
Scheduling malleable tasks for mean �ow time criterionM.Caramia1, M.Drozdowski2AbstractIn this paper we study scheduling malleable tasks with limited par-allelism, for mean �ow time criterion. Malleable tasks may use morethan one processor at the same time, and the number of processorsused may change over time. The maximum number of processors thatcan be used by some task is limited. We examine the computationalcomplexity of this problem, and present polynomially solvable cases.Keywords: Deterministic scheduling, malleable tasks, mean �ow time.1 IntroductionMalleable tasks can be executed by more than one processor at the sametime. Furthermore, the number of used processors can be changed over thecourse of a task execution. Malleable task model may be applied to representparallel applications executed in environments in which migration is possible.For example, on a parallel computer with shared memory a parallel appli-cation can create threads. These threads can be executed simultaneously.Operating system assigns the threads to the processors for time quanta ina round-robin fashion, and preempts the threads when the quanta expire.When the load of the computer system is low all the application threadsmay run in parallel in real time. When the load is increasing, operating sys-tem assigns the application threads to fewer processors. Thus, the numberof processors used over time can be changed according to the decisions ofthe operating system. An upper limit on the number of usable processorsmay exist. This may be either the number of threads created by the appli-cation, or a limit imposed by the operating system protecting its resources1Istituto per le Applicazioni del Calcolo, CNR, V.le del Policlinico, 137 - 00161 Rome,Italy.2Institute of Computing Science, Poznan University of Technology, Piotrowo 3A,60-965 Poznan, Poland. The research of this author has been partially sup-ported by Polish Committee for Scienti�c Research. Corresponding Author. Email:Maciej.Drozdowski@cs.put.poznan.pl 1

from overuse. Another example of malleable tasks is in bandwidth alloca-tion. Bandwidth of a communication link is a resource which can be dividedamong many simultaneously operating channels. The bandwidth assigned toa channel may vary over time. However, the channels have an upper limiton the usable bandwidth (e.g. Peak Cell Rate in ATM networks). A routermust divide the bandwidth between the simultaneous communications suchthat the maximum for each channel is not exceed. Malleable task model forloom production scheduling has been presented in [9]. A single request forproduction of a certain fabric can be distributed over several looms. Thenumber of looms used during the course of satisfying the request may vary.The scheduling problem studied in this paper can be formulated in thefollowing way. Set T of n tasks is to be executed on set P of m parallel iden-tical processors. Each task j ∈ T is de�ned by the parameters: processingrequirement pj , maximum number of processors that can be used δj , readytime rj , and deadline dj which cannot be exceeded in any feasible schedule.Tasks can be suspended, and restarted later without any additional cost.Each task can migrate to a di�erent processor, increase or decrease the num-ber of used processors, also without cost. The only restriction is that nomore than δj processors can be used simultaneously. To verify if task j hasreceived the required processing and can be �nished, one has to calculate thearea occupied by task j in the time × processors space, and compare it with
pj. The completion time of task j will be denoted by cj. The objective is theminimization of the mean �ow time 1

n

∑n
j=1(cj−rj). Since ∑n

j=1 rj is constantfor any instance, the minimization of the mean �ow time is equivalent to theminimization of ∑n
j=1 cj . Therefore, in the following discussion we will referto the minimization of ∑n

j=1 cj as to the mean �ow time criterion.Malleable task scheduling has been considered in earlier publications. The�rst works considering parallel tasks, i.e. tasks executed on several processorssimultaneously, seem to be [8], and [1]. Unfortunately, the lack of generallyaccepted terminology may confuse. It is often the case that the name mal-leable tasks is applied to parallel tasks that can be executed on several proces-sors, but the number of processors must be selected before the task starts,and cannot be changed during the execution of the task. We follow the nam-ing conventions proposed in [4, 6] where such tasks are called moldable. Wedo not consider moldable tasks here. The concept of malleable, moldable,and more generally parallel tasks, and the problems of scheduling them havebeen presented in [3, 4, 6]. The �rst study of scheduling malleable tasks ap-peared in [10]. Tasks had due-dates, and the objective was the minimization2

