
1

Specifying and Proving Broadcast Properties with TLA

William Hipschman

Department of Computer Science

The University of North Carolina at Chapel Hill

Abstract

Although group communication is vitally important in many distributed systems, it is often reasoned about

informally. The seminal papers on broadcast use an operational mindset to argue for correctness. Given their

widespread use, it is important to argue formally that the correctness properties claimed for many broadcast variants

are actually met by their implementations. Because these ideas got their start from Lamport, we will continue the

tradition and use his temporal logic of actions as our proof language. In this paper we prove that reliable broadcast,

causal reliable broadcast, and atomic broadcast maintain validity, integrity, and agreement. We also show that causal

broadcast fulfills the happened-before order relation and atomic broadcast fulfills a total order relation.

1. Introduction

Group communication is important in distributed systems. Many distributed programs assume there is some

underlying method of group communication. Each of Consensus, Dining Philosophers, the Byzantine Generals

Problem, and replication, require some method for processes to communicate. In practice, this means that distributed

file systems, databases, and transactions often depend on some type of group communication.

Despite this widespread use, operating systems often do not support group communication primitives; they

merely provide access to kernel-level send and receive operations. It is then necessary for an application

programmer to build their own communication protocols. Because these systems may be safety-critical or have high

business impact, it is important to prove that they are correct.

In this paper we consider a common group communication paradigm; broadcast. We use the Temporal Logical

of Actions (TLA), devised by Lamport, to rigorously prove correctness and order properties for several types of

broadcast.

In Section 2 we review predicate logic, the logic of actions, and temporal logic. We then present a combination

of the three, TLA. Section 3 presents the formal model for broadcasts and discusses issues in the system model such

as synchrony and process link-interconnects. It also gives an overview of each of the properties that we will prove.

Section 4 defines basic broadcast. Sections 5, 6, and 7 define reliable broadcast, causal broadcast, and atomic

broadcast. These sections also prove the correctness and order properties for each broadcast variation.

2. Temporal Logic of Actions

 We will use the temporal logic of actions as our proof language. It is a proof system devised by Lamport

that combines predicate logic, the concept of actions, and temporal logic [10].

2.1 Logic

 Predicate Logic is a system that assigns Boolean values to predicates. The primary features of the language

are conjunction, , disjunction, , and negation, . Conditional implication, , and bi-conditional implication, ,

are often used for brevity, instead of their equivalent simplifications. We will also use first-order-logic, which,

informally, uses universal and existential quantification over sets to define Boolean functions. A reader not familiar

with predicate logic can find a cursory description in [10], but is encouraged to consult a discrete mathematics

textbook.

2.2 Actions

 Process executions can be represented as sequences of states and transitions [9]. A state is a non-Boolean

expression over variables and constants, while an action is a Boolean-value expression over variables that relates an

2

old state to a new state [10]. An action is enabled in a state if that action can be performed and yield a legal state

[10]. Often actions are variable assignments. We prime variables to indicate that they refer to a new state, so that

 indicates that the new value of is equal to one more than the old value of For convenience, when an

action, , may leave variables unchanged, we write 〈 〉, so that 〈 〉 [10].

2.3 Temporal Logic

 Temporal logic is a logic language for reasoning about when actions occur. The primary operator is always,

written as . We say that the predicate is satisfied if holds true in any state in a behavior. The operator

eventually, written as, , is defined for a formula as . Combining predicate logic, actions, and

temporal logic yields Raw Temporal Logic of Actions (RTLA), a superset of temporal logic of actions [10].

2.4 Temporal Logic of Actions

 The Temporal Logic of Actions is a subset of RTLA such every formula can be written in the form [10].

In this paper, this will not be a limitation. The interested reader should consult [10] for more information. The full

logic includes support for fairness and stuttering steps. The programs we deal with will not require these.

3. Model

 We will assume a system model that maintains the highest level of asynchronicity. This means that for

broadcast, reliable broadcast, and causal broadcast, we assume complete asynchronicity, that is, there is no bound on

message delay, clock drift, or time required to execute a step. Informally, this means that a process cannot

distinguish if another process has failed or if that other process is merely slow-running [5, 6]. For atomic broadcast

to be possible, it has been shown that the system must have enough synchrony to be able to solve the consensus

problem. While [5] gives this criteria, we will merely assume a solution to the consensus problem, and incorporate it

into the atomic broadcast protocol.

 We assume that messages are passed by underlying send and receive operations that are provided by the

operating system. A send operation loads a message onto a link, which transfers it to a destination. The receive

operation retrieves a message from the link and passes it to the appropriate process. We assume that links do not fail,

but may take arbitrarily long to transfer data; this assumption mirrors modern TCP/IP technology and does us no

harm with our failure model. Send or receive operation may fail by omission. An omission failure causes an

operation to be ignored, but leaves the functional unit intact [1, 4]; a send operation may omit sending a message it

was asked to, and then continue sending future messages. Therefore, if there are no failures then a message is

eventually delivered. Omission failures are the most severe asynchronous benign failure [1]. Crash failures, where a

process stops running entirely, can be modeled by infinitely many continuous omission failures. We will therefore

assume that failures only occur at the send/receive level. If a process attempts a send operation or a receive

operation that fails, then that process is in a failed state. Notably, we will not allow arbitrary, or Byzantine, failures,

where a process may send erroneous or illegal messages nor will we allow timing failures, where a process breaks

some timing contract [1, 4].

