is solved in
classical theory of the Runga-Kutta method, and therefore we will not consider this
problem. Moreover, from the last equation in (3.104) it follows that if R will be
minimized, then the same will happen to S. Thus, we will restrict our considerations
to the terms

0=0(w.,a.) and R= R(w.,a..).

Theorem 3.8. There do not exist coefficients w; and a; (i = 1, 2, ... , m; j =1,
2, ..., 1 -1) that minimize the constants é and R given by (3.104).

Proof. The necessary conditions for existing an extremum of R = R(w., a..) are as
follows:
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*

*ﬁym agm
+yo——=0,

mO”W,- 70 aWi

0 &
gmé,_}/m+ 7()&: Oa

aj; ﬁaij

i=1,2,...m j=12, ...l

For Q_Q = é(w., a..) the necessary conditions are the following:

. 1 Ei oE
Yln A1+ _ ) y’"w,i/li:o,

exp(¥ ménA)) OW; ow;

. 1 i OE:
Ylr A= 14 _ J 7’"+y31/1ﬁ=0,

exp(y uépA)) 9a; oa;;

i=1,2,..,m j=12,...,i-1

We will prove the theorem for two-stage methods, i.e. for m = 2. In the case
m > 2 the idea of the proof is the same, but calculations are more complicated. We
have

o =|w|+|w |(1+ a3y |h0/1), & = min{&, &}, (3.105)
where & and & fulfill the conditions
Yo+ &(MF(4 4,)+ woF (4, 4))+ (#(4,. 4,)+ [-a. al) i < 4,
Yo+ SHaxF(4,,4,)c 4.

The function R has an extremum if

*

o o
fggyz’L?/z gm_:(), i=12,
w; ow;
. (3.106)
2 é’a21 2 é)az] '
From (3.105) it follows that
28 7> 28
= il, =*(1+ A 5 == A.
OﬂWl 0’>W2 ( |a21|h0 ) 0’76121 |W2 |h0

If <&, then & =¢& and A& /day; = 0. Then, from the second equation
(3.106) we obtain &| w; |ipA = 0. Since & > 0, then w, = 0. This factis in contra-
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diction to w,c, = 1/2, which follows from the equations determining the co-

efficients of two-stage methods. If & < &, then & = & and & / dw; (i=1,2).
In this case, from the first equation (3.106) we have

=0 @=1,
fz(lJr |z |h0/1)= 0 (i=2),

which contradicts the condition & > 0.
Next, the function Q has an extremum if

. 1 Ei o0&
(7252/1—1+ , 21,24 2 _0 =12
exp(y,54)) Ow; ow,
. (3.107)
\ ] o o
yal A1+ _ } Y2 +y22/1i=0.
exp(y,5A4)) dapp dayy

If &< &, then & = & and A&, / Aay, = 0. Butthe second equation (3.107) yields

1
j|w2|ho/1:0.

A-1+ ——m
[}/2&) i exp(y26 A1)

Since w, # 0, we have
. r
exp(72§4) =0

This equation may by fulfilled only if y,&A = 0, which is impossible taking into

y2spA -1+

account that & > 0, y, >0 and A > 0.
If & < &), then 5 =& and ﬁg; / dw; =0 (i=1,2). Inthis case, from the first
equation (3.107) it follows that

1
A-l4————=0 (i=1),
Y
(7252/1— 1+ W](H |z |ho/1) =0 (i=2).

These equations can be fulfilled only if y,& A = 0, which is impossible. m

In the case of implicit methods the constants O, R and S are of the following
forms:
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eXp(VulmA) = 1 _
VA = [M(#(4, 4)+ 2a]0. (3.108)

R = exp(v, 77:1A), S=R-1,

Q=[w(¥(4,4))+2a]

where v,, = v, (w., a. ) (m=1,2,3,4) are constants defined in the proofs of
theorems 3. 4 3.7, and nm is given by (3.51).

Theorem 3.9. There do not exist coefficients w,and a; (i=1,2, ... ,m; j
=1, 2, ..., m) that minimize the constants é and R given
by (3.108).

Proof. The proof resembles the previous one. We limit our considerations to the
case m = 2 (for m > 2 only the calculations are more complicated, but the idea is the
same).

First, let us consider the function R = R(w., a..). The necessary conditions for
an extremum of R to exist are as follows:

L N S P
2é7Wi 2&’Wi ’ >
. (3.109)
.0
2, LR g =12,
ﬁaij c?a,]

Let us denote

o= | w |(l+ hOA|a12 |)+ | Wy |(1 + h0A| an ),
=1 hod|ay, |)(1- hoA|axy |) - B A% ay | .

Then (see the proof of the theorem 3.5) v, = o/ 8, and

5V2:+1+h0/1|a12| 5v2_+1+ho/1|a21|
ﬁWl B ﬂ ’ aWZ o ﬂ ’
o 0 h
aavlzl o ahﬁOA (1-ho]ana ). 5aV222 - aﬂOA (1-tpalan ). @10
0 A o A
Fa =g Dl aoten ). Z0es T - e )

From (3.52) and(3 53)1tf0110ws thatif 772 =1 or 772 = 1, then 5772 /ﬂw 0
(1—12) and if 772_ 1Mo, then 5772/&1]_0 (i,j =1, 2). Thus, for 172 =1 oOr
772 = 1, the necessary conditions have the following forms
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110

% OV ﬂ
_21 J,_ _
2, + é‘%la”a 6= L %> 1,2.

Since 7, > 0, then from the first of the above equations it follows that for i = 1, 2
we have Jv, / dw; = 0, which is impossible according to the formulas (3.110).

If 77; = 19, the conditions are as follows:
x OVy 577; )
+1v,—==0, i=12,
2 ow, ow  ? ow;

i
* 0
w20, i =12
aa;;
Since 7, = 175 > 0, then from the second equation it follows that Jv, / da;; = 0 for

1, 2. On the basis of the formulas (3.110) we have

7
x?wo@ 1-lhpAlay|=0 & |ay|= hoA (.111)
5 .
0o Lm0 Il
and
Ovy -0 o |w1|ﬂ+ aho/l|a21|:0
dayy

Taking into account what B means, from the last equation we obtain

|y |[(1— hyA|ayy |)(1— hoA| azy |)— hs A|ary | az |]+ ahyA|ay | = 0

Hence, according to (3.111), we have
- oAl wi |z [|a [+ of as |

and taking into account what « means, we get
- h0A| wy || apn || an |‘|‘ [| wi |(1 + ho/l| apn |) + | %) |(1 + h()/l| ar ]| ar |

From this equation it follows that either |a21 | =0 or
|w1|+|w2|+|w2|h0A|a21|= 0

The last equation contradicts w; + w, = 1. Therefore
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|ay | = 0. (3.112)

If we consider the equation

ov
é’azl

=0 & |W2|ﬂ+0{h0/1|6112|20,

then, proceeding in a similar fashion, we get
|a13|= 0. (3.113)

But if conditions (3.111) — (3.113) are fulfill, then g = 0, i.e. the denominator in
the formula determining v, is equal to zero, what is, of course, impossible. Thus,
the function R (and therefore also the function ) does not have an extremum.

For Q= Q(w., a..) the necessary conditions for an extremum to exist are as
follows:

. 1 i o
vy A1+ _ j 202442 g, i-1,2,
exp(va1,4)) OWi W,

* 1 vy 5 &77; ~ o
vy A-1+ = +viA—==0, i,j=12.
exp(va1, 1)) 94y Jay

As previously, we consider two cases: 77; = or 77; =1, and 77;k = 1. If 77; =
* % . .
or 7, = 1, then Jn, / dw; = 0 (i =1, 2) and the conditions are of the form

* 1 17
[%%A-H- : ] 20, i=1,2,
exp(va1pA)) Ow;

. 1 3 onm
[@%A—u- 22 245 g i,
exp(vy1pA)) Oa; daj;
Since
* 1
Vy 772/1 -1+ O,

-
exp(v27pA)
then from the first equation it follows that Jv, /dw; = 0 for i = 1, 2, which is
impossible according to (3.112).

If 77; = 159, then 577; / a;; =0 (i,j =1, 2) and the necessary conditions are as
follows:
1 é)Vz

exp(varpA)) O

ow

i

vzn;/l— 1+ + v%/l 0, i=1,2,
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1 51/2 _
exp(vy1pA)) Py

VA -1+ 0, i,j=12

In this case from the second equation we have Jv, / da; = 0, from which follow
contradictory values of a;. Thus, the function 0= O(w., a..) does not have an ex-

tremum. [}

3.6. Computational Complexity of Interval Methods
of Runge-Kutta Type

In Section 3.4 we have presented an algorithm for finding (in floating-point
interval arithmetic) the step size 4 in explicit and implicit algorithms. From an
analysis of this algorithm it follows that in order to find each of the numbers
m=&>0, ..., n,==¢&, >0 we need to perform at most 8N(m - 1) multiplica-
tions, 2N(m - 1) divisions, 2N subtractions and calculate the function F(7, Y),
where N denotes the number of equations in the initial value problem. Next, to find 7, = & > 0
we have to perform at most 9N + p - 1 multiplications, 2N divisions, (2m - 1)N
additions, 5N subtractions and calculate F(T, Y) and ¥(T, Y), where p denotes the
order of the method used, and where 2N subtractions and the evaluation of (7, Y)
are the same operations as previously. To recapitulate, finding all the numbers
mn=%>0, m=&>0, ..., n,=2¢&,>0 needs at most 12Nm + 7N +p - 1
operations, one evaluation of F(7, Y) and one evaluation of ¥(7, ¥).

Since the step size % is the quotient (in floating-point interval arithmetic) of the
smallest number of &, &, ..., &, and the number #, then finally we conclude that
in order to find /# we have to perform at most

1,(h) = N(12m+ T)+ p+ 7+ 8(l(f) n lp(l//))

operations, where p denotes the order of the method, N — the number of equations
in the initial value problem, m — the number of stages, /(f) — the number of ope-
rations needed to evaluate /{7, y), and /,(y) denotes the number of operations
needed to evaluate (¢, y). It should be added that in any interval method the step
size h is calculated only once.

In order to find the number of operations in the (k + 1)-th step of the method
(k=0,1,...,n~- 1), letus first consider the K, terms given by (3.33). The steps for
determining the number of operations to find these terms is presented in Figure 3.1.

From Figure 3.1 it follows that to determine all the K, terms we should perform
at most

I(K) = 8m-1(f) + S(m—- D[SN(m+ 2) + 2]

operations. Further operations are presented in Figure 3.2.
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From the previous considerations it is obvious that the total number needed to
find Y., in n steps of the explicit interval method of Runge-Kutta type is equal to

1(Y) = nN(10m+ 21) + 8nl,,(y) + 2p + nl(K) + 1,(h) =
= n[N(25m* + 35m~ 29) + 10(m ~ D]+ 8n[m- 1(f) + L,(y)]+ L, (h).

In n steps of conventional m-stage explicit Runge-Kutta method the number of ope-
ration is equal to

I(y) = n[N(m? + 2) + 2(m— )]+ nm-1(f).

Ky = F(T, %),

— =

I(Kye) < 8I(f)

i-1
K= F| T+ oh %+ h) agKy |, i=23,...m.
j=1

o

8 (Ve 8(l _ 1) LN

— = =

2 ‘6_"_” 2(1' _ 2) G‘_"_”

@ x N variables

8 “X”

E———

2 “_,’_”

—

10 + 10Ni operations

—

I(Ky) < 8I(f)+ 10+ 10Ni

Figure 3.1. Determining the number of operations for calculating the K, terms
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m
Yeor = Yo+ Y wiKy + (¥(5. o) + [-at, ] h?*!

>

2p “x”, since h >0

= =

8m T3VeD 1 “X”’ Since a= MhO and M’ hO > O

| |
x N variables —-—
2(m _ 1) “+’9 2 “+’9

N(10m +21) + 2p operations

Figure 3.2. Finding the number of operations for calculating Y,,, in the interval explicit
method of Runge-Kutta type

Example 3.1
Let us consider a simple initial value problem

y'=2a, y0)=1
We have: N= 1, I(/)=1, [,(¥) =3, (¥) =22, () =82, () =291, p=m. In Fi-
gure 3.3 we present the ratios of the maximum numbers of operations in explicit
interval methods of Runge-Kutta type to the number of operations in conventional
Runge-Kutta methods for p = m = 1, 2, 3 and 4. We see that this ratio increases

together with the order of method. The values of / (%) have the decisive influence
on it [126]. [

In implicit interval methods of Runge-Kutta type the step size 4 is calculated in
a similar way and also only once. To find this step size we have to perform at most

[(h)= N(12m+17)+ p+ 7+ 8(1(f)+ 1;(y/))
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200

150 \

100 - =103,6
\
TS
R e L L L ELELLELELEE - =55,61
T S S S ~ 343
.................................................................................... N 15,75
0 rT 1T 1T T T T rrrrrrrrrrrrrrrrn

1 7 13 19 25 31 37 43 49

Figure 3.3. The ratios /(Y)/I(y) in explicit Runge-Kutta methods

operations (10N more than in explicit methods). Moreover, in implicit methods in
each step we have to solve a nonlinear system of equations with respect to K, by
an iteration (see (3.55) and (3.56)). The first iteration requires at most SN(m + 1) +
+ 8 multiplications, 2Nm +2 additions and two evaluations of F(7, Y). In each
subsequent iteration we have to do at most 8N(m + 1) multiplications, 2Nm ad-
ditions and evaluate once the value of F(7, Y). Thus, in s iterations for all i = 1,
2, ..., m we have at most

1,(K) = m[sN(10m+ 8) + 8(s + DI(f) + 10]
operations. If the values of K, are known, the number of operations to calculate ¥,
is the same as in explicit methods. Thus, to find all Y,,, (k=0, 1, ... ,n - 1) on the
basis of (3.49) — (3.50) we have to perform at most [126]

I'(Y) = nN(10m + 21) + 8ul, () + 2p + nlg(K) + [, (h) =
= n{N[Sm(10m + 8) + 10m+ 21]+ 10m} +
+8u[m(S + DI(f) + L)1+ 2p+ L (h)

operations, where S denotes the maximum number of iterations in all steps of the
method. In conventional implicit Runge-Kutta methods the total number of ope-
rations is not greater than

I"(y) = n{N[Sm2m+ 1) + 2m+ 1]+ 2m} + nm(S + DI(f).
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3.7. Numerical Examples and a Comparison
of Interval Methods of Runge-Kutta Type

Below we present some numerical experiments that confirm the theoretical justi-
fications given in the previous sections.

Example 3.2

Let us solve, by a number of interval Runge-Kutta type methods, the initial
value problem (2.2) with 4= 0.5 and consider the interval explicit methods (3.39),
(3.41),(3.42), and implicit ones (3.57), (3.58), (3.59) and (3.61). Let us assume that
in each of these methods the input data are as follows:

4,=10,10], 4,=[09,149], hy=0001, T,=[0,0], ¥ =[L1],

where x denotes the largest machine number less or equal to x (similarly, further x
will denote the smallest machine number greater or equal to x). Taking the appro-
priate values of M (see (3.34)), on the basis of the theory presented in Section 3.4
we can find the maximum integration intervals as shown in Table 3.2. From this
table it follows that (regardless of the methods considered) the maximum integ-
ration interval is approximately equal to 1.985 (and is a little bit larger for the
higher order methods). Thus, we have applied all of the methods mentioned for
t..x = 1, and partitioned the interval [0, 1] into » = 2000 parts. This yields
h=0.0005.

Table 3.2. The maximum integration intervals for selected interval
methods of Runge-Kutta type and the problem (2.2)

e s

Explicit (3.39) 1 0.3 1.9863271771812081
(3.41) 2 0.07 1.9865769313329530
(3.42) 4 0.003 1.9865771812080529

Implicit (3.57) 2 0.07 1.9865771709792058
(3.58) 4 0.003 1.9865771812080535
(3.59) 3 0.014 1.9865771811953255

4

(3.61) 0.003 1.9865771812080536
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The obtained interval results are presented in Tables 3.3 — 3.9. In implicit in-
terval methods considered we assumed the accuracy 10'® in both iterations (3.55)
and (3.56), and we have obtained the same results (in each method the number of
iterations was equal to 5 or 6).

Table 3.3. The interval solution of the problem (2.2) obtained by the method (3.39)

T Y Width of Y
[9.9999999999999999E-0002, [1.0512710804491833E+0000, ~3.08:10°°
1.0000000000000001E-0001] 1.0512711112079961E+0000]
[1.9999999999999999E-0001,  [1.1051708853773120E+0000, ~631-10°°
2.0000000000000001E-0001] 1.1051709484719755E+0000] ’
[2.9999999999999999E-0001, [1.1618341923690531E+0001, ~9.71-10°8
3.0000000000000001E-0001] 1.1618342894574618E+0001]
[3.9999999999999999E-0001, [1.2214026892035326E+0000, ~133-10"
4.0000000000000001E-0001] 1.2214028220285831E+0000]
[4.9999999999999999E-0001, [1.2840253281475776E+0000, 1.70-10°7
5.0000000000000001E-0001] 1.2840255985415268E+0000]
[5.9999999999999999E-0001,  [1.3498586984139620E+0000, ~2.10-10°7
6.0000000000000001E-0001] 1.3498589083030083E+0000] ’
[6.9999999999999999E-0001, [1.4190674177159933E+0000, ~2.51-10"
7.0000000000000001E-0001] 1.4190676691250936E+0000]
[7.9999999999999999E-0001, [1.4918245438975329E+0000, ~2.95-10"7
8.0000000000000001E-0001] 1.4918248389554660E+0000]
[8.9999999999999999E-0001, [1.5683120076677390E+0000, ~3.41-10°7
9.0000000000000001E-0001] 1.5683123486124284E+0000]
[9.9999999999999999E-0001,  [1.6487210675225932E+0000, ~3.89-10°7

1.0000000000000001E+0000]

1.6487214567067031E+0000]

Table 3.4. The interval solution of the problem (2.2) obtained by the method (3.41)

T Y Width of Y
[9.9999999999999999E-0002,  [1.051271096374195SE+0000, 1 <o 1o
1.0000000000000001E-0001] ~ 1.0512710963777842E+0000] '
[1.9999999999999999E-0001,  [1.10517091807189SIE+0000, - 2 1o
2.0000000000000001E-0001]  1.1051709180792563E+0000] :
[2.9999999999999999E-0001,  [1.161834242722506 1E+0001, 1310

3.0000000000000001E-0001]

1.1618342427338333E+0001]
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Table 3.5. The interval solution of the problem (2.2) obtained by the method (3.42)

Table 3.4. (cont.)

