
Synchronization in

Distributed Systems

Distributed

operating systems

Clock synchronization

� Physical (real-time) clock synchronization

� Cristian's clock synchronization algorithm

� Berkeley clock synchronization algorithm

� Averaging clock synchronization algorithms (decentralized)

� Marzullo’s algorithm

� Intersection algorithm

� Logical (Virtual-time) Clock Synchronization

� Happened-before relation

� Scalar logical clocks

� Logical clock synchronization algorithm (Lamport)

� Vector clocks (Fidge and Mattern)

Physical (real-time) clock synchronization

� Universal Coordinated Time (UTC) is the basis of all modern civil
timekeeping. To provide UTC to people, who need precise time, the National
Institute of Standard Time (NIST) operates a short-wave radio station with
call letters WWV from Fort Collins, Colorado.

Clock synchronization

Cristian's clock synchronization algorithm1

This algorithm is well suited to systems in which one machine has a WWV

receiver (it is called time server) and the goal is to have all the other

machines stay synchronized with it.

� Periodically, each machine sends a message to the time server asking it for

the current time. That machine responds as fast as it can with a message

containing its current time, CUTC.

� When the sender gets the reply it can:

� just set its clock to CUTC,

� increase the value in the message by propagation time,

� additionally apply handle time.

Cristian's clock synchronization algorithm2

T0

T1

Both T0 and T1 are measured with the same clock

Sending

machine

Time

server

I, Interrupt handling timeT
im

e

Berkeley clock synchronization algorithm

� The time server is active, polling every machine periodically to ask what

time it is there. Based on answers, it computes an average time and tells all

the other machines to advance their clocks to the new time or slow their

clocks down until some specified reduction has been achieved.

Averaging clock synchronization algorithms (decentralized)

� At the beginning of each interval, every machine broadcasts the current time

according to its clock. After a machine broadcasts its time, it starts a local

timer to collect all other broadcasts that arrive during some interval S. When

all broadcasts arrive, an algorithm is run to compute a new time from them.

The simplest algorithm is just to average the values from all other machines.

DTS and NTP

Two popular services for synchronizing clock and for providing timing

information over a wide variety of interconnected networks are:

� the Distributed Time Service (DTS) and

� the Network Time Protocol (NTP). b1

Slajd 9

b1 Marzullo's algorithm
bartek; 2005-12-19

Marzullo’s algorithm1

Marzullo’s algorithm is used to estimate time on the basis of a number of noisy time

sources. A modified version of this algorithm called the intersection algorithm is part

of the Network Time Protocol.

The general idea of the algorithm is to take the smallest interval consistent with the

largest number of sources, where consistent intervals are intervals which intersect.

Example:

� [7, 14], [13, 16], [10, 15]

[13, 14] is consistent with all three intervals.

� [7, 8], [9, 13], [12, 15]

There is no interval consistent with all three intervals but [12, 13] is consistent with

the largest number of intervals.

� [1, 5], [4, 7], [6, 8]

There is no interval consistent with all three intervals but there are two intervals

consistent with the largest number of intervals: [4, 5] and [6, 7].

After determining an interval various approaches could be used to specify the result e.g.:

the center of the interval or value calculated on the basis of a probabilistic model.

Marzullo’s algorithm2

In the algorithm intervals [t-d, t+d] defining the time of sources are represented

by two tuples of the form 〈offset, type〉: 〈t-d; -1〉 and 〈t+d; +1〉. In the tuples

-1 stands for the beginning of a range and +1 represents the end.

