Scheduling multiprocessor tasks
- an overview

Maciej Drozdowski*

Abstract

Multiprocessor tasks require more than one processor at the same
moment of time. This relatively new concept in scheduling theory
emerged with the advent of parallel computing systems. In this work
we present the state of the art for multiprocessor task scheduling. We
show the rationale behind the concept of multiprocessor tasks. The
standard three-field notation is extended to accommodate multipro-
cessor tasks. The main part of the work is presentation of the results
in multiprocessor tasks scheduling both for parallel and for dedicated
Processors.

Keywords: parallel processing, scheduling, multiprocessor tasks, coschedul-

ing, gang-scheduling.

1 Introduction

Parallel processing is expected to bring a breakthrough in the increase of
computing speed. The new parallel computer systems are often expensive
assets that must be shared by many users. Parallel applications can take the
advantage of parallelism only when their parts do not wait for data longer
than necessary. This calls for appropriate scheduling strategies controlling
access to such resources as well as scheduling strategies controlling execution
of the parallel application modules. There are some new concepts on the
grounds of deterministic scheduling theory proposed to deal with scheduling
parallel applications. One of them is scheduling with communication delays
[36, 39, 72]. Another approach is divisible job theory [4, 15, 34]. In this
paper we deal with yet another approach, namely, with multiprocessor tasks.
Multiprocessor tasks require more than one processor at the same moment
of time. This contradicts the classical scheduling theory assumption that a
task is executed on one processor at a time only.

*Instytut Informatyki, Politechnika Poznariska, Poznan, Poland. The research has been
partially supported by KBN grant 3P40600106.

The idea of multiprocessor tasks receives a growing attention in the
’scheduling community’. Since the field is rather new there is an inevitable
risk of repeating some research. Hoping to lessen this problem we present
recent results in the multiprocessor task scheduling. The organization of
the paper is the following. Section 2 presents the justification for consider-
ing multiprocessor tasks. In Section 3 we define the problem and introduce
the notation used. Section 4 presents the results for parallel processors and
Section 5 for dedicated processors.

2 Motivation

A good scheduling strategy is an indispensable element of an efficient parallel
computer system. Many distributed and multiprocessor computer systems
offer some kinds of parallelism. It is not so evident, however, that the con-
currency of the application execution is guaranteed, especially in the extreme
load conditions. In this section we are going to explain that simultaneous
execution on multiple processors should be provided.

Consider a general purpose shared-memory multiprocessor system with
time sharing. A parallel application which consists of many concurrent
threads (tasks within a program) is run on a number of processors. The
access to a critical section is guarded by a lock which must be acquired by
threads using the section. A thread which captured the lock must compete
for the processors with an uncertain number of other threads. Soon it can
lose its processor. Then, other threads must busy-wait for the release of the
lock. But this, will not take place as long as the thread which holds the
lock is not running. Thus, a bad decision about scheduling such a crucial
thread results in a significant performance degradation. Let us consider a
different situation. The threads of the same application communicate with
each other but are run in different time quanta. Suppose that one thread
tries to communicate with some other thread. It sends the data, but since
the other thread is suspended, the message must wait at least until the end of
the time quantum. In one of the following time quanta the receiving thread
receives the data, processes it and sends back the results. The results in
order to be received must still wait for the first thread to start running .
In both of the above examples the progress in computation depends on the
speed of context switching rather than on the raw speed of the processors

or the communication system. Coscheduling (called also gang scheduling) is
a scheduling policy proposed to avoid these difficulties [50]. Coscheduling
consists in granting simultaneously (in the same time quantum) the proces-
sors to the threads of the same application. It has been demonstrated in
[49, 84] that coscheduling performs well in a wide range of conditions and
for various models of parallel applications. Thus, coscheduling is postulated
in parallel systems. Note, that coscheduled applications are multiprocessor
tasks because more than one processor is used simultaneously.

Parallel applications are often represented by DAGs. Yet, this representa-
tion has only a limited applicability for the operating system. Contemporary
parallel applications have DAGs with thousands of nodes. At the current
state of technology, it is hard to imagine a scheduler able to handle, analyze
and optimize so big structures. Furthermore, threads of the application are
indistinguishable for the scheduler. Hence, without additional information
from the application it is not able to give a priority to important threads
(e.g. holding a lock) [84]. Note, that the DAG is highly data-dependent and
can be precisely known after the execution rather than before. From the
above we conclude that it is reasonable for the operating system to control
only the number of processors granted to a parallel application and leave the
control of threads to the application (i.e. to the compiler and the program-
mer).

Following these observations a number of massively parallel computer sys-
tems divide their processors into partitions [26]. The main idea of a partition
is to give an exclusive access to a number of processors to one application
only. The operating system is responsible for managing the partitions, grant-
ing the access to them etc. Note, that from the viewpoint of the partition
manager the applications are multiprocessor tasks because they occupy all
the processors in the partition at the same moment of time.

In computer control systems a high level of reliability is often achieved by
executing redundant copies of the program on different processors and voting
on the final control decision [3, 50, 56]. Such applications are multiprocessor
tasks because more than one processor is simultaneously occupied.

In the preceding discussion we concentrated on parallel processors. Now,
we are going to demonstrate that multiprocessor tasks scheduling is also ap-
plicable in the case of dedicated (i.e. specialized) processors. In massively
parallel computers there are processing nodes equipped with communication
and other I/O hardware (e.g. disks), while other processing nodes are not.

3

There can be nodes with arithmetic, vector, graphic, signal processing facil-
ities, while there can be other nodes without them. It is not inconceivable
to present parallel applications requiring a little bit of all these facilities.
Thus, multiprocessor tasks can be considered also in the case of dedicated
processors. Not only specialization of the processing elements can justify
considering processors as dedicated. A multiprocessor task can be regarded
as executed by a dedicated processor also for preallocation reasons. For a
certain communication pattern among the parts of the parallel application
and for a given communication network it can be advantageous to map tasks
to processors in some fixed way. Changing the preallocation may increase the
communication overhead (due to dilatation, congestion etc.). In some cases
even parallel processors may behave as dedicated devices. Since the costs of
filling a pipeline, vector registers or a cache are high it is disadvantageous
to frequently transfer threads to new sites. Hence, there is a kind of affinity
between tasks and processors [69].

Testing of processors by one another requires at least two processors si-
multaneously [60]. Due to the fact that the graph of mutual tests cannot
be arbitrary to guarantee testability of the system [53, 71] one may regard
a test as a dedicated task. A similar situation takes place in testing VLSI
chips where some functional units are simultaneously required to test other
units [40]. Another application for multiprocessor task scheduling can be
scheduling of file transfers [38]. A file transfer requires at least two "process-
ing’ elements simultaneously: the sender and the receiver. Also simultaneous
transfers on multiple buses can be considered as multiprocessor tasks [57].
Finally, simultaneous execution of multiple instructions in a superscalar pro-
cessor requires matching instructions in such a way that the sets of simulta-
neously required processor units do not intersect. Scheduling in this case is
performed by a compiler or by the hardware of the processor.

Though we introduced multiprocessor tasks in the computer context it is
not difficult to find application for this kind of scheduling in production sys-
tems. In fact, the first papers considering an idea of simultaneous execution
of a task by many processors dealt with scheduling operations in chemical
plants [25] and project scheduling [77].

3 Definitions

In this section we formulate the multiprocessor task scheduling problem. For
deterministic scheduling three elements define the problem: the processor
set, the task system and the optimality criterion. We describe them in the
following paragraphs.

