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Abstract. This paper describes a checkpointing mechanism destined for
Distributed Shared Memory (DSM) systems with speculative prefetch-
ing. Speculation is a general technique involving prediction of the fu-
ture of a computation, namely accesses to shared objects unavailable
on the accessing node (read faults). Thanks to such predictions objects
can be fetched before the actual access operation is performed, result-
ing, at least potentially, in considerable performance improvement. The
proposed mechanism is based on independent checkpointing integrated
with a coherence protocol for a given consistency model introducing little
overhead. It ensures the consistency of checkpoints, allowing fast recovery
from failures.

1 Introduction

Modern Distributed Shared Memory (DSM) systems reveal increasing demands
of efficiency, reliability and robustness. System developers tend to deliver fast
systems which would allow to efficiently parallelize distributed processes. Unfor-
tunately, failures of some system nodes can cause process crashes resulting in a
loss of results of the processing and requiring to restart the computation from
the beginning. One of major techniques used to prevent such restarts is check-
pointing. Checkpointing consists in periodically saving of the processing state (a
checkpoint) in order to restore the saved state in case of a further failure. Then,
the computation is restarted from the restored checkpoint. Only the checkpoints
which represent a consistent global state of the system can be used (the state of
a DSM system is usually identified with the content of the memory).

There are two major approaches to checkpointing: coordinated (synchronous)
and independent (asynchronous). Coordinated checkpointing requires expensive
synchronization between all (or a part) of the distributed processes in order
to ensure the consistency of the saved states. The significant overhead of this
approach makes it impractical unless the checkpoint synchronization is corre-
lated with synchronization operations of a coherence protocol ([4]). On the other
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hand, the independent checkpointing does not involve interprocess synchroniza-
tion but, in general, does not guarantee the consistency. After a failure occurs, a
consistent checkpoint must be found among all saved checkpoints, therefore the
recovery takes much more time and may require much more recomputation. A
variant of the independent checkpoint — communication induced checkpointing
(or dependency induced checkpointing), offers simple creation of consistent check-
points, storing a new checkpoint each time a recovery dependency is created (e.g.
interprocess communication), but its overhead is too prohibitive for general dis-
tributed applications. However, this approach has been successfully applied in
DMS systems in strict correlation with memory coherence protocols. This cor-
relation allows to reduce the number of actual dependencies and to significantly
limit the checkpointing overhead ([2],[10]).

Speculation, on the other hand, is a technique which promises to increase
the speed of DSM operations and reduce the gap between DSM systems and
message-passing systems. The speculation may involve speculative pushes of
shared objects to processing nodes before they would actually demand access
[11], prefetching of the shared objects with anticipation that application process
would need those objects ([1,[8],[12]) or self invalidation of shared objects to
reduce the frequency of "3-hop-misses" ([6],[7]) among other techniques.

The speculation techniques may be argued to be special form of machine
learning; it’s however a restricted and limited form of learning. The specula-
tion methods are required to be very fast, while they do not necessary have to
make correct predictions, as the cost of mistakes is usually considered negligible.
Therefore the existing well-known machine learning algorithms are usually not
applicable in the DSM.

This paper is organized as follows. Section 2 presents a formal definition of the
system model and speculation operations. In Section 3 we propose the conception
of a checkpointing mechanism destined for DSM systems with speculation and
discuss the proposition. Concluding remarks and future work are proposed in
Section 4.

2 DSM System Model

A DSM system is an asynchronous distributed system composed of a finite set of
sequential processes Pj, Py, ..., P,, that can access a finite set O of shared objects.
Each P; is executed on a DSM node n; composed of a local processor and a
volatile local memory used to store shared objects accessed by P;. Each object
consists of several values (object members) and object methods which read and
modify object members (here we adopt the object-oriented approach; however,
our work is also applicable to variable-based or page-based shared memory). The
concatenation of the values of all members of object x € O is referred to as object
value of x. We consider here read-write objects, i.e. each method of x has been
classified either as read-only (if it does not change the value of x, and, in case
of nested method invocation, all invoked methods are also read-only) or read-
and-modify (otherwise). Read access r;(z) to object x is issued when process P;
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invokes a read-only method of object x. Write access w;(x) to object x is issued
when process P; invokes any other method of x. Each write access results in a
new object value of x. By r;(x)v we denote that the read operation returns value
v of z, and by w;(z)v that the write operation stores value v to z. For the sake
of simplicity of the presentation we assume that each write access to an object
writes a unique value.