of maximum lateness. This problem can be solved by means of binary searchand maximum network �ows. Scheduling chains of three malleable tasks forschedule length criterion has been studied in [5]. The �rst, and the last taskin the chain had parallelism limited to one processor (δj = 1). The second,central task had unlimited parallelism (δj ≥ m). This problem has beenshown to be NP-hard, and special cases solvable in polynomial time havebeen identi�ed [5]. However, to our best knowledge not much is known aboutthe problem of scheduling malleable tasks for the mean �ow time criterion.The rest of this paper is organized as follows: In Section 2 we study thecomplexity of the proposed problem. Section 3 is dedicated to the case of�xed sequences of task completion times. A low-order polynomial time algo-rithm is proposed in Section 4 for agreeable processing times and parallelismmaxima.2 Complexity of the problemIn this section we demonstrate that the problem of scheduling malleable taskswith bounded parallelism is NP-hard in general.Theorem 1 The problem of scheduling malleable tasks with limited paral-lelism, ready times, and deadlines, for mean �ow time criterion is NP-hard.Proof. We start by proving that this problem is in NP. A solution ofthe problem can be represented as a set of intervals in which the numberof processors assigned to the tasks does not change. The number of suchintervals is O(n2) because ready times, completion times, and deadlines de�ne
O(n) periods, in which the processor assignment to the tasks changes O(n)times (we discuss it in more detail in the next section). For each interval onehas to verify if no task uses more than the admissible number of processors.By summing the amounts of work performed on the tasks in the consecutiveintervals one can verify that each task is fully completed. Finally, the mean�ow time is calculated by checking the sum of completion times of the tasks.We will show now a polynomial time transformation from the problempartition into equal cardinality subsets [7] to a decision version ofour problem. Partition into equal cardinality subsets is de�ned asfollows:Instance: a set of 2k integers A = {a1, . . . , a2k}, such that ∑2k

j=1 aj = 2B.3

Question: is it possible to partition A into two disjoined subsets A1, A2 suchthat |A1| = |A2| = k, and ∑

j∈A1
aj =

∑

j∈A2
aj = B?The decision version of our problem is de�ned as follows:Instance: set T of n malleable tasks with processing requirements pj ∈ Z+,maximum number of usable processors δj ∈ Z+, ready times rj ∈ Z+, anddeadlines dj ∈ Z+, for j = 1, . . . , n, integer m, a positive rational number y.Question: is it possible to execute tasks from set T such that ∑n

j=1 cj ≤ y?The polynomial time transformation is de�ned as follows:
m = kMB2 − B2; n = 2k + 2;
δj = MB2 − ajB for j = 1, . . . , 2k;
pj = δj + aj for j = 1, . . . , 2k;
rj = 0, dj = ∞ for j = 1, . . . , 2k;
δ2k+1 = m − 1; p2k+1 = (m − 1)B; r2k+1 = 0; d2k+1 = B;
δ2k+2 = m; p2k+2 = mL; r2k+2 = B + 1; d2k+2 = B + L + 1;
y = B + B + 1 + L + k(B + 1) + k(B + 1 + L) + 2k;where L > (B + 3)k, and M > k are big constants. Tasks 1, . . . , 2k will becalled partition tasks, task 2k + 1, 2k + 2 will be called blocking tasks.Let us assume that there is a partition into equal cardinality subsets.Then, a feasible schedule for our problem can be as the one presented in Fig.1.Task 2k + 1 is �nished at time B, task 2k + 2 is �nished at time B + 1 + L,and the k tasks corresponding to the elements of set A1 are completed attime B + 1. The k tasks corresponding to the elements j ∈ A2 complete attimes B + 1 + L + pj

δj
, where pj

δj
= 3B2

−aj(B−1)

3B2−ajB
≤ 2. Together we obtain mean�ow time ∑n

j=1 cj = B +B +1+L+k(B +1)+k(B +1+L)+
∑

j∈A2

pj

δj
≤ ySuppose that a feasible schedule with mean �ow time at most y exists.We will demonstrate that also a partition into equal cardinality subsets mustexist. Note that by the selection of their ready times, deadlines, and theshortest execution times pk

