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Abstract

In this paper we study scheduling malleable tasks with limited par-
allelism, for mean flow time criterion. Malleable tasks may use more
than one processor at the same time, and the number of processors
used may change over time. The maximum number of processors that
can be used by some task is limited. We examine the computational
complexity of this problem, and present polynomially solvable cases.
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1 Introduction

Malleable tasks can be executed by more than one processor at the same
time. Furthermore, the number of used processors can be changed over the
course of a task execution. Malleable task model may be applied to represent
parallel applications executed in environments in which migration is possible.
For example, on a parallel computer with shared memory a parallel appli-
cation can create threads. These threads can be executed simultaneously.
Operating system assigns the threads to the processors for time quanta in
a round-robin fashion, and preempts the threads when the quanta expire.
When the load of the computer system is low all the application threads
may run in parallel in real time. When the load is increasing, operating sys-
tem assigns the application threads to fewer processors. Thus, the number
of processors used over time can be changed according to the decisions of
the operating system. An upper limit on the number of usable processors
may exist. This may be either the number of threads created by the appli-
cation, or a limit imposed by the operating system protecting its resources
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from overuse. Another example of malleable tasks is in bandwidth alloca-
tion. Bandwidth of a communication link is a resource which can be divided
among many simultaneously operating channels. The bandwidth assigned to
a channel may vary over time. However, the channels have an upper limit
on the usable bandwidth (e.g. Peak Cell Rate in ATM networks). A router
must divide the bandwidth between the simultaneous communications such
that the maximum for each channel is not exceed. Malleable task model for
loom production scheduling has been presented in [9]. A single request for
production of a certain fabric can be distributed over several looms. The
number of looms used during the course of satisfying the request may vary.
The scheduling problem studied in this paper can be formulated in the
following way. Set 7 of n tasks is to be executed on set P of m parallel iden-
tical processors. Each task j € 7 is defined by the parameters: processing
requirement p;, maximum number of processors that can be used 9;, ready
time r;, and deadline d; which cannot be exceeded in any feasible schedule.
Tasks can be suspended, and restarted later without any additional cost.
Each task can migrate to a different processor, increase or decrease the num-
ber of used processors, also without cost. The only restriction is that no
more than 9, processors can be used simultaneously. To verify if task j has
received the required processing and can be finished, one has to calculate the
area occupied by task j in the time X processors space, and compare it with
pj- The completion time of task j will be denoted by ¢;. The objective is the
minimization of the mean flow time £ 3>, (¢;—7;). Since Y7, ; is constant
for any instance, the minimization of the mean flow time is equivalent to the
minimization of 3°%_; ¢;. Therefore, in the following discussion we will refer
to the minimization of 37%_; ¢; as to the mean flow time criterion.
Malleable task scheduling has been considered in earlier publications. The
first works considering parallel tasks, i.e. tasks executed on several processors
simultaneously, seem to be [8], and |1]. Unfortunately, the lack of generally
accepted terminology may confuse. It is often the case that the name mal-
leable tasks is applied to parallel tasks that can be executed on several proces-
sors, but the number of processors must be selected before the task starts,
and cannot be changed during the execution of the task. We follow the nam-
ing conventions proposed in [4, 6] where such tasks are called moldable. We
do not consider moldable tasks here. The concept of malleable, moldable,
and more generally parallel tasks, and the problems of scheduling them have
been presented in [3, 4, 6]. The first study of scheduling malleable tasks ap-
peared in [10]. Tasks had due-dates, and the objective was the minimization



of maximum lateness. This problem can be solved by means of binary search
and maximum network flows. Scheduling chains of three malleable tasks for
schedule length criterion has been studied in |5]. The first, and the last task
in the chain had parallelism limited to one processor (§; = 1). The second,
central task had unlimited parallelism (§; > m). This problem has been
shown to be NP-hard, and special cases solvable in polynomial time have
been identified [5]. However, to our best knowledge not much is known about
the problem of scheduling malleable tasks for the mean flow time criterion.