We assume that processor set P={P,..., P,} consists of m elements.
There are two types of processors: dedicated and parallel. Dedicated proces-
sors are usually specialized to perform different functions. In some situations,
mentioned in the previous section, even identical parallel processors may be-
have as dedicated. In a dedicated environment a multiprocessor task requires
certain processors not just some number of them. Hence, in the case of dedi-
cated processors a multiprocessor task can be executed by a sef of processors
required simultaneously. Moreover, a task may be executed by some family
of alternative processor sets. As it is in the classical scheduling theory [21, 37]
multiprocessor tasks may consist of operations. In such a case we distinguish
three types of dedicated processor systems: flow-shop, open-shop and job-
shop. In the flow-shop all tasks have the same number of operations which
are performed sequentially and require the same sets of processors. In the
open-shop the order among the operations is immaterial. For the job-shop,
the sequence of operations and the sets of required processors are defined for
each task separately.

In the case of parallel processors each processor is capable of processing
any task. Hence, a task requires some number of arbitrary processors. As
in the classical scheduling theory parallel processors are divided into three
classes: identical processors, uniform processors and unrelated processors.

The second element of the scheduling problem is the task system. We
assume that the set of tasks 7 consists of n tasks 7y,...,7,. For the whole
task system it is possible to determine such features as preemptability (or
nonpreemptability) and existence (or unexistence) of precedence constraints.
These characteristics are defined as in the classical scheduling theory [21,
37]. A new feature is fired or variable profile of a task. A profile of the
multiprocessor task is fixed when the number (for parallel processors) or the
set (for dedicated processors) of used processors does not change during the
execution of the task. A profile is variable if it is possible to change the above
characteristics within the schedule.

Each task T; (7 = 1,...,n) is defined by a number of parameters. We

describe them in the following.

1. Number of operations n;. This parameter is given for tasks scheduled
on dedicated processors. n; > 1 implies that task 7} consists of operations
{0]'1, e 70jn_,-}-

2. The set of simultaneously required processors fix; or the family of
alternative processors set;. These parameters are defined only in the case
of dedicated processors. The multiprocessor task requires for its processing
a set fix; of dedicated processors simultaneously. It is also possible that
more than one set of processors can execute a task. Such a set of alternative
processor ensembles will be called a family of alternative processors set;. We
will use the concept of a family of alternative processors only when | set; |> 1.
Analogously, for flow-shop, open-shop, and job-shop set fiz;; or family set;;
is defined for every operation o;;.

3. The number of simultaneously required processors size; or the maxi-
mum number of usable processors 6;. These parameters are defined in the
case of parallel processors. When the first parameter is given the task can
be executed only on size; processors required simultaneously. The multipro-
cessor task can be executed by some number of processors from the range
[1,6,] if the second parameter is given. (Note, that for uniprocessor tasks
size; = 6; = 1.) It is possible that none of the above parameters is given
when the number of processors executing a task is neither fixed nor bounded.
We will denote A = maxy e7{6;}. For tasks that can be executed only by
one number of processors A = maxr,er{size;}.

4. Ezecution time. For task T; to be processed on set fix; of dedicated

processors the execution time will be denoted by tfmj . When task 7 can be
executed by a family of alternative processors set; then for each fix;; € set;
the processing time is defined and denoted by tfzx”, where ¢ = 1,...,|set;|.
In the case of preemptable tasks it is necessary to determine how long a task
must be processed (possibly by different processor sets) to consider it as fin-
ished. Analogously to the classical scheduling on uniform and unrelated pro-
cessors we assume that task 7T executed in [different time intervals of lengths
7i, by processors in sets fiz;; (i = 1,...,1), is finished when Yi_, tf—,T;T > 1.
3
For a task consisting of n; operations the execution time t%% " is defined for

each operation oj; requiring processors in set fix;;. Analogously, for oper-
fil’]il .

ation oj; with family set;; of alternative processors execution time 3,

defined for each fiaj; € sety;.
The situation is different in the case of parallel processors. Let us con-
sider identical processors first. When task 7} can be executed only by size;

. . . . size;
processors, its execution time is ;"

;7. If it can be executed by various num-
bers of processors, then for each feasible number k of processors execution
time t’; is defined. Let us note that there is a number of models describing
the relation between execution time and the number of allowed processors.
In the scheduling literature it is:

e an arbitrary discrete function [47],

1
e inversely proportional function (i.e. t? = %) [78],
e inversely proportional function up to §; processors [81],

1
e a function inversely proportional to k% (i.e. t* = %) where 0 < o < 1 [75],
e an arbitrary continuous function [83].
Analogously, to the case of dedicated processors we consider preemptable

task 7 executed in [intervals of length 7; on k; processors (z = 1,....1) as
being finished when !_, f—T,g: > 1. For uniform and unrelated processors the
5

execution time of the task can be calculated as in the classical case.

Parameters such as ready time r;, due-date d;, weight w;, and additional
requirements 7;; of resource ¢ are defined in the same way as in the classical
scheduling theory.

In a feasible schedule of multiprocessor tasks it is decreed beyond the
standard requirements that:

- In the case of dedicated processors, a multiprocessor task requiring
processors in set fix; is granted all these processors throughout all its ex-
ecution time. Multiprocessor task with family set; of alternative proces-
sors is executed by exactly those processors which are specified in some
set(s) fixj; € set;. Operation oj; receives all processors required in fiz;
or when | set;; |> 1 all processors included in some set(s) fix;; € sety,
where [= 1,...|set;;].

- In the case of parallel processors, a multiprocessor task which can be
executed by only one number size; of processors is granted that number of
processors simultaneously throughout all its execution time. When maximum
number 6; of usable processors is specified, in no moment of time is the task
executed by more than ¢; processors simultaneously.

The criteria of the optimality are defined in the standard way [21, 37].

To denote the analyzed scheduling problems we will use the standard
three-field notation « | 8 | v proposed in [52] with extensions introduced
in [22, 76]. Yet, the modifications proposed in [76] are not satisfactory to
describe the variety of the considered multiprocessor scheduling problems.
Hence, we propose further expansion of the notation. The scheme o | 3 | v
in its three fields describes the processor system (a), the task system (/3),
and the optimality criterion (7).

The first field contains up to three symbols o = ay, s, az. The first two
symbols are the standard ones:

-ay € {1,P,Q,R,O,F,J} - describes the type of processors,

- ay € {k,o} - denotes the number of processors fixed to & or not fixed
in the definition of the problem.

The third symbol a3 € {win,o} - denotes, respectively, that processors
are available in time windows or always available.

The second field § = 31, ..., 3¢ defines the task system.

(1 € {spdp—lin, spdp-lin—;, spdp—any, size;, cube;, fix;, fix;;, set;, set;;, 0}
- describes the type of the multiprocessor task.

- 1 = spdp—lin - denotes that tf is inversely proportional to k, in other
words, speedup is linear.

- 1 = spdp—lin—6; - describes a situation similar to the previous one, but
the task cannot use more than é; processors simultaneously.

- 1 = spdp—any - execution time t? is an arbitrary function of k.

- 1 = size; - a task can be executed only by one number size; of processors.
- 1 = cube; - is a special case of size; demanding that the tasks be executed
by numbers of processors being powers of 2 (1, 2, 4, 8,... etc. processors).
This situation refers to scheduling on hypercubes.

- By = fix; - denotes that the task can be executed by only one set fix; of
simultaneously required dedicated processors. In the case of multiprocessor
task comprising a number of operations we use 3y = fra;;.

- [y = set; - means that tasks have families of alternative dedicated proces-
sors which can execute the tasks. In the case of tasks with operations we will
use 3 = set;.

- 31 = o - stands for standard uniprocessor tasks.

According to the current value of 3; we will say that tasks require processors
according to model spdp—lin, spdp—lin—0; etc.

B2 € {var,pmin,o} - denotes preemptability and variability of the profile
or their absence.

- B3 = wvar - denotes variable profile. Note, that 5y = var implies 3; €
{spdp—lin, spdp—lin—0;, spdp—any, set;, set;; }.

- 33 = pmin - tasks are preemptable, but the profile is fixed.

- 33 = o - denotes that tasks are nonpreemptable and their profiles are fixed.

The rest of the notation for the task system is classical:

(33 € {prec,tree,chain,o} - describes the type of precedence constraints.