δk
,

pk+1

δk+1
, tasks 2k + 1, and 2k + 2 must be �nishedat times B and B + 1 + L, respectively. This leaves free intervals [0, B] withone processor, [B, B +1], [B +1+L,∞) with m processors, available for thepartition tasks 1, . . . , 2k.Let us observe that in order to have mean �ow time not greater than y,at least k tasks from the set 1, . . . , 2k must be completed before task 2k + 2,i.e. before time B + 1. Suppose it is otherwise and x > k partition tasks arecompleted after task 2k + 2. Then, the sum of the completion times for theblocking tasks, and x partition tasks completed after task 2k + 2 is at least4

T2 +1k T2

T2

T1

T1

a1

d1

d2

a2

T2 +2k

A2A1

B B+1

.
.
.

. . .

. . .

B L+1+Figure 1: Illustration to the proof of Theorem 1.
B + B + 1 + L + x(B + 1 + L) ≥ B + B + 1 + L + (k + 1)(B + 1 + L) >

y = B + B + 1 + L + k(B + 1) + k(B + 1 + L) + 2k because L > k(B + 3).On the other hand at most k partition tasks can be completed before time
B+1. Suppose it is otherwise and x > k partition tasks are completed before
B + 1. Since for each partition task pj = MB2 − ajB ≥ MB2 − B2, thesetasks require at least x(MB2 − B2) ≥ (k + 1)(MB2 − B2) processing, whilethe available area is B + m = B + kMB2 − B2, which is smaller because
M > k. Hence, no more than k partition tasks can be completed before
B + 1. Together we have that exactly k partition tasks must be completedbefore B + 1. If we denote the set of tasks completed before B + 1 by A1,and the rest as A2, then we have |A1| = |A2|.Note that a partition task j executed in the interval [B, B+1] can receiveat most δj processing. The remaining part pj − δj = aj must be processedin the interval [0, B]. Now we will prove that also ∑

j∈A1
aj =

∑

j∈A2
aj = B.Suppose that it is otherwise, and ∑

j∈A1
aj > B. Then, ∑

j∈A1
(pj − δj) =

∑

j∈A1
aj ≥ B + 1, at least one unit of work must be processed after B + 1,and the criterion value y is not met. Note that there is free space in theinterval [B, B + 1] in the amount of m−

∑

j∈A1
δj = kMB2 −B2 − kMB2 +

B
∑

j∈A1
aj > B, but it cannot be exploited by any partition task in A1because the maximum number of processors is already used. Suppose that

∑

j∈A1
aj < B. Then, the total processing requirement of the tasks in A1 is

∑

j∈A1
pj =

∑

j∈A1
(δj +aj) =

∑

j∈A1
(MB2−aj(B−1)) ≥ kMB2−(B−1)(B−5

1) = kMB2 −B2 + 2B − 1 which is greater than the space B + kMB2 −B2available in [0, B+1]. Hence, tasks in A1 cannot be feasibly completed before
B + 1. Thus, we conclude that a feasible schedule not exceeding mean �owtime y exists if ∑

j∈A1
aj =

∑

j∈A2
aj = B, and the answer to partition withequal cardinality subsets is also positive. 23 Fixed sequencesIn this section we present a linear programming solution for the case whenthe sequence of task completions, ready times and deadlines are known. Westart the presentation with a simpler case.3.1 Fixed sequence of completion timesIn this paragraph we assume that all tasks are available at time 0, and havenot bounding deadlines (e.g. ∀j dj = ∞). Without loss of generality let usassume that the sequence of task completions is c1 ≤ c2 ≤ . . . ≤ cn. Let usdenote by xij the amount of processing that task j receives in the interval

