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It is well-known that floating-point arithmetic causes rounding
errors, both for the representation of real numbers and for the
result of operations. Applying approximate methods to solve
problems on a computer we introduce also the error of
methods (usually called the truncation errors).
Using interval methods realized in interval floating-point
arithmetic we can obtain interval enclosures of solutions which
are guaranteed to contain the actual solution.
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In this presentation we consider an interval difference method
for more general elliptic equations with Dirichlet's boundary
conditions than in our previous papers [1 – 6]. The
generalization consists in taking into account some
continuous functions about the second order partial
derivatives and in adding a term c(x, y) @ u(x, y) into equation,
where c(x, y) denotes also such a function.

[1] Hoffmann, T., Marciniak, A, Solving the Poisson Equation by an Interval Method of the Second Order, Computational Methods in
     Science and Technology 19 (1) (2013), 13–21.
[2] Hoffmann, T., Marciniak, A., Szyszka, B., Interval Versions of Central Difference Method for Solving the Poisson Equation in Proper
     and Directed Interval Arithmetic, Foundations of Computing and Decision Sciences 38 (3) (2013), 193–206.
[3] Hoffmann, T., Marciniak, A., Finding Optimal Numerical Solutions in Interval Versions of Central-Difference Method for Solving the
     Poisson Equation, Chapter 5 in: Data Analysis – Selected Problems (editors: M. Łatuszyńska, K. Nermend), Scientific Papers of the
     Polish Information Processing Society Scientific Council, Szczecin-Warsaw 2013, 79–88.
[4] Hoffmann, T., Marciniak, A., Solving the Generalized Poisson Equation in Proper and Directed Interval Arithmetic, Computational
     Methods in Science and Technology 22 (4) (2016), 225–232.
[5] Marciniak, A., An Interval Difference Method for Solving the Poisson Equation – the First Approach, Pro Dialog 24 (2008), 49–61.
[6] Marciniak, A., Hoffmann, T., Interval Difference Methods for Solving the Poisson Equation, in: Differential and Difference Equations
     with Applications (editors: S. Pinelas, T. Caraballo, P. Kloeden, J.R. Graef), Springer Proceedings in Mathematics & Statistics, vol.
     230 (2018), 259–270.



Introduction
After a presentation of considered problem and our interval
method, four numerical examples are given. These examples,
like a number of other examples we have solved, show that
the exact solutions belong to the interval enclosures obtained
by our method.
Since, in our opinion, it is rather impossible to obtain a
theoretical proof of this fact, the presentation can be treated
as an experimental one.
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The well-known general form of elliptic partial differential
equation is as follows:

(1)

where u = u(x, y), 0 # x # ", 0 # y # $. The functions
a = a(x, y), b = b(x, y), c = c(x, y), d = d(x, y), e = e(x, y), f = f(x, y)
and g = g(x, y) are arbitrary continuous functions determined
in the rectangle S = {(x, y): 0 # x # ", 0 # y # $} fulfilling in the
interior of S the condition a(x, y)b(x, y) ! g2(x, y) > 0.
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For (1) we can consider the Dirichlet boundary conditions of
the form

(2)

where

and ' = {(x, y):  x = 0, " and 0 # y # $  or  0 # x # " and y = 0, $}.
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If in (1) we take a(x, y) = b(x, y) = 1 and c(x, y) = d(x, y) =  e(x, y) =
= g(x, y) = 0, then we have the following well-known Poisson
equation:

Interval difference methods for solving this equation with
boundary conditions (2) we have presented in [1 – 3, 5, 6].

