J Sched (2008) 11: 347-356
DOI 10.1007/s10951-007-0051-7

Scheduling multiple divisible loads in homogeneous star systems

M. Drozdowski - M. Lawenda

Received: 19 October 2006 / Accepted: 16 November 2007 / Published online: 9 January 2008

© Springer Science+Business Media, LLC 2008

Abstract In this paper we analyze scheduling multiple di-
visible loads on a star-connected system of identical proces-
sors. It is shown that this problem is computationally hard.
Some special cases appear to be particularly difficult, so it is
not even known if they belong to the class NP. Exponential
algorithms and special cases solvable in polynomial time are
presented.

Keywords Parallel processing - Scheduling - Divisible
loads - Computational complexity

1 Introduction

Classic scheduling models assume that a parallel application
is composed of a set of sequential communicating processes.
Thus, it can be represented as a graph of sequential tasks
connected by arcs representing communications. Yet, other
types of parallel applications which consist in processing
great volumes of data, generally called load, also exist. For
this kind of parallel program it is more natural to assume that
load can be partitioned and distributed for remote process-
ing. Divisible load theory (DLT) assumes that a parallel ap-
plication is arbitrarily divisible and executable in parallel.

M. Drozdowski’s research partially supported by Polish Ministry of
Science and Higher Education.

M. Drozdowski ()

Institute of Computing Science, Poznan University of
Technology, Piotrowo 2, 60-965 Poznan, Poland
e-mail: Maciej.Drozdowski@cs.put.poznan.pl

M. Lawenda
Poznan Supercomputing and Networking Center, Noskowskiego
10, 61-704 Poznan, Poland

Applications conforming with this model can be found in
processing databases, measurements and video. Hence, DLT
applies in many practical cases. DLT turned out to be a flex-
ible vehicle in modeling systems with various communica-
tion algorithms, interconnection topologies, memory hierar-
chy, time and cost trade offs. Surveys of DLT can be found,
for example, in (Bharadwaj et al. 1996; Drozdowski 1997;
Robertazzi 2003).

In this paper we consider a set of m processors Py, ...,
P,, connected in a star topology. There is a processor Py
called originator in the center of the star. The purpose of
the originator is to schedule the computations and perform
communications. Py does no computing. If Py were able to
process the load, its computing capability could be repre-
sented as a processor among P, ..., P,,. The communica-
tions link only the originator Py with the remaining proces-
sors. There is no direct communication between processors
Py, ..., Py. Only one transmission can be performed at a
given time. Star interconnection is a general model for var-
ious real environments. This can be a set of CPUs con-
nected by a bus in a multiprocessor system, a cluster of
workstations connected by a single Ethernet segment, or a
set of grid computers connected over the Internet. In a het-
erogeneous star, processor P;, i = 1,...,m, is defined by
processing rate A; (reciprocal of computing speed), com-
munication rate C; (reciprocal of bandwidth), and commu-
nication startup time S;. The times required to send x units
of load to P;, and process it are S; + C;x and A;x, re-
spectively. Processors are able to compute and communi-
cate simultaneously. For the sake of simplicity we assume
that the time of returning results can be neglected. This as-
sumption does not restrict generality of the considerations
because the result collection has been successfully incorpo-
rated in the DLT model (see, e.g., Bharadwaj et al. 1996;

@ Springer

348

J Sched (2008) 11: 347-356

Drozdowski 1997). Initially the originator holds n divisi-
ble loads Ti,...,T, of sizes Vi,...,V,, respectively. We
will be using names ‘tasks’ and ‘loads’ interchangeably. It is
the responsibility of the originator to schedule tasks so that
schedule length, denoted Cigx, is minimum. In particular, it
is necessary to:

select the number of transmissions g

assign tasks to transmissions

assign processors to transmissions

select size o;; of task T load sent in transmissions i =

|

It is required that Y%, a;j = V;, for each task T;. ;; =0
means that T is not using transmission i.

Scheduling multiple divisible loads has been considered
in (Bharadwaj et al. 1996; Sohn and Robertazzi 1994). It was
assumed that tasks were executed in the first-in first-out se-
quence on a set of heterogeneous processors, all processors
were used by each task, computations of a task finished on
all processors simultaneously, and startup time was negligi-
ble (V; S; = 0). It was observed that transmissions of some
task T; could overlap with computations of the preceding
task T;_1. This allows to start computations of task T; on
some processors Py, ..., P,s immediately after the end of
task 7. Processors Py, ..., Py remain idle until they
receive their share of T; load. For a given m’ the distribu-
tion of the load can be found from a set of linear equations
in O(m) time. Here m’ can be found iteratively in at most m
steps. The complexity of the algorithm is O (m?n).

In (Veeravalli and Barlas 2002) the same set of assump-
tions was made. A multi-installment load distribution strat-
egy has been proposed. In multi-installment (a.k.a. multi-
round) distribution the load is sent to the processors in many
small chunks instead of one long message per processor.
When the messages are long, the processors also have to
wait a long time for the load and the start of the compu-
tations. Hence, multi-installment distribution of the load is
advantageous to minimize schedule length. When the over-
lap of computations on 7' with the transmissions of T is
too short to send the whole load V; to the processors and to
avoid idle time (i.e., if m’ < m), then the load is divided into
multiple smaller installments. Since messages are shorter,
all processors may receive some load earlier and may work
continuously on T;. However, not in all instances can the
idle time be avoided (Veeravalli and Barlas 2002).

