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From learning vectors to learning matrices

Machine learning is traditionally interested in learning vector
parameters (e.g. regression, classification)

x =


x1
x2
...
xn

 w =


w1

w2
...
wn



Recent interest in matrix generalizations of classical prediction tasks
(PCA, learning kernels, learning subspaces)

X =


x1,1 x1,2 · · · x1,n
x2,1 x2,2 · · · x2,n

...
...

. . .
...

xn,1 xn,2 · · · xn,n

 W =


w1,1 w1,2 · · · w1,n

w2,1 w2,2 · · · w2,n
...

...
. . .

...
wn,1 wn,2 · · · wn,n
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The open problem (Warmuth, COLT 2007)

In each case the matrix generalizations have performance guarantees
(worst-case regret bounds) identical to the classical tasks

Matrices have n2 parameters and vectors n parameters. Thus
matrices should be harder to learn!

Free Matrix Lunch???
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This talk

Predicting n-ary sequence with logarithmic loss

Many interpretations: forecasting, data compression, investment
Simple but fundamental
Extremely well-studied

We generalise the problem and lift the algorithms to the matrix
domain.

We prove and explain a

Free Matrix Lunch!
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Outline

1 Introduction

2 Classical Log Loss

3 Matrix Log Loss

4 Free Matrix Lunch

5 Summary and Open Questions
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Predicting outcomes from individual n-ary sequence
(a.k.a. universal coding for n-ary alphabet)

for trial t = 1, 2, . . . do
Alg predicts with a distribution ωt on n-ary alphabet
Nat reveals an outcome xt ∈ {1, . . . , n}
Alg incurs loss − logωt(xt)

end for

for trial t = 1, 2, . . . do
Alg predicts with probability vector (distribution) ωt

Nat reveals a basis vector xt ∈ {e1, . . . , en}
Alg incurs loss − log (ω>

t xt)
end for
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Evaluation

Regret is the cumulative loss of Alg minus the loss of the best fixed
distribution (prediction):

RT :=

T∑
t=1

− log (ω>
t xt)−min

ω

T∑
t=1

− log (ω>xt) .

The best distribution ω∗ = argmin
∑T

t=1− log (ω>xt) is the
maximum likelihood estimator, while the loss of ω∗ is the empirical
Shannon entropy:

ω∗ =
1

T

T∑
t=1

xt, inf
ω

T∑
t=1

− log (ω>xt) = T H (ω∗)

Goal: design online algorithms with low worst-case regret
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Algorithms

Laplace predictor:

ωt+1 :=

∑t
q=1 xq + 1

t+ n
RT ≤ (n− 1) log T +O(1)

Krychevsky-Trofimoff (KT) predictor:

ωt+1 :=

∑t
q=1 xq + 1/2

t+ n/2
RT ≤

n− 1

2
log T +O(1)
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Algorithms

Minimax regret achieved by Shtarkov (NML) algorithm:

RT ≤
n− 1

2
log T +O(1)

Last Step Minimax algorithm

RT ≤
n− 1

2
log T +O(1)

Optimal up to O(1). Beats KT (by a constant).
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Density matrix prediction

for trial t = 1, 2, . . . do
Alg predicts with density matrix Wt

Nat reveals dyad xtx
>
t

Alg incurs loss −x>
t log(Wt)xt

end for

for trial t = 1, 2, . . . do
Alg predicts with distr. ωt

Nat reveals xt ∈ {e1, . . . , en}
Alg incurs loss − log (ω>

t xt)
end for
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The outcomes: dyads

A dyad xx> is a rank-one matrix, where x is a vector in Rn of unit
length.

A dyad is a classical outcome in an arbitrary orthonormal basis:

xx> = U>

1 0 0
0 0 0
0 0 0

U
There are continuously many dyads.
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The predictions: density matrices

A density matrix W is a convex combination of dyads.

W is a positive-semidefinite matrix of unit trace.

A density matrix is a probability vector in an arbitrary orthonormal
basis:

W =
n∑

i=1

ωi aia
>
i

eigenvalues ω probability vector
eigenvectors ai orthonormal system
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The loss: matrix log loss

The logarithm of a density matrix W =
∑

i ωiaia
>
i is defined by

log(W ) =
∑
i

log(ωi)aia
>
i .

Discrepancy between prediction W and dyad xx>: matrix log loss

−x>log(W )x

If Alg and Nat play in the same eigensystem, i.e. x = aj , then
matrix log loss becomes classical log loss:

−x> log(W )x = −a>
j

∑
i

log(ωi)aia
>
i aj = − log(ωj) = − log(ω>x)

14 / 23



Matrix log loss is proper

The Von Neumann or Quantum entropy:

H(A) = − tr(A logA)

equals the Shannon entropy of eigenvalues α of A.

We now compete with the empirical Von Neumann entropy:

inf
W

T∑
t=1

−x>
t log(W )xt = T H (W ∗) where W ∗ =

∑T
t=1 xtx

>
t

T
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Matrix Algorithms

Matrix Laplace:

Wt+1 :=

∑t
q=1 xqx

>
q + I

t+ n

ωt+1 :=

∑t
q=1 xq + 1

t+ n

Matrix Krychevsky-Trofimoff (KT):

Wt+1 :=

∑t
q=1 xqx

>
q + I/2

t+ n/2
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Two Free Matrix Lunches

Theorem

Classical and matrix worst-case regrets coincide for Laplace and for KT.

But why...?

If Alg plays Laplace or KT, then Nat will never go out-eigensystem:
Any sequence of dyads not in same eigensystem is suboptimal for Nat

The classical case is the worst case. No additional regret.

We learn eigenvectors for free!
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Free matrix lunch for Shtarkov?

Are the classical and matrix prediction games equally hard?

Ultimate open problem: is the classical minimax regret

min
ω1

max
x1

· · ·min
ωT

max
xT

T∑
t=1

− log (ω>
t xt)− T H

(∑T
t=1 xt

T

)

equal to the matrix minimax regret

min
W1

max
x1

· · ·min
WT

max
xT

T∑
t=1

−x>
t log(Wt)xt − T H

(∑T
t=1 xtx

>
t

T

)

Is there a free matrix lunch for matrix Shtarkov?

Only numerical evidence for this claim and intermediate conjectures.

Regret bounds for classical and matrix Last Step Minimax coincide.
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Summary

Matrix extensions of classical algorithms for log loss.

Learning a matrix of n2 parameters with regret for n

Eigenvectors are learned for free

Classical data is worst-case
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Open questions

Does the free matrix lunch hold for the matrix minimax algorithm?

A generic method for promoting classical strategies to the matrix
domain.

Different loss functions.
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Thank you!
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