[1] Hoffmann, T., Marciniak, A, Solving the Poisson Equation by an Interval Method of the Second Order, Computational Methods in
     Science and Technology 19 (1) (2013), 13–21.
[2] Hoffmann, T., Marciniak, A., Szyszka, B., Interval Versions of Central Difference Method for Solving the Poisson Equation in Proper
     and Directed Interval Arithmetic, Foundations of Computing and Decision Sciences 38 (3) (2013), 193–206.
[3] Hoffmann, T., Marciniak, A., Finding Optimal Numerical Solutions in Interval Versions of Central-Difference Method for Solving the
     Poisson Equation, Chapter 5 in: Data Analysis – Selected Problems (editors: M. Łatuszyńska, K. Nermend), Scientific Papers of the
     Polish Information Processing Society Scientific Council, Szczecin-Warsaw 2013, 79–88.
[5] Marciniak, A., An Interval Difference Method for Solving the Poisson Equation – the First Approach, Pro Dialog 24 (2008), 49–61.
[6] Marciniak, A., Hoffmann, T., Interval Difference Methods for Solving the Poisson Equation, in: Differential and Difference Equations
     with Applications (editors: S. Pinelas, T. Caraballo, P. Kloeden, J.R. Graef), Springer Proceedings in Mathematics & Statistics, vol.
     230 (2018), 259–270.
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for elliptic equations

The equation

is another special kind of elliptic equation of the form (1). In [7]
we have constructed interval difference scheme for solving this
equation with conditions (2) and compared with Nakao's
method [8] based on Galerkin's approximation and finite
elements. 
[7] Marciniak, A., Nakao's Method and an Interval Difference Scheme of Second Order for Solving the Elliptic BVS, Computational
     Methods in Science and Technology 25 (2) (2019), 81–97.
[8] Nakao, M.T., A Numerical Approach to the Proof of Existence of Solutions for Elliptic Problems, Japan Journal of Applied Mathematics
     5 (1988), 313–332.
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In this presentation we consider the elliptic differential equation
of the form

(3)

in which

in the interior of rectangle S.
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Partitioning the interval [0, "] into n equal parts of width h and
interval [0, $] into m equal parts of width k provides a mean of
placing a grid on the rectangle [0, "] × [0, $] with mesh points
(xi, yj), where h = "/n, k = $/m. Assuming that the fourth order
partial derivatives of u exist and using Taylor series in the
variable x about xi and in the variable y about yj we can
express the equation (3) at the points (xi, yj) as

(4)
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where

                      i = 1, 2, ... , n ! 1; j = 1, 2, ... , m ! 1, 
                         vij = v(xi, yj) for v 0 {u, a, b, c, f},

and where >i 0 (xi!1, xi+1), 0j 0 (yj!1, yj+1) are intermediate points,
and the boundary conditions (2) as

(5)
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Differentiating (3) with respect to x and y, we have

(6)

and differentiating again with respect to x and y, we get

(7)
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Taking into account in (7) the relations (6), we obtain

(8)

and

(9)

The equation (8) should be considered at (>i, yj) and the
equation (9) – at (xi, 0j).
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It is obvious that

(10)

for p = 1, 2 and v = a, b, c.
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Moreover, we have

(11)

where
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Substituting (10) and (11) into (8) and (9), and then substituting
the resulting formulas into (4), after some transformations we
finally obtain

(12)
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where
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From (12) we can obtain an interval method.
Let us assume that

for all (x, y) in S, and let Q1(X, Y), Q2(X, Y), =1(X, Y), =2(X, Y)
denote interval extensions of

respectively.
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Then

for each (x, y), and

since >i 0 (xi ! h, xi + h) and 0j 0 (yj ! k, yj + k).



W h X h h Y
A

D A X h h Y

D B
B
A

D A Q Q B M M

k X Y k k
B

D B X Y k k

D A
A
B

D

ij i j
ij

x ij i j

x ij
ij

ij
x ij ij

i j
ij

y ij i j

y ij
ij

ij

7
2

2 1

2
2 1

12
2

2

12
2

2

= + − − + −






− −








 − − −







+ + − − + −






− −

Ψ Ψ

Ξ Ξ

( [ , ], ) ( [ , ], )

[ , ] [ , ]