The problem of scheduling multiple loads in heteroge-
neous systems has been generalized in (Drozdowski et al.
2006). It was observed that the performance of the proces-
sors may be perceived by tasks in different ways depending
on the type of processing environment. Hence, three types
of processing environments were distinguished: Unrelated
processors where the computation and communication rates,
as well as the startup time depend both on the processor

@ Springer

and the task. For example, for task T; processed on proces-
sor P; these parameters could be denoted: A;;, Cij, S;;, re-
spectively. Uniform processors which differ between them-
selves, but all tasks perceive these differences identically
(this case was defined in the preceding paragraphs). Iden-
tical processors which are the same for all the tasks. Con-
sequently, A; = A, S;=S,Ci=C, fori =1,...,m. Only
permutation schedules were considered in (Drozdowski et
al. 2006). The permutation schedule was defined as follows:
a task is sent to the processors only once, a processor exe-
cutes the task only once, on all processors the sequence of
executing the tasks is the same as the sequence of distribut-
ing the tasks. Consequently, transmissions and computations
of some task cannot be suspended and restarted later. It was
shown that scheduling multiple loads is NP-hard for m = 1
unrelated processor if result returning has to be explicitly
scheduled, for m = 2 unrelated processors if result returning
is not considered, for n = 2 tasks and uniform processors.
However, if the sequence of the communications is known
then the optimum distribution of the load («;;s) can be cal-
culated in polynomial time using linear programming. Also
some other polynomially solvable cases and approximabil-
ity bounds were given in (Drozdowski et al. 2006).

Note that in (Sohn and Robertazzi 1994; Veeravalli and
Barlas 2002; Drozdowski et al. 2006) the load distribution
algorithm is the key element of the solution. The hard com-
binatorial nature of divisible load scheduling problems of-
ten follows from load scattering over communication net-
work with certain properties. For example, England et al.
(2007) analyzes efficient spanning tree topologies for load
distribution. Considering the flexibility in designing com-
munication algorithms, there seems to be no general rule on
which one could base a proof that a certain load scattering
method leads to the optimum schedules. Here we attempt
to delineate the border between computationally hard and
easy cases. To avoid these difficulties a rudimentary network
topology and a transmission time model are assumed.

In this paper we analyze identical processors with startup
time dominating in the transmission time. Startup time is the
main part of transmission time, especially if messages are
short. Consequently, we assume A; = A, S; = S, C; =0, for
i=1,...,m. We hope to show that despite the simplicity of
formulation it is still a challenging problem.

The rest of the paper is organized as follows. In the next
section we show that scheduling different tasks is NP-hard
even on m = 2 processors. In Sect. 3 we analyze proper-
ties of the schedules for a big number of identical tasks, to
propose polynomial time solutions in Sect. 4. The case of a
small number of tasks is studied in Sect. 5. The results are
summed up in the last section.

J Sched (2008) 11: 347-356

349

Fig. 1 Illustration to the proof
of Theorem 1 RLT T l T J Ty | Tan l Loy | Dy
P PFte | Vearve | VeF
B Fre | - | hekve, ||
0 F 2F 3F 4F 2qF 2qFH3FH

2 Different tasks
2.1 Complexity of the problem

In this section we prove that scheduling multiple divisi-
ble loads is NP-hard even for two identical processors if
tasks are different. In the proof of NP-hardness we will use
the NP-complete problem PARTITION WITH EQUAL CAR-
DINALITY defined as follows (Garey and Johnson 1979):

PARTITION WITH EQUAL CARDINALITY

INSTANCE: A finite set E = {ey, ..., ez} of positive inte-
gers.

QUESTION: Is there a subset E' C E such that } ;g e; =

2 ‘
Yjee-pei=3Y ~1¢j=F,and |E'|=|E —E'| =q?

Theorem 1 Scheduling of multiple divisible loads is NP-
hard even for two identical processors.

Proof We will show that our scheduling problem is NP-hard
by presenting a Turing reduction from PARTITION WITH
EQUAL CARDINALITY to a decision version of our problem.
Without loss of generality we assume that e; are multiples
of 3, for i =1,...,2¢q. Were it otherwise, all ¢; could be
multiplied by 3 to satisfy this requirement without changing
the instance answer. The transformation is as follows:

m=2, S=F, C =0,
A=1, n=2q+3,
Vi=2F+4e; forj=1,...,2q,
Vagr1 =F, Vagpa =1, Vo3 =1

We ask if a schedule with length at most y = (2¢ +
3)F + 1 exists. Suppose, that the PARTITION WITH EQUAL
CARDINALITY instance has a positive answer. Then a
feasible schedule of length (2¢ + 3)F + 1 can be con-
structed as shown in Fig. 1: Tasks corresponding to E’ and
Tag+1, Tog43 are sent to Py, and the remaining tasks are
sent to P,. Transmissions of P; interleave the transmissions
of P.