The rest of this paper is organized as follows: In Section 2 we study the
complexity of the proposed problem. Section 3 is dedicated to the case of
fixed sequences of task completion times. A low-order polynomial time algo-
rithm is proposed in Section 4 for agreeable processing times and parallelism
maxima.

2 Complexity of the problem

In this section we demonstrate that the problem of scheduling malleable tasks
with bounded parallelism is NP-hard in general.

Theorem 1 The problem of scheduling malleable tasks with limited paral-
lelism, ready times, and deadlines, for mean flow time criterion is NP-hard.

Proof. We start by proving that this problem is in NP. A solution of
the problem can be represented as a set of intervals in which the number
of processors assigned to the tasks does not change. The number of such
intervals is O(n?) because ready times, completion times, and deadlines define
O(n) periods, in which the processor assignment to the tasks changes O(n)
times (we discuss it in more detail in the next section). For each interval one
has to verify if no task uses more than the admissible number of processors.
By summing the amounts of work performed on the tasks in the consecutive
intervals one can verify that each task is fully completed. Finally, the mean
flow time is calculated by checking the sum of completion times of the tasks.
We will show now a polynomial time transformation from the problem
PARTITION INTO EQUAL CARDINALITY SUBSETS |7]| to a decision version of
our problem. PARTITION INTO EQUAL CARDINALITY SUBSETS is defined as
follows:
Instance: a set of 2k integers A = {ay,...,ag}, such that 32% a; = 2B.
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Question: is it possible to partition A into two disjoined subsets A;, Ay such
that ‘Al‘ = |A2| = k’, and ZjGAl CLj = Zj€A2 CLj = B?

The decision version of our problem is defined as follows:

Instance: set 7 of n malleable tasks with processing requirements p; € Z7,
maximum number of usable processors §; € Z*1, ready times r; € ZT, and
deadlines d; € Z*, for j = 1,...,n, integer m, a positive rational number y.
Question: is it possible to execute tasks from set 7 such that >>7_; ¢; < y?

The polynomial time transformation is defined as follows:

m=kMB? — B*>:n =2k +2;

§j = MB?*—a;Bfor j=1,...,2k;

pj =0; +ajfor j=1,...,2Fk;

r;=0,d; =00 for j =1,...,2k;

dokr1 = m — 15 popy = (m — 1) B; o1 = 0; dogy1 = B;

Ookt2 = M Pagy2 = ML; rop0 = B+ 1;dgpqe = B+ L+ 1;
y=B+B+1+L+k(B+1)+k(B+1+ L)+ 2k;

where L > (B + 3)k, and M > k are big constants. Tasks 1,...,2k will be
called partition tasks, task 2k 4 1,2k + 2 will be called blocking tasks.

Let us assume that there is a partition into equal cardinality subsets.
Then, a feasible schedule for our problem can be as the one presented in Fig.1.
Task 2k + 1 is finished at time B, task 2k + 2 is finished at time B + 1 + L,
and the £ tasks corresponding to the elements of set A; are completed at
time B + 1. The k tasks corresponding to the elements j € Ay complete at
times B+ 1+ L+ p—j_', where f;—j_' = ?B;];lfjff;) < 2. Together we obtain mean
flow time 37 ¢; = B+ B+1+L+k(B+1)+k(B+1+L)+>ca, ’;—jj <y

Suppose that a feasible schedule with mean flow time at most y exists.
We will demonstrate that also a partition into equal cardinality subsets must
exist. Note that by the selection of their ready times, deadlines, and the
shortest execution times 7;—:, g:j:, tasks 2k + 1, and 2k + 2 must be finished
at times B and B + 1+ L, respectively. This leaves free intervals [0, B] with
one processor, [B, B+ 1],[B+ 1+ L, 00) with m processors, available for the
partition tasks 1,...,2k.

Let us observe that in order to have mean flow time not greater than y,
at least k tasks from the set 1,...,2k must be completed before task 2k + 2,
i.e. before time B + 1. Suppose it is otherwise and x > k partition tasks are
completed after task 2k + 2. Then, the sum of the completion times for the
blocking tasks, and x partition tasks completed after task 2k + 2 is at least
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Figure 1: Illustration to the proof of Theorem 1.