T

Y

Width of Y

[3.9999999999999999E-0001,
4.0000000000000001E-0001]

[4.9999999999999999E-0001,
5.0000000000000001E-0001]

[5.9999999999999999E-0001,
6.0000000000000001E-0001]

[6.9999999999999999E-0001,
7.0000000000000001E-0001]

[7.9999999999999999E-0001,
8.0000000000000001E-0001]

[8.9999999999999999E-0001,
9.0000000000000001E-0001]

[9.9999999999999999E-0001,
1.0000000000000001E+0000]

[1.2214027581522626E+0000,
1.2214027581677591E+0000]

[1.2840254166775928E+0000,
1.2840254166974723E+0000]

[1.3498588075634959E+0000,
1.3498588075879832E+0000]

[1.4190675485782683E+0000,
1.4190675486075996E+0000]

[1.4918246976236700E+0000,
1.4918246976580938E+0000]

[1.5683121854698208E+0000,
1.5683121855095981E+0000]

[1.6487212706768890E+0000,
1.6487212707222942E+0000]

~1.55-10"

~1.99-10™"

~2.45-10™"

~2.93-10"

~3.44-10"

~3.98-107"

~4.54-10™"

T

Y

Width of Y

[9.9999999999999999E-0002,
1.0000000000000001E-0001]

[1.9999999999999999E-0001,
2.0000000000000001E-0001]

[2.9999999999999999E-0001,
3.0000000000000001E-0001]

[3.9999999999999999E-0001,
4.0000000000000001E-0001]

[4.9999999999999999E-0001,
5.0000000000000001E-0001]

[5.9999999999999999E-0001,
6.0000000000000001E-0001]

[6.9999999999999999E-0001,
7.0000000000000001E-0001]

[7.9999999999999999E-0001,
8.0000000000000001E-0001]

[1.0512710963760240E+0000,
1.0512710963760241E+0000]

[1.1051709180756476E+0000,
1.1051709180756477E+0000]

[1.1618342427282830E+0001,
1.1618342427282832E+0001]

[1.2214027581601697E+0000,
1.2214027581601699E+0000]

[1.2840254166877414E+0000,
1.2840254166877416E+0000]

[1.3498588075760030E+0000,
1.3498588075760032E+0000]

[1.4190675485932571E+0000,
1.4190675485932574E+0000]

[1.4918246976412702E+0000,
1.4918246976412705E+0000]

~2.18-107"

~4.53-10"7

~7.04-10""7

~9.65:10""

~1.24-107'

~1.51-107'

~1.79-107"¢

~2.11-107'
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Table 3.5. (cont.)

T

Y

Width of Y

[8.9999999999999999E-0001,
9.0000000000000001E-0001]

[9.9999999999999999E-0001,
1.0000000000000001E+0000]

[1.5683121854901686E+0000,
1.5683121854901690E+0000]

[1.6487212707001280E+0000,
1.6487212707001283E+0000]

~2.43-10"

~2.78107"¢

Table 3.6. The interval solution of the problem (2.2) obtained by the method (3.57)

T

Y

Width of Y

[9.9999999999999999E-0002,
1.0000000000000001E-0001]

[1.9999999999999999E-0001,
2.0000000000000001E-0001]

[2.9999999999999999E-0001,
3.0000000000000001E-0001]

[3.9999999999999999E-0001,
4.0000000000000001E-0001]

[4.9999999999999999E-0001,
5.0000000000000001E-0001]

[5.9999999999999999E-0001,
6.0000000000000001E-0001]

[6.9999999999999999E-0001,
7.0000000000000001E-0001]

[7.9999999999999999E-0001,
8.0000000000000001E-0001]

[8.9999999999999999E-0001,
9.0000000000000001E-0001]

[9.9999999999999999E-0001,
1.0000000000000001E+0000]

[1.0512710963742981E+0000,
1.0512710963778868E+0000]

[1.1051709180721109E+0000,
1.1051709180794721E+0000]

[1.1618342427228464E+0001,
1.1618342427341736E+0001]

[1.2214027581527396E+0000,
1.2214027581682362E+0000]

[1.2840254166782196E+0000,
1.2840254166980992E+0000]

[1.3498588075642866E+0000,
1.3498588075887741E+0000]

[1.4190675485792381E+0000,
1.4190675486085697E+0000]

[1.4918246976248353E+0000,
1.4918246976592592E+0000]

[1.5683121854711989E+0000,
1.5683121855109764E+0000]

[1.6487212706784987E+0000,
1.6487212707239042E+0000]

~3.59-10"

~7.36:107"

~1.13-10™"

~1.55-10™"

~1.99-10"

~2.4510™"

~2.93-10™"

~3.44-10 "

~3.98-10""

~4.54-107"

Table 3.7. The interval solution of the problem (2.2) obtained by the method (3.58)

T

Y

Width of Y

[9.9999999999999999E-0002,
1.0000000000000001E-0001]

[1.9999999999999999E-0001,
2.0000000000000001E-0001]

[1.0512710963760240E+0000,
1.0512710963760241E+0000]

[1.1051709180756476E+0000,
1.1051709180756477E+0000]

~4.41-10"

~9.03-107"
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Table 3.7. (cont.)

T

Y

Width of Y

[2.9999999999999999E-0001,
3.0000000000000001E-0001]

[3.9999999999999999E-0001,
4.0000000000000001E-0001]

[4.9999999999999999E-0001,
5.0000000000000001E-0001]

[5.9999999999999999E-0001,
6.0000000000000001E-0001]

[6.9999999999999999E-0001,
7.0000000000000001E-0001]

[7.9999999999999999E-0001,
8.0000000000000001E-0001]

[8.9999999999999999E-0001,
9.0000000000000001E-0001]

[9.9999999999999999E-0001,
1.0000000000000001E+0000]

[1.1618342427282830E+0001,
1.1618342427282833E+0001]

[1.2214027581601697E+0000,
1.2214027581601700E+0000]

[1.2840254166877414E+0000,
1.2840254166877417E+0000]

[1.3498588075760030E+0000,
1.3498588075760034E+0000]

[1.4190675485932571E+0000,
1.4190675485932576E+0000]

[1.4918246976412702E+0000,
1.4918246976412707E+0000]

[1.5683121854901686E+0000,
1.5683121854901692E+0000]

[1.6487212707001280E+0000,
1.6487212707001286E+0000]

~1.41-10°"

~1.92:107"

~2.46:107'

~3.02:107'¢

~3.63-107"¢

~4.25:107"

~4.92-107'

~5.61-107'

Table 3.8. The interval solution of the problem (2.2) obtained by the method (3.59)

T

Y

Width of Y

[9.9999999999999999E-0002,
1.0000000000000001E-0001]

[1.9999999999999999E-0001,
2.0000000000000001E-0001]

[2.9999999999999999E-0001,
3.0000000000000001E-0001]

[3.9999999999999999E-0001,
4.0000000000000001E-0001]

[4.9999999999999999E-0001,
5.0000000000000001E-0001]

[5.9999999999999999E-0001,
6.0000000000000001E-0001]

[6.9999999999999999E-0001,
7.0000000000000001E-0001]

[7.9999999999999999E-0001,
8.0000000000000001E-0001]

[1.0512710963760237E+0000,
1.0512710963760242E+0000]

[1.1051709180756471E+0000,
1.1051709180756480E+0000]

[1.1618342427282823E+0001,
1.1618342427282837E+0001]

[1.2214027581601687E+0000,
1.2214027581601706E+0000]

[1.2840254166877401E+0000,
1.2840254166877424E+0000]

[1.3498588075760013E+0000,
1.3498588075760042E+0000]

[1.4190675485932551E+0000,
1.4190675485932585E+0000]

[1.4918246976412678E+0000,
1.4918246976412718E+0000]

~4.05-107'

~8.29-107'¢

~1.27-10°"

~1.74-107"

~2.23-107"

=2.75-10°"

~3.30-10"

~3.87-107"
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Table 3.8. (cont.)

T Y Width of Y
[8.9999999999999999E-0001,  [1.5683121854901659E+0000, _, 10 1o
9.0000000000000001E-0001]  1.5683121854901705E+0000]
[9.9999999999999999E-0001,  [1.6487212707001249E+0000, | 1 o s

1.0000000000000001E+0000]

1.6487212707001301E+0000]

Table 3.9. The interval solution of the problem (2.2) obtained by the method (3.61)

T Y Width of Y
[9.9999999999999999E-0002,  [1.0512710963760240E+0000, 1 17
1.0000000000000001E-0001]  1.0512710963760241E+0000]
[1.9999999999999999E-0001,  [1.105170918075647SE+0000, g (o 17
2.0000000000000001E-0001]  1.1051709180756477E+0000] -
[2.9999999999999999E-0001,  [1.1618342427282830E+0001, _, , 1016
3.0000000000000001E-0001]  1.1618342427282832E+0001]
[3.9999999999999999E-0001,  [1.2214027581601696E+0000, | o3 116
4.0000000000000001E-0001]  1.2214027581601699E+0000] :
[4.9999999999999999E-0001,  [1.2840254166877413E+0000, 4 116
5.0000000000000001E-0001]  1.2840254416687416E+0000]  *"
[5.9999999999999999E-0001,  [1.3498588075600286E+0000, 5 (2 iq
6.0000000000000001E-0001]  1.3498588075600321E+0000] °-
[6.9999999999999999E-0001,  [1.4190675485932569E+0000, - ) 116
7.0000000000000001E-0001]  1.4190675485932574E+0000] °-
[7.9999999999999999E-0001,  [1.4918246976241270E+0000, _, 1o 116
8.0000000000000001E-0001]  1.4918246976241275E+0000] :
[8.9999999999999999E-0001,  [1.5683121854901684E+0000, o1 16
9.0000000000000001E-0001]  1.5683121854901690E+0000]
[9.9999999999999999E-0001,  [1.6487212707001277E+0000, ¢ (0 1q

1.0000000000000001E+0000]

1.6487212707001283E+0000]

According to (3.32) and (3.49), solving the problem (2.2) by the interval me-
thods of Runge-Kutta type we must find interval extensions of (¢, y). But this
function is expressed by f(¢, v) and its partial derivatives (see (3.25) — (3.30)). For
the problem considered and the methods of order p = 1, 2, 3, 4 we have

af _o 4f

=0, —=05,
ot Oy
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From the results presented it follows that in each case the exact solution belongs
to the interval solutions obtained (compare Table 2.2). Moreover, the widths of in-
tervals increase when the orders of methods decrease. These widths are similar for
explicit and implicit methods of the same order.

In Table 3.10 we present the solutions obtained by conventional methods corres-
ponding to the interval ones. In implicit methods we assumed the accuracy 10",
One can observe that only the fourth order methods of Runge-Kutta (3.15), Ham-
mer-Hollingsworth (3.17) and Butcher (3.22) give solutions that belongs to the in-
terval solutions obtained. u

Table 3.10. The solutions of the problem (2.2) at # = 1.0 obtained by conventional methods

Method Order y Error

Euler’s (3.11) 1 1.6486182460106884E+0000  =~1.03-10°*
Euler-Cauchy (3.14) 1.6487212621146481E+0000  =8.59-1077
Runge-Kutta (3.15) 1.648721270700128 IE+0000  =3.69-107"7
1.6487212749936732E+0000  =~4.29-107°
1.648721270700128 1 E+0000  =1.53-10°"7
1.6487212706988755E+0000  ~1.25-107"
1.6487212707001282E+0000  =4.34-107'*

Implicit midpoint rule (3.16)
Hammer-Hollingsworth (3.17)
Semi-implicit (3.19)

A W A NN RN

Butcher’s semi-implicit (3.22)

Example 3.3

Let us take into account a multidimensional problem and, as an example, let us
consider the problem (2.5) with M =0, k=1, y,(0) = 1, y,(0) = 0, y,(0) = 0,
1,(0) =1, the exact solution of which is given by (2.6). Let us try to solve this prob-
lem by the following explicit interval methods:

® (3.41), i.e. by the interval version of the Euler-Cauchy method which is a two-
-stage method (mm = 2) and of the second order (p = 2),
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® (3.42), i.c. by the interval version of the Runge-Kutta method (m = p = 4),
and by the following two-stage (m = 2) implicit interval methods:

® the first diagonally implicit method (3.60), i.e. by the method with “+” signs in
K, term (p = 3),
® (3.58),1.e. by the interval version of the Hammer-Hollingsworth method (p = 4).

For these methods we need interval extensions of ¥,(¢,y) (s=1, 2, 3, 4), that are

expressed by f(¢, ) and their partial derivatives (see (3.25) —(3.30)). For our prob-
lem we have

S1@t,y) = vz, fo(t,¥) = yas
Yy Yy 2 2
£t y) = —r—;, falt,y) = r—i r= i+,

of _oh | Ofs L[Wi_ 1]
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and all other partial derivatives are equal to 0.
In all of the interval methods we should determine 4, and A, (s=1,2,3,4).

We need these values in order to find the maximum time intervals in which we can
apply our interval methods (see Section 3.4 for details). In the problem considered
we cannot take the whole domains of definitions of y, (s = 1, 2), since in such a case
(according to the formulas for £, and their partial derivatives) we would get divi-
sions by intervals containing zero in the relevant interval extensions. Thus, let us
assume that

4=10,1], 4, =4, =[08,12], 4, =4, =[-02,02],
Ip =10, 0], % (0)=1X(0)=[1 1], %(0)=1(0)=[0, O].

For these intervals, /#,=0.01 and the appropriate values of M  fors=1,2, 3,4
(see (3.34)) we obtain the maximum integration intervals presented in Table 3.11.
We see that these intervals are approximately equal to 0.085. Taking z,,,, = 0.05 and
splitting the interval [0, 0.05] into 10 parts, we get at

T'=14.9999999999999999E-0002, 5.0000000000000000E-0002]

the interval solutions presented in Table 3.12. For the implicit methods (3.58) and
(3.60) in the iteration (3.55) we assumed the accuracy 10 '® and we obtained the re-
sults after 9-10 iterations in the method (3.60) and after 8-9 iterations in the method
(3.58). It should be noted that in each case the exact solution is included in the in-
terval solution obtained (compare Table 2.2).
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Table 3.11. The maximum integration intervals for selected interval methods
of Runge-Kutta type and the problem (2.5)

In?eriiooajlf Method Aﬁiﬁﬁd (5= 1Mz 3, 4) Lo

Explicit  (3.41) 2 1 0.084939410899132
(3.42) 4 0.01 0.085333275175408

Implicit  (3.60) 3 0.1 0.085327095409820
(3.58) 4 0.01 0.085333316275920

Table 3.12. The interval solutions of the problem (2.5) with M =0 and x=1 at
T = [4.9999999999999999E-0002, 5.0000000000000000E-0002]

Method Y, Width of Y
3.41) Y, =[ 9.9875024733284893E-0001, 9.9875027293211718E-0001]  =2.56-10°®
Y,=[ 4.9979156577987591E-0002, 4.9979182150246763E-0002]  =2.56-10°*
Y, =[-4.9979183082789349E-0002,-4.9979155738949369E-0002]  =2.73-10°®
Y,=[ 9.9875025200135706E-0001, 9.9875027763381159E-0001]  =2.56-10°®
(3.42) Y, =[ 9.9875026039496204E-0001, 9.9875026039496845E-0001] =6.40-107"
Y,=[ 4.9979169270675078E-0002, 4.9979169270681472E-0002] =6.39-107"
Y, =[-4.9979169270681769E-0002,-4.9979169270674931E-0002]  ~6.84-107"
Y,=[ 9.9875026039496203E-0001, 9.9875026039496845E-0001] =6.41-107"
(3.60) Y, =[ 9.9875026038887552E-0001, 9.9875026040167861E-0001] =1.28-107"
Y,=[ 4.9979169258420737E-0002, 4.9979169271207795E-0002] =1.28-107"
Y, =[-4.9979169272626200E-0002,-4.9979169258950521E-0002] ~1.37-107"
Y,=[ 9.9875026038880590E-0001,-9.9875026040162306E-0001]  ~1.28-107"2
(3.58) Y, =[ 9.9875026039496244E-0001, 9.9875026039496886E-0001] =6.40-10""
Y,=[ 4.9979169270675104E-0002, 4.9979169270681498E-0002] =6.39-107"
Y, =[-4.9979169270681762E-0002,-4.9979169270674925E-0002]  ~6.84-10°"*
Y,=[ 9.9875026039496244E-0001, 9.9875026039496886E-0001] =6.41-10""

In the problem considered the maximum integration intervals are very small and
are approximately equal to merely 1.35% of'the orbit period. Of course, we can take
the intervals obtained at the last time interval and start any of the methods again.
For such an approach and the method (3.60), at # = 0.1 we obtain the results pre-
sented in Table 3.13. But a better approach is to take the interval solutions obtained
(by any of these methods) as starting intervals for multistep algorithms presented
in the next chapter. u
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Table 3.13. The interval solutions of the problem (2.5) with M =0 and x=1
at 7= 0.1 obtained by the method (3.60)

Y, Width of Y,
Y, =[ 9.9500416526600052E-0001, 9.9500416529236769E-0001]  =2.64-10°"
Y,=[ 9.9833416622023612E-0002, 9.9833416648261636E-0002] =~2.62:10°"
Y, =[-9.9833416652173548E-0002,-9.9833416622005311E-0002]  =3.02-10°"
Y,=[ 9.9500416526580906E-0001, 9.9500416529230890E-0001]  =2.65-10°"
Example 3.4

Let us consider the initial value problem (2.7) — (2.8) and try to solve it by the
semi-implicit method (3.59) of order 3 and by the semi-implicit method (3.61) of
order 4. To find interval extensions of (¢, v) (s =1, 2), we need interval extensions
of f(¢, ¥) and their partial derivatives. For the problem considered we have

1Y) =30+ 2y, fo(t,y) =4y + s,

— — =1,
oy oy oy oy

and all other partial derivatives are equal to 0. For
4,=10,1], 4, =[-01,50], 4, =[09,50], & =001,
Iy =10, 0], Y%(0)=[0, 0], K(0)=[L 1],

and the adequate values of M, where s = 1, 2 (see (3.34)), we get the maximum in-
tegration intervals given in Table 3.14.