B € {p; = 1,p;j = 1,0} - means, respectively, that processing times of
tasks are equal, processing times of operations are equal, processing times
are arbitrary.

Bs € {r;,o} - denotes that tasks have different (85 = r;) or identical
(s = o) ready times .

fe € {resiop,o} where Aop € {k,-} - denotes the type of additional
resource requirements (resAop) or absence of such requirements (o). A, o, p =
k denote, respectively, the number of resource types is k, each resource has
k units, k is the maximal number of any resource units required by any task.
A, 0, p = - denote that the above values are arbitrary.

The third field v = 4, where v € {Chazy, Linas, U, > C, > w;C, 5 w;Uj,
> T;, X} denotes the optimality criterion. When a non-standard optimality
criterion was considered we denoted such a case by X.

Many of the multiprocessor task scheduling problems are computationally
hard. In such cases heuristics are often proposed. To evaluate the worst-case
performance of some heuristic H we will use the worst-case performance ratio
(performance ratio in short): Sy = inf{r > 1: VIep% < r}, where [-
is the instance, D - the domain of the scheduling problem, fy (/) - the value
of the optimality criterion for I and the schedule generated by H, OPT(I)
- the optimal value of the criterion for I. For the sake of conciseness we will
write NPh to denote that some problem is NP-hard, and sNPh to denote
that the problem is NP-hard in the strong sense.

Multiprocessor task scheduling is tightly linked with other types of schedul-
ing and with combinatorial optimization in general. Scheduling multiproces-
sor tasks on dedicated processors is similar to scheduling with resource con-
straints. The latter problem, however, distinguishes between processors and
resources while multiprocessor task scheduling does not. Multiprocessor task
scheduling generalizes the classical scheduling on dedicated processors. The
multipurpose machine scheduling [27] and scheduling with restricted proces-
sor allocation [30, 33, 58, 59] are special cases of scheduling multiprocessor

tasks with families of alternative processors where tasks are uniprocessor.
In this paper we restrict ourselves to the works explicitly considering tasks
requiring more than one processor at the time. Observe, that problems of
scheduling on dedicated processors are closely related to various types of
graph coloring. Fixed-profile nonpreemptive scheduling on parallel proces-
sors can be represented as 2-dimensional packing: the number of required
processors constitute one dimension and time the second dimension.

4 Parallel processors

In this section we consider scheduling on parallel processors. In the absence
of a better one, the order of presentation will be (in general) chronological
according to appearance in the printed form referred to in the literature sec-
tion. Obviously, it is approximate chronology and many papers are known
in a preliminary form years before the final publication. Due to space limi-
tations only some papers can be commented on. Table 1 presents the results
in multiprocessor scheduling on parallel processors.

One of the first papers considering multiprocessor task scheduling was
[68]. It was shown that problems P | sizej,p; =1 | Cpuup and P3| size;, p; =
Lyprec | Chap with size; € {1,2} are NPh. The performance of any list
scheduling heuristic (LS in short) has been proved to be bounded from above
by (2m — A)/(m — A 4 1) and the ratio of |(2m — A)/(m — A + 1)] has
been achieved. For problem P2 | size;, p; = 1, prec | Cpar an algorithm with
complexity O(n?) based on the Coffman-Graham algorithm was proposed.

Problem R | spdp—lin,var,r; | L. = 0 (i.e. testing the existence of
a feasible schedule with L,,,, = 0) was reduced in [77] to solving a linear
program with O(n?) variables and O(n?) constraints.

In [80] problem P | spdp—lin,var,r; | X is analyzed. For each task a
deadline is given. All tasks must be completed in time. To achieve this
goal each processor is capable of increasing its speed. Firstly, the optimality
criterion is minimizing the maximum speed necessary for processing the tasks.
Secondly, when processing at some speed is unavoidable then the period of
processing at such speed is minimized. In [78] a similar problem is considered,
but the optimality criterion is the total intensity cost, where the cost function
18 convex.

Problem P | spdp—lin—é;,var,r; | Lma: was considered in [79]. This

10

problem can be solved by a reduction to a sequence of equivalent maximum
network flow problems which check the existence of a feasible schedule for
some given value of L. O3, 6;) < O(nm) calls to an O(n?) network
flow algorithm are required. The total complexity is O(n*m).

In [14] preemptive and nonpreemptive scheduling of multiprocessor tasks
is considered. This paper extends preliminary results of [24]. For problem P |
sizej,p;i = 1| Cpar and size; € {1, A} an O(n) algorithm is proposed. When
the numbers of simultaneously required processors are in the set {1,..., A}
and A is fixed the above problem can be solved in O(n) time by an integer
linear program with fixed number of variables. Problem P | size;,p; = 1 |
Crar was shown to be sSNPh in general. For problem P | size;, pmin | Cpun
where size; € {1, A} it was proved that among the optimal schedules there
must be a so-called A-schedule. In the A-schedule tasks with size; = A are
assigned in the interval [0, C,,,,] using McNaughton’s wrap-around-rule, and
tasks with size; = 1 are assigned in the same way in the remaining part of
the schedule. An algorithm building A-schedules in O(n) time was proposed
for this problem. For the general case of size; values an algorithm based on
linear programming (LP) and the concept of a processor feasible set has been
proposed. The processor feasible set is a set of tasks that can be executed
in parallel on the given number of processors. Note, that for n tasks and
m processors there are O(n™) processor feasible sets. Thus, the LP can be
formulated and solved in polynomial time, provided m is fixed.

In [20] problem P | size;, pmin,resl - 1 | Cpqar was considered. It was
assumed that size; € {1,2}, all tasks with size; = 1 required a unit of the
resource, while only some tasks with size; = 2 required the resource. It was
shown that among the optimal schedules there must exist an A-schedule. An
O(nlogn) algorithm has been proposed. This problem was further analyzed
in [21] for A > 2 and tasks with size; = 1 requiring a unit or no resource.
An O(nm) algorithm was given.

Problem P | cube;,pmtn | Cpa, of scheduling on hypercube has been
tackled in [31]. An O(n?) algorithm has been proposed to test whether a
feasible schedule of length T exists. The algorithm builds stair-like sched-
ules. A schedule is stair-like when (i) each processor P; is busy before time
f(P;) and idle after f(P;), (ii) f is nonincreasing function of processor num-
ber. In other words, the stair-like schedule consists of a number of ’steps’.
Tasks are scheduled in the order of decreasing size;. A task is scheduled
such that it ends at the common deadline 7', ’steps’ of the stair-like schedule

11

are consecutively filled one by one from left to right and no sooner is the
lower (less loaded) step used than the higher one is completely full. This
results in O(n?) preemptions. The testing algorithm can be applied in time
O(n*(logn + log maxj{t;wej})) to find the optimal schedule (€, is calcu-
lated with unit granularity).

In [47] the authors proved that problems P2 | size;, chain | Cpqy, and
P5 | sizej | Chuar are sNPh. Each schedule for P2 | size; | Cyuz, and P3|
sizej | Char can be transformed into a canonical schedule for which dynamic
programming can be used to obtain the optimal schedule. The complexity
of problem P4 | size; | Cuur remains open. The fixed-profile preemptive
scheduling has been shown to be NPh for P2 | spdp—any, pmin | C,,.. and
sNPh for P | spdp—any,pmitn | C,... When the number of processors is
fixed, a dynamic program has been given.

In [54] an O(nlogn) algorithm testing the existence of a schedule for
problem P | cube;, pmin | C,,., has been proposed. The algorithm differs
from the one from [31] in the use of pseudo-stairlike schedules. In the pseudo-
stairlike schedule a task is not filling ’steps’ one by one, but fills at most two
‘steps’ (subcubes): one from the moment it becomes available till the end
of the schedule and possibly one more but only partially. This results in
lower number of preemptions O(n). The algorithm can be applied in time
O(nlogn(log n 4 logmax;{t; " })) to find the optimal schedule by a binary
search. A similar approach has been proposed independently in [1].