( , [ , ]) ( , [ , ])

y ij ijB P P A M M








 − − −






[ , ] [ , ] ,

An interval difference method

22 of 46

Thus, we have w7ij 0 W7ij, where

(13)

and where Vij and DzVij for V 0 {A, B} and z 0 {x, y} denote
interval extensions of vij and Mvij/Mz for v 0 {a, b}, respectively.
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If we denote interval extensions of fij, cij and wpij by Fij, Cij and
Wpij, respectively (p = 1, 2, ... , 6), then from the above
considerations and (12) it follows an interval method of the
form

(14)

where the interval [!*, *], called the *-extension, represents
O(h3) + O(k3) + O(h2k2),
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and where

(15)

Here, M1(Y), M2(X), M3(Y) and M4(X) denote interval extensions
of n1(y), n2(x), n3(y) and n4(x), respectively.

The system of linear interval equations (14) with (15), with
unknowns Uij, can be solved in conventional (proper) floating-
point interval arithmetic, because all intervals are proper.
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It should be added a remark concerning the constants M, P
and Q occurring in (13). If nothing can be concluded about M,
P and Q from physical or technical properties or characteristics
of the problem considered, we proposed to find these
constants taking into account that
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We can calculate

where uij are obtained by a conventional method for a variety
of n and m.
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Then we can plot Mnm, Pnm and Qnm against different n and m.
The constants M, P and Q can be easy determined from the
obtained graphs, since
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In the examples presented we have used our own
implementation of floating-point interval arithmetic written in
Delphi Pascal. This implementation has been written as a unit
called IntervalArithmetic32and64, which current version may
be found in [9]. The program written in Delphi Pascal for the
example considered one can find in [10] and [11]. We have run
this program on Lenovo® Z51 computer with Intel® Core i7
2.4 GHz processor.
  [9] Marciniak, A., Interval Arithmetic Unit (2016), URL http//www.cs.put.poznan.pl/amarciniak/ IAUnits/IntervalArithmetic32and64.pas.
[10] Marciniak, A., Delphi Pascal Programs for Elliptic Boundary Value Problem (2019), 
       URL http// www.cs.put.poznan.pl/amarciniak/IDM- EllipticEqn-Example
[11] Marciniak, A., Delphi Pascal Programs for Nakao and Interval Difference Methods for Solving the Elliptic BVP (2019), 
       URL http://www.cs.put.poznan.pl/amarciniak/NIDM-EllipticBVP-Examples
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Example 1
Let S = [0,1] × [0, 1] and consider the following problem:

This problem has the exact solution u(x, y) = exp(xy). Since the
exact solution is known, we can calculate the constants M, P
and Q and take M = 19.03, P = Q = 8.16. These constants can
be also estimates from the graphs presented in Fig. 1 and 2
(the method still succeeds for less accurate bounds).
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For h = k = 0.01, i.e., n = m = 100, and * = 10!6, using an interval
version of LU decomposition, after 6 minutes we have
obtained by our program [10] the results presented in Table 1.
Note that using the interval version of full Gauss elimination (with pivoting)
we need about 200 days (!) of CPU time to obtain such results.

Figure 2.  Estimations of P and QFigure 1.  Estimations of M

[10] Marciniak, A., Delphi Pascal Programs for Elliptic Boundary Value Problem (2019), 
       URL http// www.cs.put.poznan.pl/amarciniak/IDM- EllipticEqn-Example



Table 1. Enclosures of the exact solution obtained by the method (14) – (15)

(xi, yj) Uij Width

(0.1, 0.5) [1.0509815441511615E+0000, 1.0515636639134466E+0000]
exact . 1.0512710963760240E+0000 

. 5.82 @ 10!4

(0.3, 0.5) [1.1616066450304161E+0000, 1.1620625933013910E+0000]
exact . 1.1618342427282831E+0000 

. 4.56 @ 10!4

(0.5, 0.1) [1.0509815441511614E+0000, 1.0515636639134467E+0000]
exact . 1.0512710963760240E+0000 