Suppose that there is a schedule of length at most y.
Without loss of generality, let P; be the first processor
which started computations. Note that only 2¢ + 3 trans-
missions of length § = F can be initiated and completed.
Also n = 2¢g + 3. Thus, the load for each task is sent in

only one message, and each task can be executed on one
processor only. The time required for processing the tasks
> =1 VjA=4qF +3F + 2 is equal to the length of avail-
able processing intervals on processors P; and P». Hence,
there is no idle time in the computations on the proces-
sors. Tasks Tog41, T2g+2. T2g+3 have to be sent from the
originator at the end of the schedule, because no other
tasks with transmissions initiated at 2q F, (2¢ +) F, (2q +
2)F can be finished by y = 2 +3)F + 1. Tag42, Tog+3
must be executed on different processors because process-
ing times of other tasks are multiples of 3 and other-
wise there would be an idle time on some processor. This
leaves (2q + 2)F free time on P; and (2q + 1)F time
on P,. Let 7; denote the set of tasks executed by proces-
sor P;, for i = 1,2. If Toy41 were processed by P», then
at most ¢ — 1 tasks from {7}, ..., T4} would be processed
on P, because V;A > 2F, for j =1,...,2q. Processing
the tasks on P, would take 2F(q — 1) + Y r,cy€j +
F < (2g + 1)F, and an idle time would arise on P,.
Thus, T, must be executed on Py, exactly g tasks from
{T\, ..., Tz4} have to be on P; to avoid the idle time. Conse-
quently, g tasks from {71, ..., To,} are executed also on Py,
Since Ty, 1 is executed on Py, the processing requirements
of the tasks on Pj, and on P, must be equal to the re-
maining available time, i.c., ZT;G’Ti—[Tzq+l] AV; =2qF +
Y rieTi—(y) € = 21e AVi =29F + Y peryej =
2g F + F. Hence, ZT;Eﬂ—{Tzq+1) éj == ZT,-&T; ej=F, an.d
the answer to PARTITION WITH EQUAL CARDINALITY is
affirmative.]

In the proof of Theorem 1 tasks use one transmission.
Thus, it is an example of the 1-round load distribution.
The restriction to a single communication is not presumed,
but it follows from the features of the instance. Therefore,
Theorem 1 applies both to 1- and multi-round distribu-
tions. For similar reasons it applies to permutation and non-
permutation schedules, as well as to the schedules with or
without simultaneous completion of the computations. Note
that we did not prove that our problem is in the class NP.
Thus, it is NP-hard, but it is not known if it is NP-complete.

2.2 Minimum schedule length for a given communication
pattern

We will show that for a given communication pattern the ex-

istence of a schedule of some given length D can be verified
in polynomial time in the length of the string encoding the

@ Springer

350

J Sched (2008) 11: 347-356

Fig. 2 Network for a given
pattern

instance and the communication sequence, by finding maxi-
mum flow in a network.

Since there are no memory limitations, all transmissions
may be shifted to the left (i.e., executed as early as possible,
so that there is no idle time between them) without chang-
ing the schedule length. Thus, for a given communication
pattern we know when a particular communication finishes.

The construction of the network is shown in Fig. 2. Be-
yond source s and sink ¢ there are n nodes in set Vp rep-
resenting tasks and g nodes in set Vp which represent po-
sitions of task transmissions to the processors. Let g; de-
note the number of tasks executed on processor P;. For each
transmission [to processor P;, [= 1,..., g;, a node de-
noted P;, is created in the set Vp (cf. Fig. 2). The trans-
missions are counted from the last message sent to P; (for
which I = 1) to the first one (for which [= g;). There are
arcs (s, v;) of capacity p; for each node (task) v; € Vr.
For a node vj € Vr and Py € Vp an arc (v;, P;) is cre-
ated if task T; is sent to processor P; as the /th message
counted from the last transmission to P;. The capacity of
arcs (vj, P;y) is not bounded. For a pair of transmissions
1,1+ 1 to processor P;, an arc (Py;, P;g41)) is created with
the capacity D — t1;;, where t;; is the time moment when
transmission [to processor P; is finished. An arc (P, ,t)
with capacity D — 1;,, is created for each processor P;.

A schedule of length D exists for the given communi-
cation pattern, if the maximum flow saturates arcs (s, v i)
for each v; € Vr. A schedule for processor P; can be con-
structed analogously to the construction of a schedule for
problem 1|r;, pmtn|Cax. Here, flows ¢ (v;, P;;) are lengths
of the pieces of tasks T;; ready times are the communica-
tion completion times t;; dictated by the communication
pattern. For feasibility of a schedule on P; it is necessary
to fulfill condition 7;; + Zil:l ¢(vj, Pyp) < D. This in-
equality is satisfied by the construction of a chain of nodes
Piy = Piy — ---— Pig, — t, and the capacities of the sub-
sequent arcs (see Fig. 3). Note that a flow Zflzl o, Piy)
is passed over arc (P, Pj;4+1) with capacity D — 1;; for
I=1,...,g8 —1.

@ Springer

eady time:
HIZ’ILLHIIEIIIEIIIIwmgggpggfﬁon
¥
1€ l 'S »
T2 11 D fime

Fig. 3 Processor load bounds imposed by the network

Theorem 2 There is an algorithm which constructs an op-
timum schedule in O (m3n> log m) time for a given commu-
nication pattern.

Proof The number of nodes in the network is 2 + n +
Y i1 &> which is O(mn), because no task has to be de-
livered to a processor twice and hence g; < n. Thus, for a
given communication pattern and value of D the maximum
network flow can be constructed in O(m3n3).

