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As it is well-known, there are two kinds of errors
caused by floating-point arithmetic:

�representation errors,

�rounding errors.

When we apply an approximate method to solve a
problem on a computer we introduce the third kind of
error: 

�the error of method (usually called the truncation
error.

Using interval methods realized in interval floating-
-point arithmetic we can obtain solutions (in the form
of intervals) which cantain all these errors.
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This presentation is devoted to interval difference
methods (of second and fourth order) for solving the
Poisson equation with boundary conditions.

The solutions are in the form of intervals which
contain all possible numerical errors. Moreover, it has
been experimentally confirmed*) that the exact
solutions are placed inside the resulting intervals.

*) In our opinion, it is rather impossible to obtain a theoretical proof of this fact.

Numerical examples have been carried out in proper
and directed interval arithmetics using our
IntervalArithmetic32and64 unit written in the Delphi
Pascal programming language.
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Verified numerical computing requires a mathematical tool to
describe operations performed on computers. Such a
mathematical tool, called interval arithmetic, has been
developed by R. E. Moore in 1966 and extended by other
researchers in the following years.

As it is well-known, a real interval, or shortly an interval, is     
a closed and bounded subset of real numbers R:

where       and      denote the lower and upper bounds of the
interval [x], respectively.  An interval is called a point interval if
           The set of real intervals we will denote by IR.



The elementary real operations (addition, subtraction,
multiplication and division), i.e. any operation                      ,
can be extended to interval arguments [x], [y] by defining the
result of an elementary interval operation to be the set of real
numbers which results from combining any two numbers
included in intervals [x] and [y]:

(1)
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From (1) it follows that

(2)
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The real interval arithmetic can be extended to complex
intervals. We omit adequate definitions, becauce futher only
real interval operations will be applied.

In real interval arithmetic it is excluded a division by an interval
containing zero. This restriction may be removed in so called
extended (real) interval arithmetic which is defined in the set of
extended real intervals

Both of the above interval atithmetic (real and extended real)
are called proper, since for any interval                    we have

It should be noted that the opposite and the inverse elements
do not exist in proper interval arithmetic.

Such elements exist in so called directed interval arithmetic,
where for any interval [x] we can have either            or
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For any real-valued function f : D d R 6 R we can extend it to
interval arguments [x] 0 D:

An enclosure of f ([x]) can be easy obtained if we substitute
[x] for x in the defining expression of f, and then evaluate f
using interval arithmetic. This kind of evaluation is called an
interval extension of f and is denoted by f[ ]([x]). It should be
noted that in general we have

Moreover, one should know that a real-valued function may have several
interval extensions, since it may be defined by several equivalent arithmetic
expressions and such expressions do not necessarily yield equivalent
interval extensions. In general, it is difficult to determine the best possible
interval extension if we have a few mathematical equivalent notations of 
a real-valued function. However, it is empirical fact that the fewer
occurrences of [x] within an interval extension, the better is the result of the
corresponding interval evaluation.
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The realization of proper interval arithmetic is based on
simple rule, where left and right endpoints are calculated by
using downward and upward rounding, respectively, i.e.
(compare (2))



In the case of directed interval arithmetic the rules of
calculating endpoints are much more complicated. For each
basic operation different rounding can be used for calculation
of endpoints of the result interval.

The accurate description of directed interval arithmetic is
presented, among others, in:
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�E. D. Popowa, Extended Interval Arithmetic in IEEE
Floating-Point Environment, Interval Computations 4
(1994), 100-129,

�A. Marciniak, On Realization of Floating-Point Directed
Interval Arithmetic, http://www.cs.put.poznan.pl/
amarciniak/KONF-referaty/DirectedArithmetic.pdf, 2012.
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An elliptical partial-differential equation, known as the Poisson
equation, is of the form

We assume that the function f describes the input to the pro-
blem on a plane region R whose boundary will be denoted by Ã.

Equations of this type arise naturally in the study of various
time-independent problems such as:

(3)

�two-dimensional steady-state problems involving
incompressible fluids,

�the potential energy of a plane acted by gravitational forces
in the plane,

�the steady-state distribution of heat in a plane region.
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To obtain a unique solution to the Poisson equation, additional
constraints must be placed to the solution. Usually, we apply
the Dirichlet boundary conditions, given by

for all (x, y) on Ã. In general, the plane region R may be
arbitrary. Further, we will assume that R is a rectangular:
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Thus, our problem is to find u = u(x, y) satisfying the partial-
-differential equation

with the boundary conditions

where
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Partitioning the interval [0, á] into n equal parts of width h and
the interval [0, â] into m equal parts of width k provides a mean
of placing a grid on the rectangle R with mesh points
(xi, yi) = (ih, jk), where h = á/n, k = â/m, i = 0, 1, ... , n
and j = 0, 1, ... , m. Assuming that the fourth order partial deri-
vatives of u exists, for each mesh point in the interior of the
grid we use the Taylor series in the variable x about xi and in
the variable y about yj. This allows us to express the Poisson
equation at the points (xi, yj) as

(4)

where



uij = u(xi, yj), and where îi 0 (xi!1, xi+1), çj 0 (yj!1, yj+1) are
intermidiate points, and the boundary conditions as

(5)

Omitting in (4) the partial derivatives, we obtain a method,
called the central-difference method, with local truncation error
of order O(h2 + k2).  Such formulas together with (5) present a
system of linear equations (with respect to unknowns uij) which
may be solved by any known exact or iterative method.