. 5.82 @ 10!4

(0.5, 0.3) [1.1616066450304160E+0000, 1.1620625933013911E+0000]
exact . 1.1618342427282831E+0000 

. 4.56 @ 10!4

(0.5, 0.5) [1.2838256641451216E+0000, 1.2842221958365290E+0000]
exact . 1.2840254166877415E+0000 

. 3.97 @ 10!4

(0.5, 0.7) [1.4189191705563123E+0000, 1.4192105027251595E+0000]
exact . 1.4190675485932573E+0000 

. 2.91 @ 10!4

(0.5, 0.9) [1.5682528588111690E+0000, 1.5683682637095705E+0000]
exact . 1.5683121854901688E+0000 

. 1.15 @ 10!4

(0.7, 0.5) [1.4189191705563122E+0000, 1.4192105027251595E+0000]
exact . 1.4190675485932573E+0000 

. 2.91 @ 10!4

(0.9, 0.5) [1.5682528588111689E+0000, 1.5683682637095705E+0000]
exact . 1.5683121854901688E+0000 

. 1.15 @ 10!4

Table 1. Enclosures of the exact solution obtained by the method (14) – (15)
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One can observe that for each (xi, yj) the exact solution is
within the interval enclosures obtained. It should be added that
CPU time grows significantly for greater values of n and m.
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Example 2 [8, pp. 330 – 331]
Let us consider the following problem:

(16)

where S = [0, 1] × [0, 1].  In this problem we have
a(x, y) = b(x, y) = 1 and c(x, y) = B. The exact solution of (16)
is of the form (see Fig. 3)

(17)

[8] Nakao, M.T., A Numerical Approach to the Proof of Existence of Solutions for Elliptic Problems, Japan Journal of Applied Mathematics
     5 (1988), 313–332.
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0
0,2

0,4
0,6

0,8
1

0

0,1

0,2

0,3

u(x, y)

Figure 3. A graph of solution (34) to the problem (33)

x

y

Using Nakao's method*) and
taking (as Nakao) h = 0.1, i.e.,
n = 10, the initial values from
Galerkin's approximation, the
stopping and extension
parameters g = * = 10!8, we
obtain after N = 10 iterations the
results presented in Table 2. In
the same table we also present
the results obtained by Nakao.

One can observe that our intervals are thinness than those
presented by Nakao in his original paper. Moreover, it should
be added that Nakao obtained his results after N = 16
iterations, i.e., in a greater number of iterations than in our
implementation.
*) The Nakao method is an iteration method based on Galerkin’s approximation and finite element method known 
   from conventional theory for solving elliptic problems.



Table 2. Enclosures of solution (17) to the problem (16) obtained by Nakao’s method
(N – intervals presented in [8])

(i, j) U(Xi, Yj) Width × 103

(1, 1) [2.6895096700530953E!0002, 3.2427221086186715E!0002]
         . [0.0268950, 0.0324273]
N       [0.0152852, 0.0459134] 
exact .  0.0303959

.   5.5

. 30.6

(1, 5) [9.0624935701623463E!0002, 1.0360043786745875E!0001]
         . [0.0906249, 0.1036005]
N       [0.0641884, 0.1338544]
exact .  0.0983632

. 13.0

. 69.7

(1, 9) [2.7580990032784303E!0002, 3.3135690195121944E!0002]
         . [0.0275809, 0.0331356]
N       [0.0152852, 0.0459134]
exact .  0.0303959

.   5.6

. 30.6

(2, 1) [5.2119428179302382E!0002, 6.1187858075021614E!0002]
         . [0.0521194, 0.0611879]
N       [0.0335920, 0.0828146]
exact .  0.0578164

.   9.1

. 49.2

(2, 5) [1.7346343896287746E!0002, 1.9597642240178172E!0002]
         . [0.1734634, 0.1959765]
N       [0.1278847, 0.2488152]
exact .  0.1870979

.   22.5

. 120.9

(2, 9) [5.2962951964144576E!0002, 6.2056169423667783E!0002]
         . [0.0529629, 0.0620562]
N       [0.0335920, 0.0828146]
exact .  0.0578164

