
Speculation Meets Checkpointing

Arkadiusz Danilecki and Micha�l Szychowiak

Institute of Computing Science
Poznań University of Technology

Piotrowo 3a, 60-965 Poznań, Poland
{adanilecki, mszychowiak}@cs.put.poznan.pl

Abstract. This paper describes a checkpointing mechanism destined for
Distributed Shared Memory (DSM) systems with speculative prefetch-
ing. Speculation is a general technique involving prediction of the fu-
ture of a computation, namely accesses to shared objects unavailable
on the accessing node (read faults). Thanks to such predictions objects
can be fetched before the actual access operation is performed, result-
ing, at least potentially, in considerable performance improvement. The
proposed mechanism is based on independent incremental checkpoint-
ing integrated with a coherence protocol introducing little overhead.
It ensures the consistency of checkpoints, allowing fast recovery from
failures.

1 Introduction

Modern Distributed Shared Memory (DSM) systems reveal increasing demands
of efficiency, reliability and robustness. System developers tend to deliver fast
systems which would allow to efficiently parallelize distributed processes. Unfor-
tunately, failures of some system nodes can cause loss of results of the processing
and require to restart the computation from the beginning. One of major tech-
niques used to prevent such restarts is checkpointing, which consists in periodi-
cally saving of the processing state (a checkpoint) in order to restore the saved
state in case of a further failure. Then, the computation is restarted from the
restored checkpoint. Only the checkpoints which represent a consistent global
state of the system can be used (the state of a DSM system is usually identified
with the content of the memory).

The communication induced (or dependency induced) checkpointing approach
offers simple creation of consistent checkpoints, storing a new checkpoint each
time a recovery dependency is created (e.g. interprocess communication), but
its overhead turns out to be too prohibitive for general distributed applications.
However, this approach has been successfully applied in DSM systems in strict
correlation with memory coherence protocols. This correlation allows to reduce
the number of actual dependencies and to significantly limit the checkpointing
overhead ([2],[6]).

Speculation is a technique intended to improve the efficiency of DSM opera-
tions. The speculation methods are required to be very fast, while they do not

V.N. Alexandrov et al. (Eds.): ICCS 2006, Part I, LNCS 3991, pp. 753–760, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

754 A. Danilecki and M. Szychowiak

necessary have to make correct predictions, as the cost of the mistakes is usu-
ally considered negligible. They include speculative pushes of shared objects
to processing nodes before they would actually demand access [7], prefetching
of the shared objects [1], or self-invalidation of shared objects [5] among other
techniques.

This paper is organized as follows. Section 2 presents a formal definition of the
system model and speculation operations. In Section 3 we discuss the concept
of a checkpointing mechanism destined for DSM systems with speculation and
propose a SpecCkpt protocol. Concluding remarks and future work are proposed
in Section 4.

2 DSM System Model

A DSM system is an asynchronous distributed system composed of a finite set
of sequential processes P1, P2, ..., Pn that can access a finite set O of shared
objects. Each Pi is executed on a DSM node ni composed of a local processor and
a volatile local memory used to store shared objects accessed by Pi. Each object
consists of several values (object members) and object methods which read and
modify object members (here we adopt the object-oriented approach; however,
our work is also applicable to variable-based or page-based shared memory). The
concatenation of the values of all members of object x ∈ O is referred to as object
value of x. We consider here read-write objects, i.e. each method of x has been
classified either as read-only (if it does not change the value of x, and, in case
of nested method invocation, all invoked methods are also read-only) or read-
and-modify (otherwise). Read access ri(x) to object x is issued when process
Pi invokes a read-only method of object x. Write access wi(x) to object x is
issued when process Pi invokes any other method of x. By ri(x)v we denote that
the read operation returns value v of x, and by wi(x)v that the write operation
stores value v to x.

DSM objects are replicated on distinct hosts to allow concurrent access to
the same data. Concurrent processing in an asynchronous system is in general
nondeterministic. A consistent state of DSM objects replicated on distinct nodes
is maintained by a coherence protocol and depends on the assumed consistency
model. Usually, one replica of every object is distinguished as master replica. The
set of all replicas of a given object is referred to as copyset. The process holding
master replica of object x is called x’s owner. A common approach is to enable
the owner an exclusive write access to the object.