Table 3.14. The maximum integration intervals for selected
semi-implicit interval methods of Runge-Kutta type
and the problem (2.7) — (2.8)

Method M

Method order (s= IS, 2) Lmax
(3.59) 3 3 0.19598727111148148
(3.61) 4 1 0.19599998926020417

Taking ¢, = 0.15 and £ =0.0015 at
T'=11.4999999999999999E~-0001, 1.5000000000000000E-0001]

we obtain the interval solutions shown in Table 3.15.
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Table 3.15. The interval solutions of the problem (2.7) — (2.8) at
T = [1.4999999999999999E-0001, 1.5000000000000000E-0001]

Method Y, Width of Y
(3.59) Y, =[ 4.1876401301701367E-0001, 4.1876401306215377E-0001] =4.51-10""
Y,=[ 1.2794719894422099E+0000, 1.2794719894873501E+0000] =~4.51-107"
(3.61)  Y,=[ 4.1876401339587620E-0001, 4.1876401339589875E-0001] =2.25-10""
Y,=[ 1.2794719898209340E+0000, 1.2794719898209566E+0000] =~2.26:10""

It should be mentioned that in the iteration (3.55) we assumed the accuracy 10°'*
and we obtained the results after 9 iterations for the method (3.59) and after 7 ite-
rations for the method (3.61). Of course, the exact solution belongs to the interval
solutions obtained (compare Table 2.3). =

Example 3.5

Finally, let us consider the motion of a simple pendulum given by the initial
value problem (2.12) — (2.13) and try to solve it by the interval version of Ale-
xander’s diagonally implicit method with ¢= -cos 50° (see (3.62)). In this problem

we have oF oy
[t ) = ~uPyy, folt,y)=y, =2t=-u?, —LE=
Yy oy

and all other partial derivatives are equal to 0. Assuming that M, = M, = 10,
4,=10,2], 4, =[-2525], A, =[-11], h=00l,
Tp =10, 0], %(0)=[0, 0],
% (0)= [0.52359877559829887, 0.52359877559829888],

1

and taking the intervals

[9.80665, 9.80665] and [— 0.642787609686539327, —0.642787609686539326]

to represent the gravitational acceleration g at Earth’s surface and the value of ¢
respectively, we obtained the maximum integration interval equal to

0.19056048860322129.

This means that the method considered could be applied to about 10% of the period.
Taking the iteration (3.56) with accuracy 10" for finding K, (i=1, 2, 3), ¢,,. = 0.1
and splitting the interval [0, 0.1] into 20 parts, we obtained the interval solution
shown in Table 3.16. The number of iterations in the process (3.56) was equal
to 8 and, of course, the exact solution belongs to the intervals obtained. =
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Table 3.16. The interval solution of the problem (2.12) — (2.13)
obtained by the method (3.62)

T Y, Width of Y,
[4.9999999999999999E-0002, ¥, = [-2.5568972570054137E-0001,
5.0000000000000001 E-0002] ~2.5568972569288790E-0001]  =7.65-10"2
Y, = [5.171934406694093 1 E- 0001,
5.1719344067582207E-0001]  =6.41-10°2
[9.9999999999999999E-0002, ¥, = [-5.0512359899636122E-0001,
1.0000000000000001E-0001] -5.0512359897780303E-0001]  ~1.86-10°"
Y, = [4.9813415251025603E-0001,
4.9813415252354455E-0001]  =1.33-10"

All the examples presented in this section, like the others performed by the
author, confirm the theoretical studies developed in the previous sections. Explicit
and implicit interval methods of Runge-Kutta type can be used to find interval so-
lutions (in floating-point interval arithmetic) for one- and multidimensional prob-
lems. In each case the exact solution belongs to the interval solutions obtained.

It is obvious that higher order methods give interval solutions with smaller
widths. One should consider implicit interval methods which with small number of
stages give solutions with greater order, e.g. the interval version of the Hammer-
Hollingworth method (3.58).

Sometimes the integration interval, calculated on the basis of formulas given in
Section 3.4, is small, but then the intervals obtained can be used as starting points
for mulistep interval methods presented in the next chapter.



Chapter 4

Multistep Interval Methods

4.1. Some Conventional Multistep Methods

The Runge-Kutta methods presented in Chapter 3 are examples of single step
schemes, because each step is defined solely in terms of its initial point. At the end
of the nineteenth century F. Bashforth and J. C. Adams proposed an approach in
which the approximate solution at a point depends on the solution values and deri-
vative values before the immediately previous point [15]. These explicit methods
are known as the Adams-Bashforth method. In the nineteen twenties F. R. Moulton
developed the implicit type of these methods which are known at present as the
Adams-Moulton methods. Other types of linear multistep methods were proposed
by E. J. Nystrom [150] and W. E. Milne [129, 130], which also proposed the pre-
dictor-corrector methods. The modern theory of linear multistep methods was deve-
loped by D. Dahlquist [47] and P. Henrici [67, 68].

In order to construct the Adams-Bashforth and Adams-Moulton methods let us
rewrite the initial value problem (2.1) in the equivalent integral form

t
Y6 =yt + j F(r.y()dr, t> 4,

L

from which we have
I

Y0 = ¥+ [ £ p(ends. @
Le

To obtain multistep methods we approximate the function f(z, y(z)) by an ade-
quate interpolation polynomial and then we integrate this polynomial.
Let us denote by P(r) a polynomial of the degree n — 1 such that

P(tk—j): f(tk_j,y(fk_j)), j=12,...,n.
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If we exchange the variable zfor # in such a way that r=¢,_, + th, where h=¢, - t,_,
foreachi=k-n+1,k-n+2,..,n,then we can write the polynomial P(zr) as
follows:

Pty +th)= f (1, Y1) + 1V (Gg_1, y(t5_1)) +

UG B Gt RS P
(n-1)!

where V denotes the backward difference operator".
We approximate the integrand in (4.1) by the polynomial P(r), i.e. we substi-

tute
Sf(z, y(1)) = P(z) + r(7),
where r(7) denotes the interpolation error given by

tt+D)...(t+n-1)
n! ’

4.2)

Fty_y + th) = ()R

and where ¢(¢) is an intermediate point in [¢,_,, ¢, ,]. After integration we get

n—1
V) =yt + 0y f G o)+ ), @)
j=0
where _
J .
. ml J
VI f (b1, Y(tr-1)) = Z;)(— 1) [mj S o V12w (44
[
ro=L ;= —.‘J.s(s+ D...(s+j-Dds for j=1,2,...,n, 4.5)
J:
0

and y (1, y(m) = £ (1, y(17)) = ¥V (17), where 7is an intermediate point in the
interval [¢,_,, t,].

After replacing the unknown values y(z,_,), ¥(¢,_,+1)> --- » (¢,_,) With approxima-
tions y,_,, Vi_ne1» - » Vi Obtained by applying another method (for example by
a Runge-Kutta method) and excepting the error term /"'y, (7, y(n)), for finding
¥, (which approximate y(#,)), we are given the following formula known as the
n-step explicit Adams-Bashforth method 38, 41, 50, 62, 77, 97]:

" Given the sequence {p,}, n =0, 1, ..., the backward difference Vp, is defined by
Vp, = p, - P.. forn > 1. Higher powers are defined recursively by V*p, = V*(Vp,).



4.1. Some Conventional Multistep Methods 13 1

n—1

Vi = Vi1t hZ%/V‘jf(fk—la Vi-1)- (4.6)
j=0
Using (4.4) we can write (4.6) in the form

n
V= Vit H ) B (o b)), @7
j=1
where
n—1
i1 m )
By= (1) Zl(j-ljym’ j=12,...,n (4.8)
m= j—

In particular, from (4.6) and (4.7) for a given n we get the following methods:
® n =1 (Euler’s method)

Yk = Vi1t W (15 viem1)s (4.9)
en=2

h
Yk = Vi1t 5[3f(fk—1, Yi—1) = S (=25 Yi-2)], (4.10)
en=3 \
Yk = Vi1t E[Z3f(tk71’yk—l)_ 16/ (t—25 Yi—2) + 5/ (tg_3, yk-3)),  (4.11)
on=4
h
Vi = Vi1t E[55f(fk71,)%71) =591 (tk—2> Vi—2) + 37 f (tk—3> Yk—3) -
=9 (tr—45 Yk-a)]-
Let P(r) be a polynomial of the degree n such that

F(tkfj): f(tkfjhy(tkfj))’ j: 0,1,...,n.

(4.12)

Changing the variable 7 for 7 in such a way that 7= 7, + th, we can write the polyno-
mial P(7) in the form

P(ty + thy = f(tg, y(tp)) + tVf (5, y(t;) +

- t(t+1)..;l$t+ n_l)V"f(tk,y(tk)). (4.13)

If we approximate the integrand in (4.1) by the polynomial P(z), i.e. we substitute

f(z, 9(2) = P(2) +7(7),
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where 7(7) is an interpolation error and

11+ D ... (t+n)
(n+ 1!

Ft + th) = D@

B

where g: (¢) is an intermediate point in the interval [#,_,, ], then after integration
we get

W) = V) + h Y 7V f G vt + B 7, (T, vG), (@14

j=0
. J j
VI f (g, (1)) = ZO(— l)m(mj S ez Y(E—m))s (4.15)
| 0
Vo=1, }7j:—'..‘z(t+1)...(t+j—1)dt for j=1,2,...,n+1, (4.16)
J!

-1
where (7, v(7) = £ V@, (7)) = y"* () and 77 is an intermediate point
in the interval [z,_,, ¢,].

If in (4.14) we ignore the term A"*2}, .7 (7, »(77)) and replace the unknown
values y(¢,_,), V(t,_,+1)s - » Y(t,_;) With approximations y, ., ¥, ,.1» - » Vi1 » then in
order to find y, = y(¢,) we obtain the n-step implicit Adams-Moulton method [38, 41,
50, 62,77, 97]:

n
V= Vi1t hz ViV (e vio)- (4.17)
j=0
Taking into account (4.15) and the relation

n
@:(-1)/’2[';)7”1, j=01,....n, (4.18)
m=j
we can write (4.17) in the form
n —
Vi = e+ Y Byl (s viep): (4.19)
j=0

From (4.17) and (4.19) we have

® 5 =1 (the trapezoidal rule)

h
Vi =YVi-1t E[f([k, i)+ S W1 Vi)l (4.20)
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on=2
h
Vi = Vi1t E[5f(tk, Vi) +8f (1> Yi—1) = f (tg—2> Yi-2)] (4.21)
en=3
h
Vi = Vi1t £[9f(fk, Vi) 19 (o5 Yi—1) = S (e Vi) +
+ f(tg_3s Vi-3)])-

(4.22)

The initial value problem (2.1) can be also written in another equivalent integral

form, namely
t

Y(0) = y(ty_2)+ j F(ry(D)dr, 1> 14 s,

7%

from which we get
I

() = y(t_)+ Jf (z, ¥(7))dr. (4.23)
lea
If we approximate the integrand in (4.23) by the polynomial (4.2), then we obtain

n—-1

W)= ¥t +h Y vV ft g yo) +
j=0 (4.24)

+ h””[ v, w(ﬂ*, y(n*)) - VZ*V/(n**, y(n))}

where w(n, y(m) = £, v(n) = Y V), n and " are intermediate points
in the interval [z,_,, ¢,], and

1
1
Vo =2, Vi =ﬁjt(t+l)...(t+j—l)dt, j=12,...,n-1,
-1 1 (4.25)

0
v :;jt(t+1)...(t+n—1)dt, v = ;jt(Hl)...(Hn—l)dt,

-1 0

The coefficients v, and v, are very important in the interval methods considered
(see Section 4.3).

From (4.24) the conventional n-step method of Nystrom follows immediately.
We have
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n—1

Vi = Y2t hz vV f(tg_ts yi1)-
j=0

The formula (4.26) can be also written in the form

n
Ve =Vi2t hz Onif (tg—jis Vi—j)s
j=1

n—-1
—

m=j-1

where

In particular, from (4.26) (or (4.27)) for a given n we get:
® 5 =1, 2 (the midpoint rule)

Vi = Yi—2 + 20 (tg_1> Yi-1);
en=3

h
Vk = Vi-2 t §[7f(tk71>yk—1) = 2f(tg—2, Vi) + [ (tg_3s Vi-3)]s

on=4

h
Ve =Vi-2t g[gf(tkflv Vi) =S5 (tg—as Vi) + 4 (tg_35 Vie—3) =

= (ks> Yi-a)]-

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

If in (4.23) we use the polynomial F(r) given by (4.13), then we obtain the

exact relation containing either backward differences, i.e.
n
W)= y(te2) +h Y VI f G () +
j=0

2 —3% —_ —3% — —kk k3% —kk
+hn+ l:vn+1y/(77 s)’(ﬂ ))+ Vn+1l/l(77 a)’(ﬂ ))j|’
or only the values of the function, i.e.

y(tg) = y(tg-2) + hz S (1o Wty ) +
=0

e ot il g | P el g |

(4.32)

(4.33)
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where 1/7(ﬁ, y(ﬁ)) =f (”“)(ﬁ, y(ﬁ)) =y (7), 7" and 7" are some points in

[tkfnﬂ tk] )
0

— — 1
Vo=2, V= Tj.t(t+1)...(t+j—1)dt, j=L2,...,n,
J!
-2

0 _
jlt(t+ D...(t+n)dt, v, = W J;r(w )...(t+n)dt, (4.34)

n
5, = (_l)j,,;j[fj Vo j=0,1,..,n.

From both of these formulas, i.e. from (4.32) or (4.33), we can get the conven-
tional n-step implicit method of Milne-Simpson:

—%k

V. = —
L s !

n
Yk =Vk2t hz vV f (b, i) (4.35)
j=0
In the case of intervals the formulas (4.32) and (4.33) give quite different multistep
methods (see Section 4.5 for details).
From (4.35) for a given n we get the following methods:

® 5 = 1 (the midpoint rule)

Vi = Yi—2 + 2hf (41, Yi-1)s (4.36)
® 5 =2, 3 (the Milne method)

h
Yk = Vi—2 t g[f(tks Vi) + A Gy Vim) + S (Fe—2s Vie-2)]- (4.37)

4.2. Interval Methods of Adams-Bashforth Type
4.2.1. Basic Formulas

Let 4, and 4, be the sets in which the function f(z, y) occurring in the initial
value problem (2.1) is defined (see Section 3.2 for details). Let F(7, Y) denote
an interval extension of f{(¢, y), and let ¥(7, Y) denote an interval extension of
w(t, y(0) = £, y(1)) = y"(¢). Let the assumptions about (7, Y) and ¥(T, Y) be
the same as in Section 3.2. Moreover, let us assume that y(0) € Y, and the intervals
Y, such that y(¢,) € Y, for k=1, 2, ..., n - 1 are known. We can obtain such Y, by
applying an interval one-step method, for example an interval method of Runge-
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-Kutta type presented in Chapter 3. In [167] Yu. 1. Shokin proposed the explicit me-
thod of Adams-Bashforth type given by the following formula:
Yo = Yoy + h(roFiot + NVt + 72V 2 Fyoy ot 7V F ) +

ol (4.38)
+ Wy, P (Teoy + [=(n = DA, 0L, Yy + [-(n— DA, 0]F (4, 4,)),

where
Foy=F(L_ Y ), h="2, ty=kheT,, k=nn+l,...,m,
m

a < is a constant occurring in the definition of 4,, and the coefficients y, (j = 0,
1, ..., n) are given by (4.5). Unfortunately, it can be shown that the formula (4.38)
fails in the simplest case, i.e. when n =1 [80].

Example 4.1
Let us consider the initial value problem of the form
y'(@)=05y, y(0)=1, (4.39)
where ¢ € [0, 1]. The exact solution of this problem is given by
(1) = exp(0.5¢). (4.40)

Applying (4.38) for m = 2000, & = 0.0005 and Y, = [0, 0], we get (in floating-point
interval arithmetic) the interval solution of the initial value problem (4.39) at =1
as follows

Yy000 = [1.64872126211491595, 1.64872126211491651].
On the other hand, the formula (4.40) yields the exact solution
Vexaerl 1) = 1.64872127070012815.

This simple example shows that y_ . (1) ¢ Y,y and hence Y, is not the correct
interval solution of the initial value problem (4.39). u

After careful consideration of Shokin’s formula (4.38), we have found that the
reason for such behavior of the method is a defective error term of the form

h"“;/n?’(ﬂf_l +[-(n-1Dh,0], Y;_y + [-n(n-1Dh,0]F(4;, A))). (4.41)

As we checked, the term (4.41) does not improve the interval solution, and for this
reason getting the correct result becomes impossible. A detailed study of conven-
tional Adams-Bashforth methods led us to make some essential modifications in the
original formula. The correct error term should be written as follows [80]:

h"”}/,ﬁ”(?}c_l +[-(n-Dh,h], Y1+ [-(n—-Dh, h]F (4, A))). (4.42)
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Substituting (4.42) into (4.38) we obtain the correct formula for interval methods

of Adams-Bashforth type of the following form:
n-1

Y = Yk—l"'hz YV Fy+
j=0

+ Wy (T + [ (= Dh, B, Yy + [- (1= D, B (4, A))),

k=n,n+1,...,m.