.   9.1

. 49.2

(3, 1) [7.2554266253714074E!0002, 8.3864670393438673E!0002]
         . [0.0725542, 0.0838647]
N       [0.0496244, 0.1105956]
exact .  0.0795775

. 11.3

. 61.0

Table 2. Enclosures of solution (17) to the problem (16) obtained by Nakao’s method
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Two reasons may cause that in our implementation we have obtained
better enclosures: we have used the exact integrals in the method, while
probably in [8] some quadratures have been used (it causes to come into
being some additional errors – errors of quadratures), and in our interval
calculations we have taken advantage of Delphi Pascal Extended type,
which is more precise than Double type used probably in [8] (this have
rather small influence on the results).
The Nakao method gives validated solutions, but in our experimental
interval difference method the obtained enclosures (intervals) are thiness,
and – of course – all intervals contain the exact solution at the mesh
points (see Table 3).
In our interval difference method we have taken M = 62.02
(since the exact solution is known). The values of constants P
and Q are unnecessary since a = b = 1, and hence Ma/Mx =
= Ma/My = Mb/Mx = Mb/My = 0. Moreover, we assume in our method
that * = 0.001, and – according to the boundary conditions – 
U0j = Ui0 = U10, j = Ui,10 = 0 (j = 0, 1, ... , 10; i = 1, 2, ... , 9). 
[8] Nakao, M.T., A Numerical Approach to the Proof of Existence of Solutions for Elliptic Problems, 
    Japan Journal of Applied Mathematics 5 (1988), 313–332.



Table 3. Enclosures of solution (17) to the problem (16) obtained by the method (14) – (15)
(N – Nakao’s method)

(i, j) U(Xi, Yj) Width × 103

(1, 1) [2.8413489793818334E!0002, 3.2077265656902749E!0002]
         . [0.0284134, 0.0320773]
exact .  0.0303959

    . 3.7
N . 5.5

(1, 5) [9.3435235810096799E!0002, 1.0258291837474664E!0001]
         . [0.0934352, 0.1025830]
exact .  0.0983632

      . 9.1
N . 13.0

(1, 9) [2.8373268255628631E!0002, 3.2303880411274499E!0002]
         . [0.0283732, 0.0323039]
exact .  0.0303959

    . 3.9
N . 5.6

(2, 1) [5.4472248034826312E!0002, 6.0608703745006735E!0002]
         . [0.0544722, 0.0606088]
exact .  0.0578164

    . 6.1
N . 9.1

(2, 5) [1.7840742966978266E!0001, 1.9450823450046243E!0001]
         . [0.1784074, 0.1945083]
exact .  0.1870979

    . 16.1
N . 22.5

(2, 9) [5.4395742122844850E!0002, 6.1039750622674490E!0002]
         . [0.0543957, 0.0610398]
exact .  0.0578164

    . 6.6
N . 9.1

(3, 1) [7.5335356959410713E!0002, 8.3113638230475435E!0002]
         . [0.0753353, 0.0831137]
exact .  0.0795775

      . 7.8
N . 11.3

Table 3. Enclosures of solution (17) to the problem (16) obtained by the method (14) – (15)
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Example 3 [8, pp. 329 – 330]
For the problem

(18)

where S = [0, 1] × [0, 1], the exact solution is unknown.
Taking h = 0.1, the initial values from Galerkin’s approximation, the
stopping parameter g = 10!4 and the extension parameter * = 10!3, in
our implementation of Nakao's method we obtain after N = 7 iterations
the results presented in Table 4. The Nakao results (published in [8])
obtained after N = 10 are also presented in the same table. As in
Example 2 we can observe that our intervals are significant thinness
and Nakao obtained his results after a greater number of iterations.

[8] Nakao, M.T., A Numerical Approach to the Proof of Existence of Solutions for Elliptic Problems, Japan Journal of Applied Mathematics
     5 (1988), 313–332.