Variables used in the algorithm:

best the largest number of overlapping intervals found so far

current a current number of overlapping intervals

[beststart, bestend]

the best interval found so far

i an index

offset[i] an offset of the ith tuple

type[i] a type of the ith tuple

Marzullo’s algorithm3

function getTimeInterval(time intervals)

1. build the list of tuples 〈offset; type〉

2. sort the list of tuples by the offset

/* If there are tuples with the same offset, one of the possible solutions is

to put the tuples with the type +1 before the tuples of the type -1 to

omit overlaps with no duration. */

3. best ← 0

4. current ← 0

5. for each tuple in the list in ascending order

6. current ← current – type[i]

7. if current > best then

8. best ← current

9. beststart ← offset[i]

10. bestend ← offset[i + 1]

11. return [beststart, bestend]

Marzullo’s algorithm4

Input: [3, 10], [1,6], [4, 8], [6,13], [9, 12]

Some steps from the algorithm:

[3, 10] � 〈3; -1〉, 〈10; +1〉 |

[1,6] � 〈1; -1〉, 〈6; +1〉 |

[4, 8] � 〈4; -1〉, 〈8; +1〉 |��

[6,13] � 〈6; -1〉, 〈13; +1〉 |

[9, 12] � 〈9; -1〉, 〈12; +1〉 |

�� 〈1; -1〉 〈3; -1〉 〈4; -1〉 〈6; +1〉 〈6; -1〉 〈8; +1〉 〈9; -1〉 〈10; +1〉 〈12; +1〉 〈13; +1〉

Loops (lines 5.– 10.):

tuple current best [beststart, bestend]

1 〈1; +1〉 1 1 [1, 3]

2 〈3; +1〉 2 2 [3, 4]

3 〈4; +1〉 3 3 [4, 6]

…

8 〈10; -1〉 2 3 [4, 6]

9 〈12; -1〉 1 3 [4, 6]

10 〈13; -1〉 0 3 [4, 6]

?

Intersection algorithm1

The Intersection algorithm is a modified version of Marzullo’s algorithm. The goal of
this algorithm is to produce the largest single intersection containing only
truechimers. Truechimer is a clock that maintains timekeeping accuracy to a
previously published (and trusted) standard, while a falseticker is a clock that does
not [RFC 1305]. As in Marzullo’s algorithm there are given m intervals of the form
[t-d, t+d].

The main difference between these two algorithms is that the Marzullo’s algorithm
returns interval which does not necessarily include the center point of all the sources
in the intersection. However, in the Intersection algorithm the result interval includes
the interval returned by Murzallo’s algorithm and the center point. In result such
interval is larger and this allows to use some statistical data to select a point within
the interval.

The Intersection algorithm looks for an interval with m-f sources, where f is the number
of sources with the value outside the confidence band (wrong sources). To get the
best result it is assumed that f should be as small as possible then the result is valid if
f < m/2.

In comparison to Marzullo’s algorithm for each interval there are three types of tuples:

1) the lower endpoint 〈t-d; -1〉 ,

2) the midpoint 〈t; 0〉 ,

3) the upper endpoint 〈t+d; +1〉 .

Intersection algorithm2

Variables used in the algorithm:

f a number of false tickers

m a number of all time sources

endcount a number of the current endpoints

midcount a number of the current midpoints

low a value of the lower endpoint

high a value of the upper endpoint

offset an offset of the current tuple

type a type of the current tuple

Intersection algorithm3

function getTimeInterval(time intervals)

1. build the list of tuples 〈offset; type〉

2. sort endpoint list by increasing offset || type

3. for (f ← 0; f < m/2; f ← f + 1) /* check if there are too many falsetickers */

4. midcount ← 0

5. endcount ← 0

6. for each 〈offset; type〉 in ascending order /* find lower endpoint */

7. endcount ← endcount − type

8. low ← offset

9. if (endcount ≥ m − f) then break

10. if (type = 0) then midcount ← midcount + 1

11. endcount ← 0

12. for each 〈offset; type〉 in descending order /* find upper endpoint */

13. endcount ← endcount + type

14. high ← offset

15. if (endcount ≥ m − f) then break

16. if (type = 0) then midcount ← midcount + 1

17. if (midcount ≤ f) then break /* check whether too many midpoints are
outside the found interval and continue until all falsetickers found */

18. if (low > high) then

19. return FAILED /* the proper intersection could not be found*/

20. return [low, high]