B+B+14+L+2B+1+L)>B+B+1+L+(k+1)(B+1+1L) >
y=B+B+1+L+k(B+1)+k(B+1+L)+ 2k because L > k(B + 3).
On the other hand at most k£ partition tasks can be completed before time
B+1. Suppose it is otherwise and x > k partition tasks are completed before
B + 1. Since for each partition task p; = MB? —a;B > MB? — B2, these
tasks require at least z(M B?* — B?) > (k + 1)(M B? — B?) processing, while
the available area is B +m = B + kM B? — B?, which is smaller because
M > k. Hence, no more than k partition tasks can be completed before
B + 1. Together we have that exactly k£ partition tasks must be completed
before B + 1. If we denote the set of tasks completed before B + 1 by Ay,
and the rest as Ay, then we have |A;| = | Ay

Note that a partition task j executed in the interval [B, B+ 1] can receive
at most 9, processing. The remaining part p; — d; = a; must be processed
in the interval [0, B]. Now we will prove that also >>;c4, a; = > jca, a; = B.
Suppose that it is otherwise, and ;. 4, a; > B. Then, 3.4, (p; — 0;) =
>jea, @; = B+ 1, at least one unit of work must be processed after B + 1,
and the criterion value y is not met. Note that there is free space in the
interval [B, B + 1] in the amount of m — Y 4, 6; = kM B* — B> — kM B? +
B3> e, a; > B, but it cannot be exploited by any partition task in A;
because the maximum number of processors is already used. Suppose that
> jea, @; < B. Then, the total processing requirement of the tasks in A; is

Yiea Pi = Yjea, (0j4a;) = Xjea, (MB?—a;(B—1)) > kMB*—(B—1)(B—



1) = kM B? — B? + 2B — 1 which is greater than the space B + kM B? — B>
available in [0, B+1]. Hence, tasks in A; cannot be feasibly completed before
B + 1. Thus, we conclude that a feasible schedule not exceeding mean flow
time y exists if 32,c4, a5 = Yjca, a; = B, and the answer to partition with
equal cardinality subsets is also positive. O

3 Fixed sequences

In this section we present a linear programming solution for the case when
the sequence of task completions, ready times and deadlines are known. We
start the presentation with a simpler case.

3.1 Fixed sequence of completion times

In this paragraph we assume that all tasks are available at time 0, and have
not bounding deadlines (e.g. Vj d; = 0o). Without loss of generality let us
assume that the sequence of task completions is ¢; < ¢y < ... < ¢,. Let us
denote by z;; the amount of processing that task j receives in the interval
[ci1,¢), for i = 1,...,n. For completeness of arguments we assume ¢y = 0.
The linear program is as follows:

minimize .7 | ¢
subject to:

Iij S 5j(ci_ci—1) ]:1,,71,2:1,,] (1)
ZIZ‘J’ S m(cz-—cz-_l) izl,...,n (2)
j=i
J
i=1

In the above linear program inequalities (1) guarantee that no task j uses
more than §; processors in the interval [¢;_1,¢;]. By inequalities (2) tasks
processed in the interval [¢;_1, ¢;] use no more processing than the capacity
of the m processors. Inequalities (3) ensure that all tasks receive necessary
processing.

Though the above linear program includes constraints necessary for fea-
sibility of a schedule, it is not known yet if a feasible schedule can be con-
structed using the solution of (1)-(3). A feasible schedule can be built using
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an extension of McNaughton’s algorithm proposed in [5] for schedule length
criterion (Cpqz). We describe the extension for the sake of completeness
of the presentation. Tasks with processing requirements p;, and parallelism
bound ¢;, can be scheduled in time

pil 1L
Cmax:max{mjax{é—j},agpj}. (4)

This is necessarily a lower bound because no schedule can be shorter than
the length of the longest task or the total processing requirement equally
distributed on all processors. A schedule of this length is built by using
McNaughton’s wrap-around rule. However, here if a task is wrapped it
may use more than one processor at the same time. By the selection of
Cingz > Max; {%} it is guaranteed that no task j uses more than 9, proces-
sors simultaneously. Let us return now to scheduling the pieces z;; of the
tasks in the intervals [¢;_1,¢;|. By constraints (1)-(2), pieces z;; fulfill con-
dition (4) imposed by the extended McNaughton rule, and can be feasibly
scheduled in the intervals [¢;_1, ¢;].