In [83] problem P | spdp—any,var,r; | L. is considered. The processors
are assumed to be numerous enough to deal with them as with a continuous
medium. Each task is described by a continuous function binding the pro-
cessing speed and the number (amount) of assigned processors. The problem
is reduced to a set of nonlinear equations.

In [16] problem Q) | size;, pmin | Cpap of scheduling on uniform processors
was considered. It was also assumed that size; € {1,2} and that processors
form pairs of equal speed. An O(nlog n+nm) algorithm was proposed. First,
a lower bound of the schedule length is calculated. Tasks with size; = 2 are
scheduled in the order of decreasing processing times. Then, in the remaining
free intervals tasks with size; = 1 are scheduled. When the schedule is to
short to accommodate all the tasks it is extended by some calculated amount
of time. This algorithm was extended to solve problem Q) | size;, pmin | Cypan
with size; € {1,A} in [17], and to solve problem @ | cube;, pmin | Cpqp in

12

[18]. In [43] results of computational experiments on the above algorithm for
Q | cubej,pmin | Cpop arve reported. For problem Qm | sizej, pmin | Chop
with arbitrary size; a solution based on linear programming and feasible sets
has been proposed in [18].

Heuristics for scheduling P | spdp—lin—6;, prec | Cpua. were proposed
in [81]. It was proved that any LS algorithm has tight performance ratio
A+ %. The standard LS algorithm assigns a task to the first available
processor. However, it can be advantageous to delay the starting of the task
until a moment when more processors are available. The Earliest Comple-
tion Time (ECT) heuristic is an LS heuristic which assigns tasks to ready
processors in a manner minimizing the completion time of a task. The worst
case performance ratio of ECT was shown to be less than In A + 2. Further
analysis of ECT in [82] proved that the performance is bounded from above
by 3— % and an instance with 2.5 performance ratio was demonstrated. The
same idea as of ECT algorithm was independently proposed in [2, 48] to
find the set of processors executing a compute intensive task on a distributed
workstation system (which is a variation of problem @), win | spdp—any | C oz
with n = 1). An algorithm with complexity O(m?) was proposed in [2] and
with complexity O(mlogm) in [48].

Preemptive scheduling on a hypercube was considered again in [74]. A
feasibility testing algorithm of [1] was modified to obtain complexity O(nm).
By the observation that in the optimal schedule at least one task must use
all the time remaining up to the end of the schedule, an O(n?m?) algorithm
finding optimal schedule for P | cube;,pmin | Cyqp was given. The above
algorithm uses for each subcube a parametric representation of the remaining
processing time as a linear function of some (hypothetical) common deadline
T'. The parameters are modified as a result of building partial schedules and
consuming the free processing time by the scheduled tasks. Using such a
function the optimum schedule length can be calculated. A similar approach
and an O(n?log®n) algorithm finding the optimal schedule was proposed in
[85].

A variation of P | spdp—any | C,,., was considered in [61]. It was assumed
that n < m, all tasks (at least initially) are executed in parallel, and min-
imization of C,,,, was achieved by changing the number of processors used
by the tasks. The proposed approximation algorithm successively increases
the number of processors used by the longest tasks until 6; is achieved or all
m processors are occupied. We will call this algorithm Varying Size (VS).

13

The tight performance ratio of VS is min{n, R/(1 — n/m)}, where R is the
maximum of the ratio of two successive acceptable sizes of any task.

In [19] problem Pm | size;,pmin | L. for size; € {1,A} was con-
sidered. An LP based on the processor feasible sets was proposed. Since
this method requires an LP with big number of variables an approximation
method based on tabu search and linear programming has been proposed.
The reported good experimental results for the second method have been
explained by a particular topology of the criterial function.

For P | cube; | Cpar Largest Dimension First (LDF) heuristic with tight
performance ratio 2 — 1/m is proposed in [85].

In [62] an experimental study is reported for dynamic scheduling (i.e. the
set of tasks is not known in advance) for problem P | cube; | Y- C;. It is
observed that even sophisticated processor allocation strategies alone can-
not guarantee good performance. A set of Scan strategies is proposed which
combine the simple buddy allocation scheme with clustering tasks according
to their size;. Tasks with the same size; are appended to one queue. Queues
with different size tasks are scanned in the direction of increasing (or decreas-
ing) size. These scheduling strategies effectively overcome the shortcomings
(weak ability to recognize idle subcubes) of the buddy allocator.

Problem P | spdp—any, prec | C,,. was considered in [75]. It is assumed

1

that ‘v’jt"; = Et{; An algorithm for determining size; and sequencing tasks
in an arbitrary DAG was proposed. Processors are considered here as a
continuous medium which behaves like electrical charge passing from task
to task in the DAG. The optimality conditions impose a set of nonlinear
equations on the flow of processing power (processors) and on the completion
times of independent paths of execution. These equations are analogous to
Kirchhoft’s laws of electrical circuit theory. An algorithm based on conjugate
gradient method has been proposed. The complexity is O(e*+ne+ I(n+e)),
where ¢ - is the number of edges in the precedence graph and [- is the number
of iterations in the algorithm.

A similar problem motivated by computer vision application is considered
in [35] (a variation of P | spdp—any,prec | Cpqaz). The difference here is
that the computations are pipelined and the tasks constantly coexist on the
processor set. Long sequences of data sets undergo processing by collection
of tasks forming a series-parallel DAG. The throughput defined as the longest
execution of a single task in the DAG is the interval between obtaining re-

14

sults for two consecutive data sets. Two problems are posed: for the given
throughput find minimal response time, and for the given response time find
maximal throughput. Heuristic algorithms are proposed.

In [44] problem P | sizej, pmin | Cpar is proved to be NPh, but it is an
open problem whether it is sSNPh.

In [46] a special case of problem P | spdp—1lin—é;,var,chain | Cyqp is
considered. It is assumed that tasks form chains of three elements (denoted
| chain |= 3): a sequential head (size; = ¢; = 1), parallel central part with an
unboundedly linear speedup (spdp—lin,d; > m) and a tail which is sequential
again. This model is motivated by a master-slave model of computations.
It was shown that the above problem is sNPh. Yet, the optimal schedule
for the m — 1 longest tasks can be extended to an optimal schedule for all
the tasks. Furthermore, when m is fixed such a schedule can be obtained in
polynomial time. When the chain of tasks consists of two elements of one
type only, e.g. a head and a central part (denoted | chain |= 2), the optimal
solution can be found in O(nlogn) time. Three approximation algorithms
have been proposed with tight performance bounds 3,2, 2, respectively.

In [23] problem P3 | sizej,p; = 1,chain | Cpap is proved to be sNPh.
When the chains consist of multiprocessor tasks which are preceding unipro-
cessor task and size; = A > m/2 for all multiprocessor tasks, an O(nlogn)
algorithm can be applied. For chains consisting either of multiprocessor tasks
with size; = A or of uniprocessor tasks the optimal schedule can be found
in O(nlogn) time (cf. [14]).

Table 1 presents results in multiprocessor task scheduling. The entries of
the table are organized chronologically according to the model of requiring
processors. The following abbreviations are used in Table 1: 7 - an open
problem with unknown complexity, pseudopoly. - a pseudopolynomial algo-
rithm was proposed, LP - an algorithm based on linear programming, ILP -
an algorithm based on integer linear programming.

5 Dedicated processors

The first paper considering multiprocessor scheduling seems to be [25] in
which branch and bound (B&B) algorithm is proposed for scheduling in
chemical plants. A concept of compatibility and incompatibility of tasks has
been introduced. Two tasks T; and T; are compatible if fixz; N fiz; = 0.

15

Insert
Table 1 here

This can be easily extended to incompatibility graph. In bounding the search
a Maximum Degree of Incompatibility (MDI) was an incentive to prefer ex-
ecuting some tasks over the others.