The speculation introduces special part of the system, called the predictor,
which is responsible for predicting future actions of the processes (e.g. future
read and write accesses) and according reactions. Using speculation, however,
an object may be fetched from its owner before the actual read access (i.e.
prefetched), as a result of prediction. By pi(x) we will distinguish a prefetch
operation on object x resulting from prediction made at process Pi.

Speculation Meets Checkpointing 755

3 Speculation and Checkpointing

3.1 Base Protocol

According to our knowledge, the impact of speculation on the checkpointing has
not been investigated until now. While properly implemented speculation shall
never violate the system consistency, ignoring the specific of speculation may
severely damage the efficiency of checkpointing and recovery, as we will show.

We focus on prefetching techniques, but our approach should be easily adapt-
able to other speculation methods. In such techniques predictor anticipates the
future read faults and prevents them by fetching respective objects in advance.
The prediction may be incorrect in the sense that the process will never actually
access the fetched object. Nevertheless, using speculation techniques such as the
popular two level predictor MSP ([4]) turns out to increase the efficiency of most
DSM applications. Since the predictor uses the underlying coherence protocol,
it never violates the consistency of the memory.

Let us now consider the execution shown in Fig. 1. There is a dependency
between processes P1 and P2, since P2 fetches the value modified by P1. To
ensure the consistency in case of a subsequent failure of process P1, the system
forces P1 to take a new checkpoint containing the previously modified object x.

P2

P1

r2(x)

FETCH(x)
Object x value
and permission to use it

Checkpoint Failure Rollback

P2 may continue
the execution.

Read fault. P2 is
suspended until
x is fetched.

Consistency is
preserved. P1
and P2 have the
same value of x.

time
w2(x)

Fig. 1. Scenario without speculation. Real dependency between P1 and P2.

However, the situation may significantly change with speculation. In the sce-
nario presented in Fig. 2 the predictor assumes that process P2 will read the
value modified by P1, so it fetches the object to avoid a further read-fault. Per-
forming that fetch, the system forces process P1 to take a checkpoint. However,
the prediction eventually turns out to be false and P2 does not actually access
x. Therefore, no real dependency was created and checkpoint was unnecessary.
Unfortunately, P1 was unable to determine that the fetch resulted from a false
prediction, even if that fetch operation has been known to be speculative.

The problems presented above are summarized as follows:

– Access to objects (fetches) may result from speculation made by predictor
and therefore (in case of false prediction) may not result in real dependency;

756 A. Danilecki and M. Szychowiak

– Even when an access is marked as speculative, process has no way of de-
termining whether true dependency between processes will ever be created,
since it cannot determine whether the prediction is correct.

P2

P1

 p2(x)

FETCH(x) Object x value
and permission to use

Checkpoint Failure Rollback

P2 is not
suspended, x is
prefetched.

P1 and P2 would
have the same
value of x even
without the
checkpoint

P2 have never used x;
the checkpoint was
unnecessary

Fig. 2. Scenario with speculation. No dependency between P1 and P2.

A possible solution is to introduce a new replica state and decouple access
requests for objects into two phases: prefetch and confirmation (Fig. 3). A spec-
ulative prefetch operation is explicitly distinguished from a coherence operation
of a read access. The prefetched object replica is set into state PREFETCHED
on the requesting node, and PRESEND on the owner. Further read access per-
formed on the requesting node requires to ask for acknowledgment of accessing
the object (message CONFIRM). On reception of this message the owner takes
a checkpoint of the object, if necessary (e.g. the checkpoint could been taken
already before reception of CONFIRM request as a result of some operations
issued by other processes), and answers with a permission message (ACK).

Please note that ACK message does not contain the value the requested object
(since this value has been formerly prefetched and is available for the requesting
node). Therefore the overhead of the confirmation operation is in general lower
than of a read-fault.

P2

P1

p2(x)

PREFETCH(x) Object x value

Checkpoint

P2 is not
suspended, x is
prefetched.