In particular, for a given n we get the following methods:

® ;1 = 1 (the interval version of Euler’s method (4.9))

h2
Ve = Yeor 4 AE (T Y1) + —= (T [0, 7], oy + [0, A1F (4, A,)),

® 5 = 2 (the interval version of the method (4.10))
h
Y=Y 1+ E(SF(T}C—I’ Yo ) - F(T 2, Y 0)) +

5k
+ ET(TH +[=h, B), Yoy + [h, K]F (4, A)),

® 7 = 3 (the interval version of the method (4.11))

h
Yo=Y+ 5(2317(7}—1, Yo )= 16F(Tj 2, Yy _5)+ 5F(T} 3, Y, 3)) +

3nt
+ TT(Y}c—l +[=2h,h], Yy +[-2h, h]F(4;, A,))),

® 5 = 4 (the interval version of the method (4.12))

h
Ve =Yg+ Z(SSF(E—Ia Yo 1) =59F (T} 2, Y3 2) + 3TF(T} 3, Y 3) -
= 9F (Tj—g> Yi_g)) +
+M¥’(T F[=3h, R, Y, + [=3h, hIF(4,, A.))
720 k-1 s el Lf—1 > t>=yJ)-
Since .
j .
i J
VIF_ = Z;)(- 1)’”[mj Fi_tom»
o

the formula (4.43) can be written in the equivalent form

(4.43)

(4.44)

(4.45)

(4.46)

(4.47)
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n
Y=Y+ hZ PrjFi—j +
j=1
Wy PGy + (== DR, L Yy + [-(n - DR, BIF(4,, A)),

(4.48)

where the coefficients §, (j = 1, 2, ..., n) are given by (4.8).

Example 4.2

For comparison, let us apply modified formula (4.43) (or (4.48)) withn=1, i.e.
the formula (4.44), to the initial value problem (4.39). For m =2000, #=0.0005 and
Y, = [0, 0] we get the interval solution at # = 1 as follows

Y000 = [1.64872126211491595, 1.64872128787216209],

and we have y,..(1) € Y,y - Thus, in this case we have obtained the correct interval
solution of the initial value problem (4.39). u

Other numerical results of application of the interval methods of Adams-Bash-
forth type are presented in Section 4.7.

4.2.2. An Inclusion of the Exact Solution by Interval Solutions

For the methods (4.43) we can prove that the exact solution of the initial value
problem (2.1) belongs to the intervals obtained by these methods [80]. Before that,
it is convenient to present the following

Lemma 4.1. If (4;, y(;)) (L, Y,) fori=k - n k-n+1, ..,k -1, where

i

Y, = Y(¢), then for anyj=0, 1, ... ,n - 1 we have
VI f(toys y(te_y) € VI F(Ti_1, Yy (4.49)

Proof. Since F(7, Y) is an interval extension of (¢, y), and (¢;, y(¢;)) € (7, Y;) for
i=k-nk-n+1,..,k- 1, we can write

S Oty Ye-1-m)) € F(Tm1ops Yem1-m)> m=0,1,..., .
This implies that

J . J .
Z_O(— 1)’"[ ! j St e Mt 1)) € Z_O(— 1)’"( ! ] FTtope Yeorom) (4:50)
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But
J j _
D¢ 1)’"(,"] F(T o Yorom) = VIF (G Y. (451)
m=0
From (4.4), (4.50) and (4.51) the relation (4.49) follows immediately. u

Theorem 4.1. If y(0) e Y, and y(z;) € Y¥; fori=1,2,...,n - 1, then for the exact
solution y(t) of the initial value problem (2.1) we have

() e Xy
fork=n,n+1,..,m, where Y, = Y(t,) are obtained from the me-
thods (4.43).
Proof. Let us consider the formula (4.3) for £ = n. We get
n—1
Y= P+ B 7V [l YD)+ (), @452)
j=0

where 7 € [t, t,,]. From the assumptionwe have y(¢,_;) € ¥,_;, and from the Lem-
ma 4.1 it follows that

n-1 n-1
hz }/.ivjf(tnfla y(t,-1)) € hz 7‘,‘VjF(7;171, Y, 1)
Jj=0 j=0
Applying Taylor’s formula we have

v = y(ty-1) + (=1, )Y (1 + 807 = 1,-1)), (4.53)
where 3 €[0, 1]. Because 7 €[#,¢,] and ¢,=ih fori=0, 1, ..., m, we get
n-t,_y €[-(n-Dh,h]. (4.54)

Moreover, y'(¢) = f(¢, y(¢)). Since
Stya+ 31 = 121, vty + S = t,1))] € F(4, 4,),

then
Yty + 97ty 1) € F(4, 4,).

Taking into account the above considerations, from the formula (4.53) we get

y(n) € Y,y +[-(n—-Dh, h]F (4, A)). (4.55)

As we assumed, ¥ is an interval extension of . Thus, applying (4.54) and
(4.55), we have
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Wy, () €

€ h"+17/n'i’(7;1_1 +[-(n—-Dh,h], Y, 1+ [-(n—Dh, h]F(4;, A))).

Thus, we have shown that y(z,) belongs to the interval

n—1

Yo+ h Yy VIF(T Y+
Jj=0

+ Wy W(Toy + (= DA KL Y,y + [-(n = DA, RIF (4, 4,)).

but — according to the formula (4.43) — this is the interval Y,. This conclusion
ends the proof for £ = n. In a similar way we can show the thesis of this theorem for
k=n+1,n+2,..,m. u

4.2.3. Widths of Interval Solution

An estimation of the widths of interval solutions obtained by the interval me-
thods of Adams-Bashforth type is given in the following theorem [80, 167]:

Theorem 4.2. If the intervals Y, for k=0, 1, .., n -~ 1 are known, t,=ih €T,
i=0,1,....,m h=E&m,and Y, fork=n,n+1, ..., m are obtained
from (4.45) or (4.50), then

w(Y, )< 4 max w(Y,)+ B max w(T;)+ Ch",
(o) q=0.1,... 1(q) j=12,... m-1 (7 (4.56)

where the constant A, B and C are independent of h.
Proof. From (4.48) we get

W) < W)+ hY
j=1
S 1y (P (T 4 [-(n = DI, Yy + [-(n - Dy BIF(4,, A,))).

B [W(F— ) +

(4.57)

We assumed that ¥'is monotonic with respect to inclusion. Moreover, if the step
size h is such that satisfies the conditions

Ty +[=(n=Dh, k] c Ay,
Yooy +[=(n=Dh, h]F(A;, A ) C Ay,

then
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F(Ti—y + [=(n=Dh, h], Yy + [=(n = Dh, h]F (4, A))) € F (4, 4y).

From (4.58) we have
W (T—y + [=(n=Dh, h], Yy + [=(n = Dh, h]F (4, A,))) <
<Sw(¥(4, 4))).

(4.58)

(4.59)

We also assumed that for the function F there exists a constant A > 0 such that

W(F ) € AT ) + (¥ )
Therefore, from the inequality (4.57) we get
W) € W)+ hAB, Y (T )+ Wl )+ 1™y, w(#(4,, 4,),

J =
where

Denoting
f=hAB,, a=1+p, y=h"y,

we can write (4.60) in the form

W)€ @) W)+ B, T )+ p(# (4, 4,).
j=1 j=1

From (4.62) for k =n we have

n n
W) € @) wt )+ BY. Wl )+ pi(# (4, A,)).
j=1 Jj=1
and for k=n + 1 we get

n-1 n

W) € aw() + @ ) W )+ D (T )+ pw(# (4, A,)).
j=1 j=1

Applying (4.63) to this inequality we obtain

(4.60)

(4.61)

(4.62)

(4.63)
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W) < (@2 + @)Y W, )+

j=1
(4.64)

sl ay Wl )+ Y Wy )|+ r(a+ Dw(#(4,. 4,)).
j=1 j=1
From (4.62) for k=n + 2 we get

n-2
W(¥p2) € v(Gy) + av(B) + @) w(¥, )+
j=1

n
£ W(Ta )+ p((4,. 4)).
j=1
Insertion of (4.63) and (4.64) into this inequality yields

n
Wl o)< @+ a v @)y wi, )+
j=1

n n n (4.65)
+ (@) W) a ), Wl )+ Y w(Ta )|+
j=1 j=1 j=1

+y(a® + 20+ Dw(¥(4;, ).
Now, from (4.62) for k=n + 3 we get
n-3

W(¥3) € (V) + en(Yy) + aw(h) + @ Y w(l, )+
j=1

n
FD (T )+ (P (4, A).
j=1
Applying (4.63), (4.64) and (4.65) to the above formula we have

n
w(Y,,3) < (a* + 303 + 302 + a)Zw(Yn_j) ;
j=1
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s @t @)Y Wl )+ @) W)+
j=1 j=1

n n
ra) Wl )+ Y Wl ))|+
j=1 j=1

+y(a’ +3a% + 3a + Dw(P(4, A)).

Thus, foreachi=1, 2, ... , m - n we have

n

w(¥,) < Z(J MY wr |+

=0 j=
i p-1 p- n

Y | Y wr )
p=0\1=0 j=1

Ty Z[llj ol | w(#(4,, A)).

=0

Applying the notation (4.61) we obtain
i

W) <ny, @ (1+ hAﬁ,,)’“q max  w(Y,)+

=0,1,..., n-1
=0

i p-1

p-1 I+1

+hABn Y Z( lj(1+hAﬁn) omax W)+ (@66)
p=0/=0

Y [l,j (1+hAB,) W(¥(4,, 4,)).

=0
Let us note that

i
[lj <(m-n)! forl=0,1,...,1,

p-1
; <(m-n)! forl=0,1,...,p-1,
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(1+ hAB)™H! < exp(EAB,),

pi(“ iy < SPEAR) -1
AT hAp,

On the basis of the above we can make the following estimates:
i

03 @ (1+ hAf)™ < mm=n+ Dexp(EAR,),

=0
oS (! exp(§44,) - 1
a SXpePu) — 1
ny. [ 1 )(1+hAﬂn) S mm= s DI,
p=01=0
i R
[’) (4 hABY < (m—n+ 1 EREAB) ]
: hAp,
=0
Thus, from (4.66) we finally get
s A max  w@)eB mex w(TeCE e

foreachi=0,1, ..., m - n, where
A=m(m-n+ Dlexp(EAB,), B=m(m-n+1l(exp(éAp,)-1),

C= Ay—;}(m - n+ DI(exp(€48,) - DW(P(4, 4,)).

Since T, = [0, 0], i.e. w(T,) = 0, the inequality (4.58) follows immediately from
(4.69). n

4.3. Interval Methods of Nystrom Type

Assuming that F(7, ¥) and HT, Y) fulfill the same conditions as previously (see
Sections 3.2 and 4.2), the explicit interval methods of Nystrom type we define as
follows [127]:

n—1
Vo= Yiea+h Yy vVIE_ + 0 v v ),
; (4.68)
j=0
k=n,n+1,...,m,

Where Fk*l = F(];cflo Yk*l)’ and
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'Pn = 'P(T—}C—l + [—(}’l - 1)ha h]9 Yk—l + [—(}’l - l)ha h]F(Ata Ay))a
Y(T,Y) isaninterval extensionof w(z, y(¢)) = f(”)(t, y(t)) = y("+1)(t). In(4.68)
it is assumed that for the integration interval [0, £] the intervals Y; such that y(z,) € Y;
fori=0,1, ..., n - 1are known, and that
i=0,1,...,m
Let us note that in (4.68) we cannot write (v; + v;*) ¥, instead of

sk sk
Van t v s

+

sk
v, |- Moreover, the

*
Vn

v: + V:* may be different from

because in general

formula (4.68) can be written in more convenient form

n
Vo= Yiea+hY SyF s+ W vty 4 v ),
j=1
k=n,n+1,...,m,

(4.69)

where the coefficients 6, are given by (4.28).

In particular, for a given n from (4.68) and (4.69) we have the following me-
thods:

® 5 =1 (the interval midpoint rule)

h2
Vi = Yoo + 20F (T 1, Y )+ (- ), (4.70)

where
Tl = SU(I;{—I + [0’ h]’ Yk—l + [0’ h]F(At> Ay)),

® ;=2 (in the conventional case we have the same method as for n = 1)
3

h
Y =Yg + 20 (D, ) + 15 (5 - ), (4.71)

where
Y = ¥V (Ty_1 +[-h, h], Yoy + [-h, RIF (4, 4)),

® 7 =3 (the interval version of the method (4.30))

h
Y=Y o+ §(7F(Tk—1s Y1) = 2F(Tj—p, Ye2) + F(Ti—3, Yp_3)) + (4.72)
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4
+—0% - %),
24( 35— 1)

3= V(Tioy + [2h, 1], Yoy + [=2h, R]E(4;, Ay)),

h
Yi=Y o+ E(SF(Tk_p Y )= SF (Lo, Vo) + 4F (T3, Yy_3) -
5 (4.73)
- F(T_4,Y._4)+ —(251¥, - 19¥)),
(Tx—4> Ye—4)) 720( 4 4)

where
¥y = V(T + [-3h, h], Yy + [-3h, KIF(4,, A)).

For the explicit interval methods of Nystrom type we can prove that the exact
solution of the initial value problem belongs to the intervals obtained with these
methods. We have

Theorem 4.3. If y(0) € Yy and y(t) € Y, fori=1,2, ..., n ~ 1, then for the exact
solution y(f) of the initial value problem (2.1) we have y(t,) € Y, for
k=n,n+1,..,m where Y = Y(t,) are obtained from (4.68).

We can also prove the following

Theorem 4.4. [f the intervals Y, are known for k=0, 1, ... .,n- 1, t,=ih e T, for
i=0,1,..,m h=¢&m, and the intervals Y, fork=n,n+1, ..., m
are obtained from (4.68) or (4.69), then

w¥)< A4  max  w)+B  max  w(T;)+Ch",
q=0 1 J 1 ’

=0,1,...,n— =1,2,...,m—

where the nonnegative constants A, B and C are independent of h,
and

A= m(m- n+ 1)lexp(&A0,),
B =m(m-n+1)(exp(éAd,) - 1),

—Vn)(m - n+ DI(exp(cA6,) - Dw(¥(4, 4,)),

o,

6, =  max i |-

Jj=L2,...,m
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The proofs of the theorems 4.3 and 4.4. are similar to the proofs of theorems 4.1
and 4.2, respectively.

4.4. Implicit Interval Methods of Adams-Moulton Type

4.4.1. Basic Formulas

As previously, let us denote by 4, and 4, the sets in which the function f{(z, y)
is defined, and let F(T, ¥) and ¥(T,7Y) denote interval extensions of f(z, y) and

v, y0) = V@, y() = Y2 (1), respectively (other assumptions for F(7, Y)

and ¥(T,Y) are the same as for F(7, Y) and ¥(T,Y) in Section 3.2). Let us
assume that y(0) € Y, and the intervals Y, such that y(¢,) € ¥,,i=1,2, ... ,n - 1, are
known. The implicit interval n-step methods of Adams-Moulton type can be defined
as follows [79, 81, 83]:

YkZYk—ﬁhz YV F+
j=0

W27, P (T + [-nh, 01, % + [-nh, 01F (4,, A)),

k=n,n+1,...,m,

(4.74)
where h=&m, t,=ih e T,,i=0,1, .., m, Vj»J=0,1,....,n+1, are given by
(4.16), F, = F(T,, Y,), and

V/F = Z( 1) ( ij m- (4.75)

Applying (4.75), the equation (4.74) can be written in the equivalent form as

follows:
Y=Y 1+h2y,Fk+thJZ< 1)'"[ )Fk mt

+ h"+2yn+1 (T, + [—nh, 01, Y; +[-nh, 01F (4, A,)).

(4.76)

In particular, for a given n from (4.74) (or (4.76)) we get the following methods
(see also [83]):
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o n=1
h
Yo=Y 1+ E(ZF(T}“ V)= F(Ti, Vi) + F(Ti—y, Vo)) -
B (4.77)
- ES”(E +[=h, 0], i +[-4, 01F (4, 4))),

o =2
h
Y =Y "’E(le(Eca Yo) = TF (T, Yi) + 8F(Tj—y, Y y) -
= F(T—2, Y 2)) - (4.78)

4 —
- 2_45!/(7;{ + [_Zha 0], Yk + [_Zha O]F(Ata Ay))a

® =3

h
Ve = Yeor+ 57 QAF (T, o) = 15F (T, ) + 19F (T, Y1) =

=5F(Ti—2, Yi2) + F(Tj_3, Y _3)) - (4.79)

197° —
~ 0 P (T +[-3h,0], Y +[-3h,0]F (4, A))).

Let us recall that in interval arithmetic the distribution law is not generally sa-
tisfied. However, since intervals are also the sets, the subdistributive law holds (see
Section 1.1 for details). But this means that the values of the interval extensions of f°
in the above formulas with the same indices cannot be subtracted.

In real arithmetic we have

n n
Z Bojfk-j = Z ViV S
j=0 j=0

where fi_ ;= f(ty_;, y(te—;)), j=0,1,...,n. Hence, the formula (4.17) is equi-
valent to (4.19). But in interval arithmetic we have

n n
D ByFijc D 7 VIR, (4:80)
j=0 j=0

where the subset relation (<) is defined as not necessarily proper, and we get an-
other kind of implicit interval methods corresponding to the conventional formula
(4.19), namely
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n
Y= Yior + WBuoFi + h) | By +

o 4.81)
+ W2 (T, +[-nh, 01, Y, + [-nh, 0]F(4,, A)),

k=nn+1,...,m,

where h=¢m,t,.=heT,i=0,1,..,m, and Enj, j=0,1, .., n,are given by
(4.18).
For a given n from (4.81) we get the following methods (see also [83]):

® 5 =1 (the interval trapezoidal rule)

h
Ve = Yooy + S (F(Te Y) + F(Tj—1> Y1) -

JE (4.82)
- E'I”(Tk +[=h, 0], Y; +[-1,0]F (4, 4,)),
® 5 =2 (the interval version of the method (4.21))
h
Ve = Yoy + 75 OF (T, i)+ 8F (T, Yt) = F(Tj—2, Y2)) -
W (4.83)
- ﬂ?’(ﬂc +[-2h,0], ¥; +[-2h,0]F(4;, 4))),
® 7 =3 (the interval version of the method (4.22))
h
Ve = Yeor+ S OF (T, i) + 19F Ty, Y1) = SE (T2, Y—2) +
+ F(Ti_3, Y3)) - (4.84)
19/ —
- g PTi + (30,01 Y +[-3,01F (4, 4,).

