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From learning vectors to learning matrices

m Machine learning is traditionally interested in learning vector
parameters (e.g. regression, classification)
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m Recent interest in matrix generalizations of classical prediction tasks
(PCA, learning kernels, learning subspaces)
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The open problem (Warmuth, COLT 2007)

m In each case the matrix generalizations have performance guarantees
(worst-case regret bounds) identical to the classical tasks

» Matrices have n? parameters and vectors n parameters. Thus
matrices should be harder to learn!
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Free Matrix Lunch???
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This talk

m Predicting n-ary sequence with logarithmic loss

m Many interpretations: forecasting, data compression, investment
m Simple but fundamental
m Extremely well-studied
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This talk

m Predicting n-ary sequence with logarithmic loss

m Many interpretations: forecasting, data compression, investment
m Simple but fundamental
m Extremely well-studied

m We generalise the problem and lift the algorithms to the matrix
domain.

m We prove and explain a

Free Matrix Lunch!
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Classical Log Loss
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Predicting outcomes from individual n-ary sequence

(a.k.a. universal coding for n-ary alphabet)

for trial t =1,2,... do
Alg predicts with a distribution w; on n-ary alphabet
Nat reveals an outcome z; € {1,...,n}
Alg incurs loss — log wy ()

end for
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Predicting outcomes from individual n-ary sequence

(a.k.a. universal coding for n-ary alphabet)
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Nat reveals a basis vector z; € {e;,..., ey}
Alg incurs loss —log (w/ x;)
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Evaluation

m Regret is the cumulative loss of Alg minus the loss of the best fixed
distribution (prediction):

T

T
Ry = Z —log (w] xt) — Irgn Z —log (w'xy) .
t=1 t=1

7/23



Evaluation

m Regret is the cumulative loss of Alg minus the loss of the best fixed
distribution (prediction):

T T
Ry = Z —log (w] xt) — H’BHZ —log (w'xy) .

t=1 t=1
m The best distribution w* = argmin Zle —log (w'ax;) is the

maximum likelihood estimator, while the loss of w* is the empirical
Shannon entropy:

T T
* 1 . T *
W' =5 ;:1 x4, 1gf ;:1 —log(w'®x;) = TH (w")

m Goal: design online algorithms with low worst-case regret
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Algorithms

m Laplace predictor:

t
_1xs+ 1
Wi = Zq—t# Ry < (n—1)logT + O(1)
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Algorithms

m Laplace predictor:

t
_1xs+ 1
Wil = Zq—t# Rr < (n—1)logT + 0(1)

m Krychevsky-Trofimoff (KT) predictor:

Zgzlwq+1/2 n—1
t+n/2

Wyl =

log T+ O(1)
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Algorithms

» Minimax regret achieved by Shtarkov (NML) algorithm:

Ry < n—1

log T+ O(1)
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Algorithms

» Minimax regret achieved by Shtarkov (NML) algorithm:

Ry < n—1

log T+ O(1)

m Last Step Minimax algorithm

Rr < 2 ZlogT+ O(1)

Optimal up to O(1). Beats KT (by a constant).
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Matrix Log Loss
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Density matrix prediction

for trial t =1,2,... do
Alg predicts with density matrix W,
Nat reveals dyad x;x/
Alg incurs loss —x; log(W})x:
end for
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Density matrix prediction

for trial t =1,2,... do for trial t =1,2,... do
Alg predicts with density matrix W, Alg predicts with distr. wy
Nat reveals dyad x;x/ Nat reveals x; € {e1,...,e,}
Alg incurs loss —x/ log(W})x; Alg incurs loss — log (w, @)
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The outcomes: dyads

m A dyad xx" is a rank-one matrix, where x is a vector in R™ of unit
length.

m A dyad is a classical outcome in an arbitrary orthonormal basis:

100
zr' =U"|000]|U
000

m There are continuously many dyads.
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The predictions: density matrices

m A density matrix W is a convex combination of dyads.
m W is a positive-semidefinite matrix of unit trace.

m A density matrix is a probability vector in an arbitrary orthonormal
basis:

n

.

W = g w; a;a;
i=1

eigenvalues w  probability vector
eigenvectors a; orthonormal system
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The loss: matrix log loss

m The logarithm of a density matrix W = ). w;a;a; is defined by

(2

log(W) = Zlog(wi) a;a; .

m Discrepancy between prediction W and dyad xax": matrix log loss
—z'"log(W)z

m If Alg and Nat play in the same eigensystem, i.e. © = a;, then
matrix log loss becomes classical log loss:

—x" log(W)x = —a; Zlog(wi)aiaiTaj = —log(w;) = —log(w ' @)
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Matrix log loss is proper

m The Von Neumann or Quantum entropy:
H(A) = —tr(AlogA)

equals the Shannon entropy of eigenvalues « of A.

m We now compete with the empirical Von Neumann entropy:

Zle Tz,

T
inf —x/ log(W)haxy; = TH(W?*) where W* =
> og(W)ar = TH (W) x
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A Free Matrix Lunch
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Matrix Algorithms

m Matrix Laplace:

Zzzl xgx, + 1
t+n

Wt+1 =

m Matrix Krychevsky-Trofimoff (KT):

22:1 zgxy, +1/2
t+n/2

Wi =

17/23



Matrix Algorithms

m Matrix Laplace:

t t
) Zq:]_ wqw; +1 ) qul xq+ 1
Wi = =0 Wit = S

m Matrix Krychevsky-Trofimoff (KT):

—_—— S g1 Tgmy +1/2 o S 1 @g +1/2
S t+n/2 G t+n/2
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Two Free Matrix Lunches

Classical and matrix worst-case regrets coincide for Laplace and for KT.
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Two Free Matrix Lunches

Classical and matrix worst-case regrets coincide for Laplace and for KT.

m If Alg plays Laplace or KT, then Nat will never go out-eigensystem:
Any sequence of dyads not in same eigensystem is suboptimal for Nat

m The classical case is the worst case. No additional regret.

m We learn eigenvectors for free!
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Free matrix lunch for Shtarkov?

m Are the classical and matrix prediction games equally hard?

m Ultimate open problem: is the classical minimax regret

T ZT o
min max - - - min max Z —log (w, =) — T H | &&=

w1 x wr xT T
t=1

equal to the matrix minimax regret

T T -
. . _1 Lt
min max - - - min max E —x/ log(Wy)xy — T H L1 T
Wiy @1 Wr xr — T

Is there a free matrix lunch for matrix Shtarkov?
m Only numerical evidence for this claim and intermediate conjectures.

m Regret bounds for classical and matrix Last Step Minimax coincide.
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Summary and Open Questions
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Matrix extensions of classical algorithms for log loss.
Learning a matrix of n? parameters with regret for n
Eigenvectors are learned for free

Classical data is worst-case
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Open questions

m Does the free matrix lunch hold for the matrix minimax algorithm?

m A generic method for promoting classical strategies to the matrix
domain.

m Different loss functions.
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Thank you!
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