In [60] scheduling of diagnostic tests is analyzed. The tests to be per-
formed are represented by a diagnostic graph in which nodes represent pro-
cessors and edges - tasks. The edge has weight - processing time of a task.
Two processors connected by the edge are simultaneously required to test
each other. We will call such a representation scheduling graph (after [63]).
The considered problem P | fix; | Cpor with V; | fiz; |= 2 is proved in [60]
to be NPh. An LPT heuristic is analyzed, and the worst case performance
bound 4(d — 1)/d is demonstrated, where d is the maximum degree of any
vertex. For graphs with d <5 this bound is tightened to 3, and for binomial
graphs with integral ratio of the weights it is 2.

In [38] the problem of scheduling file transfers is considered. Each com-
puter may be able to use p ports to execute simultaneous file transfers. The
transfers to be performed are described by a scheduling graph in which ver-
tices are communicating nodes and edges are files to transfer. The problem
is analyzed for the case with central controller as well as for the distributed
case. It is proved that 4/3 < Sps < 3 and this bound can be tightened for
special forms of the scheduling graph. LPT heuristic has performance ratio
5/2 —1/p when p > 2. Two distributed protocols are proposed to sched-
ule file transfers. For the first (called Demand Protocol 1) it is proved that
CPPL < 3C* 4+ ee, where CPPL is the length of the schedule, C*, the
length of the optimal schedule, ¢ is the number of edges in the scheduling
graph, ¢ is the maximum time to initiate some file transfer. For the second
protocol similar bounds have been obtained.

In [40] the analysis of problems P | fix; | Cpar and P | fix;,p; = 1|
C'naz 18 motivated by scheduling of built-in tests for VLSI circuits. Heuristics
based on Maximum Degree of Incompatibility are proposed.

In [64] preemptive scheduling is considered. By reduction of edge mul-
ticoloring problem P | fix;,pmtn | Cyap with | fixz; |= 2 is proved to
be sNPh (via equivalence with P | fixz;,p; = 1 | Cpaz). For problem
Pm | fiz;,pmin | Chap, i.e. when the number of processors is fixed an
algorithm based on linear programming and processor feasible sets is given.

In [13] the case of three processors is analyzed. The problem is sNPh.
A normal schedule (NS) is the one in which tasks requiring two processors
simultaneously are executed in parallel with tasks requiring the third proces-

16

sor. Three special cases are identified when normal schedules are optimal.
In general case performance ratio of normal schedules is shown to be less
than 4/3. For the same problem it is shown in [41] that normal schedules
guarantee performance 5/4 and this bound is tight. A better approximation
algorithm with tight performance ratio Sig = 7/6 has been proposed in [51]
(we call it 18 for it chooses the best out of 18 schedules).

In [29] open-, flow- and job-shop with multiprocessor tasks are considered.
For the open-shop it is assumed that the same number operations of different
tasks require the same set of processors. In some of the considered problems
the number of stages is fixed, i.e. for each task number of operations can be
fixed. These problems are further pursued in [28]. In some cases number of
task types was fixed to R.

Paper [6] considers Earliest Due-Date algorithm applied to solve P2,3.4 |
frx;,pmin | Lyu.. EDD is linear time algorithm provided that the order of
tasks according to the due-dates is given initially. For P2 | fiz;, pmin | La.
is shown to be optimal, for m € {3,4} conditions are given under which EDD
is optimal. Computational results are reported.

Scheduling according to model set; is tackled in [10]. Dynamic program-
ming formulations are given for P2 | set; | Cpar and P3| set; | Cpap in the
absence of one of the three duo-processor task types. For P | set; | Crar a
heuristic scheduling tasks in the Shortest Processing Time Mode (SPTM) is
proposed. Its tight performance ratio is m. For Pm | set;, pmin | Car a
polynomial time algorithm based on processor feasible sets and linear pro-
gramming is proposed.

In Table 2 results for scheduling multiprocessor tasks on dedicated pro-
cessors are given. Abbreviation s.g. stands for scheduling graph.

6 Conclusions

Scheduling multiprocessor tasks is considered in this paper. Multiprocessor
tasks require multiple processors simultaneously. Recent results in schedul-
ing on parallel and dedicated processors are reported in Tables 1 and 2,
respectively.

17

Insert

Table 2 here

References

1]

M.Ahuja, Y.Zhu, "An O(nlogn) feasibility algorithm for preemptive
scheduling of n independent jobs on a hypercube”, Information Pro-

cessing Letters 35 (1990) 7-11.

M.J.Atallah, C.L.Black, D.C.Marinescu, H.J.Siegel, T.L.Casavant,
"Models and algorithms for coscheduling compute-intensive tasks on a
network of workstations”, Journal of Parallel and Distributed Comput-
ing 16 (1992) 319-327.

A.Avizienis, G.C.Gilley, F.P.Mathur, D.A.Rennels, J.A.Rohr,
D.K.Rubin, "The STAR (Self-Testing And Repairing) computer: An
investigation of the theory and practice of fault-tolerant computer de-

sign”, IEEE Transactions on Computers C-20/11 (1971) 1312-1321.

V.Bharadwaj, D.Ghose, V.Mani, ”Optimal sequencing and arrangement
in distributed single-level tree networks with communication delays”,
IEEE Transactions on Parallel and Distributed Systems 5/9 (1994) 968-
976.

L.Bianco, J.Blazewicz, P.Dell’lOlmo, M.Drozdowski, ”Preemptive
scheduling of multiprocessor tasks on the dedicated processors system
subject to minimal lateness”, Information Processing Letters 46 (1993)
109-113.

L.Bianco, J.Blazewicz, P.Dell’Olmo, M.Drozdowski, ”Linear algorithms
for preemptive scheduling of multiprocessor tasks subject to minimal
lateness”, 1993, to appear in Discrete Applied Mathematics.

L.Bianco, J.Blazewicz, P.Dell’Olmo, M.Drozdowski, ”Scheduling pre-
emptive multiprocessor tasks on dedicated processors”, Performance

Evaluation 20 (1994) 361-371.
L.Bianco, J.Blazewicz, P.Dell’'Olmo, M.Drozdowski, ”Scheduling UET

multiprocessor tasks”, Foundations of Computing and Decision Sciences

19/4 (1994) 273-283.

18

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

L.Bianco, J.Blazewicz, P.Dell’Olmo, M.Drozdowski, ” Preemptive multi-
processor task scheduling with release times and time windows”, 1994,
to appear in Annals of Operations Research.

L.Bianco, J.Blazewicz, P.Dell’Olmo, M.Drozdowski, ”Scheduling mul-
tiprocessor tasks on a dynamic configuration of dedicated processors”,

Annals of Operations Research 58 (1995) 493-517.

L.Bianco, P.Dell’Olmo, M.G.Speranza, "Nonpreemptive scheduling of
independent tasks with prespecified processor allocations”, Naval Re-

search Logistics Quarterly 41 (1994) 959-971.

L.Bianco, P.Dell’Olmo, M.G.Speranza, ”Scheduling independent tasks
with multiple modes”, Discrete Applied Mathematics 62 (1995) 35-50.

J.Blazewicz, P.Dell’Olmo, M.Drozdowski, M.G.Speranza, ”Scheduling
multiprocessor tasks on three dedicated processors”, Information Pro-

cessing Letters 41 (1992) 275-280. Corrigendum, IPL 49 (1994) 269-270.

J.Blazewicz, M.Drabowski, J.Weglarz, ”Scheduling multiprocessor tasks
to minimize schedule length”, IEEE Transactions on Computers C-35/5
(1986) 389-393.

J.Blazewicz, M.Drozdowski, ”Scheduling divisible jobs on hypercubes”,
Parallel Computing 21 (1995) 1945-1956.