P2 is suspended
until arrival of
permission

CONFIRM(x)

r2(x)

ACK

Fig. 3. Coherence decoupling

Speculation Meets Checkpointing 757

If the master replica of the considered object has been modified after a prefetch
but before the corresponding confirmation it is up to the coherence protocol
to decide about the acknowledgment (reading outdated values may be allowed
depending on the consistency model). The coherency protocol may force the
invalidation of a prefetched object before the confirmation. This invalidation
will be performed exactly as for objects fetched by nonspeculative operations.
Since there is no difference between those two types of operations from the point
of view of the coherence, only minor modifications of coherence protocols will be
necessary. The only significant difference concerns the checkpointing operations.

Our approach avoids unnecessary taking of checkpoints after a prefetch (when
no real dependency is created). The checkpoint is postponed until an actual
dependency is revealed on the confirmation request.

3.2 Protocol Improvement

Addressing the Protocol Efficiency. There are several possible ways to
further increase the protocol efficiency. It is possible to perform a consolidated
checkpoint of an entire group of objects (i.e. burst checkpoint [2]). This may
significantly reduce the cumulative checkpointing overhead.

For instance, at the moment of further confirmation the prefetched object
demanding confirmation may have already been checkpointed (during some pre-
vious burst checkpoint) and no new checkpoint will then be required. In such
situation, no checkpoint overhead will be perceived by the application neither
on prefetch, nor on actual read access to the prefetched object.

Another possible optimization is to send confirmations to all prefetched repli-
cas directly after every checkpoint. The improvement of the efficiency is achieved
by avoiding the need of confirmation during a further access to the replica
prefetched earlier.

Addressing the Protocol Correctness. Let us consider a recovery situation
presented in Fig. 4. After the value 1 of x has been checkpointed, it is modified
again, to 2. Process P2 prefetches the modified value of x from P1. Then, P1
fails and recovers, restoring the checkpointed value x =1. Please note that the
confirmation requested by P2 cannot be granted, as it concerns a value of x that
became inconsistent after the recovery.

In order to ensure the consistency, the recovered process P1 might simply
invalidate every replica prefetched from P1 and not confirmed yet or, alterna-
tively, refuse all confirmation requests received after the recovery. While those
two solutions do prevent system from becoming inconsistent, they are far from
being optimal. The first approach may unnecessarily invalidate prefetched repli-
cas which were consistent (an unconfirmed replica may be perfectly consistent, as
presented in Fig. 5), or invalidate prefetched replicas which would never be used
anyway (therefore introducing unnecessary communication costs). The second
approach is even worse, since it basically turns off the whole prefetching mech-
anism after the first failure. Optimal solution should both prevent the system
from becoming inconsistent and allow the confirmation of all prefetched replicas
that do not violate the consistency.

758 A. Danilecki and M. Szychowiak

P2

P1

x = 2

p2(x)

w1(x)2

CONFIRM(x)

Rollback

x=1

PREFETCH(x)

Checkpoint

r2(x)

w1(x)1

Fig. 4. Possible coherence problems with node failures

P2

P1

x = 1

p2(x)

Rollback

x=1

PREFETCH(x)

Checkpoint w1(x)1

INVALIDATE(x)

System state is
consistent

Invalidation was
superfluous

Fig. 5. Unnecessary invalidations of all prefetched replicas after the owner recovery

One intuitive and simple (and wrong, as we will soon show) solution is to
use version numbers, increased after each meaningful change of the object (by
meaningful we understand the first object modification after each checkpoint).
Version numbers are stored in the checkpoints. Only replicas with version num-
ber equal to master version number (the version number of the master replica,
restored from checkpoint after the recovery) can be confirmed, and all other
confirmations would be refused.

However, this approach may result in inconsistent state after the recovery. Let
us consider a simple example illustrated by Fig. 6. Owner P1 modifies the object
x, therefore increasing the version number v(x) from m to m + 1. This version
of x would be prefetched by another process P2. Please note, that this version
is not checkpointed. After the recovery, master replica of x would be rolled back
to version m, and a subsequent change would again increase the version number
to m + 1 When process P2 would then ask for confirmation of his prefetched
replica, it would appear that he has the correct version of the object, and the
confirmation will be granted, possibly wrongfully.

Therefore, we investigate other possibilities, discussed in depth in [3]. Here
we present one which solves all the problems described above.