Table 4. Enclosures of solution to the problem (18) obtained by Nakao’s method
(N – intervals presented in [8])

(i, j) U(Xi, Yj) Width × 103

(1, 1) [2.5422096920147401E!0002, 3.3990702176130446E!0002]
         . [0.0254220, 0.0339908]
N       [0.0044953, 0.0603775]

.   8.6

. 55.9
(1, 5) [9.2513778055918294E!0002, 1.1033908384199032E!0001]

         . [0.0925137, 0.1103391]
N       [0.0066034, 0.2148457]

.   17.8

. 208.2
(1, 9) [2.8693572427687149E!0002, 3.7601391162418901E!0002]

         . [  0.0286935, 0.0376014]
N       [!0.0158443, 0.0880232]

.     8.9

. 103.9
(2, 1) [5.0699038788017661E!0002, 6.3495793925095351E!0002]

         . [0.0506990, 0.0634958]
N       [0.0097055, 0.1147773]

.   12.8

. 105.1
(2, 5) [1.8060879979601782E!0001, 2.1053874248141714E!0001]

         . [0.1806087, 0.2105388]
N        [0.0133514, 0.4145900]

.   29.9

. 401.2
(2, 9) [5.7342513568695084E!0002, 7.0907900667225485E!0002]

         . [  0.0573425, 0.0709080]
N        [!0.0269411, 0.1674148]

.   13.6

. 194.4
(3, 1) [7.1830592564795797E!0002, 8.7386541698192201E!0002]

         . [0.0718305, 0.0873866]
N       [0.0124607, 0.1610751]

.   15.5

. 148.6

Table 4. Enclosures of solution to the problem (18) obtained by Nakao’s method
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In order to use our interval difference method we need to
evaluate the constant M (as previously, the constants P and Q
are unnecessary). Since the exact solution is unknown, we can
calculate Mnn for different values of n. The obtained results are
presented in Fig. 4. From this figure it follows that M . 38.9. For
h = 0.1 and * = 0.001 from (14) – (15) we obtain enclosures of
the exact solution presented in Table 5 (these enclosure are
thinness than those presented in Table 4).

10 20 30 40 50 60 70 80 90 100
38,5

38,6

38,7

38,8

38,9

n

Mnn

Figure 4. A graph for Mnn for n = 10, 20, ... , 100



Table 5. Enclosures of solution to the problem (18) obtained by the method (14) – (15)
(N – Nakao’s method)

(i, j) U(Xi , Yj) Width × 103

(1, 1) [2.8997209867618227E!0002, 3.1544047883616199E!0002]
         . [0.0289972, 0.0315441]     . 2.5

N . 8.6
(1, 5) [9.9185893244672646E!0002, 1.0604503147224523E!0001]

         . [0.0991858, 0.1060451]       . 6.9
N . 17.8

(1, 9) [3.1726223260720911E!0002, 3.4740582521688013E!0002]
         . [0.0317262, 0.0347406]     . 3.0

N . 8.9
(2, 1) [5.5847687322568013E!0002, 6.0189730374459988E!0002]

         . [0.0558476, 0.0601898]       . 4.3
N . 12.8

(2, 5) [1.9176543915299421E!0001, 2.0413632819753807E!0001]
         . [0.1917654, 0.2041364]     . 12.4

N . 29.9
(2, 9) [6.1877653239000653E!0002, 6.7170747737222414E!0002]

         . [0.0618776, 0.0671708]       . 5.3
N . 13.6

(3, 1) [7.7943013254661869E!0002, 8.3553350213709836E!0002]
         . [0.0779430, 0.0835534]       . 5.6

N . 15.5

Table 5. Enclosures of solution to the problem (18) obtained by the method (14) – (15)
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Example 4
Let

(19)

and

(20)

where S = [0, 8] × [0, 4]. The Poisson equation (19) with
Dirichlet's conditions (20) has the solution of the form
(see Fig. 5)

(21)



Numerical examples

42 of 46

The problem (19) – (20) cannot be solved by Nakao's method
since c = 0 (see [7] for details). But using our interval method
we can obtain enclosures of (21) at some mesh points.