The above algorithm can be used to find the optimum
schedule length for a given communication pattern. The op-
timum schedule length is the minimum D > g for which
all arcs (s, v;) are saturated, and consequently the value of
the flow is ¢ = Z';zl pj. If a schedule with length D =g
does not exist because p < > "_, p j» then its length must be
increased by some value A. The value of the flow ¢ is deter-
mined by the capacity of the minimum cut. When D grows
by A, then the capacity of the cut may grow by uA where
w is a multiplier from set {1, ..., m}. The multiplier u is de-
termined by the number of arcs on the minimum cut whose
capacities grow as D is growing. It can be observed (cf.
Fig. 2) that the minimum number of edges on the minimum
cut with capacity growing with D is one, and the maximum
is m. Suppose ¢ < 3"}_; pj is the value of the flow obtained
for D = g. The length of the schedule must be increased by
A= (3} pj — ¢)/un. Though the actual multiplier is not
known initially, it can be determined by a binary search over
the interval of (discrete) values {1, ..., m}. Thus, the mini-

J Sched (2008) 11: 347-356

mum schedule length for a given communication pattern can
be found in O (m>n3 logm) time. a

Note that this algorithm is pseudopolynomial in m. How-
ever, it is polynomial in the length of the communication
pattern because m is the number of used processors.

Observation 3 There is an algorithm which constructs an
optimum schedule in O (m""m3n3 logm) time.

Proof The length of the communication pattern is at most
nm. Hence, the number of patterns is at most m"". For each
of them the optimum schedule length may be calculated in
om3n3 logm) time. O

2.3 A remark on approximability

Since this problem is NP-hard, it is reasonable to propose
approximation algorithms. Let C} . denote the length of
the optimum schedule, and CH the length of a schedule

H
built by heuristic H. The worst case of the ratio Sy = %
max

is typically used as a measure of an approximation algo-
rithm performance. Following (Drozdowski et al. 2006) it
can be concluded that any greedy algorithm H for our prob-
lem has the worst case performance ratio Sy < m + 1. If,
furthermore, Vj, Sm < Y;ﬁl—é, which means that the computa-
tion time dominates transmission time, then a CC heuristic
exists which has the worst case performance ratio Scc < 2.
CC divides the load of each task into m equal parts, then
sends the load to the processors in arbitrary order, and finally
executes the load chunks in parallel on all m processors. Fur-
thermore, if Vj, %/,12% — 00 then Scc — 1. In other words,
if the tasks tend to be computationally dominated, CC be-
comes asymptotically optimum, because transmission time
is negligible in the schedule length.

3 Properties of schedules for identical tasks

It follows from Theorem 1 and the results in (Drozdowski
et al. 2006) that the only problem with non-zero startup
time which may admit polynomial solvability is schedul-
ing of identical tasks on identical processors. We assume
that all tasks have load V, for j = 1,...,n. We will use
startup time S as time unit and will denote by k the compu-
tation time of a task on a single processor, i.e., k = %. Ob-
serve that the parameters of an instance in this special case
are k,m,n, and a polynomial time algorithm must have a
running time polynomial in logk, logm, logn. On the other
hand, sheer assignment of the tasks to the processors re-
quires pseudopolynomial time $2(n). Thus, a polynomial
time algorithm may not consist in assigning the tasks to the
processors on the task-by-task basis. Intuitively, it may be

p[1]2[3[4] [5[e]7]8] [1T2[3[4[5]67]8]
P, 1] 135171
P, L 2 6 (24 T6T8]
B L3 7
P, [4 [8

a) b)

Fig. 4 Bounding (a), and not bounding (b) schedules

expected that a polynomial algorithm can only identify pat-
terns of the optimum schedule. Unfortunately, the results of
Sect. 5.1 show no apparent regularity of optimum commu-
nication sequences, and such pattern solutions may be hard
to find in general.

Let us start with some observations on possible patterns
of the optimum schedules.

Observation 4 The earliest time moments when the trans-
missions may be finished, and the computations started are
integer time instants (1,2, 3, ...).

A pattern of events taking place on all processors con-
secutively in unit time distances will be called a staircase
pattern. Thus, Observation 4 mentions the staircase pattern
of computation start times. Note that within & time units of
executing some task 7; on a single processor, the load of
[k] other tasks can be sent to the processors. Out of this
load [k] — 1 tasks can be sent to other processors than T,
but the [k]th task after 7; may be computed on the same
processor as T, because at the time of finishing the load
transfer for the [k]th task after T; the processor computing
task 7; will be free (cf. Fig. 4). We will say that the number
of processors m is not bounding if the number of processors
which can be effectively used follows from the number of
transmissions which may be performed in the interval of a
single task computation, i.e., when m > [k7]. In the opposite
case we will say that the number of processors is bounding.

Observation 5 When the number of processors is bounding,
and processors are computing all the time since the earliest
possible activation time to the simultaneous completion of
the computations, then schedule is optimum.

Proof Such a schedule cannot be made shorter because
there is no idle time on the processors which could be elim-
inated. d

Observation 6 When the processor number is not bound-
ing, and the originator is sending the load all the time with
the exception of an interval not longer than 1 at the end of
the schedule, and the processors computing in this last inter-
val finish the computations simultaneously, then the sched-
ule is optimum.