If we denote by Ykl the interval solutions obtained from the formula (4.74) (or
(4.76)), i.e. from the formula with backward interval differences, and by )7{2 the in-
terval solutions obtained from (4.81), then we can prove

Theorem 4.5. )73 c )7{1,

which means that the second kind of implicit interval formula gives the interval
solution with a smaller width, i.e. it is better. The proof of the Theorem 4.5 follows
immediately from (4.80).
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Let us note that (4.74) (or (4.76)) and (4.81) are nonlinear interval equations

with respect to Y, k=n, n + 1, ..., m. This implies that in each step of implicit
interval methods we have to solve an interval equation of the form

X = G(T, X),
where

Tel4 cIR, X=(X,X,,...,Xy)" el4, c IRV,
G: 14, x 14, > IR,

If G is a contracting mapping, then we can apply the iteration (3.54), which for
the interval methods of Adams-Moulton type given by (4.76) is of the form

n

I+1 = l
W=y e Y 7 F@L )
Jj=0

n J .
EONDINS D’”[;j F(Tmp Vi) + (4.85)

=1 m=1
+ W27, (T + [0k, 0L, YD + [-nk, 01F (4, A,)),

[=0,1,..., k=nn+1,...,m.

For the interval methods given by (4.81) we have the following process:

n
I+1 3 ! B
VD = Y+ W PG Y0+ 1Y) ByF(T Y )+

Jj=1 (4.86)
+ "y (T yh
]/n-%—l ( k +[_nh7 O]’ k +[—I’lh, O]F(At5A ))’
[=0,1,..., k=n,n+1,...,m

In (4.85) and (4.86) we usually choose Yk(o) =Y _.

4.4.2. The Exact Solution vs. Interval Solutions

For the methods of the form (4.74) we can prove that the exact solution of the
initial value problem (2.1) belongs to the intervals obtained by these methods [79]
(very similar considerations can be carried out for the methods (4.81) and therefore
we omit it). Before that it is convenient to present the following

Lemma 4.2. If (¢, y(4) e(T,Y) fori=k -n, k- n+1, .., k-1 where

i

Y. = Yt,), then for anyj=0, 1, ... , n we have
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VI f (g y(t) € VIF(T Yy). (4.87)

Proof. Since F(T7, Y) is an interval extension of f(z, y), then f(¢, y) € F(T, Y) for each
t € 4, and for each y € 4,. This fact implies that (7, y(¢;)) € (7}, ¥;), where
Y, < A, Moreover, (1;, (4;)) (T, Y;) fori=k-n,k-n+1, ..., k- 1, and hence
we get the inclusion as follows:
f(lk—m> y(lk—m)) € F(Il'c—m’ Yk—m)’ m=0,1,..., J.
This implies that
J

J . .
> - 1)'"( ! ] USSIUSOED IS 1)’"[ : ) Ty o) =

m=0 m=0
= V/F(T, Y).
From (4.15) and the above relations, the inclusion (4.87) is self evident. u

Theorem 4.6. If y(0) € Y, and y(t) € Y, fori=1, 2, ..., n - 1, then for the exact
solution y(t) of the initial value problem (2.1) we have

() € Y
fork=n,n+1,..,m where Y, = Y(t,) are obtained from the me-
thod (4.74).
Proof. Let us consider the formula (4.74) for £ = n. We get
1) = ¥u) + B Y 7V [ty (6 ) + K27, (1, 90D), (488)
j=0

where 7 €[#, t,]. Fromthe assumption we have y(z,_;) € ¥,_;, and from the Lem-
ma 4.2 it follows that

n n
WY TN f sy €h Y 7N F(T,Y,).
j=0 Jj=0
From the Taylor formula we have

J’('7)= y(tn)+y'(tn + '9(77_tn))(77— Z‘n)a (489)
where 9 €[0, 1]. Because 7 €[¢,¢,] andt,=ihfori=0,1, ..., m, we get

n-t, €[-nh,0]. (4.90)

Moreover, y'(¢) = f(z, y(t)). Since

f(tn + '9('7_ ln): y(tn + ‘9(77_ tn))) € F(At9 A4 )a
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then
Y, +3(n-t,) e F(4,4,).

In addition, F(7, Y) is an interval extension of f(¢, ), and hence f(¢, y) € F(T, Y) for
cach 7 € 4, and y € 4. For these reasons we can state that y(z,) € ¥,, where
Y, c 4. Takinginto account the above considerations, from the formula (4.89) we
get

¥(m) € Y, _[-nh, 0]F (4, A)). 4.91)

Since ¥ isan interval extension of v, then applying (4.90) and (4.91) we have
W27 W (0, () € W27, P(T, + [=nh, 0L, X, + [=nh, 01F (4, A,)).

Thus, we have shown that y(#,) belongs to the interval

n
Yo+ h ) 7 VIF (T, Y, + B2, W, + [-nh, 0], Y, + [-nh, O1F (4, A,)),
j=0
which, in fact, is the interval Y, (see (4.74)). This conclusion ends the proof for

k=n. In a similar way it is possible to show the thesis of this theorem for k=n +1,
n+2,..,m. u

4.4.3. Estimations of the Widths of Interval Solutions

For the implicit interval methods of Adams-Moulton type in the form (4.81) we
prove a theorem which estimates the widths of interval solutions [79] (for the me-
thods of the form (4.74) the proof is similar).

Theorem 4.7. If the intervals Y, for k=0, 1, ...,n - 1 are known, t,=ih € T,,
i=0,1,..,m,
g

h=—=, 0<h<hy,
m

where

1 —
<—, =  max
o AB, P j=0,1,...,n

and Y, fork=n,n+ 1, ..., m are obtained from (4.81), then

>

B

w(¥,)< A4 max  w(¥,)+B max w(T;)+ Ch"!,
(¥) . 1,...,n-1(") ; 2’m’m(,) (4.92)

where the nonnegative constants A, B and C are independent of h.
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Proof. From (4.81) we have

W) € W)+ h ) | By [ WP (T, Y ) +
= (4.93)

+072| [ WP + o0k, 01, % + [-nh, 01 (4. 4,)).

The function ¥ is monotonic with respect to inclusion on the basis of an assump-
tion, and if the step size 4 is such that

T, +[-nh,0]c 4,,
Y +[-nh,0]1F(4;, 4,) c 4,,

then _ .
Y (Tj + [-nh, 0], Y + [-nh,01F (4, A)) c ¥ (4;, 4)).

From the above inclusion it follows that
w(?'(Tk + [-nh, 0], Y, + [-nh, O1F(4,, Ay))) < w(?(at, A, )

On the basis of an assumption given in Section 3.2, there exists a constant 4> 0
such that

W(E (T j> Y- j)) € AT} ;) + w(¥_ 7).

Thus, from (4.93) we obtain

w(Y) € w(¥_) + hAB, Z W (T ) + W j)) +
=, (4.94)

12 7 (P4, 4)),

where
Ao Pl
Let us denote
B=hAB, a=1+p, 7=hn"27,.]. (4.95)

Then we can write the inequality (4.94) as follows:
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W) € w(li )+ Bw(i) + B w(li )+ B Y, wiTi )+ (¥4, 4,)),
j=1 j=1
that is equivalent to

(1-B)w) < @) Wi+ BY, Wl )+ 7 #(4,.4,).  @96)
j=1 Jj=1
Let us assume that _ _
1- B =1-hAB, > 0. (4.97)

The condition (4.97) is satisfied if 0 < 4 < &y, where
1
hy < ——=.
AP,

On the basis of the above assumption the inequality (4.96) can be written in the
form

W) < VE Y Wi )+ VB Y, wTi )+ Vi (¥4, 4,). (4.98)
j=1 j=1
where
o
V.
1- hOAIBn

From (4.98) for k= n we have

n n
W) STEY Wl )+ VY, (T, )+ T (4. 4,)), (4.99)
j=1 j=1
and for k=n + 1 we get

n n
W(¥) € VEW(Y,) + VI Y wh )+ VB Y Wl )+ v (P4, 4,)).
j=1 j=1
Applying (4.99) to the above inequality we obtain

< (7 535, -
/=1 (4.100)

n

n
VB VY, W)t ), Wl )| ¢
j=0 j=0
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+vi(va +1) W(?(At, A )).
From (4.98) for k=n + 2 we get
n-2
W(¥2) € VEW(Y, ) + VaW(,) + VI Y w(¥, )+
j=1

n
£ VB Y. (T )+ Vi #(4,, 4,).
j=0
Insertion of (4.99) and (4.100) into the above inequality yields

W(Y,,s) < ((307)3 vo(va)+ va)z W(¥, )+
j=1

7B\ 7@V + 7@) Y, wit e vE Y, W)t aon
j=0 j=0

" Zn: w(Tn )| + 77((707)2 L 2va 1)w(?/(41,, A )).
ji=0

Now, from (4.98) for k=n + 3 we get

n-3
W(¥43) < VEW(Yy40) + VEW(Yy 1) + VaW(Y,) + VI Y. w(¥y_ )+
j=1

n
FVB Y. W(Tys )+ Vi P4, 4,)).
j=0
Applying (4.99), (4.100) and (4.101) to the above formula we obtain

W(¥,,3) < ((V&)“ +3(va) +3(va) + V&)Z w(l,_ )+
j=1

+ VB ((907)3 L o(va) + v&)i w(T, )+

Jj=0
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(va +va)zn Th-j)+

n

4.102
+vaZ W( n+2— J)+z W( n+3— J) ( :

s 97((35)3 v3(va) +3va s 1)W(sv(4,, 4,)).

Thus, we see that for eachi =0, 1, ..., m - n we have
i : n
wno< Y[ 5@ || 3 wop )|+
=0 j=1
p-1

/
LB Y. ( ']“’” Zw( e )| +
p=0\7=0

i .
— o\ (=
+ vy [lj (va) w(‘[’(At, Ay)).
Applying the notation (4.95) we get

w(, +,)<ni @[V(H hAEn)]M max  w(¥,)+

—0.1,....n-1
=0 a4 "

+ VhAB, (n+ 1)2 pi [pl_ lj [7(1+ hABn)]M ‘

p=01=0 (4.103)

x  max  w(T;)+

+7h”+2|7n+1|2 @ [V(HME")] w{#(4,4,).
=0

The following estimations are true:

i
[1) <(m-n)! for [=0,1,...,1,
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p-1
<(m-n)! for [=0,1,...,p-1,

/
and
(1+n4B,) < exp(£4p, ).
ao _ a1 v™Mexpléag,)-1
5 enap) ;;EA,;” -1
From the above estimations it follows that (see [79] for details)
nIZIO (Z) [V(l + hA,En)]l < m(m - n)!?exp(ﬁ/l,gn) 11___; ,
MY —\7l+1 Vexp(EAB,) - 1
(n+ 1);01_0 (pl ] [v(1+ hA,Bn)] < (m+ D(m-n+ 1)!#@),
Lo —\1 Vexp(f/l/?n)— 1
) (z] [v(1+ h/lﬁn)] <n-mi—— e

Thus, from (4.103) we finally get

w(l,,;)s 4 max  w(l)+B
1 1

n+l
g=0.1...n- _mmax  w(T;)+ Ch (4.104)

j=0,1,...,

foreachi=0, 1, ..., m — n, where
1_ -m

A=m(m- n)!Vexp(é‘AE,,) 1_V; ,

B=(m+ ) (m-n+ 1)!(7" exp(£47,) - 1),

_ | 77}’H-1 | —m o vy
c=tin- n)!(v exp£A5,) - 1)W(LP(A,, 4,).
Taking into account that 7, = [0, 0], the inequality (4.93) is self evident. L

4.5. Implicit Interval Methods of Milne-Simpson Type

As previously, let ¥(7,Y) denote the interval extension of

v, )= D0, )=y (),
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and let us assume that %(7, Y) is monotonic with respect to inclusion and deter-
mined forall 7= 4,and Y = 4, . Using (4.32) we get the following implicit interval
methods [127]:
n
V= Yiea+h Y VVIE 4+ W2 (V0 ok iy ),
k k-2 jzzo j k n+ld n n+1 ") (4.105)
k=nn+1,...,m,
where F, = F(T},Y,), and where
¥, = Y(T; +[-nh, 01, Y, +[-nh, 01F(4,, A )).

The second kind of interval methods of Milne-Simpson type, based on (4.33), are
as follows [127]:
n
Y=Y o4 hY O .F 4+ WV Wt Vo W),
k k-2 ]Z_:O njtk—j (n+1 n n+1 ”l) (4.106)
k=nn+1,...,m

In particular, for a given n from (4.105) we get the following methods of the first
kind:

o n=1
Yo = Yo+ 20(F (T, Y ) - F(T}, i) + F(Ti—1, Y1) +
B (4.107)
+E(5¥/1 - %),
where L
Y=Y +[-h,0), Y +[-h,0]1F(4,, 4))),
o =2

h
Ve =Yoo+ SOF( %) - 6F(T Y) + 6F(Ti 1. Y1) -

= 2F(Li—1, )+ F(Ti—o, B + (4.108)
= =

where .
2 = V(T +[-2h, 0], Y, +[-2h,0]F(4,, 4)),

® 5 = 3 (in the conventional case we have the same method as for n = 2 — see
(4.37))
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h
Ve = Yoo + ST FTe, Vi) = 6F (T, V) + 6F (Tj1, Y1) -

=2F(Tj—y, ) + F(T—p, Y 0) + (4.109)
o — —
+ —(11%3 - 19%3),

720( . 3)

where L
W3 = Y(T, +[-3h,01,Y, +[-3h, 0]F(4,, A))).

Below are examples of the implicit methods of the second kind (obtained from
(4.1006)).
o n=1
= =
Ve = Yoo # 2hF (T ) + 55 (591 - 1), (4.110)

® 5 =2 (the interval version of Milne’s method (4.37))

h
Ve = Yoo + S (F (T Y) + 4F Ty, Ye) + F(T2, Y2 D) +

+ﬁ(¢2_¢2)’ 4.111)
24
®n=3
i = Yiea + 3 F )+ 4F (T, )+ PGy, o) +
s “.112)

+%(11?/3 - 19?13).

If we denote:

Ykl — the interval solution obtained from (4.105), i.e. from the formula with back-
ward interval differences,

173 — the interval solution obtained from (4.106), i.e. from the formula without
backward interval differences,

then we can prove
Theorem 4.8. Y c Y}

The proof of the above theorem follows immediately from the inclusion

n n
j=0 j=0
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Let us note that we can get only one kind of explicit interval methods of Ny-
strom type (see Section 4.3). It follows from the fact that for these methods we have

n n-1
Y SyF= Y. viVIE,
j=1 j=0
because in explicit methods all coefficients v; are nonnegative.

In each step of the interval methods of Milne-Simpson type (of both kinds) we
have to solve a system of nonlinear interval equations. If the right-hand sides of
(4.105) and (4.106) are contracting mapping, then the iteration follows immediately
from the well-known fixed-point theorem. For the second kind of interval methods
of Milne-Simpson type, i.e. for (4.106), the iteration is as follows:

n
I+1 5 ! 5,
y (D Y}(_2+h5noF(TkaY}c())+hZ O F(Ti—j, Yo j) +
j=1

4113
a4 =) s =(]) (4.113)
+h Vn+1'[jn +Vn+1l[jn ,

[=0,1,..., k=nn+1,...,m,

where
W = (T, + [-nh, 01, YO + [0k, 01F (4, 4,)),
and we can choose Yk(o) =Y _.
As for other interval methods, for the implicit interval methods of Milne-Simp-
son type we can prove that the exact solution of the initial value problem (2.1) be-
longs to the interval solutions obtained. We have [127]

Theorem 4.9. If y(0) € Yy and y(t,) € Y, fori=1,2, ..., n - 1, then for the exact
solution y(t) of the initial value problem (2.1) we have y(t,) € Y, for
k=n,n+1,..,m, where Y, = Y(t,) are obtained from (4.105) or
(4.100).

We omit the proof as it is similar to the proof of Theorem 4.6.
We can also estimate the widths of the interval solution obtained [127].

Theorem 4.10. If the intervals Y, for k=0, 1, ..,n - 1 are known, t,=ih € T,,
i=0,1,..,m,

h=2, 0<h<h,
m

where



4.6. Computational Complexity of Multistep Interval Methods 1 6 1

1 — —
< —=, = ma o0, |,
o A8, " = 0,1,).(..,71 Y
and Y, fork=n,n+1, ..., m are obtained from (4.105) or (4.1006),

then

w(¥)<A max  w(¥)+B max w(T)+Ch"",
g=0,1 1 j=12,...,m

,,,,,,,,,,,

where the nonnegative constants A, B and C are independent of h,

and
— -\ 1-u"

A=m(m-n)u exp(f/lé'n) /1_ ,

7

B = (m+1)(m-n+1) !(ﬁm exp(gAE,,)- 1),

C= M(m— n) '(ﬁm exp(£45, |- 1) W74, 4,))
A5 ' " ey

n

1

" s,
The proof of this theorem is similar to that of Theorem 4.7 (see [127] for details).
Since the application of the implicit interval methods requires the nonlinear in-
terval equation to be solved in each step, an initial approximation to the solution
is needed. When calculating ¥, we can take Y,_, as such an approximation, but
a better approach is to take Y, obtained from an explicit method. This leads to the
construction of predictor-corrector methods. The first stage in each step of such me-
thods is a prediction that computes the initial approximation by applying an explicit
method, and the second stage is a correction that improves the obtained solution by
employing an implicit methods. Interval predictor-corrector methods are considered
in [83].

4.6. Computational Complexity of Multistep Interval
Methods

In order to find the number of operations in interval methods of Adams-Bash-
forth it is convenient to use the relation

n n
h A~
Y ByFe; ==Y ByFi)
~ Pn =
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where 'énj and p, > 0 are integers (represented exactly in computer memory), and
write the methods (4.48) in the form

h n
Yo=Y, +—Z ByiFi—j +
P

Wy P (Toy + - (n= Dhy b, Yoy + [=(n - DA, RIF(4, 4,)).

The way to determine the number of operations in one method step is presented
in Figure 4.1.

Thus, in one step of any interval method of Adams-Bashforth type we need to
perform N(6n + 24) + 2 operations and calculate the functions F,_; (j= 1,2, ..., n)
and ¥. Moreover, in the first step, i.e. for n = £, it is necessary to do 2n + 4 opera-
tions (to calculate 4""'y,), two divisions (to calculate # = &m) and evaluate the
function F(4,, 4)) and the expression [-(n - 1)A, h]F(4,, 4)). Let us note that in
the first step we need to evaluate n functions F)_;, but in each subsequent step, i.e.
fork=n+1,n+2,..,m, weneed to evaluate only F_, .