0
1,6

3,2
4,8

6,4
8

-1
-0,6
-0,2
0,2
0,6

1

u(x, y)

x

y

Taking n = 80, m = 40 (h = k = 0.1),
M = 1.382 (this constant can be
estimated since the exact solution
is known), from our method in
which the interval [!*, *] does not
occur (this interval never occurs
for the Poisson equation), we
have obtained enclosures of the
exact solution presented in
Table 6. As previously, all
intervals contain the exact
solution at the mesh points.

[7] Marciniak, A., Nakao's Method and an Interval Difference Scheme of Second Order for Solving the Elliptic BVS, Computational
     Methods in Science and Technology 25 (2) (2019), 81–97.

Figure 5. A graph of solution (21)
                to the problem (19) – (20)



Table 6. Enclosures of solution (21) to the problem (19) – (20)
                   obtained by the method (14) – (15) (for selected i and j)

(i, j) U(Xi, Yj ) Width × 103

(40, 8) [!8.7570448853762087E!0001, !8.6786852449020102E!0001]
         . [!0.8757044, !0.8678686]
exact .  !0.8715758

. 7.8

(40, 16) [!9.6473261912851148E!0001, !9.5273425661315874E!0001]
         . [!0.9647326, !0.9527343]
exact .  !0.9583239

. 12.0

(40, 24) [!1.0049018906555416E+0000, !9.9269471083206701E!0001]
         . [!1.0049018, !0.9926948]
exact .  !0.9982978

. 12.2

(40, 32) [!8.7882382725746346E!0001, !8.7056138147601539E!0001]
         . [!0.8788238, !0.8705614]
exact .  !0.8742991

. 8.3

(16, 20)   [3.7736191041585845E!0001, 3.8651130223780119E!0001]
           . [0.3773619, 0.3865114]
  exact .  0.3820811

. 9.1

(32, 20) [!6.9697972969609782E!0001, !6.8473622032926368E!0001]
         . [!0.6969797, !0.6847363]
exact .  !0.6905517

. 12.2

(48, 20) [!8.4156500228698132E!0001, !8.2916731158025701E!0001]
         . [!0.8415650, !0.8291674]
exact .  !0.8348743

. 12.4

(64, 20)   [4.7127662788337241E!0001, 4.8095589691916753E!0001]
           . [0.4712766, 0.4809559]
  exact .  0.4760830

. 9.7

Table 6. Enclosures of solution (21) to the problem (19) – (20)
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In this presentation, on the basis of a few examples, we have
shown that the proposed interval difference method give better
enclosures of the exact solutions than those obtained by the
well-known Nakao's method.
Although Nakao's method can be applied to a lot of elliptic
boundary value problems, there are some inconveniences,
from which the main one consists in non-applicability of the
method to the well-known Poisson equation.
However, it should be added that the proposed interval method
can be considered only as an experimental one. Since some
quantities occurring in the method are adopted experimentally,
a strictly mathematical proof that the obtained intervals contain
exact solutions is rather impossible to receive.

But ...



Conclusions

If we assume that the constants M, P, Q and *-extension are
determined properly, then for the system of interval linear
equations (14), from which we obtain our enclosures, we can
quote the following theorem (see, e.g., [12, p. 89]):
If we can carry out all steps of a direct method for solving a
finite system of linear algebraic equations Ax = b in interval
arithmetic (if no attempted division by an interval containing
zero occurs, nor any overflow or underflow), the this system
has a unique solution for every real matrix in A and every real
vector in b, and the solution is contained in the resulting
interval vector X. 

[12] Moore, R. E, Kearfott, R. B., Cloud, M. J., Introduction to Interval Analysis, SIAM, Philadelphia (2009).
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That’s all
I wanted to present to you ...

... and thank you
for your attention
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