We conclude this section with an example in which we have m = 4 proces-
sors, and three tasks such that ¢; < ¢y < c3, p1 = 2, po = 5, p3 = 4, and

01 =2, 0o =4, 63 = 1. The linear program is as follows:

minimize ¢; + ¢y + c3

subject to:
rn < 20
T2 < 4o
T < 4(cx— 1)
T3 < O
T3 < (2 —a1)
133 < (c3— )
Tyt ret oz < 4o

T2 + w23 < 4(cp — 1)
133 < 4(cs —ca)
x> 2

Tia+txp = 5
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Figure 2: Tllustration to the example in Section 3.1.

Ti3 + Toz + 133 > 4

(5)

By solving the above linear program we obtain: z1; = 2,215 = 1,213 =
1,299 = 4,193 = %,xgg =3¢ =1,¢ =% c3 =4. The optimal schedule is
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depicted in Fig.2.

3.2 Fixed sequence of all events

When the sequence of r;’s, d;’s, and ¢;’s is fixed, our problem can be for-
mulated as a linear program. Let us consider simultaneously all such events:
ready times, due dates, completion times. We will denote the number of
these events by [. Let 7, and 7;.; denote the endpoints of an interval de-
termined by two consecutive events, for ¢ = 1,...,l — 1. Note that 7; is a
constant if it represents a ready time, or a deadline. 7; is a variable if event
1 is a completion time. Thus, we have the following formulation:

minimize !, 7;

subject to:
vy < 0(mi—Tic) i=1,...,1 (6)
inj < m(n —Ti1) 1=1,...,1 (7)
j=1
l
Yoz > D j=1,...,n (8)
=1
vy = 0if oy<ry i=1,...,1 (9)
r; = 0if n,>d;  i=1,...1 (10)



The main difference with respect to yhe linear program (1)-(3) is that
in the above formulation we consider consecutive events which are not nec-
essarily two completion times. Though, the objective function is a sum of
time instants of all events, ready times and deadlines are fixed, and the sum
of the 7;’s corresponding to them is constant. Therefore, minimizing E§:1 T;
is equivalent to minimizing ;' | ¢;. Furthermore, we force to zero z;; in in-
equalities (9) and (10), for those intervals i which are before the availability
of task j, or after the deadline of task j.

Note that for a fixed number of tasks, the number of possible permutations
of task completion times, ready times, and deadlines is also fixed. Hence, we
have an observation.

Observation 1 The problem of scheduling malleable tasks with ready times
and deadlines is solvable in polynomial time for any fired number of tasks.

4 Agreeable processing requirements
and parallelism maxima

In this section we study a special case of agreeable processing requirements
and parallelism bounds. For this case a low-order polynomial time algorithm
can be given.

By agreeable processing requirements, and parallelism bounds we mean
the instances for which tasks can be ordered such that pll < 7’; < ... <k
and §; < 9y < ... < 4,. The agreeable feature of an instance can be checked
in O(nlogn) tlme by sorting the tasks. We also assume r; = 0,d; = oo, for
all tasks j. The algorithm can be formulated as follows:

Algorithm Agreeable

1: for j:=1 to n do

2: assign task j to the earliest possible time intervals using maximum possible
number of processors, i.e. either §; or all the processors remaining available
in a given time interval.

Let us illustrate this algorithm with an example. Processing requirements
are given in a vector p = [2, 4,4, 5, 7], parallelism bounds are given in a vector
6 =[1,1,2,2,4], m = 5. The schedule built by algorithm Agreeable is shown
in Fig.3.
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Figure 3: Illustration to the example in Section 4.
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Figure 4: Illustration to the proof of Theorem 2.