J.Blazewicz, M.Drozdowski, G.Schmidt, D.de Werra, ”Scheduling inde-
pendent two processor tasks on a uniform duo-processor system”, Dis-

crete Applied Mathematics 28 (1990) 11-20.
J.Blazewicz, M.Drozdowski, G.Schmidt, D.de Werra, ”Scheduling inde-

pendent multiprocessor tasks on a uniform k-processor system”. Parallel

Computing 20 (1994) 15-28.

J.Blazewicz, M.Drozdowski, G.Schmidt, D.de Werra, ”Scheduling inde-
pendent multiprocessor tasks on a uniform k-processor system”, Techni-
cal Report R92/030, Institute of Computing Science, Poznan University
of Technology, 1992.

19

[19]

23]

[24]

J.Blazewicz, M.Drozdowski, D.de Werra, J.Weglarz, ”Deadline schedul-
ing of multiprocessor tasks”, Discrete Applied Mathematics 65 (1996)
81-96.

J.Blazewicz, K.Ecker, ”Scheduling multiprocessor tasks under unit re-
source constraints”, Proceedings of International Conference on Opti-
mization Techniques and Applications, Singapore, Apr. 1987, 161-169.

J.Blazewicz, K.Ecker, G.Schmidt, J.Weglarz, Scheduling in Computer
and Manufacturing Systems, Springer Verlag, Berlin, 1993.

J.Blazewicz, J.K.Lenstra, A.H.G.Rinnoy Kan, ”Scheduling subject to
resource constraints: classification and complexity”, Discrete Applied

Mathematics 5 (1983) 11-24.

J.Blazewicz, Z.Liu, ”Scheduling multiprocessor tasks with chain con-
straints”, 1995, private communication.

J.Blazewicz, J. Weglarz, M. Drabowski, ”Scheduling independent 2-
processor tasks to minimize schedule length”, Information Processing

Letters 18 (1984) 267-273.

G.Bozoki, J.-P.Richard, ”"A branch-and-bound algorithm for the
continuos-process job-shop scheduling problem”, AIIE Transactions 2/3
(1970) 246-252.

T.Bonniger, R.Esser, D.Krekel, ?CM-5, KSR2, Paragon XP/S: A com-
parative description of massively parallel computers”, Parallel Comput-

ing 21 (1995) 199-232.
P.Brucker, Scheduling Algorithms, Springer Verlag, Berlin, 1995.

P.Brucker, A.Kramer, ”Polynomial algorithms for resource constrained
and multiprocessor task scheduling problems with a fixed number of
task types”, Osnabricker Schriften zur Mathematik, Reihe P Preprints,
Heft 165, May 1994, Fachbereich Mathematik/Informatik, Universitat
Osnabriick.

P.Brucker, A.Kramer, ”"Shop scheduling problems with multiprocessor
tasks and dedicated processors”, Annals of Operations Research: Math-

ematics of Industrial Systems 157 (1995) 13-27.

20

[30]

31]

[32]

33]

[34]

[35]

[36]

37]

[38]

[39]

[40]

R.S.Chang, R.C.T.Lee, "On a scheduling problem where a job can be
executed only by a limited number of processors”, Computers and Op-

erations Research 15/5 (1988) 471-478.

G.-I.Chen, T.-H.Lai, "Preemptive scheduling of independent jobs on a
hypercube”, Information Processing Letters 28 (1988) 201-206.

G.-I.Chen, T.-H.Lai, "Scheduling Independent Jobs on Partitionable
Hypercubes”, Journal of Parallel and Distributed Computing 12 (1991)
74-78.

Y.L.Chen, Y.H.Chin, ”Scheduling unit-time jobs on processors with dif-
ferent capabilities”, Computers and Operations Research 16/5 (1989)
409-417.

Y.C.Cheng, T.G.Robertazzi, ”Distributed Computation with Communi-
cation Delay”, IEEFE Transactions on Aerospace and Electronic Systems

24/6 (1988) 700-712.
A.N.Choundhary, B.Narahari, D.M.Nicol, R.Simha, ”Optimal processor

assignment for a class of pipelined computations”, IEEFE Transactions

on Parallel and Distributed Systems 5/4 (1994) 439-445.

P.Chretienne, "Tree scheduling with communication delays”, Discrete

Applied Mathematics 49 (1994) 129-141.

E.G.Coffman Jr. (editor), Computer and job-shop scheduling theory,
John Wiley & Sons, New York, 1976.

E.G.Coffman Jr., M.R.Garey, D.S.Johnson, A.S.Lapaugh, ”Scheduling
file transfers”, SIAM Journal on Computing 14/3 (1985) 744-780.

J.Y.Colin, P.Chrétienne, ”C.P.M. scheduling with small communciation
delays and task duplication”, Operations Research 39/4 (1991) 680-684.

G.L.Craig, C.R.Kime, K.K.Saluja, "Test scheduling and control for
VLSI built-in self-test”, IEEE Transactions on Computers 37/9 (1988)
1099-1109.

21

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

P.Dell’Olmo, M.G.Speranza, Z.Tuza, ”Fasy and hard cases of a schedul-
ing problem on three dedicated processors”, 1993, private communica-
tion.

G.Dobson, U.S.Karmarkar, ”Simultaneous resource scheduling to mini-

mize weighted flow times”, Operations Research 37/4 (1989) 592-600.

M.Drozdowski, ”Scheduling multiprocessor tasks on hypercubes”, Bul-
letin of the Polish Academy of Sciences, Technical Sciences 42/3 (1994)
437-445.

M.Drozdowski, ”On complexity of multiprocessor tasks scheduling”,
Bulletin of the Polish Academy of Sciences, Technical Sciences 43/3
(1995) 381-392.

M.Drozdowski, ”Real-time scheduling of linear speedup parallel tasks”,
Information Processing Letters 57 (1996) 35-40.

M.Drozdowski, W.Kubiak, ”Scheduling parallel tasks with sequential
heads and tails”, working paper of Faculty of Business Administration,
Memorial University of Newfoundland, 1995.

J.Du, J.Y-T.Leung, "Complexity of scheduling parallel task systems”,
SIAM Journal on Discrete Math. 2/4 (1989) 473-487.

K.Efe, V.Krishnamoorthy, ”"Optimal scheduling of compute-intensive
tasks on a network of workstations”, IEEE Transactions on Parallel

and Distributed Systems 6/6 (1995) 668-673.

D.G.Feitelson, L.Rudolph, ”"Gang scheduling performance benefits for
fine-grain synchronization”, Journal of Parallel and Distributed Com-

puting 16 (1992) 306-318.

E.F.Gehringer, D.P.Siewiorek, Z.Segall, Parallel Processing: The Cm”*
Ezxperience, Digital Press, Bedford, 1987.

M.X.Goemans, "An approximation algorithm for scheduling on three
dedicated processors”, Discrete Applied Mathematics 61 (1995) 49-60.

22

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

R.I.Graham, E.L.Lawler, J.K.Lenstra, A.H.G.Rinnoy Kan, ”Optimiza-
tion and approximation in deterministic sequencing and scheduling: a

survey”, Annals of Discrete Math. 5 (1979) 287-326.

S.L.Hakimi, A.T.Amin, ”Characterization of the connection assignment
of diagnosable systems”, IEEE Transactions on Computers 23/1 (1974)
86-88.

C.P.M.van Hoesel, "Preemptive scheduling on a hypercube”, Technical
Report 8963/A, Erasmus University, Rotterdam, 1989.

J.A.Hoogeveen, S.L..van de Velde, B.Veltman, ” Complexity of scheduling
multiprocessor tasks with prespecified processors allocations”, Discrete

Applied Mathematics 55 (1994) 259-272.

A.L.Hopkins, J.M.Lala, T.B.Smith, "FTMP - A highly reliable fault-
tolerant multiprocessor for aircraft”, Proceedings of the IEEE 66/10
(1978).

R.Jain, K.Somalwar, J.Werth, J.C.Browne, ”Scheduling parallel 1/O op-
erations in multiple bus systems”, Journal of Parallel and Distributed

Computing 16 (1992) 352-362.