@ Springer

352

J Sched (2008) 11: 347-356

F[1]2]3]4[5]6]7]8]9]9]8] Pl112|3I4|5|6|718I998 "
P 1 > P ANEIE
P g b
P B [3 11 8
B, Pi L4 I 9
P,] P, s [19l
6

8 |

51] b)

) |

8]

Fig.5 Observation 6. Folding a schedule froma m = oo, tobm = [k]

Proof Let us assume, for the time being, that the number of
processors is infinite (m > n +]'%] is sufficient). If the origi-
nator sends the load to a new processor in each time unit (see
Fig. 5a), then the tasks (except for the last L%J trailing tasks)
cannot be completed earlier because the originator is com-
municating all the time, and no additional processor can be
activated for a given task without delaying another task. If at
the end of the schedule the originator is idle at most 1 time
unit, then no more processors can be activated and effec-
tively exploited. If the computation on the trailing tasks ac-
tivates processors at the earliest possible moments, proces-
sors work without idle time, and finish computations simul-
taneously, then the trailing tasks cannot be completed earlier.
Observe that this reasoning does not require an infinite num-
ber of processors. The above schedule can be folded, without
changing the length, to [k] processors (see Fig. 5b). 0

4 Big number of tasks: n > min{[k], m)}

In this section we propose a method of identifying optimum
schedules in some cases if the number of tasks is sufficiently
big.

4.1 Processor number is not bounding

Theorem 7 Ifn > min{[k], m}, m > [k], then the optimum
schedule for identical tasks on a star of identical processors
with C = 0 can be determined in polynomial time.

Proof Since m > [k], the processor number is not bound-
ing, and the number of usable processors [k] is determined
by the number of transmissions which can be done during
the computation. The optimum schedules have two parts:
a leading part which we will call a main sequence, and a
trailing part which will be called a fqil. In the main se-
quence the originator sends tasks to consecutive proces-
sors in a round-robin fashion. It means that after sending
load of task T; to processor P; in the interval [[,] + 1],
task T4 is sent to processor P(; mod [x7)+1 in the interval
[l + 1,1+ 2], where [is integer. Task T; is processed in

@ Springer

main sequence { tail main sequence tail
R)12345|6776 y }})123456'789987_,
B 1 o P 1
B 7 p L2 1 8
P B L3 109
B B 4 9
P v P 8
[6 1]
) % b

Fig. 6 Proof of Theorem 7. Processor number is not bounding

the interval [[+ 1,] + k + 1], and task T, in the inter-
val [l + 2,1 + k + 2]. In the tail transmissions and compu-
tations are arranged so that all processors stop computing
simultaneously. The schedules proposed in this case are op-
timum by Observation 6. W.l.o.g. let P be the processor
executing the last task from the main sequence. If it is not
the case, then the processors may be renumbered (precisely,
their indexes must be rotated) to meet this requirement. Let
a denote the number of tasks in the tail, and ¢ the time mo-
ment when the communication of the last task in the main
sequence is finished. Below we analyze possible cases.

1. k is integer.

1.1. k is odd (Fig. 6a). In this case the tail comprises a =
(k — 1)/2 trailing tasks, Cpax =t + k. Task n — a + i, for
i=1,...,a,is sent to processors P;, Py_;, in intervals [t —
1+i,t+il,[t =14+ k—it+ k—i], respectively. It is
processed on P;, Py_; in intervals [t +i,t + k], [t + k —
i, t + k], respectively.

1.2. k is even (Fig. 6b). In this case a =k /2, Cpax =1t +
k+ % Taskn —a+i,fori =1,...,a, is sent to processors
P;, Py_ijyq inintervals [t — 1 + i, t +il,[t +k —i,t +k —
i + 1], respectively. It is processed on P;, Py_; in intervals
[t+it+k+ %], t+k—i+1,t+k+ %],respectively.

2. k is fractional. A schedule can be constructed as in
Case 1 for tasks with computational demand [k]. Since m >
[k, the schedule length is determined by the processing
power which can be engaged during the schedule. Though
there may be ([k] — k)-long idle times on the processors,
the maximum processing power is used because the origina-
tor starts computations on an inactive processor at the end of
every time unit. A schedule constructed as in Case 1 for [k]
is optimal by Observation 6.

Identifying a proper case for the construction of a tail
requires checking fractionality, parity of k, comparing k
with m and n. All this can be done in polynomial time
O (max{logn,logm, logk}). a

4.2 Processor number is bounding

In the above Theorem 7 we analyzed the non-bounding
processor number. In this case, if n —a were not a multiple
of [k], it was possible to rotate processor indices so that both
start and finish of the computations in the main sequence
form a staircase pattern on all usable processors without cre-
ating an idle time on the originator. Unfortunately, this idea

J Sched (2008) 11: 347-356

353

main sequence t tail

Fig. 7 Proof of Theorem 8. a m

main sequence tail

is odd, b m is even p1]2[3[4]5] [e¢]7]8ToTiol0[9 R P[1]2]3]a 6l718[87]
P 1 6 10 P 1 i 5 8
B [2 17 [o R [2 1 6 [7
P [3 8) [3 L7
P [4 Lo F, [4 18
P [s L 10
a) b)

cannot be applied when the processor number is bounding. If
(n —a) mod m # 0, then a staircase pattern at the end of the
main sequence computations results in the lack of a staircase
pattern at the beginning of the computations and in proces-
sor idle times. And vice versa, a staircase pattern of com-
putation start times results in the lack of a staircase pattern
at the end of the main sequence. Therefore, if the processor
number is bounding, the technique used in Theorem 7 can
be applied only for task numbers for which staircase patterns
appear without processor rotation. Below we present special
cases of the bounding processor number (m < k) for which
the optimum schedules can be identified in polynomial time.

Theorem 8 If n > min{[k],m},m < [k],n mod m =0,
then the optimum schedule for identical tasks on a star of
identical processors with C =0 can be determined in poly-
nomial time.