Allin all (for k=n,n+ 1, ..., m) in any interval method of Adams-Bashforth
type it is necessary to perform at most [126]

I(Y)=(m-n+1D)[N(6n+24)+2]+8N+2n+7+
+8(m+ DI(f)+8(m—-n+ DI, ()

operations, where /( /) denotes the number of operations in evaluating f{z, y), and
1,(w) 1is the number of operations to find w(z, y) in n-step method. In conven-
tional Adams-Bashforth methods we have

I(V)=m-n+ D)NQCn+ D)+ 2+m-I(f). (4.115)

(4.114)

Example 4.3

Let us consider the same initial value problem as in Example 3.1. In interval me-
thods of Adams-Bashforth type we have: N =1, I(f) =1, j(w) =3, L(w) =12,
L(w) =37, l4(w) = 114. In Figure 4.2 we present the ratios /(Y)/l(y) as the
functions of integration step numbers. As in Runge-Kutta methods these ratios
increase together with the order of method, and the values of /,(y) have the de-
cisive influence on it. u

In the interval methods of Nystrom type we have to evaluate the term

h””(VZSVn + v,f*av,,), (4.116)
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h <A A
Yo=Y+ ByFi;
Pn 2,

i

4n “x” (not 8n, since _
the numbers f3,; are integers)

ﬂ

2(n _ 1) “_"_”
x N
variables

ﬂ

8 “x” and 4 “/”” (not 8, since
the numbers p, are integers)

S =
2 L¢+’7

2 “x”_since both numbers > 0 (only once)

2n “x” since h >0

2 “/”

& 1 “x” (only once)
+ "y (T + [~ (n - DA, B, Y,y + [~ (n— DA, h]F(4,, 4,))
I | I |
==t = Lt
2447 8 “x” (only once) x
\171 N
2 ‘G+’7
=
B N cu—
8 6G><7’ x
N
v
2 G‘+” L |

Figure 4.1. Finding the number of operations for calculating Y, in the interval mulistep
methods of Adams-Bashforth type
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97
90 /
60
e -43.5

30+~

----------------------------------------------------------------------------------------------------------------------------- 223,67

___________________________________________________ - 16
O T TT T T T T T T T T T T T T T T T T T T T T T T m-n+1

1 7 13 19 25 31 37 43 49

Figure 4.2. The ratios /(Y)/l(y) in Adams-Bashforth methods

¥, = Y(Ty_y +[~(n- Dh, b1, Yy + [-(n - Db KIF(4,, A,)

m—y—

1 “x” (only once)

v'i/'——'

2“4 8 “x” (only once)

—

2 ‘6_"_”

xN

W vt + v

A he RS

2n “x”,since h>0 2%/ 2%/

v

8 e 8 (UG

? x N variables

2 ‘G_"_”

e =

[739% 1)
X

Figure 4.3. Finding the number of operations for calculating (4.116)
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where ¥, = Y(Tj_; + [-(n - Dh, h], Y_y + [-(n~ Dh, h]F (4, A)), instead of the
term

By WDy + [ (n = D, B), Yy + [-(n = Dh, BIF(4,, A,))

that occurs in the interval methods of Adams-Bashforth type. The number of other
operations (in floating-point arithmetic) is the same in both kinds of these methods.
The procedure for determining the number of operations in evaluating the term
(4.116) in one step of any interval method of Nystrom type is presented in Fi-
gure 4.3.

Drawing from the analysis of Figure 4.3 and taking into account other operations
we conclude that the total number of operations in interval methods of Nystrom
type is equal to [126]

[(Y)=(m-n+D)[N(6n+42)+ 2]+ 8N + 2n+ 7+

(4.117)
+8(m+ DI(f) + 8(m-n+ DI, (w).

In conventional Nystrom methods we have the same number of operations as in
conventional methods of Adams-Bashforth, i.e. this number is given by (4.115).
For interval methods of Adams-Moulton type let us consider the formula with-
out backward differences, i.e. (4.81). In each step we have to solve a nonlinear in-
terval equations using iteration of the form (4.86), which can be written as follows:

n
I+1 h| = I =
WD = Y = BoF (G X0V 4 Y ByF (G Y )| +
P =
+ }1’”277,”1?(7}C +[-nh,0], Y, +[-nh,0]F(4;, A))),

[=0,1,...,

A

where S, ; and p, > 0 are integers.
At the first integration step (for k£ = n) one should calculate constant values of

the n-step method, i.e.

h n+2—
— > h Vn+l> [_nh: O]F(AtaAy)a

n
which requires 4N + 2n + 7 operations and evaluation of the function F (4, A4)).
At the first iteration (at each step) it is necessary to perform 6nN - 2N + 1 ope-
rations concerning evaluations of the expressions

n A~
Y. ByF(Ti_;. %) and Ty +[-nh,0].
j=1
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Moreover, at the first iteration of the first step we need to evaluate the functions
KT, Y, forj=1, 2, ..., n, and at the first iteration of each next step we have to
evaluate the function F(7)_,, Y, ;). In addition, at each iteration (also at the first) it
is necessary to perform 17N operations and evaluate the functions F(7, Yk( ))
and ¥.

If we denote by S the maximum number of iterations, then at all steps, i.e. for
k=n,n+1, .., m, we have to perform at most

F(Y)=(m-n+1)A7SN+6nM - 2N+ 1)+ 4N + 2n+ 7+
+ 8[S(m—n+ 1)+ m+ 1I(f) + 8(m-n+ DI, ()

operations. In conventional methods of Adams-Moulton the total number of ope-
ration is equal at most to

l*(y)z (m-n+1)(A4SN +2nN - 1)+ 2+ [S(m—-n+ 1)+ m]l(f).

Example 4.4

For the initial value problem as in Example 3.1, the data as in Example 4.3 and
with assumption that S = 3, for the methods of Adams-Moulton type we obtain

o n=1
lim l*(ﬂ ~ 1082,
mos 1" ()
®n=2
l*
lim *(Y) ~ 1558,
m>el(y)
® =3
lim l*(Y) ~ 5371
mo e ()

We see that the limit ratios are similar to those obtained in Adams-Bashfoth me-
thods, which for a given n give the interval solutions with one order less (compare
Figure 4.2). [

For the interval methods of Milne-Simpson type the only difference in computa-
tional complexity (in comparison with the interval methods of Adams-Moulton
type) results from the fact that we should calculate the term

12(—* O
hn (Vn+15U" + Vn+1¥l”)v
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where ¥, = B_V(Tk +[-nh, 0], Y + [-nh,0]F(4;, A,)), instead of the term
27 ¥ (T + [-nh, 0, % + [-nh, 0F (4, 4,),

which appears in the interval methods of Adams-Moulton type. We get the similar
difference as that between the formulas (4.117) and (4.114).

4.7. Numerical Examples and a Comparison of Multistep
Interval Methods

In each multistep interval method we need some starting intervals to begin cal-
culations. Such intervals may be obtained by any one-step method. In the examples
presented below the interval methods of Runge-Kutta type, presented in Chapter 3,
was used to obtain such intervals.

Example 4.5

Let us consider the commonly used test problem (2.2) with 4 =0.5. Let us
assume that in multistep interval methods, considered in this example, the starting
intervals have been obtained by the interval method (3.42) with the following data:

4,=10,10], 4,=[09,149], hy=0001, Ty=[0,0], ¥ =[L1], M =0.003.

Taking 2= 0.0005 the interval method (3.42) yields the interval solutions presented
in Table 4.1.

Table 4.1. Starting intervals for interval multistep methods and the problem (2.2)
obtained by the interval method (3.42)

k  t=kheT, Y,
1 0.0005 [ 1.0002500312526043E+0000, 1.0002500312526044E+0000]
2 0.0010 [ 1.0005001250208359E+0000, 1.0005001250208360E+0000]
3 0.0015 [ 1.0007502813203256E+0000, 1.0007502813203257E+0000]

In Table 4.2 we present the results obtained by explicit multistep interval
methods of Adams-Bashforth type for different number of steps n. It can be seen
that increasing n we obtain better solutions taking into account the widths of in-
tervals. But that is true only for n < 4. If we use the interval methods of Adams-
-Bashforth type for n > 4, i.e.
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Table 4.2.The solutions of the problem (2.2) obtained by interval methods
of Adams-Bashforth type for n < 4

Y,

Width

[ 1.1051709169246437E+0000,
[ 1.2214027556160577E+0000,
[ 1.3498588033584851E-+0000,
[ 1.4918246914264993E-+0000,
[ 1.6487212621146479E+0000,

1.1051709223468415E+0000]
1.2214027670307107E+0000]
1.3498588213958252E+0000]
1.4918247167830407E+0000]
1.6487212955601577E+0000]

~5.42-107°
~1.14-10°®
~1.80-10°®
~2.54-10°®
~3.34-10°®

[ 1.1051709180745339E+0000,
[ 1.2214027581576920E+0000,
[ 1.3498588075718577E+0000,
[ 1.4918246976350853E+0000,
[ 1.6487212706914478E+0000,

1.1051709180769049E+0000]
1.2214027581629653E+0000]
1.3498588075806753E+0000]
1.4918246976482317E+0000]
1.6487212707098811E+0000]

~2.37-107"
~5.27-107"
~8.82:10°"
~1.31-10"
~1.84-107"

[ 1.1051709180756470E+0000,
[ 1.2214027581601685E+0000,
[ 1.3498588075760007E-+0000,
[ 1.4918246976412665E+0000,
[ 1.6487212707001222E+0000,

1.1051709180756482E+0000]
1.2214027581601711E+0000]
1.3498588075760053E+0000]
1.4918246976412740E+0000]
1.6487212707001339E+0000]

~1.06:10°"
~2.47-10°"
~4.48107"
~7.39-107"
~1.15-10"

[ 1.1051709180756474E+0000,
[ 1.2214027581601695E+0000,
[ 1.3498588075760025E+0000,
[ 1.4918246976412691E+0000,
[ 1.6487212707001259E+0000,

1.1051709180756478E+0000]
1.2214027581601701E+0000]
1.3498588075760037E+0000]
1.4918246976412715E+0000]
1.6487212707001305E+0000]

~2.55-107"
~5.57-107"
~1.14-107"
~2.29-10"
=4.51-107"

Method  t,
(444) 02
n=1 04

0.6
0.8
1.0
(445) 02
n=2 04
0.6
0.8
1.0
(446) 02
n=3 04
0.6
0.8
1.0
447) 02
n=4 0.4
0.6
0.8
1.0
®n=>5

h
Ve = Yoy + -0 O01F (T, Y1) = 2774F (T, Vi) +

_I_

+2616F (T3, Y 3) = 127T4F (T} 4, Yj_g) +
+ 251F (Ty -5, Yi—5)) +

95h°
288

yl(y}cfl + [_4h’ h]’ Y;cfl + [_4ha h]F(Ata Ay)),

(4.118)
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®n=06
Yo=Yyt 1420 (A27TF(Ty—y, Yo) = 1923F (i o, Y o) +
+9982F (T} 3, Yy 3) = T298F (T} 4, Y;_4) +
+287TF(Ty_s, Y 5)~ 475F (T _g. Y; o)) + @.119)
19087’
——— (T +[-5h, k), Yy + [-5h, BIF (4, A)),
age” T + [-5h B Yy + [-5h, (4, 4,)
on="7

h
Y=Y, _+——098721F (T, _{,Y,_,)-447288F(T,_», Y, _»)+
= Yo 60480( (Ti—1> Y1) (Tk—2> Yi—2)

+ 705549 F(T;,_3, Y, _3)— 688256 F(T;_4, Y, 4)+
+A0T139F(Ty_s, % s) - 134472F(Ty_6, Y o)+ (4.120)
+ 19087 F(T;_7, Y% _7)) +

5257h%

2 g [=6h. b)Y, + [~6h, h]F (4. A.)).
+ 17280 (k—l+[ 5 ]’ k—l+[ ] ( t y))

then we obtain intervals with greater widths (see Table 4.3). This is caused by
a great number of calculations in these methods and by a significant increase of

rounding errors following from that, which is not compensated for the method or-
ders.

Table 4.3.The solutions of the problem (2.2) obtained by interval methods
of Adams-Bashforth type for n =5, 6, 7

Method t, Y, Width

(4.118) 0.2 [ 1.1051709180756474E+0000, 1.1051709180756479E+0000]  ~4.19-10°'
n=5 04 [1.2214027581601690E+0000, 1.2214027581601706E+0000] ~1.49-10"
0.6 [ 1.3498588075760005E+0000, 1.3498588075760057E+0000]  ~5.15-107"
0.8 [ 1.4918246976412615E+0000, 1.4918246976412791E+0000] =~1.75-10""
1.0 [ 1.6487212707000986E-+0000, 1.6487212707001578E+0000]  ~5.91-10"¢

(4.119) 0.2 [1.1051709180756470E+0000, 1.1051709180756482E+0000] ~1.08:107"
n=6 04 [1.2214027581601645E+0000, 1.2214027581601750E+0000] ~1.04-10""
0.6 [ 1.3498588075759536E+0000, 1.3498588075760525E+0000]  =9.88-10° "
0.8 [ 1.4918246976408020E+0000, 1.4918246976417385E+0000] =9.36-10°"
1.0 [ 1.6487212706956903E-+0000, 1.6487212707045659E+0000] ~8.88-10""
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Table 4.3. (cont.)

Method  t, Y, Width
(4.120) 0.2 [ 1.1051709180756443E+0000, 1.1051709180756511E+0000] ~6.68-10""*
n=7 04 [12214027581599533E+0000, 1.2214027581603865E+0000] ~4.33-10""
0.6 [ 1.3498588075619817E+0000, 1.3498588075900247E+0000]  =~2.80-107"
0.8 [ 1.4918246967334331E+0000, 1.4918246985491077E+0000] ~1.82:10°°
1.0 [ 1.6487212119209625E+0000, 1.6487213294792939E+0000] ~1.17-107’

The results obtained by interval methods of Nystrom type forn =1, 2, 3 and 4
are presented in Table 4.4. As in the case of interval methods of Adams-Bashforth
type, for n >4 we get interval solutions with greater widths. It is interesting that for
the problem considered and for the same n (n > 1), i.e. for the same number of me-
thod steps, interval methods of Nystrom type give an interval solution with smaller

widths.

Table 4.4.The solutions of the problem (2.2) obtained by interval methods

of Nystrom type

Method  t, Y, Width
(4.70) 0.2 [ 1.1051709142138796E+0000, 1.1051709196354981E+0000]  =5.42:107°
n=1 0.4 [ 1.2214027499092897E+0000, 1.2214027613229209E+0000]  ~1.14-10°®
0.6 [ 1.3498587943404760E+0000, 1.3498588123764994E+0000] ~1.80-10°®
0.8 [ 1.4918246787488588E+0000, 1.4918247041039496E+0000]  =2.54-10°®
1.0 [ 1.6487212453923441E+0000, 1.6487212788364476E+0000]  =3.34:10°*
(4.71) 0.2 [1.1051709180749699E+0000, 1.1051709180763254E+0000] =~1.35-10""2
n=2 04 [12214027581587431E+0000, 1.2214027581615966E+0000] =2.85-10°"
0.6 [ 1.3498588075737485E+0000, 1.3498588075782577E+0000] =~4.51-107"
0.8 [ 1.4918246976381009E+0000, 1.4918246976444397E+0000] =~6.34-10 "2
1.0 [ 1.6487212706959476E+0000, 1.6487212707043086E+0000] =~8.36:10°"*
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Table 4.4. (cont.)

Y,

Width

[ 1.1051709180756473E+0000,
[ 1.2214027581601692E+0000,
[ 1.3498588075760021E-+0000,
[ 1.4918246976412689E+0000,
[ 1.6487212707001263E+0000,

1.1051709180756480E+0000]
1.2214027581601704E+0000]
1.3498588075760040E+0000]
1.4918246976412716E+0000]
1.6487212707001299E+0000]

~5.78-107'
~1.14-10°"
~1.81-107"
~2.60-107"
~3.54-10"

Method ¢,
4.72) 02
n=3 04

0.6
0.8
1.0
4.73) 02
n=4 0.4
0.6
0.8
1.0

[ 1.1051709180756475E+0000,
[ 1.2214027581601697E+0000,
[ 1.3498588075760029E+0000,
[ 1.4918246976412700E+0000,
[ 1.6487212707001277E+0000,

1.1051709180756478E+0000]
1.2214027581601700E+0000]
1.3498588075760033E+0000]
1.4918246976412706E+0000]
1.6487212707001285E+0000]

~1.60-107"¢
~2.42:107'
~3.51-107'¢
~5.00-10"
~7.01-107"

For implicit interval methods of Adams-Moulton and Milne-Simspon types we
have tested both kinds of methods, i.e. based on interval backward difference
formulas and based only on interval values of functions. The obtained results (see
Tables 4.5 and 4.6) confirm Theorems 4.5 and 4.8, i.e. that the formulas without
interval backward differences are better. It should be added that in all iterations, e.g.
(4.85), (4.86) and (4.113), we have assumed the accuracy 10™'® and the number of
iterations has not exceeded 5.

Table 4.5.The solutions of the problem (2.2) obtained by interval methods
of Adams-Moulton type

Y,

Width

[ 1.1051709180755696E+0000,
[ 1.3498588075756735E+0000,
[ 1.6487212706993650E+0000,

1.1051709180758077E+0000]
1.3498588075765571E+0000]
1.6487212707012116E+0000]

~2.38-10°"
~8.83-10°"
~1.85-107"2

Method t,
“4.77) 02
n=1 0.6

1.0
(4.82) 02
n=1 04
0.6
0.8
1.0

[ 1.1051709180755756E+0000,
[ 1.2214027581600107E-+0000,
[ 1.3498588075757393E+0000,
[ 1.4918246976408816E+0000,
[ 1.6487212706995912E+0000,

1.1051709180758017E+0000]
1.2214027581604866E+0000]
1.3498588075764912E+0000]
1.4918246976419386E+0000]
1.6487212707009854E+0000]

=2.26-10"
=4.76:107"
~7.52:10°"
~1.05-10°"
~1.39-10""
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Table 4.5. (cont.)