15 of 39



To construct an interval method, let us assume that there
exists a constant M such that

and let

Since from the Poisson equation (3) it follows that
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then it is obvious that we have

for any î 0 (x ! h, x + h) and any ç 0 (y ! k, y + k), where X and Y
denote interval extension of x and y, respectively, and Ø(X, Y)
and Ù(X, Y) are interval extension of                 and                  
respectively.

If we recall the Poisson equation at the mesh points (4) and
write the partial derivatives at the right-hand side, it is easy to
write an interval analogy to this equation.
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Assuming that all interval extensions are proper, we have

(6)

where Fi, j = F(Xi, Yj), and where

(7)

Ö1(Y), Ö2(X), Ö3(Y) and Ö4(X) denote interval extensions of the
function n1(y), n2(x), n3(y) and n4(x), respectively.
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The system of linear equations (6) – (7) can be solved in
conventional (proper) floating-point interval arithmetic, because
all intervals are proper.

But we can consider another analogy of (4). Namely, we can
write



Using directed interval arithmetic, we can add at both sides of
this equation the opposites to

and

We get

(8)
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The last equation (8) differs from the equation (6) only by the
last term on the right-hand side which is an improper interval.
But using the directed interval floating-point arithmetic we can
solve the system (8) (together with (7)). If the interval solutions
of this system are in the form of improper intervals, to get the
proper intervals we can use the so-called proper projecton of
intervals, i.e. transform each interval [a, b], for which b < a, to
the interval [b, a].

We should also add a remark concerning the constant M. In
general, when the exact solution is unknown and nothing can
be concluded about M from physical or technical properties or
characteristics of the problem considered, we propose to find
this constant by the following procedure:
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It is obvious that

We can calculate

for i = 1, 2, ... , n ! 1, j = 1, 2, ... , m ! 1 and where uij are
obtained by a conventional method for a variety of n and m, say
n = m = 10, 20, ... , N, where N is sufficiently large. Then, we
can plot Mn, m against different n = m. The constant M can be
easy determine from the obtained graph, since
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Using the Taylor series of higher order, we can express the
Poisson equation at the points (xi, yj) as

(9)
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Let È(X, Y) and Î(X, Y) denote interval extensions of                
and              , respectively, and let us assume that

It is obvious that
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If in (9) we write all partial derivatives at the right-hand side,
then it is easy to obtain an interval analogy to this equation. 
We have
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If in (9) we leave partial derivatives at the left-hand side, write
an interval analogy to this equation, and then add adequate
opposite interval elements (which exist in directed interval
aritmetic), we get

The difference occurs only in the last line.
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Example 1
Let us take into account the following boundary value problem:

(10)

The exact solution is given by

and is presented in Figure 1.
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Figure 1. The solution of the problem (10)

In Table 1 we present the results obtained by the second and
fourth order methods in proper and directed arithmetic at the
center of the region Ã. The widths of intervals for the second
order method are also presented in Figure 2.
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Table 1. The interval solutions and the widths of intervals obtained in
              proper (Up) and directed (Ud) interval arithmetic to the problem (10)
              at (0.5, 0.5) (uexact(0.5, 0.5) . 0.31702214358044366)
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Figure 2. The widths of interval solutions to the problem (10) for the second
order method on the grid X = 0.5 (for the fourth order method the shapes of

curves are similar)
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In the second order methods we have assumed M = 1627. Of
course, this estimation of                             can be calculated
from the known exact solution, but a similar estimation one can
obtain from the graph presented in Figure 3.
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n = m

Figure 3. Approximations to the constant M for the problem (10)



In the fourth order methods we have taken P = Q = 14643.
In general, if the estimations of                              and
                            can not be obtained from any information
about the problem considered, we can use similar technique 
as previously.

Example 2

As the second example let us consider the following problem:
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(11)

with the exact solution (see Figure 4)
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Figure 4. The solution of the problem (11)

The interval solutions obtained are presented in Table 2. The
widths of intervals are also presented in Figure 5.
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Table 2. The interval solutions and the widths of intervals obtained in
              proper (Up) and directed (Ud) interval arithmetic to the problem (11)
              at (0.5, 0.5) (uexact(0.5, 0.5) = 1)
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Figure 5. The widths of interval solutions to the problem (11) for the second
order method on the grid X = 0.5 (for the fourth order method the shapes of

curves are similar)
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To solve the problem (11) we have assumed M = 97.5 for the
second order methods, and P = Q = 961.4 for the fourth order
ones. Applying the procedure described earlier we can obtain
similar values (for the constant M – see Figure 6).
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Figure 6. Approximations to the constant M for the problem (11)
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�Interval methods for solving partial-differential equation
problems in floating-point interval arithmetic give solutions in
the form of intervals which contain all possible numerical
errors, i.e. representation, rounding and truncation errors.

�The interval difference methods of fourth order are (of
course) better than the methods of second order (give
intervals with smaller widths).

�The interval difference methods realized in directed floating-
   -point interval atithmetic are longer in time (approximately
   15%) than by the methods realized in proper one, but yield
   interval solutions with a little bit smaller widths.

�Depending on the problem considered, the differences in
widths may be decreasing or increasing in the number of
mesh points, but in all cases the widths of intervals for
directed interval arithmetic are a little bit smaller.
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To have more valuable approximations for constants used in
our methods, in further studies we plan to use the Nakao
interval estimations to partial derivatives*). Moreover, according
to a special form of the system of (interval) linear equations
that have to be solved, some more effective methods should
also be taken into account. 

*) see, e.g., M. T. Nakao, On verified computations of solutions for nonlinear para-
bolic problems, Nonlinear Theory and Its Applications, IEICE 5 (3) (2014), 320-338.

We will also try to solve a generalized Poisson equation of the
form

where

with some boundary conditions, and to use other interval
difference methods.
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