Proof The schedules consist of the main sequence which
starts and ends in a staircase pattern. The number of tasks
in the main sequence is a multiple of m. The tails are con-
structed so that computations are finished simultaneously on
all processors. The schedules proposed are optimum by Ob-
servation 5. Since m < [k], idle time may arise on the origi-
nator. Therefore, in the following discussion we assume that
the communications of the main sequence are shifted to the
right, i.e., are performed as late as possible. Below we ana-
lyze possible cases.

1. k is integer. In this case a =m, Cpax =1t + 2k — ’"T_l
The number of tail transmissions is k + %, which can be
done feasibly before Cpax.

1.1. m is odd (Fig. 7a). The first % tasks of the tail con-
tinue the schedule of the main sequence finishing at Cppax 0n
processor P, 41)/2. The remaining ﬂ{—’ tasks are split into
two parts and executed on processors placed symmetrically
to Pgn41)/2. Precisely, task n —i +1fori=1,...,(m —
1)/2, is executed in intervals [t + 2k — m + i, Cimax], and
[t +k —i+ 1, Cmax] On processors P;, P, _;1, respectively.

1.2. m is even (Fig. 7b). The tail construction is similar.
The first %5 tasks continue the main sequence finishing at
Cmax — % on processor Py, /2. The remaining % tasks are split
into two parts. Taskn —i + 1 fori=1,..., %, is executed
in intervals [t +2k —m +1i, Cax], and [t +k —i + 1, Ciax]
on processors P;, Py, _i+1, respectively.

2. k is fractional. The main sequence starts computations
on the processors at the earliest time moments, and proces-

sors have no idle times because k > m. Since the computa-
tions of the main sequence finish in unit time distances, it is
possible to apply the tail constructions from Case 1, so that
processors stop computing simultaneously. g

Let us observe that the tail construction method from
Theorem 7 Case 1.2 can be applied when the processor num-
ber is bounding, m is even, and n mod m = %. In such a case
a=m/2,Cpax =1t +2k — ”’T_l In general, constructing an
optimum tail to the main sequence is an open problem which
seems equivalent to scheduling a small number of tasks with
a bounding processor number. We analyze it in Sect. 5.2.

5 Small number of tasks: n < min{[k], m}

The case with too few tasks to have both the main sequence
and a tail is more involved. We start the analysis with the
case of a non-bounding processor number.

5.1 Non-bounding processor number

Since the processor number is not bounding, there is no
advantage in sending load to a processor more than once.
Hence, with each time unit of the schedule, computation
on one new processor can be activated. In time y > 1, |y]
processors are able to compute fortime y — 1,...,y — |y].
The total processing capacity in y > 1 units of time is
Z}i Jl (y — i). For example, in a schedule of length 7, dif-
ferent processors will work for 1, 2, 3, 4, 5, 6 time units, per-
forming 21 units of work. Our problem of scheduling n tasks
with computational demand k can be represented as find-
ing decomposition of numbers y — 1,...,y — [y] into n
sums equal at least k. From this formulation we can draw
a conclusion that an ideal solution in which all tasks finish
computations simultaneously does not always exist. There
is an analogy to a scheduling problem P ||Cmax Which con-
sists in decomposing of a set of task processing times into
subsets assigned to the processors so that none of the sub-
sets requires more than some given schedule length. Prob-
lem P|Cmax can be solved by a pseudopolynomial algo-
rithm for a fixed number of processors (Rothkopf 1966). Let
us treat the n tasks of the original problem as processors,
and processing capacities y — 1, ..., y — |y of the original
processors as tasks. This transforms our original scheduling
problem into problem P||Cmax With n processors, tasks of

@ Springer

354

J Sched (2008) 11: 347-356

Table 1 ;
Solution A Solution B
Task Intervals Sum Task Intervals Sum
1: T+x,24+x,1+x 104+ 3x I T74+x,34+x 10 4+ 2x
64+x,34+x,x 9+ 3x 2: 6+x,44+x 10+ 2x
S+x,4+x, 9+ 2x 3: S+x,24x, 1 +x,x 8+ 4x
length y—1,...,y — y], and a demand that each processor ~ Fig-8 Structure of a schedule D x
p 1 s of ti . for a small number of tasks and <
works or at least k units o tlme.. Yet, such z.ltransformatlon a lot of processors Po 1 2| 3| 4[5 R
to a version of problem P ||Cpax is not sufficient, because the P D+x-1 |~
completion time of a task (in the original problem) depends PI D+x-2
on the number of processors executing it. We demonstrate it P2
in the following example. 2
: P, .
Example n =3,k =11. Since 3V = 33, the schedule length
must be at least 8. Assume that Cppox =8 +xand 0 < x < 1.
With a schedule of this length, processors will work for |, iftar=by=---=a,=0,=0,
x, 1 +x,24x,...,7+ x units of time. Two possible as- 10, otherwise,
signments of these computing intervals to tasks are shown :
g P f(a1,b1,...,aj,b_,',...,l-I—l)

in Table 1 (intervals are identified by their lengths).
Solution A results in Cpax = 9, and solution B has
Cmax = 8.75, because each task requires k = 11 units of
computation time. Thus, an algorithm solving our prob-
lem should take into consideration not only the sum of the
lengths of intervals received by a task, but also their number.