K.Jansen, ”Scheduling with constrained processor allocation for interval

orders”, Computers and Operations Research 20/6 (1993) 587-595.

H.Kellerer, G.Woeginger, "UET-scheduling with constrained processor
allocations”, Computers and Operations Research 19/1 (1992) 1-8.

H.Krawczyk, M.Kubale, ”An approximation algorithm for diagnostic
test scheduling in multicomputer systems”, IEEE Transactions on Com-

puters C-34/9 (1985) 869-872.

R.Krishnamurti, E.Ma, "An approximation algorithm for scheduling
tasks on varying partition sizes in partitionable multiprocessor systems”,

IEEE Transactions on Computers 41/12 (1992) 1572-1579.

P.Krueger, T.-H.Lai, V.A.Dixit-Radiya, ”Job scheduling is more impor-
tant than processor allocation for hypercube computers”, IEEE Trans-

actions on Parallel and Distributed Systems 5/5 (1994) 488-497.

23

[63] M.Kubale, "The complexity of scheduling independent two-processor
tasks on dedicated processors”, Information Processing Letters 24 (1987)
141-147.

[64] M.Kubale, ”"Preemptive scheduling of two-processor tasks on dedicated
processors (in Polish)”, Zeszyty Naukowe Politechniki Slgskiej, Seria:
Automatyka 2.100, No.1082 (1990) 145-153.

[65] M.Kubale, "File transfer scheduling within time windows (in Polish)”,
Zeszyty Naukowe Politechniki Slgskiej, Seria:Automatyka z.110, No.1176
(1992) 69-76.

[66] M.Kubale, ”Preemptive versus nonpreemptive scheduling of biprocessor
tasks on dedicated processors”, private communication, 1995.

[67] J.F.Lin, S.J.Chen, ”Scheduling algorithm for nonpreemptive multi-
processor tasks”, Computers and Mathematics with Applications 28/4
(1994) 85-92.

[68] E.L.Lloyd, ”Concurrent task systems”, Operations Research29/1 (1981)
189-201.

[69] E.P.Markatos, T.J.LeBlanc, ”Using processor affinity in loop scheduling
on shared-memory multiprocessors”, IEEE Transactions on Parallel and

Distributed Systems 5/4 (1994) 379-400.

[70] J.Plehn, ”Preemptive scheduling of independent jobs with release times
and deadlines on a hypercube”, Information Processing Letters 34 (1990)
161-166.

[71] F.P.Preparata, G.Metze, R.Chien, ”On the connection assignment prob-
lem of diagnosable systems”, IEEE Transactions on Electronic Comput-

ers 16/6 (1967) 848-854.

[72] V.J.Rayward-Smith, "UET scheduling with interprocessor communica-
tion delays”, Discrete Applied Mathematics 18 (1987) 55-71.

[73] K.C.Sevcik, ”Application scheduling and processor allocation in multi-
programmed parallel processing systems”, Performance Evaluation 19

(1994) 107-140.

24

[74]

[75]

[76]

[77]

78]

X.Shen, E.M.Reingold, "Scheduling on a hypercube”, Information Pro-
cessing Letters 40 (1991) 323-328.

G.N.Srinivasa Prasanna, B.R.Musicus, ”Generalized multiprocessor
scheduling for directed acyclic graphs”, Proceedings of Supercomput-

ing 1994, IEEE Press, 1994, 237-246.

B.Veltman, B.J.Lageweg, J.K.Lenstra, ”Multiprocessor scheduling with
communication delays”, Parallel Computing 16 (1990) 173-182.

V.G.Vizing, ” About schedules observing deadlines (in Russian)”, Kiber-
netika No. 1 (1981) 128-135.

V.G.Vizing, ”Optimal choice of task execution intensities with a convex
penalty function for intensity (in Russian)”, Kibernetika No. 3 (1982)
125-127.

V.G.Vizing, ”Minimization of the maximum delay in servicing systems
with interruption”, U.S.S.R. Computational Mathematics and Mathe-
matical Physics 22/3 (1982) 227-233.

V.G.Vizing, L.N.Komzakowa, A.V.Tarchenko, ” An algorithm for select-
ing the processing intensity (in Russian)”, Kibernetika No. 5 (1981) 71-
74.

Q.Wang, K.H.Cheng, "List scheduling of parallel tasks”, Information
Processing Letters 37 (1991) 291-297.

Q.Wang, K.H.Cheng, ”A heuristic of scheduling parallel tasks and its
analysis”, SIAM Journal on Computing 21/2 (1992) 281-294.

J.Weglarz, ”Scheduling under continuous performing speed vs. resource
amunt activity models”, in R.Stowinski, J.Weglarz, Advances in Project

Scheduling, Elsevier Science Publisher B.V., Amsterdam, 1989, 273-295.
J.Zahorjan, E.D.Lazowska, D.L.Eager, "The effect of scheduling disci-

pline on spin overhead in shared memory parallel systems”, IFEFE Trans-

actions on Parallel and Distributed Systems 2/2 (1991) 180-198.

Y.Zhu, M.Ahuja, "On job scheduling on a hypercube”, IEFE Transac-
tions on Parallel and Distributed Systems 4/1 (1993) 62-69.

25

Table 1. Scheduling multiprocessor tasks on parallel processors

Problem | Result | Reference
Nonpreemptive scheduling
P sizej,pj =1 Chras NPh [68]
P3| sizej,p; = 1,prec| Cpax
and size; € {1,2} NPh [68]
P | sizej,p; =1, prec | Crax Srs = W?T;_fl [68]
P2 | size;,p; = 1, prec | Cras O(n?) [68]
P sizej,pj =1|Chrax
and size; € {1,A} O(n) [14]
Plsizej,p; =1 Chax
and size; € {1,...,A} O(n) ILP [14]
Plsizej,pj =1 Chras sNPh [14]
P2 | size; | Crawy P3| sizej | Cruay | NPh,pseudopoly. [47]
P4 size; | Crar ? [47]
P5 | size; | Crasr sNPh [47]
P2 | sizej, chain | Cpian sNPh [47]
P sizej | Cro Srper < % — ﬂéﬂil [67]
P4 size;j | Cpap and size; # 1 pseudopoly. [44]
P | cubej | Cmal, SLDLPT =2 - % [32]
P | cube; | Cror Sipr =2 — % [85]
P | cube; | 3 C; experimental study [62]
P | cube; | Cro Srpr <2 — % [67]
P | spdp—lin—b;, prec | Cran Srs = A+ mm;A [81]
P | spdp—lin—b;, prec | Cpax Sger <InA+2 [81]
P | spdp—lin—b;, prec | Crax Sger <3 — % [82]
P | spdp—any,var,r; | Lmas continuous processor medium [83]
P | spdp—any | Cyop and n < m Svs = min{n, 2=} [61]
Q,win|spdp—any | Cpr and n =1 | O(m?) " (2]
P | spdp—lin | 3 C; SPT is optimal [73]
P | spdp—any | 3 C; special cases analyzed [73]
P | spdp—any, prec | Chan heuristic [35]
P | spdp—any, prec | Crax O(e? + en + I(e +n)) [75]
Q, win | spdp—any | Cpar and n =1 | O(mlogm) [48]

26

Table 1. continued

Problem | Result | Reference
Preemptive scheduling

P | sizej,pmtn | Cpop and size; €{1,A} | O(n) [14]
Pm | size;,pmin | Chop LP [14]
P | sizej,pmtn,resl - 1| Cpas
and size; € {1,2} O(nlogn) [20]
Q | sizej,pmin | Cpop and size; € {1,2} | O(nlogn + nm) [16]
Q | sizej,pmin | Cpop and size; €{1,A} | O(nlogn + nm) [17]
Qm | size;,pmin | Cpop LP [18]
Pm | sizej,pmin | Ly, LP or
and size; € {1,A} tabu search+LP [19]
P | sizej,pmtn,resl - 1| Cpan
and size; € {1, A} O(nm) [21]
P | sizej,pmin | Cpop NPh, ? [44]
P | cubej, pmin | Cpop O(n*(log n+