Intersection algorithm4

Input: [3, 10], [1,6], [4, 8], [6,13], [9, 12]

Some steps from the algorithm:

[3, 10] � 〈3; -1〉, 〈6,5; 0〉, 〈10; +1〉 |

[1,6] � 〈1; -1〉, 〈3,5; 0〉, 〈6; +1〉 |

[4, 8] � 〈4; -1〉, 〈6; 0〉, 〈8; +1〉 |��

[6,13] � 〈6; -1〉, 〈9,5; 0〉, 〈13; +1〉 |

[9, 12] � 〈9; -1〉, 〈10,5; 0〉, 〈12; +1〉 |

�� 〈1; -1〉 〈3; -1〉 〈3,5; 0〉 〈4; -1〉 〈6; -1〉 〈6; 0〉 〈6; +1〉 〈6,5; 0〉 〈8; +1〉 〈9; -1〉 〈9,5; 0〉
〈10; +1〉 〈10,5; 0〉 〈12; +1〉 〈13; +1〉

Loops (lines 3.– 17.):

f m [low, high]

1 0 10 [13, 1]

2 1 4 [6, 6]

3 2 2 [4, 10]

Happened-before relation1

� One can point out that clock synchronization need not to be absolute. If two

processes do not interact, it is not necessary that their clocks be

synchronized because the lack of synchronization would not be observable

and thus could not cause problems. For a certain class of algorithms, it is the

internal consistency of the clocks that matters, not whether they are

particularly close to the real time.

� The happened before relation (causal precedence relation), denoted by →,

on a set of events satisfies the following conditions:

1) If a and b are events in the same process and a occurs before b, then a→b.

2) If a is the event of sending a message by one process and b is the event of

the receipt of the same message by another process, then a→b.

3) If a→b and b→c, then a→c. That is, happen before is a transitive relation.

Happened-before relation2

Formally:

1) i=j ∧ k<l,

2) i ≠ j, a ei
k is the event of sending a message m by process Pi and

ej
l is the event of the receipt of the same message m by process

Pj,

3) there exists a sequence of events e0 e1 ... en, such that e0 = ei
k,

en = ej
l and for each pair (ex , ex+1), where 0 ≤ x ≤ n point 1 or 2

holds.

ei
k→ ej

l ⇔

Happened-before relation – space-time diagram

If ei
k→ ej

l or ej
l → ei

k then these events are called causally dependent, otherwise causally
independent or concurrent. Concurrent events ei

k and ej
l are denoted by ei

k || ej
l.

P2

P1

P3

0 1 2 3 4 5 6 7 8 9 10

e1
0 e1

1

e2
0

e3
0

m1
m3

m2

Scalar logical clocks

Logical clock is a function (mechanism) assigning to each event e a value C(e)

(timestamp) satisfying the following condition:

ei
k→ ej

l ⇒ C(ei
k) < C(ej

l)

Logical clock synchronization algorithm (Lamport)1

� Each process Pi increments Ci by d between any two successive events.

� If a is the event of sending a message m by process Pi, then message m

contains a timestamp Tm = Ci(a) and upon receiving the message m a process

Pj sets:

� Cj = max(Cj , Tm) + d or

� Cj = max(Cj , Tm + d)

� Note, that Lamport’s clock satisfies condition:

ei
k→ ej

l ⇒ C(ei
k) < C(ej

l)

but the reverse implication is not true!!

Logical clock synchronization algorithm (Lamport)2



||

� <

>

=

I T = N

Implementation of logical clocks by using physical clocks

Vector clocks (Fidge and Mattern)

Each process is equipped with a clock Ci, which is an integer vector of length n.

The clock Ci can be thought of as a function that assigns a vector Ci(a) to

any event a. Ci(a) is referred to as the timestamp of event a at Pi. Ci[i] the ith

entry of Ci corresponds to Pi‘s own logical time. Ci[j], for j≠i is Pi‘s best

guess of the logical time at Pj. More specifically, at any point in time, the jth

entry of Ci indicates the time of occurrence of the last event at Pj which

“happened before” the current point in time at Pi.