Method ¢, Y, Width
(4.83) 0.2 [1.1051709180756475E+0000, 1.1051709180756478E+0000] =2.14-107'¢
n=2 04 [12214027581601697E+0000, 1.2214027581601701E+0000] =3.44-10°'

0.6 [ 1.3498588075760029E+0000, 1.3498588075760035E+0000]  ~4.91-107'
0.8 [ 1.4918246976412700E+0000, 1.4918246976412708E+0000] =~6.53-10'¢
1.0 [1.6487212707001278E+0000, 1.6487212707001287E+0000] ~8.37-10°'¢
(4.79) 0.2 [ 1.1051709180756475E+0000, 1.1051709180756478E+0000] ~1.80-107"¢
n=3 0.6 [ 1.3498588075760029E-+0000, 1.3498588075760034E+0000] =~4.18-10'¢
1.0 [1.6487212707001277E+0000, 1.6487212707001286E+0000]  ~8.26:10°'
(4.84) 0.2 [1.1051709180756475E+0000, 1.1051709180756478E+0000]  ~1.60-10""¢
n=3 0.4 [ 1.2214027581601697E+0000, 1.2214027581601700E+0000]  =2.33-10'¢
0.6 [ 1.3498588075760029E+0000, 1.3498588075760033E+0000] =3.15-107'¢
0.8 [ 1.4918246976412701E+0000, 1.4918246976412706E+0000]  =4.10-107'¢
1.0 [ 1.6487212707001279E+0000, 1.6487212707001285E+0000]  =5.20-10"¢

of Milne-Simspon type

Table 4.6.The solutions of the problem (2.2) obtained by interval methods

Method ¢, Y, Width
(4.107) 0.2 [1.1051709180753335E+0000, 1.1051709180760855E+0000]  ~7.52-10°"
n=1 06 [1.3498588075747373E+0000, 1.3498588075778749E+0000] =3.14-10""
1.0 [ 1.6487212706971386E-+0000, 1.6487212707046242E+0000] ~7.49-10""
(4.110) 0.2 [1.1051709180753706E+0000, 1.1051709180760484E+0000] ~6.78-10"
n=1 04 [12214027581596169E+0000, 1.2214027581610438E+0000] ~1.42-10""
0.6 [ 1.3498588075751788E+0000, 1.3498588075774335E+0000] ~2.25-107"2
0.8 [ 1.4918246976401830E+0000, 1.4918246976433526E+0000] =~3.17-10"2
1.0 [1.6487212706987910E+0000, 1.6487212707029717E+0000] =~4.18:10°"*
(4.108) 0.2 [1.1051709180756475E+0000, 1.1051709180756477E+0000]  ~1.07-107"¢
n=2 0.6 [ 1.3498588075760028E-+0000, 1.3498588075760034E+0000] ~4.95-10'¢
1.0 [ 1.6487212707001275E+0000, 1.6487212707001289E+0000] ~1.30-10""
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Table 4.6. (cont.)

Method ¢, Y, Width
(4.111) 0.2 [1.1051709180756475E+0000, 1.1051709180756477E+0000]  ~8.59-10°"7
n=2 04 [12214027581601697E+0000, 1.2214027581601700E+0000] ~1.83-107'
0.6 [ 1.3498588075760029E+0000, 1.3498588075760033E+0000]  ~2.88-107'¢
0.8 [ 1.4918246976412701E+0000, 1.4918246976412706E+0000]  ~4.04-10'¢
1.0 [1.6487212707001279E+0000, 1.6487212707001285E+0000] =5.32:107'¢
(4.109) 0.2 [1.1051709180756476E+0000, 1.1051709180756477E+0000]  =4.27-107"
n=3 0.6 [ 1.3498588075760030E-+0000, 1.3498588075760033E+0000] =2.00-10'¢
1.0 [1.6487212707001278E+0000, 1.6487212707001285E+0000] ~5.38:10°'¢
(4.112) 0.2 [1.1051709180756476E+0000, 1.1051709180756477E+0000]  =3.07-10"
n=3 0.4 [ 1.2214027581601698E-+0000, 1.2214027581601699E+0000] ~6.26-10""7
0.6 [ 1.3498588075760030E+0000, 1.3498588075760032E+0000] ~1.00-10'¢
0.8 [ 1.4918246976412702E+0000, 1.4918246976412704E+0000] =~1.41-107'¢
1.0 [ 1.6487212707001280E+0000, 1.6487212707001283E+0000]  =~1.85-107'¢

From the results presented in Tables 4.5 and 4.6 one more conclusion follows:
for the problem considered implicit interval methods of Milne-Simpson type give,
for the same number of method steps n (n >1), better solutions (we obtain intervals
with smaller widths).

As in the case of explicit interval mutistep methods, for implicit ones the
increase of method steps # does not necessarily result in an improvement of interval
solutions. In Figure 4.4 we present the widths of interval solutions at the final
moment (¢ = 1) for all interval methods considered.

It can also be interesting how the step sizes affect the widths of interval sol-
utions. If we take a step size that is too small then we have to do more calculations
and therefore we cause more rounding errors. We present the appropriate relations
for the interval implicit method in Figure 4.5.

In implicit interval methods, for which the obtained solutions are presented in
Tables 4.5 and 4.6, we took the solutions ¥,_; as starting points ¥\ in the ite-
ration to obtain Y,. In order to reduce the number of iterations a better approach
is to take ¥, obtained in explicit interval methods as initial approximations. In
Table 4.7 we present the results obtained using such an approach. As a predictor in
each case we took the n-step explicit interval method of Adams-Bashforth type and
we used the implicit interval method of Adams-Moulton type with the same number
n of method steps as a corrector. We assumed the accuracy 10 '* in iterations and
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Adams-Bashforth ~ ———=—: Nystrém

Adams-Moulton ———— Milne-Simpson

Figure 4.4. The widths of interval solutions obtained by the multistep methods
versus the number n of method steps (at 7= 1)

1E-13
1E-14
1E-15
1E-16 T T T T \
n=2 n=3 n=4 n=>5 n==6 n=7
A-M,h=0.004  ———— M-S, h =0.004
--------- A-M. h =0.002 M-S, h =0.002

———— A-M. h = 0.0005 ————— M-S, h = 0.0005

Figure 4.5. The widths of interval solutions obtained by the implicit multistep methods
versus the number » of method steps
for different step size (at7=1)

h=0.0005. For n =1 only three iterations were needed, for n =2 only two, and for
n =3 only one iteration turned out necessary.
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Table 4.7.The solutions of the problem (2.2) obtained by interval predictor-corrector

methods of Adams type
Method t, Y, Width
(4.44) 0.2 [1.1051709180755756E+0000, 1.1051709180758017E+0000] =2.26:10""
(4.82) 04 [1.2214027581600107E+0000, 1.2214027581604866E+0000] ~4.76:10"
n=1 0.6 [1.3498588075757393E+0000, 1.3498588075764912E+0000] =7.52:107"
0.8 [ 1.4918246976408816E+0000, 1.4918246976419386E+0000] =~1.05-10""2
1.0 [ 1.6487212706995912E+0000, 1.6487212707009854E+0000] ~1.39-10°"*
(445) 0.2 [1.1051709180756475E+0000, 1.1051709180756478E+0000]  =2.14:107"¢
(4.83) 04 [1.2214027581601697E+0000, 1.2214027581601701E+0000]  =3.44-107'
n=2 06 [ 1.3498588075760029E+0000, 1.3498588075760035E+0000] ~4.91-10°'°
0.8 [ 1.4918246976412700E+0000, 1.4918246976412708E+0000] =6.54-107'¢
1.0 [ 1.6487212707001278E-+0000, 1.6487212707001287E+0000]  ~8.38-10'¢
(4.46) 0.2 [1.1051709180756475E+0000, 1.1051709180756478E+0000] =~1.60-10"'
(4.84) 04 [1.2214027581601697E+0000, 1.2214027581601700E+0000]  =~2.34-10"'¢
n=3 0.6 [1.3498588075760029E+0000, 1.3498588075760033E+0000] =3.16:107'
0.8 [ 1.4918246976412701E+0000, 1.4918246976412706E+0000] =~4.10-107'
1.0 [1.6487212707001279E+0000, 1.6487212707001285E+0000] =5.21-107'¢

For the conventional methods corresponding to the interval method considered
we obtain the solutions presented in Table 4.8. Let us note that only in the case of
the fourth order methods, i.e. Adams-Bashforth (4.12), Nystrom’s (4.31), Adams-
-Moulton (4.22) and Milne’s (4.37), the solutions belongs to the interval solutions
obtained.

Example 4.6

In Section 3.7 we considered the simplified Hill equations describing the motion
of the Moon and we used a number of interval methods of Runge-Kutta type to
solve the initial value problem (2.5) (see Example 3.3). It appears that by such me-
thods we able to obtain the interval solutions only for merely 1.35% of the orbit pe-
riod. But these methods can be used to obtain starting intervals for multistep me-
thods.

Assuming the same initial data as in Example 3.3 and # = 0.0005, by the implicit
interval method (3.58) we find starting intervals presented in Table 4.9.
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Table 4.8. The solutions of the problem (2.2) at # = 1.0 obtained by conventional
multistep methods

Method Order v Error

Adams-Bashforth (4.10) 2 1.6487212492463580E+0000  =2.15-10°*
Adams-Bashforth (4.11) 3 1.6487212706953040E+0000  ~4.82-10°"2
Adams-Bashforth (4.12) 4 1.6487212707001270E+0000  =1.13-10°"
Midpoint rule (4.29) 2 1.6487212621143958E+0000  ~8.59-10°°
Nystrom’s (4.30) 3 1.6487212706979834E+0000  =2.14:10"
Nystrom’s (4.31) 4 1.6487212707001276E+0000  =5.30-10°'¢
Trapezoidal rule (4.20) 2 1.6487212749936732E+0000  =4.29-10°°
Adams-Moulton (4.21) 3 1.6487212707006645E+0000  =5.36:107"
Adams-Moulton (4.22) 4 1.6487212707001282E+0000  =7.47-107"
Milne’s (4.37) 4 1.6487212707001282E+0000  =5.10-107"®

Table 4.9. Starting intervals for four-step interval methods and the problem (2.5)
withM=0and k=1

k  t=kheT,

Y,

sk

1 0.0005 Y,
Y21
Y31
Y41

2 0.0010 Y,
Yy
Yy
Y,

3 0.0015 Yy
Y23
Y33
Y43

w =
o

[
[
[,
[
[
[
[_
[
[
[
[_
[

9.9999987500000260E-0001, 9.9999987500000261E-0001
4.9999997918888892E-0004, 4.9999997916666694E-0004
4.9999997916666694E-0004,-4.9999997916666692E-0004
9.9999987500000260E-0001, 9.9999987500000261E-0001

9.9999950000004166E-0001, 9.9999950000004167E-0001
9.9999983333334166E-0004, 9.9999983333334168E-0004
9.9999983333334168E-0004,-9.9999983333334165E-0004
9.9999950000004166E-0001, 9.9999950000004167E-0001

9.9999887500021093E-0001, 9.9999887500021094E-0001
1.4999994375000632E-0003, 1.4999994375000633E-0003
1.4999994375000633E-0003,-1.4999994375000632E-0003
9.9999887500021093E-0001, 9.9999887500021094E-0001

—_— e —_

— —_— e

In order to solve our problem, let us take into account the four-step explicit in-
terval method (4.73). For this method we need interval extensions of f,(z, y) and
v (t,y)= fs(4)(t, y)= y§5>(z), where s = 1, 2, 3, 4. From (2.5) it follows that for

M=0and x=1 we have

[0 =3 folts )= 4, f3<r,y)=—%, f4(t,y>=—f—§,

(4.121)
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where 7 = 4 y? + y3 . From (4.121), after somewhat burdensome calculations, we
get

3 30y 35y 15y [ 2107 )
ufl(t,y)=r—5(3— r; + r41 + F;Z 79| yiv+

2 2 4 Ya > Y+
r

9 592 5p2 353292 15 72
+_5[1_ Y1 _2V2 29N )2 s 2 )’;yz 2 _ 303
r r r r

? ”? A r

1 33p2 932 54yt 5472
+_6[1_ Vi Y2 27N DN V) 3+
r
6
+ Y12

8

9% . 9%
[2+r2_4y4a

r

1500, [ 7oi 3 9, 5 5 3503 o
l//z(f,y)=#(r—21-3 Vitos 1- 2 e Y3ya+
r

15932 [ 213 >
+ r—;z[r—z— 9| vy +

612 (93/12 9)’% ]
+ + -4|\y3+
}"8 1’2 I"z 3
2 2 2 2 4
. i[l— i 335 Wiy 54)’2Jy4
.6 2 2 4 4 )
15y 7057 63y | 4
w3(1, y) = —71[- IS+ —5—-—3"1»+
r r r
180}@[ 142 21yfj ;
+ -1+ - V34 +
7 2 A 374
90 7y 21y3  63yiy3
X 3’1(_3+ J;l . Jz’z 3 yz)’z y%nyr
r r r r

2 2 2 2
L0y L 2P Tyy  63yiv 3
7 2 2 A )Y
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45 14y2 214
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From these formulas the interval extensions of £, (¢, y) and (¢, y) cannow
be easily find. As in Example 3.3, we cannot take the whole domains of definitions
of y (s=1,2)to determine A4 s because we would get divisions by intervals con-

taining zero. Assuming that 4, = 0.0005 and

4,=10,10015], 4, = 4, =[04,11], a4, =[-01 1], 4, =[-1,01],

we can find the interval solutions at # = 1, and additionally at # = 1.0005, 1.0010,
1.0015. The intervals obtained for these values of ¢ can be used as new starting
points. Taking

A, = A, = [— 05, 0_.6], A, = [@, ﬁ], A, = [— 1,%],

we obtain the interval solutions at ¢ = 2, and additionally at r = 2.0005, 2.0010,
2.0015. Proceeding further in the same way and assuming that

A, =4, = [-_1.1,- 0.3], A, =10,1], 4, =[-1,0]

for € [2, 3.0015],
4, = 4, =[-1,=06], 4, =[-09,02], 4, =[-02,09]
for ¢ € [3, 4.0015] and
A, =4, = [—_0.6, ﬁ], A, = [— 1, W], A, =[07.1]

for ¢ € [4, 5.0015], it is possible to get the interval solutions up to 7 = 5.0015. In
Table 4.10 we present the solutions obtained at t =1, 2, 3, 4, 5. Unfortunately, for
t approximately greater than 5 the wrapping effect causes the interval solution to be
worthless (the intervals are too large). This effect is shown in Figure 4.6. Of course,
in each case the exact solution belongs to the interval solution obtained (compare
Table 2.2) u

Table 4.10. The interval solutions of the problem (2.5) with M =0 and x=1
obtained by the four-step method (4.73)

tLeT, Y, =Y, Width of Y,
1.0 Y= 5.4030230586442026E-0001, 5.4030230587174773E-0001]  =7.33-10 "2
Y,= 8.4147098480488006E-0001, 8.4147098481072161E-0001]  ~5.84-10

Y, = [-8.4147098481461534E-0001,-8.4147098480141829E-0001]  ~1.32:10""

Y, = 5.4030230586128248E-0001, 5.4030230587430483E-0001]  ~1.30-10""
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Table 4.10. (cont.)

teT, Y,=7Y, Width of Y,
20 Y, =[-4.1614683694363343E-0001,-4.1614683615103482E-0001]  ~7.93-10 '
Y,=1[ 9.0929742535117589E-0001, 9.0929742829964891E-0001]  =2.95-10°

Y, = [-9.0929742770118559E-0001,-9.0929742595018418E-0001]  ~1.75-10°°

Y, = [-4.1614683945624377E-0001,-4.1614683363825487E-0001]  =5.82:10°

3.0 Y, =[-9.8999289387333900E-0001,-9.8999209933056823E-0001]  ~7.95-10
Y,=[ 1.4111973686998131E-0001, 1.4112027925037821E-0001]  ~5.42:10"

Y, =[-1.4112083868795111E-0001,-1.4111917742596258E-0001]  =1.66:10°

Y, = [-9.8999288198336006E-0001,-9.8999211121904063E-0001]  =7.71-10°7

40 Y, =[-6.5378657167462219E-0001,-6.5350066759754963E-0001]  =2.86:10"*
Y, = [-7.5687781480230884E-0001,-7.5672717419414288E-0001]  ~1.51-10°*

Y= 7.5654581887407921E-0001, 7.5705920035140095E-0001]  =5.13-10°*

Y, = [-6.5382363465163544E-0001,-6.5346358514279663E-0001]  =3.60-10°*

50 Y, =[ 2.7059624260337538E-0001, 2.9668409962868753E-0001]  =2.61-10°2
Y, = [- 1.0053307587715992E+0000,-9.1223612943957444E-0001]  =9.31-102

Y,=[ 9.3617509799322116E-0001, 9.8086374299139689E-0001]  =4.47-10

Y,=[ 1.9154124355505947E-0001, 3.7920966729796944E-0001]  =1.88-10""

0.5

-1 0.5 0 05 1

| m(Yl)

Figure 4.6. The wrapping effect caused by the method (4.73) for the problem (2.5)

withM=0and x=1
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Example 4.7

In Example 3.5 we tried to solve the problem of the motion of a simple pendu-
lum by the interval version of Alexander’s method (3.62). It appears that we get an
interval solution only for about 10% of the period. But any of interval versions of
Runge-Kutta type method can be used to obtain starting points for interval multistep
methods. Applying the two-stage semi-implicit interval method (3.59) for the same
data as in Example 3.5 and for 4 = 0.001 we have get additional starting intervals
as follows:

Y,(0.001) = [-5.1347415402712304E-0003, -5.1347415400712303E-0003],
Y,(0.001) =[ 5.2359620822533077E-0001, 5.2359620822553078E-0001].