[ci−1, ci], for i = 1, . . . , n. For completeness of arguments we assume c0 = 0.The linear program is as follows:minimize ∑n
i=1 cisubject to:

xij ≤ δj(ci − ci−1) j = 1, . . . , n; i = 1, . . . , j (1)
n

∑

j=i

xij ≤ m(ci − ci−1) i = 1, . . . , n (2)
j

∑

i=1

xij ≥ pj j = 1, . . . , n (3)In the above linear program inequalities (1) guarantee that no task j usesmore than δj processors in the interval [ci−1, ci]. By inequalities (2) tasksprocessed in the interval [ci−1, ci] use no more processing than the capacityof the m processors. Inequalities (3) ensure that all tasks receive necessaryprocessing.Though the above linear program includes constraints necessary for fea-sibility of a schedule, it is not known yet if a feasible schedule can be con-structed using the solution of (1)-(3). A feasible schedule can be built using6

an extension of McNaughton's algorithm proposed in [5] for schedule lengthcriterion (Cmax). We describe the extension for the sake of completenessof the presentation. Tasks with processing requirements pj, and parallelismbound δj , can be scheduled in time
Cmax = max







max
j

{

pj

δj

}

,
1

m

n
∑

j=1

pj







. (4)This is necessarily a lower bound because no schedule can be shorter thanthe length of the longest task or the total processing requirement equallydistributed on all processors. A schedule of this length is built by usingMcNaughton's wrap-around rule. However, here if a task is wrapped itmay use more than one processor at the same time. By the selection of
Cmax ≥ maxj

{

pj

δj

} it is guaranteed that no task j uses more than δj proces-sors simultaneously. Let us return now to scheduling the pieces xij of thetasks in the intervals [ci−1, ci]. By constraints (1)-(2), pieces xij ful�ll con-dition (4) imposed by the extended McNaughton rule, and can be feasiblyscheduled in the intervals [ci−1, ci].We conclude this section with an example in which we have m = 4 proces-sors, and three tasks such that c1 ≤ c2 ≤ c3, p1 = 2, p2 = 5, p3 = 4, and
δ1 = 2, δ2 = 4, δ3 = 1. The linear program is as follows:minimize c1 + c2 + c3subject to:

x11 ≤ 2c1

x12 ≤ 4c1

x22 ≤ 4(c2 − c1)

x13 ≤ c1

x23 ≤ (c2 − c1)

x33 ≤ (c3 − c2)

x11 + x12 + x13 ≤ 4c1

x22 + x23 ≤ 4(c2 − c1)

x33 ≤ 4(c3 − c2)

x11 ≥ 2

x12 + x22 ≥ 57

T1

T2

T3 T3 T3

T2

1 7_
3

4Figure 2: Illustration to the example in Section 3.1.
x13 + x23 + x33 ≥ 4 (5)By solving the above linear program we obtain: x11 = 2, x12 = 1, x13 =

1, x22 = 4, x23 = 4
3
, x33 = 5

3
, c1 = 1, c2 = 7

3
, c3 = 4. The optimal schedule isdepicted in Fig.2.3.2 Fixed sequence of all eventsWhen the sequence of rj's, dj's, and cj 's is �xed, our problem can be for-mulated as a linear program. Let us consider simultaneously all such events:ready times, due dates, completion times. We will denote the number ofthese events by l. Let τi and τi+1 denote the endpoints of an interval de-termined by two consecutive events, for i = 1, . . . , l − 1. Note that τi is aconstant if it represents a ready time, or a deadline. τi is a variable if event

i is a completion time. Thus, we have the following formulation:minimize ∑l
i=1 τisubject to:

xij ≤ δj(τi − τi−1) i = 1, . . . , l (6)
n

∑

j=1

xij ≤ m(τi − τi−1) i = 1, . . . , l (7)
l

∑

i=1

xij ≥ pj j = 1, . . . , n (8)
xij = 0 if τi−1 < rj i = 1, . . . , l (9)
xij = 0 if τi > dj i = 1, . . . , l (10)8