Vector clock implementation

� Clock Ci is incremented between any two successive events in process. Pi:

Ci[i] := Ci[i] + d.

� If event a is the sending of the message m by process Pi, then message m is

assigned a vector timestamp Tm = Ci[n].

� On receiving the same message m by process Pj, Cj is updated as follows:

∀k Cj[k] := max(Cj[k], Tm[k])

� Note, that on the receipt of message, a process learns about the more recent

clock value of the rest of processes in the system.

Vector clocks

Theorem. At any instant:

∀ i,j Ci[i] ≥ Cj[i]

Theorem. In the system of vector clocks:

ei
k→ ej

l ⇔ C(ei
k) < C(ej

l)

Mutual exclusion

� A Centralized Approach

� Distributed Algorithms

� Lamport's algorithm

� Ricart-Agrawala algorithm

� Maekawa's algorithm

� Token-Based Algorithms

� Suzuki-Kasami's broadcast algorithm

� Raymond's tree-based algorithm

A centralized approach1

1) One process is elected as the coordinator.

2) Whenever process wants to enter a critical region, it sends a request message

to the coordinator stating which critical region it wants to enter and asking

for permission.

3) If no other process is currently in that critical region, the coordinator sends

back a reply granting permission. When the reply arrives, the requesting

process enters the critical region.

4) When another process asks for permission to enter the same critical region,

the coordinator just refrains from replying, thus blocking process 2, which is

waiting for a reply. Alternatively, it could send a reply saying "permission

denied".

A centralized approach2

Properties of the algorithm:

� it is fair,

� no starvation,

� easy to implement,

� requires only three messages,

� the coordinator is a single point of failure.

A centralized approach3

P1 P3

P2

P2

Status of

request queue
P3

PC

(6
)

R
e
p

ly

(2) Reply (8) Reply

(1) Request

(5) Release

(3
)

R
e
q

u
e
s
t

(7
)

R
e
le

a
s
e

(9) Release

(4) Request

Lamport's algorithm1

Lamport was the first to give a distributed mutual exclusion algorithm as an

illustration of his clock synchronization scheme. Let Ri be the request set of

site Si, i.e. the set of sites from which Si needs permission when it wants to

enter CS. In Lamport's algorithm, ∀i : 1 ≤ i ≤ N : Ri = {S1, S2, …, SN}.

Every site Si keeps a queue, request_queuei, which contains mutual

exclusion requests ordered by their timestamps. This algorithm requires

messages to be delivered in the FIFO order between every pair of sites.

Lamport's algorithm2

Requesting the critical section.

1) When a site Si wants to enter the CS, it sends REQUEST(tsi, i) message to all the
sites in its request set Ri and places the request on request_queuei (tsi is the
timestamp of the request).

2) When a site Sj receives the REQUEST(tsi, i) message from site Si, it returns a
timestamped REPLY message to Si and places site S'i s request on request_queuej.

Executing the critical section.

1) Site Si enters the CS when the two following conditions hold:

a) [L1:] Si has received a message with timestamp larger than (tsi, i) from all
other sites.

b) [L2:] S'is request is at the top request_queuei.

Releasing the critical section.

1) Site Si, upon exiting the CS, removes its request from the top of its request queue and
sends a timestamped RELEASE message to all the sites in its request set.

2) When a site Sj receives a RELEASE message from site Si, it removes S'is request
from its request queue.

� When a site removes a request from its request queue, its own request may come at
the top of the queue, enabling it to enter CS. The algorithm executes CS requests in
the increasing order of timestamps.