Our problem can be solved by a dynamic programming
algorithm. Suppose that the optimum schedule length is
D + x, where D is an integer lower bound which can
be calculated, e.g., from requirement 32 (i — 1) < nk <

i'jl (i —1),and 0 < x < 1 is a necessary schedule exten-
sion beyond D (cf. Fig. 8). Our method finds the smallest x
for which a feasible schedule exists, or determines that no
schedule with x < 1 exists. Let the intervals on the proces-
sors be ordered according to their decreasing length, i.e.,
D+x—-1,D+x-2,...,1+ x,x. The method is based
on the calculation of the function

f(a, by, ..

1, if a schedule exists which is using the first i in-
tervals, task T receives a units of processing in
= the interval [1, D] and uses b; processors in the
interval [D, D + x],
0, otherwise,

.,al,-,bj,...,a,,,b,,,i)

fora; =0,...,k,b;=0,...,2,j=1,...,n,i=0,..., D,
where z is the maximum number of processors needed to
execute a task with computational demand k. Here z can be
calculated from the condition k < °¢_, (i — 1). Function f
may be calculated using the following recursive equations:

f(a19b19"'7all’bllxo)

@ Springer

= fla,b1,...,aj =D —i—=1,b;~1,...,i)

fora;j=0,...,k, b; =0,...,2, j=1,...,n,i=0,...,
D — 1. Given values of vectors (aj, by, ...,a,,b,, D) for
which f(a1,b1,...,an,b,, D) = 1, it is possible to cal-
culate schedule length Cpax(ay, b1,...,a,,b,, D) = D +

k—aj

ba . :
max’;_l{T‘,'L}, where x = max’l_ {=;~£} is the extension
i J J

Jj=1
of the schedule beyond D. The optimum schedule extension

x can be found for such vector (a{,b},...,q,,b,, D) for
k

. —dj . o« . .
which max'J’.zl{—b;J-} 1S minimum, i.€e.,

(a’l, ’1,...,D)
k—a_,‘
bj

" n
= argmin [max{
(a.by....D) L J=1

]lf(alibli"'9D)=1].

If x > 1 then the initial value of D was assumed too small.
In the opposite case the optimum assignment of the intervals
can be deduced from the values of function f by backtrack-
ing from f(a},b},...,a,,b,, D) to f(0,...,0).

e Yne

Observation 9 There is an algorithm with complexity

O (k3*+3 logk), for scheduling identical divisible tasks on
a star of identical processors with C = Q.

Proof The number of processors z needed to execute a task
of length k calculated from condition k < Zle(i —1)is
V/BkFT+1

z < [*==——1. Hence, calculation of the function f as de-
scribed above requires determining O (k"/k" D) values of
f. Cmax <2k + 1 because n < min{m, [k]}, processor num-
ber is not bounding ([k] < m), and at most k tasks can be
executed in at most 2k + 1 units of time. Since n < [k], and

J Sched (2008) 11: 347-356

355

D < 2kz+ ls, the total number of calculations for a certain D
is O(kZ¥*7). The optimum schedule length may be found
in log k steps of binary search over values 1, ...,2k of D. [0

Unfortunately, the dynamic programming method de-
scribed above is not polynomial in k. However, we infer
from Observation 9 that this case can be solved in constant
time if k is fixed, independently of n. Example optimum
communication patterns for n = 2 and several small values
of k are shown in Table 2. Here e denotes that a transmis-
sion must be performed, but the schedule length is the same
no matter if we send load of task 77, or of 75. No apparent
regularity can be observed in these communication patterns.

Let us note that the above dynamic programming algo-
rithm may be used to solve a version of our problem with
different tasks. The algorithm requires a modification to
guarantee that each task 7 received p; units of processing.
We finish this section by presenting several special cases of
the problem.

Observation 10 /fn = 1, then the optimum schedule length
canDbe found in O(logk) time as minimum D satisfying
YPIDp—iy=«k.

Observation 11 Ifn > 1,i <n <k,k e {2i,2i + 1} and i
is an integer, then the optimum task distribution sequence is
1,2,3,....,.n,n,n—1,....,n—i+1.

Table 2

x~

Communication pattern

1 (1,2)

2 (1:2;2)

3 1,2,2)

4 (1,2,2,1)

5 (1,2,2,1)

6 (152,2,1,9)

7 (12,2, 1,9)

8 (1,2,1,2,2,2)

9 1,2,2,1,1,2)

10 (1,2,1,2,2,0)

11 (1,1,2,2,2,2,2)

12 (L22.1.2.1.1)

Fig. 9 Special pattern of load lengths of time
distribution for n < min{m, [k]} tasks Llﬂvalsm IP;(:

Lo P

2 L
7 3

: 2] P
2 B
L F

7, [

Proof A pattern of a processor availability intervals assign-
ment is shown in Fig. 9a. It is required in this pattern that
n > 1, and task n is assigned intervals of length i + 1, i. Sup-
pose k is odd (k = 2i + 1). Since the originator is activating
a new processor in each time unit, this pattern is optimal by
Observation 6. The relations between n, k are the following:
i <n <k=2i+ 1wherei is a positive integer, with the ex-
ception of i = 1, n = 1. This pattern can also be applied for
even k. If k is even, one should apply a pattern of interval
distributions as for k£ + 1, but the last 2i processors should
stop computing % before the end of the schedule dictated by
the solution for odd k + 1 (see Fig. 9b for k =7, Fig. 9c for
k=6,and n =4). O

Observation 12 For n = 2 a schedule of length D exists,
where D is minimum integer satisfying 2k < Zi.;l(D - i).