To increase the efficiency of DSM, objects are replicated on distinct hosts,
allowing concurrent access to the same data. A consistent state of DSM objects
replicated on distinct nodes is maintained by a coherence protocol and depends
on the assumed consistency model. Usually, one replica of every object is dis-
tinguished as the master replica. The process holding master replica of object
x is called 2’s owner. A common approach is to enable the owner an exclusive
write access to the object. However, when no write access to x is performed,
the object can have several replicas simultaneously accessible only for reading
(shared replicas). The speculation introduces special part of the system, called
the predictor, which is responsible for predicting future actions of the processes
(e.g. future read and write accesses) and according reactions.

As aresult of a read access issued to an object unavailable locally, the object is
fetched from its owner and brought to the requester. Using speculation, however,
an object may be fetched from its owner also as a result of a prediction before
the actual read access (i.e. prefetched). By p;(z) we will distinguish a prefetch
operation of object x resulting from prediction made at process P;.

Dependency of operations is a relation arising between w; (z)v and any subse-
quent 7;(x)v, i.e. when process P; uses (reads) a value written previously by P;.
Local dependency reflects the order of operations performed by the same single
process.

3 Speculation and Checkpointing

According to our knowledge, the impact of speculation on the checkpointing has
not been investigated until now. While it seems impossible (or at least, improb-
able) that properly implemented speculation may danger the consistency of the
system and correctness of the checkpointing algorithms, ignoring the existence
of speculation in distributed shared memory system may severely damage speed
of both making checkpoints and system recovery because it could create false,
non-existing dependencies between nodes, as we will try to show.

We will focus on problems resulting from using prefetching techniques, but
our approach should be easily adaptable to other speculation methods. In such
techniques a special part of the system, called predictor, is responsible for antic-
ipating the possible future read faults and preventing them by fetching respec-
tive objects in advance. The prediction may be incorrect in the sense that the
process will never actually access the fetched object. Nevertheless, using specu-
lation techniques such as the popular two level predictor MSP ([5]) turns out to
increase the efficiency of most DSM applications. Moreover, since the predictor
fetches objects using the underlying coherence protocol, it never violates the
consistency of the memory.
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Fig. 2. Scenario with speculation. No dependency between P, and Pa.

Let us now consider the hypothetical execution shown in Fig. [Il There is a
dependency between processes P; and Ps, since P» fetches the value modified
by P;. To ensure the consistency in case of a subsequent failure of process P,
the system forces P; to take a checkpoint of the previously modified object x
(it may be necessary to save also some other objects in the same checkpoint, in
order to preserve local dependency of modifications performed by P;; this is not
shown in the figure).

However, the situation may significantly change with use of speculation.
In the scenario presented in Fig. 2] the predictor assumes that the application
process P, will read the value modified by P, so it fetches the object ahead into
the local memory of Ps, to avoid a further read-fault. Performing that fetch, the
system forces process P; to take a checkpoint, as in previous example. However,
the prediction eventually turns out to be false and P> does not actually access
x. Therefore, no real dependency was created and checkpoint was unnecessary.
Unfortunately, P, was unable to determine that the fetch resulted from a false
prediction, even if that fetch operation has been known to be speculative.

The problems presented above are summarized as follows:

Access to objects (fetches) may result from speculation made by predictor
and therefore (in case of false prediction) may not result in real dependency;
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Fig. 3. The coherence decoupling

Even when an access is marked as speculative, process has no way of deter-
mining whether true dependency between processes will ever be created, since
it cannot determine whether the prediction is correct (otherwise, it wouldn’t be
called speculation).

A possible solution is introduction of a new replica state and decoupling of
access requests for objects into two phases: prefetch and confirmation (Fig. [)).
A similar idea of coherence decoupling has been proposed in [3]. A speculative
prefetch operation is explicitly distinguished from a coherence operation of a
read access. The prefetched object replica is set into state PREFETCHED on
the requesting node, and PRESEND on the owner. Further read access per-
formed on the requesting node requires to merely ask for acknowledgement of
accessing the object (message CONFIRM). On reception of this message the
owner takes a checkpoint of the object, if necessary (e.g. the checkpoint could
been taken already before reception of CONFIRM request as a result of some
operations issued in the meantime by other processes), and answers with a
permission message (ACK).