Lamport's algorithm3

� Sites S1 and S2 are making requests for the CS

� Site S2 enters the CS

� Site S2 exits the CS and sends RELEASE messages

� Site S1 enters the CS

S2

S1

S3

(2, 1)

(1, 2)

(2, 1)(1, 2)

(2, 1)(1, 2)

(1, 2)(1, 2) (2, 1)

(2, 1)

(2, 1)

(2, 1)

S2 enters the critical section S2 exits the critical section

S1 enters the critical section

The Ricart-Agrawala algorithm1

The Ricart-Agrawala algorithm is an optimization of Lamport's algorithm that

dispenses with RELEASE messages by cleverly merging them with REPLY

messages. In this algorithm also, ∀i : 1 ≤ i ≤ N : Ri = {S1, S2, …, SN}.

The Ricart-Agrawala algorithm2

Requesting the critical section.

1) When a site Si wants to enter the CS, it sends a timestamped REQUEST message to
all the sites in its request set.

2) When site Sj receives a REQUEST message from site Si, it sends a REPLY message
to site Si if site Sj is neither requesting nor executing the CS or if site Sj is requesting
and S'is request's timestamp is smaller than Sj's own request's timestamp. The request
is deferred otherwise.

Executing the critical section

1) Site Si enters the CS after it has received REPLY messages from all the sites in its
request set.

Releasing the critical section

1) When site Si exits the CS, it sends REPLY messages to all the deferred requests.

� A site's REPLY messages are blocked only by sites that are requesting the CS with
higher priority (i.e., a smaller timestamp). Thus, when a site sends out REPLY
messages to all the deferred requests, the site with the next highest priority request
receives the last needed REPLY message and enters the CS. The execution of CS
requests in this algorithm is always in the order of their timestamps.

The Ricart-Agrawala algorithm3

� Sites S1 and S2 are making requests for the CS

� Site S2 enters the CS

� Site S2 exits the CS and sends RELEASE messages

� Site S1 enters the CS

S2

S1

S3

(2, 1)

(1, 2)

(1, 2)

(2, 1)

(2, 1)

S2 enters the critical section S2 exits the critical section

S1 enters the critical section

(2, 1)(1, 2)

(1, 2)

(1, 2) (2, 1)

(2, 1)

Maekawa's algorithm1

Maekawa's algorithm is a departure from the general trend in the following two

ways:

� First , a site does not request permission from every other site, but only from

a subset of the sites. This is a radically different approach as compared to the

Lamport and the Ricart-Agrawala algorithms, where all sites participate in

the conflict resolution of all other sites. In Maekawa's algorithm the request

set of sites are chosen such that ∀i ∀j : 1 ≤ i, j ≤ N :: Ri ∩ Rj.≠ Φ.

Consequently, every pair of sites has a site that mediates conflicts between

that pair.

� Second, in Maekawa's algorithm a site can send out only one REPLY

message at a time. A site can only send a REPLY message only after it has

received a RELEASE message for the previous REPLY message. Therefore,

a site Si locks all the sites in Ri in exclusive mode before executing its CS.

Maekawa's algorithm2

The Construction of request sets. The request sets for sites in Maekawa's

algorithm are constructed to satisfy the following conditions:

M1: (∀i ∀j : i≠j, 1 ≤ i, j ≤ N :: Ri ∩ Rj ≠ Φ).

M2: (∀i : 1 ≤ i ≤ N :: Si ∈ Ri)

M3: (∀i : 1 ≤ i ≤ N :: |Ri | = K)

M4: Any site Sj is contained in K number of Ris, 1 ≤ i, j ≤ N.

Maekawa established the following relation between N and K:

N = K(K-1)+1.

This relation gives:

|Ri | = sqrt(N).

Maekawa's algorithm3

Since there is at least one common site between the request sets of any two sites

(condition M1), every pair of sites has a common site that mediates conflicts

between the pair. A site can have only one outstanding REPLY message at

any time; that is, it grants permission to an incoming request if it has not

granted permission to some other site. Therefore, mutual exclusion is

guaranteed. This algorithm requires the delivery of messages to be in the

order they are sent between every pair of sites.

Conditions M1 and M2 are necessary for correctness, whereas conditions

M3 and M4 provide other desirable features to the algorithm. Condition M3

states that the size of the request sets of all the sites must be equal, implying

that all sites should have to do an equal amount of work to invoke mutual

exclusion. Condition M4 enforces that exactly the same number of sites

should request permission from any site, implying that all sites have

responsibility in granting permission to other sites.