Speculation Meets Checkpointing 759

P2

P1

x = 2
v(x)=m+1

p2(x)

w1(x)2
v(x)=m+1

CONFIRM(x)
v(x)=m+1

Rollback

x=1
v(x)=m

PREFETCH(x)

Checkpoint

r2(x)

w1(x)1
v(x)=m

w1(x)4
v(x)=m+1

Fig. 6. Possible consistency violation in the approach with version number

The proposed checkpointing protocol, SpecCkpt, combines version numbers
and the approach with invalidation of all prefetched replicas on recovery. Owners
maintain a version number associated with the objects. After the recovery, the
owner sends an invalidation request containing the version number restored from
the checkpoint. The receiving processes invalidate the prefetched replicas only if
their local version numbers are larger than the one received in the invalidation
message. This approach keeps the system consistent by invalidating those and
only those replicas which could violate it. The only small vice is the additional
communication costs, which may be unnecessary if the invalidated prefetched
replicas would never to be used anyway (i.e on mispredication).

Finally, let us present a remark about the optimization with confirmation of all
prefetched replicas on every checkpoint. When using this approach, if the replica
is in the prefetched state, it might be safely assumed that it is not consistent with
the version of the object restored from the checkpoint. Therefore, it’s enough to
simply invalidate all prefetched replicas on recovery.

4 Conclusions

This paper describes an approach to checkpointing shared objects with specula-
tion. We recognize the false dependencies and unnecessary checkpoints related to
speculative operations on shared objects. We propose the operation decoupling
which allows to decrease the frequency of checkpoints. Moreover, we describe
additional mechanisms reducing the checkpointing overhead and enabling fast
recovery. Practical verification of an implementation of SpecCkpt protocol is
currently performed.

There are at least two directions in which our approach could be further
studied and extended. First is to integrate the implementation of the proposed
checkpointing technique with a particular coherence model. Second direction is
to seek the optimizations for increasing positive effects of speculation.

Since our approach is very general, it still allows several optimizations con-
cerning distinct characteristics of the protocol.

760 A. Danilecki and M. Szychowiak

In the presented protocol, when the owner refuses to confirm the prefetch, the
prefetched object is invalidated. In the optimized version the current value of
the object may be sent along with ACK message.

In many typical scientific applications there are program loops which pro-
duce strictly defined sequence of requests. Commonly employed in such cases is
grouping the objects accessed in the loop into blocks, fetching (or prefetching)
them together. Access to the first object from such group may signal that the
program loop started again and other objects from this group will also be fetched
subsequently. Therefore, it appears useful to confirm the whole group on access
to the first object.

References

1. Bianchini, R., Pinto, R., Amorim, C.L.: Data Prefetching for Software DSMs. Int.
Conf. on Supercomputing, Melbourne, Australia (1998)

2. Brzeziski, J., Szychowiak, M.: Replication of Checkpoints in Recoverable DSM
Systems. 21st Int. Conf. on Parallel and Distributed Computing and Networks
PDCN’2003, Innsbruck, Austria (2003)

3. Danilecki, A., Szychowiak, M.: Checkpointing Speculative DSM Systems. Technical
Report RA-021/05, Institute of Computing Science, Poznań University of Technol-
ogy, Poznań, Poland (2005)

4. Lai, A-C., Babak Falsafi, B.: Memory Sharing Predictor: The Key to a Speculative
Coherent DSM. 26th Int. Symp. on Computer Architecture (ISCA 26), Atlanta,
Georgia (1999) 172–183

5. Lai, A-C., Babak Falsafi, B.: Selective, Accurate, and Timely Self-Invalidation Us-
ing Last-Touch Prediction. 27th Int. Symp. on Computer Architecture (ISCA 27),
Vancouver, BC, Canada (2000) 139–148

6. Park, T., Yeom, H.Y.: A Low Overhead Logging Scheme for Fast Recovery in Dis-
tributed Shared Memory Systems. Journal of Supercomputing Vo.15. No.3. (2002)
295–320

7. Rajwar, R., Kagi, A., Goodman, J. R.: Inferential Queueing and Specula-
tive Push. Int. Journal of Parallel Programming (IJPP) Vo. 32. No. 3 (2004)
273–284

	Introduction
	DSM System Model
	Speculation and Checkpointing
	Base Protocol
	Protocol Improvement

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