Please note that ACK message does not contain the value the requested
object (since this value has been formerly prefetched and is available for the
requesting node). Therefore the overhead of the confirmation operation is in
general lower than a read-fault.

If the master replica of the considered object has been modified after a
prefetch but before the corresponding confirmation it is up to the coherence
protocol to decide about the acknowledgement (reading outdated values may be
disallowed depending on the consistency model). Also the coherency protocol
may involve invalidation of a prefetched object before the confirmation. This
invalidation will be performed for prefetched objects exactly as for all object
fetched by nonspeculative operations. Therefore, there is no difference between
those two types of operations from the point of view of the coherence (thus,
only minor modifications of coherence protocols will be necessary). The only
significant difference concerns the checkpointing operations.

Our approach avoids unnecessary taking of checkpoints after a prefetch (when
no real dependency is created). The checkpoint is postponed until an actual
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dependency is revealed on the confirmation request). To reduce the checkpoint
overhead many checkpointing protocols perform a consolidated checkpoint of an
entire group of objects (burst checkpoint [2]). It is possible to include also the
prefetched objects in such a burst checkpoint. This allows to further reduce the
checkpointing overhead, since the prefetched object may already be checkpointed
at the moment of confirmation and no additional checkpoint will be required. In
such a situation, there will be no checkpoint overhead perceived by the application
neither on prefetch, nor on actual read access to the prefetched object.

Finally, let us consider a recovery situation presented in Fig.Hdl After the value
of x has been checkpointed it is modified again, to 2. Process P, prefetches the
modified value of x from P;. Then, P; fails and recovers, restoring the check-
pointed value x = 1. Please note that the following confirmation cannot be
granted, as it concerns a value of x that became inconsistent after the recovery.
The simplest solution could be to invalidate all replicas of x prefetched by other
processes. This Invalidation can be performed on recovery of the owner.

wi(x)1 Checkpoint wi(x)2 Rollback

o Tl o I

PREFETCH(x) x=2 CONFIRM(x)

r VAR 4

p2(x) r2(x)

Fig. 4. Possible coherence problems with node failures

Fig.5. The example state diagram of the protocol for sequential consistency model
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The state diagram for replica of object = at process P; is presented in Fig. bl
The assumed consistency model is sequential consistency [9]. The superscript
indexes at the diagram denote that: 'operation requires a checkpoint, 2 operation
requires a confirmation.

4 Conclusions

This paper describes an approach to checkpointing shared objects with use of
speculation. We recognize the false dependencies and unnecessary checkpoints
related to speculation operations on the shared objects. We propose the oper-
ation decoupling which allows to decrease the frequency of checkpoints. More-
over, we describe additional mechanisms reducing the checkpointing overhead
and indispensable modifications of the coherency operations after a failure and
recovery.

There are at least three directions in which our approach could be studied
and extended. First, to consider the implementation of proposed technique with
using concrete coherence model and checkpointing algorithm. Second, to seek
the optimizations for increasing positive effects of speculation. Third, to find a
way to resolve issues with restarting processes.

Intuitively, there may be many possible optimizations which could be applied
to the proposed checkpointing technique. Since our approach is very general, the
implementation for a specific coherence model may exploit distinct features of
underlying protocols. An obvious optimization might allow to use the prefetched
object even before arrival of the permission.

In our approach, if object owner refuses to confirm the prefetch, the prefetched
object is invalidated. Another optimization might fetch the current value of the
object with ACK message sent back to the requester.

In many typical scientific applications there are program loops which pro-
duce strictly defined sequence of requests. Commonly employed in such cases is
grouping the objects accessed in the loop into blocks, fetching (or prefetching)
them together. Access to the first object from such group may signal that the
program loop started again and other objects from this group will also be fetched
subsequently. Therefore, it appears useful to confirm the whole group on access
to the first object.

Requiring the object owner to deny all confirmation request after the failure
may seem to be too harsh. A different solution would allow the object owner to
refuse confirmation only for objects prefetched before crash, and acknowledge
objects prefetched after the recovery.
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