Maekawa's algorithm4

Requesting the critical section.

1) A site Si requests access to the CS by sending REQUEST(i) messages to all
the sites in its request set Ri.

2) When a site Sj receives the REQUEST(i) message, it sends a REPLY(j)
message to Si provided it hasn't sent a REPLY message to a site from the
time it received the last RELEASE message. Otherwise, it queues up the
REQUEST for later consideration.

Executing the critical section.

1) Site Si accesses the CS only after receiving REPLY messages from all the
sites in Ri.

Releasing the critical section.

1) After the execution of the CS is over, site Si sends RELEASE(i) message to
all the sites in Ri.

2) When a site Sj receives a RELEASE(i) message from site Si, it sends a
REPLY message to the next site waiting in the queue and deletes that entry
from the queue. If the queue is empty, then site updates its state to reflect
that the site has not sent out any REPLY message.

Suzuki-Kasami's broadcast algorithm1

In the Suzuki-Kasami's algorithm , if a site attempting to enter the CS does not

have the token, it broadcasts a REQUEST message for the token to all the

other sites. A site that possesses the token sends it to the requesting site upon

receiving its REQUEST message. If a site receives a REQUEST message

when it is executing the CS, it sends the token only after it has exited the CS.

A site holding the token can enter its CS. A site holding the token can enter

its CS repeatedly until it sends the token to some other site.

The main design issues in this algorithm are:

1) distinguishing outdated REQUEST messages from current REQUEST

messages and

2) determining which site has an outstanding request for the CS.

Suzuki-Kasami's broadcast algorithm2

Outdated REQUEST messages are distinguished from current

REQUEST messages in the following manner:

• A REQUEST message of site Sj has the form REQUEST(j,

n), where n = 1, 2, ... is a sequence number that indicates that

sites Sj is requesting its nth CS execution.

• A site Si keeps an array of integers RNi[1..N], where RNi[j] is

the largest sequence number received so far in a REQUEST

message from site Sj.

• A REQUEST(j, n) message received by site Si is outdated if

RNi[j] > n.

• When site Si receives a REQUEST(j, n) message, it sets

RNi[j]:=max(RNi[j], n).

Suzuki-Kasami's broadcast algorithm2

• Sites with outstanding requests for the CS are determined

using the token contents.

• The token is composed of token queue Q and token array

LN, where Q is a queue of requesting nodes and LN is an

array of size N, such that LN[j] is the sequence number of

the request that site Sj executed most recently.

Suzuki-Kasami's broadcast algorithm2

• After executing its CS, a site Si updates LN[i]:=RNi[i] to indicate that

its request corresponding to sequence number RNi[i] has been

executed.

• The token array LN[1..N] permits a site to determine if some other

site has an outstanding request for the CS.

• Note that at site Si if RNi[j]=LN[j]+1, then site Sj is currently

requesting the token.

• After having executed the CS, a site checks this condition for all the

j's to determine all the sites that are requesting the token and places

their ids in queue Q if not already present in this queue Q.

• Then the site sends the token to the site at the head of the queue Q.

Suzuki-Kasami's broadcast algorithm3

Requesting the critical section.

1) If the requesting site Si does not have the token, then it
increments its sequence number, RNi[i], and sends a
REQUEST(i, sn) message to all other sites (sn is the
updated value of RNi[i]).

2) When a site Sj receives this message, it sets RNj[i] to
max(RNj[i], sn). If Sj has the idle token, then it sends
the token to Si if RNj[i]=LN[i]+1.

Suzuki-Kasami's broadcast algorithm3

Executing the critical section.

1)Site Si executes the CS when it has received the
token.

Suzuki-Kasami's broadcast algorithm3

Releasing the critical section. Having finished the execution of
the CS, site Si takes the following actions:

1) It sets LN[i] element of the token array equal to RNi[i].