Flogmax, (7)) | [31]
P | cubej, pmin | Cpop O(nlogn(log n+

+ max;{t;"7})) (54, 1]
P | cubej, pmtn,r; | Lyas =0 LP [70]
Q | cube;, pmin | Cpop O(nlogn 4 nm) [18, 43]
P | cubej, pmin | Cpop O(n*m?) [74]
P | cubej, pmin | Cpop O(n?*log*n) [85]
R | spdp—lin,var,r; | Lya: =0 LP [77
P | spdp—lin,var,r; | X O(n?) [80]
P | spdp—lin,var,r; | X O(n?) [78]
P | spdp—lin—b;,var,r; | Lyax O(n*m) [79]
Pm | spdp—any, pmtn | Cpax NPh,pseudopoly. [47]
P | spdp—any, pmitn | Cpax sNPh [47]
P | spdp—lin—6;,var, chain | Cpop sNPh, Sy =3
and | chain |=3 Ste = Sps =2 [46]
Pm| spdp—lin—b;,var, chain |Cyqy polynomially
and | chain |=3 solvable [46]
P | spdp—lin—6;,var, chain | Cpaz
and | chain |= 2 O(nlogn) [46]
P | spdp—lin—6;,var,r; | Cax O(n?) [45]

27

Table 2. Scheduling multiprocessor tasks on dedicated processors

Problem | Result | Reference
Nonpreemptive scheduling

P | fiz; | Coae B&B [25]
P fiz; | Cpaw and | fiz;|=2 NPh, Sppr = 41

Srpr<3 when d <5

Sppr <2 binomial s.g. [60]
P fiz; | Cpar and | fiz;|=2 20 cases NPh

23 cases polynomial

% < Sps <3

Sppr =35 — %

ConL<3Cr,, +ee [38]
P fiz;| Cpaw and | fiz; |€{1,2} | 9 cases NPh

9 polynomial cases [63]
P | fl:C] | Cmaz
P fizj,p; =1 Chas experimental study [40]
P2 fiz; | ¥ w;C; O(nlogn) [42]
P fiz; | X w;C; ILP+experiment [42]
P3| fiz; | Coas sNPh, 13, 53]

SNS < % [13]

Sns =2 [41]

Ster = Sspr = 3 [41]
O | fizij | Cpar and stages = 2 O(n) [29]
O | fizij | Cpar and stages = 3 NPh [29]
O | fizij,pi; = 1| Cras
and stages = r polynomial [29]
F'| fiz; | Char and stages = 2 O(nlogn) [29]
F2 | fiz;; | Char and stages =3 | sSNPh [29]
J2 | fixij,pi; = 1| Chas sNPh [29]
J2 | fixzyj | Cpar and n; <2 O(nlogn) [29]
J | fixyj | Crnaw and n = 2 O(n*logn) [29]
J2 | fixyj | Crgw and n =k O(n*F) [29]

28

Table 2. continued

Problem Result Reference
Pm | fiz;,p;=11f

and f - {Z ijj,ZTj,ijCj}

and R number of task types O(R2EnPHL 4 28(R 4+ m)) [28]
Pm | fi$j7pj = 1,7“]' | f

and f € {Chaz, > Cj}

and R number of task types O(R2EnPHL 4 28(R 4+ m)) [28]
J | fixijapij = 1,prec, r; | f

and n =k, f € {maxf;,3> f;}

and f; nondecreasing function of C; | O(k2*m lezl n;]_[1]-“:1 n;) [28]
F| fixi,pij =1 f

and stages = r

and f € {>w,C;,>T;,> w,;U;} O(r?2'n"*2 4+ 2"(r + m)) [28]
F| foei,pij = 1, | f

and stages =r, f € {XC}, Cpuaz} O(r?2'n"2 4+ 27(r + m)) [28]
O| fizijpi; =11 f

and stages = r O(r®(rh)22rprr++1 4

and f € {>w,C;,>T;,> w;U;} +27(r +m)) [28]
O | fizg,pij = 1,05 | f

and stages = r O(r®(rh)22rprr++1 4

and [€ {Chaz, > C;} +2"(r +m)) [28]
O | fizij, pij, prec| f

and n = 2, stages = r

and f € {mazf;, 5 £}

and f; nondecreasing function of C; | O(r*?) [28]
P2,3.4 | fizj,p; =1 Cras O(n) [11]
P5 | firp; = 1] Cpae O(n??) 1]
Pm | fiz;,pj =1|Chras ILP [55]
P fizj,pi=1]|Cpex=3 sNPh [55]
P2 | fizj,p; = 1,chain | Cpax sNPh [55]
P2 fizj,pj = 1,7 | Chas sNPh [55]
Pm | fiz;,p; =1,r; | Chas ILP [55]
P2 fiz; |3 C; NPh [55]
P3| fiz; | Y C, sNPh [55]

29

Table 2. continued

Problem Result Reference
P | fi:z;j,pj =1 | ZC] sNPh [55]
P2 fizj,p; =1, chain | Y C; sNPh [55]
Pywin | fix; | Chas NPh, 3 cases polynomial [65]
P2 | fiaypr =11 L O(n) 8
P3| fiz; | Craw Sig =1 [51]
P2 fiz; | Lo sNPh [44]
P3| fiz; | Cpap and | frz;|= 2 O(n) [66]
P3| fizj, chain | Cpop
and | fix;|=2 O(n) [66]
P4 fixj,p; =1, chain | f
and | fiz;|=2 and fe€{Cas, > C;} | SNPh [66]
P| fix;,p; =12 C; and | fiz;[=2 | sNPh [66]
P3| fix;,chain|y C; and | fiz; =2 | O(nlogn) [66]
P4 fiz; | Y C; and | fix;|=2 NPh [66]
P fix; | XC;
and | fixz;|= 2 and s.g. is 2-star NPh [66]
P2 set; | Cran pseudopoly. [10]
P3| setj | Cran
and Vr, fix; # { P, P} pseudopoly. [10]
P | Set]‘ | Cmal, SSPTM =m [10]
P setj| Crax sNPh, heurisctic [12]
Preemptive scheduling
P fizj,pmin | Cpas
and | fix;|=2 sNPh [64]
Pm | fox;,pmin | Chap
and | fix;|=2 LP [64]
P2,3.4 | fizj,pmin | Cpax O(n) [7]
P4 foxj,pmin,resl - 1| Cpan O(n) [7]
P2 | fixj,pmin | Ly O(n) [6]
P3,4 | fix;, pmin | Ly, experimental study [6]
P2, win | fix;,pmin | Chpax
and p number of time windows O(n + p) [9]
P2,win | fix;, pmin,r; | Cpax O(n + p) [9]
P3,win | fix;,pmin | Cpax O(n + p) 9]

30

Table 2. continued

Problem Result Reference
P fizj,pmin | Cpap and | fiz;|=2

s.g. bipartite, unicyclic O(n?) [66]
P fizj,pmin | Cpap and | fiz;|= 2

s.g. candy,caterpillar O(n) [66]
P4 fixj, pmin,chain | f

and | fix;|=2 and f € {Craw, > Cj} sNPh [66]
P fizj,pmin | C; and | fix;|= 2 sNPh [66]
P3| fix;, pmin,chain | Y- C;

and | fix;|=2 O(nlogn) [66]
P fizj,pmin | Cpax

and | fix;|= 2 and s.g. 2-star,superstar | O(nlogn) [66]
Pm | set;,var | Cpax LP [10]
Pm | set;,var,r; | Ly LP [5]
Pm,win | setj,var,r; | Cpax LP [9]
Pm,win | setj,var,r; | Lyqx LP [9]

31