3.1 Formal Model

 A system can be described by a set of processes, , each of which has a clock, , and an application state,

 . The application state contains a member, the premature halting state, . We refer to the clock or state of a

process, , by or , respectively. A message, , is a tuple where , , and data is the

information to be sent. The set of all messages is denoted by and the set of all sequences of messages is denoted

by . An application protocol, , is a relation from a state to a message, and also from a state to a state. That is,

 and [7, 9]. Let the sequence of messages that a process, ,

has delivered, be denoted
 If a process, or if an operating system procedure doing working for that process, fails in any way, then we

say that the process is in the premature halting state. We will also assume that sequence numbers may be sent as part

of the field of a message, so that a message can be referred to as . For asynchronous systems

the clock will be ignored.

3

 In order to differentiate between programmatic constructs and predicates over variables, we define the

actions D and B over all messages and processes to represent, respectively, the action of delivering and

broadcasting a message.

 Each of these constructs corresponds to a type of broadcast, that is:

 When the broadcast type is unnecessary or implied by context, we will omit it and merely write or

 . In practice, these actions imply inserting the message into a buffer. If there are no link failures,
 and

3.2 Correctness and Order Properties

There are three primary correctness properties about which we are interested in reasoning: agreement,

integrity, and validity. A protocol satisfies the agreement property if, when any correct process delivers a message

 , then all correct processes eventually deliver [1, 8]. Formally, this is:

A protocol satisfies the integrity property if, for any message , every process delivers at most

once, and only if some process previously broadcast it [1, 8]. Formally, this is:

A protocol satisfies the validity property if, when any correct process broadcasts a message , then all

correct processes eventually deliver [1, 8]. Formally, this is:

While correctness properties are important, they do not guarantee anything about message order. We are

primarily interested in causal and total orders. We will reason about both by associating a sequence number with

every message [2]. We will refer to the sequence number of a message, by . Then a behavior

satisfies the causal order property iff :

That is, a causal order is a partial order over all messages in the system [1, 8, 9]. In practice, causal orders

are often informally defined as the happened before relation, where a process must deliver all messages in the order

that they happened, and deliver simultaneous messages in arbitrary order. It is important to note that two different

messages can have the same sequence number. A total order does not allow this equality [1, 8]. A behavior satisfies

the total order property iff:

It is worth noting that these correctness and order properties do not gives us all the requirements we might

desire. It possible for processes to become inconsistent while meeting each of these properties. We will not discuss

inconsistency, contamination, or uniformity in this paper; the interested reader can find more information in [7].

4

4. Broadcast

The most basic form of broadcast, hereafter

referred to merely as broadcast, is a form of one-to-N

communication in which one process sends a message to all

other processes. There are no imposed properties, though

our implementation maintains validity, which we will prove

in Section 4.2. Traditional pseudocode for broadcast is

given in Figure 1.

4.1 Specification

 Broadcast can be written in TLA as:

4.2 Proof

 Note that to prove that broadcast is valid, we need only concern ourselves with processes where .

Then validity is:

Lemma 1: Broadcast is valid

 Broadcast Definition

 Links Do Not Fail

 Broadcast Delivery Definition

Q.E.D.

5. Reliable Broadcast

 Reliable broadcast guarantees integrity, validity,

and agreement. It is accomplished by having a process

broadcast a message. Whenever a process delivers a

message from the broadcast protocol, it then broadcasts it

to all other processes before delivering it in the reliable

broadcast protocol [1, 2, 8]. We show pseudocode for a

version of reliable broadcast in Figure 2.

5.1 Specification

 Reliable broadcast can be written in TLA as:

Figure 2. Reliable Broadcast [1]

Figure 1. Broadcast

5

5.2 Proof

 Note that to prove that broadcast maintains validity, integrity, and agreement, we need only concern

ourselves with processes where . Then we have:

Lemma 2: Reliable Broadcast is valid

 This follows from the equivalence of reliable broadcast and broadcast.

Lemma 3: Reliable Broadcast maintains agreement

 Reliable Broadcast Delivery Definition

 Links Do Not Fail, Closure

 Validity of Reliable Broadcast

Q.E.D.

Lemma 4: Reliable Broadcast maintains integrity

 Reliable Broadcast Delivery Definition

 Conditional Definition

 Eliminate Vacuous Cases

 Exclusive Or Definition

 Predicate Logic

 Messages Must Originate At Some Process

6. Causal Broadcast

 Causal broadcast is the first ordered broadcast we will cover.

Figure 3 helps illustrate how causal broadcast functions; each message is

delivered only after all messages that it is causally dependent on are

delivered. The construction assumes an underlying FIFO reliable

broadcast. While it is not discussed at length here, a FIFO reliable

broadcast guarantees reliability in addition to a FIFO delivery of

messages that come from the same process [1, 2, 8].