2) For every site Sj whose ID is not in the token queue, it appends

its ID to the token queue if RNi[j]=LN[j]+1.

3) If token queue is nonempty after the above update, then it

deletes the top site ID from the queue and sends the token to the

site indicated by the ID.

� The Suzuki-Kasami algorithm is not symmetric because a site
retains the token even if it does not have a request for the CS,
which is contrary to the spirit of Ricart and Agrawala's
definition of a symmetric algorithm: "no site possesses the right
to access its CS when it has not been requested."

Raymond's tree-based algorithm1

In Raymond's tree-based algorithm, sites are logically arranged as a directed tree

such that the edges of the tree are assigned directions toward the site (root of

the tree) that has the token. Every site has a local variable holder that points

to an immediate neighbor node on a directed path to the root node. Thus,

holder variables at the sites define logical tree structure among the sites. If

we follow holder variables at sites, every site has a directed path leading to

the site holding the token. At root site, holder points to itself.

Every site keeps a FIFO queue, called request_q, which stores the requests of

those neighboring sites that have sent a request to this site, but have not yet

been sent the token.

Raymond's tree-based algorithm2

Requesting the critical section.

1) When a site wants to enter the CS, it sends a REQUEST message to the
node along the directed path to the root, provided it does not hold the token
and its request_q is empty. It then adds its request to its request_q. (Note
that a nonempty request_q at a site indicates that the site has sent a
REQUEST message to the root node for the top entry in its request_q).

2) When a site recives a REQUEST message, it places the REQUEST in its
request_q and sends a REQUEST message along the directed path to the
root provided it has not sent out a REQUEST message on its outgoing edge
(for a previously received REQUEST on its request_q).

3) When the root site receives a REQUEST message, it sends the token to the
site from which it received the REQUEST message and sets its holder
variable to point at that site.

4) When a site receives the token, it deletes the top entry from its request_q,
sends the token to the site indicated in this entry, and sets its holder variable
to point at that site. If the request_q is nonempty at this point, then the site
sends a REQUEST message to the site which is pointed at by holder
variable.

Raymond's tree-based algorithm3

Executing the critical section.

1) A site enters the CS when it receives the token and its own entry is at the top

of its request_q. In this case, the site deletes the top entry from its request_q

and enters the CS.

Releasing the critical section. After a site has finished execution of the CS, it

takes the following actions:

1) If its request_q is nonempty, then it deletes the top entry from its request_q,

sends the token to that site, and sets its holder variable to point at that site.

2) If the request_q is nonempty at this point, then the site sends a REQUEST

message to the site which is pointed at by the holder variable.

Raymond's tree-based algorithm4

� Sites arranged in a tree configuration.

� Site S5 is requesting the token.

� The token is in transit to S5.

� State after S5 has received the token.

S1

S2 S3

S4 S5 S6 S7

Election algorithms

� Bully algorithm

� Ring algorithm

Bully algorithm

When a process notices that the coordinator is no longer responding to requests,

it initiates an election.

1) Process P sends an ELECTION message to all processes with higher

numbers.

2) If no one responds, P wins the election and becomes coordinator.

3) If one of the higher-ups answers, it takes over. P's job is done.

At any moment, a process can get an ELECTION message from one of its lower

numbered colleagues. When such a message arrives, the receiver sends an

OK message back to the sender to indicate that he is alive and will take over.

The receiver then holds an election, unless it is already holding one.

Eventually, all processes give up but one, and that one is the new

coordinator. It announces its victory by sending all processes a message

telling them that starting immediately it is the new coordinator.

Ring algorithm

The algorithm uses a ring, but without a token. The processes are physically or

logically ordered.

1) When any process notices that coordinator is not functioning, it builds an

ELECTION message containing its own process number and sends the

message to its successor, and so on.

2) Eventually, the message gets back to the process that started it all. The

message type is changed to COORDINATOR and circulated once again,

this time to inform everyone who the coordinator is (the list member with

the highest number).

The End

...

and

they lived
happily

ever after