Proof This observation can be shown by demonstrating that
it is always possible to partition the set {D —1,..., 1} into
two subsets A, B so that the sum of elements in (w.l.o.g.)
A is equal to k, and is at least equal k for the set B. It can
be shown by induction: For k = 1, D = 3, decomposition of
the set {2, 1} is A = {1} and B = {2}. Suppose the obser-
vation is satisfied for some k > 1, and set {D — 1,..., 1}.
Then A ={«,...,w} and k =« + --- + w. Note that A #
{D—1,...,1} because k =a + --- + w, and Zﬁ__,(D -
i)>2k. It follogvs that also the set {D’ —1,..., 1}, where
20k +1) < Y2 (D' — i), can be partitioned so that the
sum of elements in A’ is k + 1, and the sum of elements
in B is at least k + 1. Set A’ can be constructed by exchang-
ing one of the numbers in A foronein {D —1,...,1} — A
bigger by 1, or adding {1} to A. This is possible because
A #{D —1,...,1}). Consequently B’ can be constructed
by using the remaining elements of {D’ — 1, ..., 1} because

DD i) =2k + D). O
5.2 Processor number is bounding

Following the results of the previous section, let us observe
that there seems to be no simple way of determining the opti-
mum schedule length and, consequently, the necessary num-
ber of processors when the processor number is not bound-
ing. And vice versa, in general it is not easy to say whether

2[3]4[4]3]2

—

2]3[4]4]3] 2]

—

»
>

v

Ja~JqeinsRe vin-Je

ac g

b)

@ Springer

356

J Sched (2008) 11: 347-356

the processor number is small enough to influence the con-
struction of the schedule. A simple sufficient condition (for
the processor number restricting the schedule) demands that
the amount of required work exceeds the amount of load
which can be processed on m processors in at most m + 1
units of time, i.e., nk > Y /" (m + 1 —i). Till the end of
this section we assume that all processors are used in the
optimum schedule.

The network flow algorithm from Sect. 2.2 can be used
to determine optimum schedule length for a given commu-
nication pattern.

Observation 13 For a given communication pattern, the
optimum schedule length can be found in O (m®logm) time.

Proof Follows from Theorem 2 because n < min{m,
[k1} =m. u

Observation 14 An optimum solution can be found in
O (mm*+6 logm) time.

Proof Follows from Observations 3 and 13 because
n<m. O

6 Conclusions

In this paper we analyzed the problem of scheduling divis-
ible loads on identical processors. It has been shown that
this problem is NP-hard even for two processors if tasks are
different. But we did not succeed in showing that our prob-
lem is in NP. If the communication pattern is given, then this
problem can be solved by an algorithm which is pseudopoly-
nomial in m, but polynomial in the length of the communi-
cation pattern. The complexity status of scheduling identical
tasks on identical processors is even more perplexing. The
key issue is if this problem is in NP. To show that this prob-
lem is in NP it is necessary to prove that communication
pattern can at least be recorded in polynomial time. In this
case an instance description is very compact, and consists
of three numbers m, n, k. Thus, the communication pattern

@ Springer

length should be polynomial in log m, logn, log k. A feasible
schedule must provide appropriate processing capacity to

execute the tasks. Hence, we have nk < Z}g‘f“"] (i—1) from

which we conclude that Cpay is §2(+/7k). Thus, the com-
munication pattern length may not be bounded by a polyno-
mial in logm, logn, logk. In such a situation the polynomial
time description of the communication pattern may still be
possible if the pattern is fixed, and it can be recognized in
polynomial time. Indeed, there are cases described in Sect. 4
for which communication patterns of optimum schedules are
fixed and can be identified in polynomial time. On the other
hand, the results from Sect. 5.1 show that there are also cases
for which no fixed regularity in the schedule construction
could be observed. In conclusion, this paper leaves at least
one open question of the problem NP membership.

References

Bharadwaj, V., Ghose, D., Mani, V., & Robertazzi, T. (1996). Schedul-
ing divisible loads in parallel and distributed systems. Los Alami-
tos: IEEE Computer Society Press.

Drozdowski, M. (1997). Monographs: Vol. 321. Selected problems
of scheduling tasks in multiprocessor computer systems. Poz-
nan University of Technology Press: Poznan. Downloadable from
http://www.cs.put.poznan.pl/mdrozdowski/txt/h.ps.

Drozdowski, M., Lawenda, M., & Guinand, F. (2006). Scheduling mul-
tiple divisible loads. International Journal of High Performance
Computing, 20(1), 19-30.

England, D., Veeravalli, B., & Weissman, J. B. (2007). A robust span-
ning tree topology for data collection and dissemination in dis-
tributed environments. /EEE Transactions on Parallel and Dis-
tributed Systems, 18(5), 608-620.

Garey, M. R., & Johnson, D. S. (1979). Computers and intractability:
a guide to the theory of NP-completeness. San Francisco: Free-
man.

Robertazzi, T. (2003). Ten reasons to use divisible load theory. /[EEE
Computer, 36(5), 63-68.

Rothkopf, M. H. (1966). Scheduling independent tasks on parallel
processors. Management Science, 12, 347-447.

Sohn, J., & Robertazzi, T. (1994). A muli-job load sharing strategy
for divisible jobs on bus networks (Technical Report 697). De-
partment of Electrical Engineering, SUNY at Stony Brook, Stony
Brook, New York.

Veeravalli, B., & Barlas, G. (2002). Efficient scheduling strategies for
processing multiple divisible loads on bus networks. Journal of
Parallel and Distributed Computing, 62, 132-151.