The main di�erence with respect to yhe linear program (1)-(3) is thatin the above formulation we consider consecutive events which are not nec-essarily two completion times. Though, the objective function is a sum oftime instants of all events, ready times and deadlines are �xed, and the sumof the τi's corresponding to them is constant. Therefore, minimizing ∑l
i=1 τiis equivalent to minimizing ∑n

i=1 ci. Furthermore, we force to zero xij in in-equalities (9) and (10), for those intervals i which are before the availabilityof task j, or after the deadline of task j.Note that for a �xed number of tasks, the number of possible permutationsof task completion times, ready times, and deadlines is also �xed. Hence, wehave an observation.Observation 1 The problem of scheduling malleable tasks with ready timesand deadlines is solvable in polynomial time for any �xed number of tasks.4 Agreeable processing requirementsand parallelism maximaIn this section we study a special case of agreeable processing requirementsand parallelism bounds. For this case a low-order polynomial time algorithmcan be given.By agreeable processing requirements, and parallelism bounds we meanthe instances for which tasks can be ordered such that p1

δ1
≤ p2

δ2
≤ . . . ≤ pn

δnand δ1 ≤ δ2 ≤ . . . ≤ δn. The agreeable feature of an instance can be checkedin O(n log n) time by sorting the tasks. We also assume rj = 0, dj = ∞, forall tasks j. The algorithm can be formulated as follows:Algorithm Agreeable1: for j:=1 to n do2: assign task j to the earliest possible time intervals using maximum possiblenumber of processors, i.e. either δj or all the processors remaining availablein a given time interval.Let us illustrate this algorithm with an example. Processing requirementsare given in a vector p = [2, 4, 4, 5, 7], parallelism bounds are given in a vector
δ = [1, 1, 2, 2, 4], m = 5. The schedule built by algorithm Agreeable is shownin Fig.3. 9

T1

T2

T2

T3

T4

T4

T5

2 4 4.53.5Figure 3: Illustration to the example in Section 4.
Tj

Tj+1

Tj+1

Tj

a

ta
Tj

dj

dj
dj+1Figure 4: Illustration to the proof of Theorem 2.Let us make some observations about the schedules built by algorithmAgreeable. Let αj denote the number of processors used by task j at the endof its execution in a schedule constructed by algorithm Agreeable.Theorem 2 αj = min{δj, m}, for j = 1, . . . , n.Proof. The proof is inductive in nature. The theorem is satis�ed for j = 1.Assume it is satis�ed for tasks 1, . . . , j, where j ≥ 1. Let us consider the timeinterval a in which task j is executed (cf. Fig.4). Interval a is the earliestpossible time where task j + 1 can be executed because there are no idleintervals to the left of a. Otherwise task j would have been shifted to suchearlier intervals.a) Suppose there are some free processors in interval a, and task j +1 �tscompletely in interval a. Let τa denote the length of the sub-interval with freeprocessors within a. We have τa ≤

pj

δj
because task j may be executed alsobefore the sub-interval with free processors. On the other hand for task j +110

we have pj+1

δj+1
≤ τa because j + 1 �ts completely in the interval. Togetherwe get pj+1

δj+1
≤ τa ≤

pj

δj
. But due to the agreeable condition pj+1

δj+1
≥

pj

δj
.Consequently, pj+1

δj+1
= τa = pj

δj
, and αj+1 = δj+1. Furthermore, if one task iscompletely processed in parallel with some other task then they are �nishedsimultaneously.b) Suppose j+1 does not �t completely in the interval a. Thus, cj+1 > cj .It follows from the previous case that after completion of task j all processorsare free because all tasks executed in parallel with j �nish no later than by

cj. Hence, αj+1 = min{m, δj+1}. 2Theorem 3 Algorithm Agreeable constructs the optimum schedule in O(n2)if p1