6.1 Specification

 In TLA, causal broadcast can be written as:

 〈 〉

Figure 3. Causal Broadcast [1]

6

6.2 Proof

 Note that to prove that causal broadcast maintains causal order, we need only concern ourselves with

processes where . Then we have:

Lemma 5: Causal Broadcast is valid

 This follows trivially from the equivalence of causal broadcast and FIFO reliable broadcast.

Lemma 6: Reliable Broadcast maintains agreement

 This follows trivially from the equivalence of causal broadcast and FIFO reliable broadcast.

Lemma 7: Reliable Broadcast maintains integrity

 This follows trivially from the equivalence of causal broadcast and FIFO reliable broadcast.

Lemma 8: Reliable Broadcast maintains causal order

 The causal order property is explicitly stated in the definition of causal delivery.

7. Atomic Broadcast

 Atomic broadcast guarantees a total

order over all messages. Because consensus can

be reduced to atomic broadcast, atomic broadcast

can only be implemented in a system where there

is a solution to consensus. We assume a consensus

solution that generates unique sequence numbers

for each message [1, 2, 3, 8].

7.1 Specification

 Atomic broadcast is specified in TLA as:

Where is

prepended to each message. Note that the delivery

specification is similar to the causal broadcast

deliver specification. The only difference is in the

underlying broadcast type and the sequence

number generation. In the preceding section,

sequence numbers fulfilled a causal partial order,

while here they are defined by consensus to fulfill

a total order.

 :

Figure 4. Atomic Broadcast [3]

7

7.2 Proof

 Note that to prove that atomic broadcast maintains total order, we need only concern ourselves with

processes where . Then we have:

Lemma 9: Causal Broadcast is valid

 This follows trivially from the equivalence of atomic broadcast and reliable broadcast.

Lemma 10: Reliable Broadcast maintains agreement

 This follows trivially from the equivalence of atomic broadcast and reliable broadcast.

Lemma 11: Reliable Broadcast maintains integrity

 This follows trivially from the equivalence of atomic broadcast and reliable broadcast.

Lemma 12: Reliable Broadcast maintains total order

 Total order follows trivially from the uniqueness of sequence numbers and the atomic broadcast delivery

definition.

7. Conclusion

 Broadcast is a vital operation in any distributed system. It can be used for message passing, agreement

protocols, replication, and recovery. Despite this widespread use, most textbooks and papers do not rigorously prove

broadcast. They either use operational proofs or omit proofs entirely. We proved that TLA specifications for

broadcast, reliable broadcast, causal broadcast, and atomic broadcast fulfill the requirements for several delivery

correctness and order properties. Many of these proofs were simplified by the use of predicate logic in TLA

specifications; the proof obligations were often present in their entirety within the program specification. It would

be worthwhile to perform assertational proofs of broadcast protocols written in pseudocode, as opposed to TLA.

Additionally, commercial grade broadcast protocols should be proved correct, as they are more complicated than the

textbook broadcast variants provided here.

References

[1] P. Bernstein, V. Hadzilacos, and N. Goodman, “Distributed Systems,” Addison-Wesley, 1987.

[2] K. Birman, T. Joseph, “Reliable Communication in the Presence of Failures,” ACM Transactions on

Computer Systems, Vol. 5, Issue 1, Feb. 1987, pp.47-76.

[3] T. Chandra, S. Toueg, “Unreliable Failure Detectors for Reliable Distributed Systems,” Journal of the ACM,

Vol. 43, No. 2, March 1996, pp. 225-267.

[4] G. Coulouris, J. Dollimore, T. Kindberg, and G. Blair, “Distributed Systems: Concepts and Design,” Edition

Five, Addison-Wesley, 2012.

[5] D. Dolev, C. Dwork, and L. Stockmeyer, “On the Minimal Synchronism Needed for Distributed Consenus,”

Journal of the ACM, Vol. 34, No. 1, 1987, pp. 77-97.

[6] M. Fischer, N. Lynch, and M. Patterson, “Impossibility of Distributed Consensus with One Faulty Process,”

Journal of the ACM, Vol. 32, No. 2, April 1985, pp. 374-382.

[7] A. Gopal, “Fault-Tolerant Broadcasts and Multicasts: The Problem of Inconsistency and Contamination,”

Cornell University, Ph.D. Dissertation, 1991.

[8] V. Hadzilacos, and S. Toueg, “A Modular Apprach to Fault-Tolerant Broadcasts and Related Problems,”

Technical Report, Department of Computer Science, University of Toronto.

[9] L. Lamport, “Time, Clocks, and the Ordering of Events in a Distributed System,” Communications of the

ACM, Vol. 21, No. 7, July 1978, pp. 558-565.

8

[10] L. Lamport, “The Temporal Logic of Actions,” ACM Transactions on Programming Languages and

Systems, Vol. 16, No. 3, May 1994, pp. 872-923.