Let us make some observations about the schedules built by algorithm
Agreeable. Let o; denote the number of processors used by task j at the end
of its execution in a schedule constructed by algorithm Agreeable.

Theorem 2 «; = min{d;,m}, for j=1,....,n.

Proof. The proof is inductive in nature. The theorem is satisfied for 7 = 1.
Assume it is satisfied for tasks 1,..., 7, where j > 1. Let us consider the time
interval @ in which task j is executed (cf. Fig.4). Interval a is the earliest
possible time where task j + 1 can be executed because there are no idle
intervals to the left of a. Otherwise task j would have been shifted to such
earlier intervals.

a) Suppose there are some free processors in interval a, and task j+1 fits
completely in interval a. Let 7, denote the length of the sub-interval with free
processors within a. We have 7, < g—]_' because task j may be executed also

before the sub-interval with free procéssors. On the other hand for task j+1
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we have ?i < 7, because j + 1 fits completely in the interval. Together
J
we get gj:: <71 < ];_j' But due to the agreeable condition % > ];_j'

?Ill = Ta = %a
completely proc]essed in parz;llel with some other task then they are finished
simultaneously.

b) Suppose j+1 does not fit completely in the interval a. Thus, ¢;41 > ¢;.
It follows from the previous case that after completion of task j all processors
are free because all tasks executed in parallel with j finish no later than by

¢j. Hence, aj41 = min{m, d;11}. O

Consequently, and o) = 0;4;. Furthermore, if one task is

Theorem 3 Algorithm Agreeable constructs the optimum schedule in O(n?)
1 2 n

Proof. This proof has inductive nature.

1) Schedule task 1 using a; = min{m,d;} processors. Mean flow time ¢; is
minimum.

2) Suppose an optimum schedule for tasks 1, ..., j is constructed by algorithm
Agreeable. We schedule task j+ 1 using algorithm Agreeable. Efill ¢; cannot
be reduced by:

a) reducing zg’zl ¢; because the schedule for tasks 1,...,7 is optimal,

b) reducing only ¢;1 because it is infeasible,

Thus, reducing c;4; and increasing z{zl ¢; is the only way of reducing
Zfill ¢i. Suppose we reduce cji; by €;41. This reduces the area available
for task j + 1 by €;11a,41 which must be compensated for by delaying the
completion times of some tasks among 1,...,7. Without loss of generality,
let them be tasks 1,...,k and their completions are delayed by eq,..., &,
respectively. This creates available area of at most Zle g;c;. This new area
can be consumed by task j + 1, in exchange for area €;y1;41. Thus, we

k . .
reduce the completion time of task 7 + 1 by no more than Za:% > €1
By Theorem 2 and agreeable condition a; < iy, for ¢ = 1,..., k. Hence,
we have: .
iy
51+...+5k2@25]~+1 (11)
Qj+1

which means that the increase of the mean flow time by €; +. ..+ ¢, exceeds
the reduction of €;;;. This conclusion can be invalidated only if some task(s)
ie{l,...,k} use o > a1 processors. Due to the agreeable condition, and
Theorem 2, we have o < §; = a; < vj41 and (11) holds.
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The complexity of the algorithm is a result of the fact that in step 2 of
algorithm Agreeable the number of available processors for task j changes
at most n — 1 times, and at most this many times the remaining processing
requirement of task j must be recalculated. O

5 Conclusions

In this paper we studied a problem of scheduling malleable tasks with bounded
parallelism. The problem is NP-hard in the presence of ready times and
deadlines. For fixed sequence of ready times, deadlines, and task comple-
tion times it can be solved in polynomial time by use of linear program-
ming. When processing requirements and parallelism bounds of the tasks
are agreeable, a low-order polynomial time algorithm was proposed. Yet,
the complexity of a more fragile problem of scheduling malleable tasks with
bounded parallelism without ready times and deadlines remains open.
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