Then, by the two-step implicit interval methods (4.83) and (4.111), after 7-8 ite-
rations in each step we obtained interval solutions presented in Tables 4.11 and
4.12, respectively. In both of these interval methods we assumed the accuracy 10"
in the iteration, and took 2 = 0.001,

4,-10,2], 4, =[-18,18], 4, =[-06,06],
and used interval extensions of (7, y) = y§4)(t) (s =1, 2), where — on the basis
of (2.12) -
V71(f,)’):“4y1e '/72(@)’):144)’2'
We can observe that for each ¢ the exact solution belongs to the interval
solutions obtained (compare Table 2.4) and that the interval method of Milne-

Simpson type (4.111) gives a somewhat better solution than the interval method of
Adams-Moulton type (4.83). u

Table 4.11. The interval solutions of the problem (2.12) — (2.13)
obtained by the two-step method (4.83)

tk € Tk YS = Ysk Width Of Ys
0.5 Y, =[-1.6396588322988759E+0000,-1.6396588321649396E+0000] ~1.34-10°"°
Y,=[ 2.6272853320688279E-0003, 2.6272853745701990E-0003] ~4.25-107"

1.0 Y, =[-1.6454781641330172E-0002,-1.6454780680840558E-0002] ~9.60-107"°
Y, =[-5.2357240965344030E-0001,-5.2357240934706097E-0001] ~3.06:107"°

1.5 Y, =[ 1.6394936973823808E+0000, 1.6394937034708161E+0000] ~6.09-10°°
Y, =[-7.8815924351058335E-0003,-7.8815904912303674E-0003] ~1.94-10°°

2.0 Y, =[ 3.2907886190368976E-0002, 3.2907924096365751E-0002] ~3.79-10°
Y, =[ 5.2349330780937726E-0001, 5.2349331991355161E-0001] ~1.21-10°®
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Table 4.12. The interval solutions of the problem (2.12) — (2.13)
obtained by the two-step method (4.111)

LeT, Y=Yy Width of Y,
0.5 Y, =[-1.6396588322884904E+0000,-1.6396588321755220E+0000] ~1.13-10°"
Y,=[ 2.6272853322057914E-0003, 2.6272853678587899E-0003] ~3.57-10°"

1.0 Y, =[-1.6454781465753352E-0002,-1.6454780815256611E-0002] =6.50-10°"°
Y, =[-5.2357240960387409E-0001,-5.2357240939672969E-0001] =2.07-10°"°

1.5 Y, =[ 1.6394936988159553E+0000, 1.6394937020381708E+0000] =3.22:107°
Y, =[-7.8815919673964566E-0003,-7.8815909391754222E-0003] ~1.02:10°°

2.0 Y, =1[ 3.2907897336904612E-0002, 3.2907912867531363E-0002] ~1.55-10°®
Y, =[ 5.2349331138252507E-0001, 5.2349331634096158E-0001] ~4.96:10°"

The main conclusion from the examples presented and many other carried out
by the author (concerning not only the multistep interval methods, but also the in-
terval methods of Runge-Kutta type) is such that the interval methods for solving
the initial value problem executed in floating-point interval arithmetic yield so-
lutions in the form of intervals which contain all possible numerical errors, i.c.
representation errors, rounding errors and errors of methods. Other conclusions con-
cerning the multistep interval methods are as follows:

® for the same number of steps explicit interval methods of Nystrom type are
somewhat better than the methods of Adams-Bashforth type,

® for the same number of steps implicit interval methods of Milne-Simpson type
give somewhat better results than the methods of Adams-Moulton type,

® the implicit interval methods based on backward interval differences give some-
what worse results than the methods based only on the combinations of interval
function values at different points,

® the application of an explicit interval multistep method as the predictor for an im-
plicit one significantly reduces the number of iterations involved,

® for each particular problem one should choose the appropriate step size and the
number of method steps to obtain the interval solution with the smallest width
(for a given step size there exists the optimal number of method steps, and for
a given number of method steps there exists the best step size).



Chapter 5

Other Interval Methods for Solving
the Initial Value Problem

5.1. Known Methods

The interval methods presented in Chapters 3 and 4 are not the only interval me-
thods that one can use for solving the initial value problem. In 1965, R. E. Moore
described an interval method for ordinary differential equations using interval arith-
metic for the first time (see [131] and [133]).

The Moore method concerns the initial value problem of the form

y'=f(@), »(0) =y, (5.1
where the function fis defined on an interval 4, = [Q, [;] and y, € (l_), b ) Let us
assume that the function f(y) has an interval extension F(Y) and, further, that:

® the function F(Y) is defined and continuous for all Y = 4,,
® the function F(Y) is monotonic with respect to inclusion,
® for each Y < 4 there exists a constant A > 0 such that w(F(Y)) < Aw(Y).

Since y, € (lz, b ), there exists 4 > 0 such that for ¢ € [0, #] we have

Yo+ tF(4,)c A,

Let r be a positive integer and let us partition the interval [0, /] into subintervals

Z]{w—l)h,ﬂ

}, g=12,...,r.
r r

Let ¥ c 4, be such an interval that y, € ¥,. For each r let us define an interval
function Y,(¢), where ¢ € [0, 4], as follows:

Y}"(O) =)o
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qh

V() = Yt hF(Zy), === q=12,..7, (5.2)
where
Z,= Yt )+ {o, ﬂ F(A)). (5.3)
For ¢, <t<t, let
Y(0) = Y (tg)+ (1= 1y ) F(Z,). (5.4)

Since ¢, - t,_| = h/r, then the equations (5.2) — (5.4) with the condition Y,(0) = y,
define a piecewise regulated, continuous interval function Y,(¢) for all ¢ € [0, A4].
It can be proved (see e.g. [133] or [167]) that

3h
w(Y.(1)) < T‘ F(A,) ‘(exp(h/l) - 1)

and

ROERARAC)
p=1

for all ¢ €[0, 4], where y() is the exact solution of the problem (5.1).

The formulas (5.2) — (5.4) determine a so-called Moore’s method of the first
order. In order to construct the Moore method of order p it is sufficient to assume
that the function y(¢) has continuous derivatives up to the order p. Thus, from the
Taylor theorem we have

p-1
YO =0+

i=1

SO 00 ,
i p! ’

where 6 €[0, k]. If interval extensions F' of the functions /*” are determined for
the interval 4 and y(0) € Y(0) c 4,, then y(¢) € Y(z), where

P71 -1 i (p-1 p
ro-ro+y & S“O))’ LI p(f'y)’

i=1
under the condition that Y([0, #]) = 4,. Moreover, if

2

w(FO(¥) < Aw(Y),

where A, > 0 are constants, then
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p- W
w(Y (1)) < pl—(y)h 11+

w(Y(0)).

In 1969, F. Kriickeberg published a method (see [98]), which he called three-
-process method or 3PM, where he considered the N-dimensional initial value pro-
blem of the form

y'=f(,y@), y(to) = yo, (5.5)
for which it is known that the exact solution y(¢; ¢, y,) exists and is unique. If the
initial conditions are such that y, € ¥,, where ¥, is an interval in R", then the so-
lution to (5.5) is a set of solutions that can be denoted by

Y(t)={z: z= $(t: 1, o), Yo € Yo}

so that Y(z) = Y.

For such an additional requirement to the problem (5.5) we have to find an in-
terval Y 2 Y(t)), where ¢, = t,+ h, h> 0. In the first process we determine a step
length h > ( and an interval polynomial with vector coefficients

k
P(t-1) = Z F(t- 1)
i=0
where £ is a given integer, so that for all ¢ €[7,,7,] we have

P(t-15) 2 Y(2).

In most cases it is sufficient to construct P(z - tp) for k=0. An implementation of
this was proposed by Moore in [134] and we obtain P(z - #,) = R, such that

Y(nec R

for all t e [to, tl]
In the second process we find an interval solution to (5.5) for a point z; € Y.
Using the Taylor series through terms of second order we have

2
Zy= 2+ hE G, 20) + - F (g, 4, 0, AD) (56)

Of course, z; = y(ll, 19, Z9) € Z;, because in the remainder of (5.6) the whole set
of solutions Y(¢) is included in P([0, A]).

The third process is an interval variant of the perturbation method. Let us denote
by Uy = Y, - z, a set of all perturbations of the initial value z,. Let us write our
problem in the form
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d(u+z)

= f(t,u+z), u(ty) = ug € U. (5.7)
dx

We know that u(#)) = z; = Y(4; ty, zo) and we should determine

w = y(t; 1o, Up)-
By linearization of the given differential equation in the neighborhood of

z) = y(; 1o, Zo)
we get
du af (t0) sg
—=u—, u(ty) = uy, :
7 oy 0) = Uy (5.8)
where in the N-dimensional case, Jf/Jy is a matrix with elements Jf; / Oy,

(#,j=1,2,...,N). Thus, the interval U, = QU,,, where

0= Fltg, 20)+ ), —(Lltg, ), By
A
i=1
and L(#, y) denotes the matrix with elements Jf;(¢, y)/Jy;, is the unknown in-
terval solution of the problem (5.8) and (5.7). It is obvious that

¥ =Uj+Z 2%,

In [167] Yu. I. Shokin proposed a method of the second order for the initial
value problem (5.1), in which one should assume that the function f'is defined and

has bounded derivatives of the first and the second order in 4, = [Q, 1_7] Moreover,

there exists an interval ¥, c 4, (proper inclusion) such that y, € ¥;. Let F(Y) be
an interval extension of f{y) with the same properties as in the Moore method and
additionally let there exists an interval extension ¥(Y) of the function

S

f@MKwa@W}

and let this extension be monotonic with respect to inclusion.
Since the interval Y; is properly included in 4,, for a given number 7, > 0 it
is possible to find £> 0 such that
43
Yo+ & F(4,)-29(4)| < 4,.

An interval solution is constructed on the interval [0, £]. This interval is partitioned
into m parts by the points ¢, =kh (k=0, 1, ... , m), where h= &/ m < k.
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It can be proved (see [87] or [167]) that if the intervals Y, = Y(¢,) are determined
by the following formulas:

To = (1) = Y(0),
h
Ven = Y+ S{F) + FO; + HO,RIF(A, ) -
3

h (5.9)
-5 P+ 10, hIF(4,)),

k=0,1,...,m-1,
then for the exact solution y(#) of the problem (5.1) such that y(0) € Y, we have
W) e Y, fork=1,2,..,m,and
w(¥) < Ni? + Mw(Yy),

where M and N are some nonnegative constants independent of 4. The method (5.9)
is called the Shokin method.
In [167] Shokin presented yet another method based on the Simpson formula

(b-a)

b
b- b >
jg(r)dﬁT“[g(a)wg(%)+g(b)]— e 610

a

where 7 € [a, b]. The initial value problem

y'=f(ty@), ¥(0)=ye) (5.11)
is solved on the interval [0, &] partitioning by the points ;= ih, where h = £/ m and
i=0,1,..,m. From (5.10) we have

iy

h o+t n
"(t)dt = — ’t‘+4’(’ ’”)+ () |- —— (@, + Ih) =
[ ro 6{y<l> VS ) |- 5020 + 90

t.

ity
2

(5.12)

h Lt
= g|:f(ti: () + 4]{ i +2tl+1 ,J/( )] + f(ti+1:y(ti+l)):| -

5

2880

w(t; + Sh, y(1; + 9h)),

where 7 e[t,t,,], and @z, ¥(1)) = y°(¥) can be expressed by f(#, (7)) and its
partial derivatives.

Let F(7, Y)and (T, Y) be interval extensions of f(z, y(¢)) and y(t, y(¢)), respecti-
vely, and let these extensions have the following properties:
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® the function F(7, Y) is defined and continuous for all < 4,and Y < 4, where
4 ={teR:0<t<a}, A,={yeR:b<sys l;},

® the function F(7, Y) is monotonic with respect to inclusion, i.e.
LehaYicl= F(TL%)c F(B, 1),
® for each 7' 4, and for Y = 4, there exists a constant A > 0 such that

w(F(T,Y)) < AW(T) + w(Y)),
® the function ¥(T, Y) is defined forall T< 4,and Y < 4

y’
® the function YT, Y) is monotonic with respect to inclusion.

The interval solution of the initial value problem (5.11), following from (5.12),
is of the form:

Y(0) = X,
Yk+1 = Y(Zk+l) = Yk +

h T, + T ~t +t >
‘s F(Tk,Yk)+4F[ . 2"“,Y[ . 2"“)]+F(a+1,¥<tk+1>)}—

5

h
-——Y(T +[0, K]F(4,, A
2880 (k+[: ] (t) )):

k=0,1,...,m-1

The values Y ((¢; + t;,1)/2) and Y () should be calculated from T}, T,,, and
Y, by any method of the third order. It appears that y(¢,) € Y, fork=1, 2, ..., m, and

w(¥) < Aw(Yp)+ B max  w(Tj)+ Ch*,
j=12 m

.....

where A4, B and C are nonnegative constants independent of 4.

In recent years a lot of studies have been conducted on a variety of the interval
methods based on the high-order Taylor series. Below we outline a traditional me-
thod on the basis of [144]. For further reading we refer the reader to the relevant
papers given in References [10 — 14, 16 — 21, 28 — 30, 35 — 40, 46, 59, 70, 71, 92,
107, 110, 111, 113 — 115, 140, 142, 145, 148, 152, 157 — 161]. We will use a no-
tation usually applied in interval methods based on the Taylor series.

Let us consider the initial value problem of the form

V()= f(), ¥(tg)=py, yeRY, teR. (5.13)

The initial condition can be in an interval vector ¥, i.e. y, € Y. If we denote the
solution to (5.13) by y(z; ¢, vy), we denote by y(z; ¢y, ¥,) the set of solutions ori-
ginating from each initial condition in ¥:
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V(& 1y, o) = {v(E5 19, ¥o): o € Yol
We wish to find intervals that are guaranteed to contain the exact solution of (5.13)
at points 75 < f; < ...< t,,, 1.e. we want to find ¥, such that

m»
(st Y)Yy, k=12,...,m.

Let us suppose that we have computed Y, at some point #,. The interval solution
at the next point in time, i.e. at 7,,,, we find in two phases.

At first, we try to find an interval [#,, ¢,.,] and an a priori enclosure ¥, such that

the problem
Y =10 vt = v (5.14)

has a unique solution for all y, € Y, and all € [, ¢,,,], and
vt Y)Y (5.15)

forall ¢ € [, t,.,]- Proving the existence and uniqueness, and finding [¢,, #,,,] and
Y, , is usually based on applying a fixed-point theorem.

In the second phase we use ¥, to enclosure the truncation error of the method
and compute a tighter enclosure Y, at #,,, such that

Y(tgs1itg: Xo) € Yy € . (5.16)

Let us introduce a convenient notation for the Taylor coefficients, denoting

Oy =,
) 1[ 2 [i-1]
f[’](y)=—.[ A fj(y), i1
i oy

Given the initial value problem (5.14), we have for the i-th Taylor coefficient of its

solution .
v (1) _
i

.

In order to compute a priori bounds we use the following procedure: if y, is in
the interior of ¥, and

Jj-1
e+ D -t 0+ -0 Gy By 2, (5.17)
i=1
forallz € [¢,, t,.,] and all y, € Y,, then there exists a unique solution to (5.14) for
all y, € ¥, and
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Jj-1
Y@ty €yt (- 1) 0+ (- 1) FU T
i=1
forallte[t,, 1, ]andally, € Y,. _
In order to compute tight bounds we use ¥, and we wish to find an interval ¥,
such that (5.16) holds. Writing a Taylor series expansion, we can compute

j-1
Ve = %+ D_H 000 + M),
i=1

where s, =t,, - t,, which contains the true solution, but the width of Y., is

W(¥ei1) 2 w(X),
and usually
WY 1) > (T,
To obtain a scheme that could follow contracting solutions, the mean-value eva-
luation is applied: for any y;, y, € ¥,

J-1
e+ ) 0+ w UG
i=1
(5.18)
o S Ut Aévf[i]
e B+ 2, Ms G+ W)+ T4 Y W= (= 50,
i=1 i=1 Y

where I denotes the n x n identity matrix. On the basis of (5.18) we can find an in-
terval Y., consisting of:

® a point approximation

j-1
U1 = Vi + Z h UG,
i=1
® an enclosure o
Zhr = WY

of the truncation error which can be viewed as the excess introduced on the
current integration step over the true solution, called local excess,

® an enclosure S; (Y, - J;), where
Vi [i]
i Of
Sy =1+ E hy %)
k e (%)

i=1

of the propagated global excess to t,,, .
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Thus, finally we get

Vo1 = wr + Zn + S (Y = 3.
If all calculations are executed in floating-point interval arithmetic, the above in-
terval is a rigorous enclosure on the exact solution of the problem (5.13), enclosing
a rounding error, too. In [144] a procedure for reducing the wrapping effect is also
presented.

5.2. Software Overview

In conclusion we would like to mention a number of software packages for com-
puting the bounds on the solution of the initial value problem on the basis of many
approaches to the Taylor methods. In Table 5.1 we present a list of such packages,
together with relevant references.

For the interval methods of Runge-Kutta type (presented in Chapter 3) and for
the interval methods of Adams type (discussed in Chapter 4) the packages OOIRK
in Delphi Pascal and IMM in C++, respectively, have been developed at the Insti-
tute of Computing Science of the Poznan University of Technology. Information
on these packages can be found in [82] and [121]. Both packages are available for
free from the authors, and their main windows are presented in Figures 5.1 and 5.2.

Table 5.1. Packages for computing bounds in the initial value problem

Package Year Reference Language

AWA 1988 [106] PASCAL-XSC
ADIODES 1997 [169] CH++

COSY INFINITY 1997  [23,27,31,109] Fortran, C++ interface
VNODE 2001 [141] CH++

VODESIA 2003 [49] Fortran-XSC
VSPODE 2005 [104] CH++

ValEncIA-IVP 2005 9] CH++

VNODE-LP 2006 [143] CH
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OOIRK{IVP)n [X]

Expart name of fur fining f[z] [t.y] in DLL:

— Gl

Figure 5.1. The main window of the OOIRK package

| AT System - [NEW TASK 1]
| Task Iniisl conditions Edit Run Window Help
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Number of equations [1
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>

bl I ]
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Stop sizeh = | i ]

DLL filz name, | DLL Library

Task Description Notes & Conclusions  Current Result

RIES

Figure 5.2. The main window of the IMM package
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