δ1
≤ p2

δ2
≤ . . . ≤ pn

δn
and δ1 ≤ δ2 ≤ . . . ≤ δn.Proof. This proof has inductive nature.1) Schedule task 1 using α1 = min{m, δ1} processors. Mean �ow time c1 isminimum.2) Suppose an optimum schedule for tasks 1, . . . , j is constructed by algorithmAgreeable. We schedule task j+1 using algorithm Agreeable. ∑j+1

i=1 ci cannotbe reduced by:a) reducing ∑j
i=1 ci because the schedule for tasks 1, . . . , j is optimal,b) reducing only cj+1 because it is infeasible,Thus, reducing cj+1 and increasing ∑j

i=1 ci is the only way of reducing
∑j+1

i=1 ci. Suppose we reduce cj+1 by εj+1. This reduces the area availablefor task j + 1 by εj+1αj+1 which must be compensated for by delaying thecompletion times of some tasks among 1, . . . , j. Without loss of generality,let them be tasks 1, . . . , k and their completions are delayed by ε1, . . . , εk,respectively. This creates available area of at most ∑k
i=1 εiαi. This new areacan be consumed by task j + 1, in exchange for area εj+1αj+1. Thus, wereduce the completion time of task j + 1 by no more than ∑k

i=1
εiαi

αj+1
≥ εj+1.By Theorem 2 and agreeable condition αi ≤ αj+1, for i = 1, . . . , k. Hence,we have:

ε1 + . . . + εk ≥

∑k
i=1 εiαi

αj+1
≥ εj+1 (11)which means that the increase of the mean �ow time by ε1 + . . .+ εk exceedsthe reduction of εj+1. This conclusion can be invalidated only if some task(s)

i ∈ {1, . . . , k} use α′

i > αj+1 processors. Due to the agreeable condition, andTheorem 2, we have α′

i ≤ δi = αi ≤ αj+1 and (11) holds.11

The complexity of the algorithm is a result of the fact that in step 2 ofalgorithm Agreeable the number of available processors for task j changesat most n − 1 times, and at most this many times the remaining processingrequirement of task j must be recalculated. 25 ConclusionsIn this paper we studied a problem of scheduling malleable tasks with boundedparallelism. The problem is NP-hard in the presence of ready times anddeadlines. For �xed sequence of ready times, deadlines, and task comple-tion times it can be solved in polynomial time by use of linear program-ming. When processing requirements and parallelism bounds of the tasksare agreeable, a low-order polynomial time algorithm was proposed. Yet,the complexity of a more fragile problem of scheduling malleable tasks withbounded parallelism without ready times and deadlines remains open.References[1] J.Bªa»ewicz, M.Drabowski, J.W¦glarz, Scheduling multiprocessor tasksto minimize schedule length, IEEE Transactions on Computers 35, No.5,(1986) 389-393.[2] J.Bªa»ewicz, K.Ecker, E.Pesch, G.Schmidt, J.W¦glarz, Scheduling Com-puter and Manufacturing Processes (Springer, Berlin, 2001).[3] M.Drozdowski, Scheduling multiprocessor tasks - an overview, EuropeanJournal of Operational Research 94, (1996) 215-230.[4] M.Drozdowski, Scheduling parallel tasks - Algorithms and complexity,in: J.Y.-T.Leung, ed., Handbook of Scheduling: Algorithms, Models,and Performance Analysis (Chapman & Hall/CRC, Boca Raton, 2004),chapter 25.[5] M.Drozdowski, W.Kubiak, Scheduling parallel tasks with sequentialheads and tails, Annals of Operations Research 90, (1999) 221-246.
12

[6] D.G.Feitelson, L.Rudolph, U.Schweigelshohn, K.Sevcik, P.Wong, The-ory and practice of job scheduling, Lecture Notes in Computer Science1291 (Springer, Berlin, 1997) 1-34.[7] M.Garey, D.Johnson, Computers and Intractability - A Guide to theTheory of NP-completeness (Freeman, New York, 1979).[8] E.L.Lloyd, Concurrent task systems, Operations Research 29, No.1(1981) 189-201.[9] P.Sera�ni, Scheduling jobs on several machines with the job splittingproperty, Operations research 44 (1996) 617-628.[10] V.G.Vizing, Minimization of the maximum delay in servicing systemswith interruption, U.S.S.R. Computational Mathematics and Mathe-matical Physics 22, No.3 (1982) 227-233.

13

