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1. Introduction

In the problem of ordinal classification with monotonicity constraints the purpose is to predict for a given
object one of K ordered class labels (ranks). Objects are described by attributes with ordered value sets
and monotonicity constraints are present in the data: a higher value of an object on an attribute, with other
values being fixed, should not decrease its class assignment. Depending on interpretation of attributes,
also inverse monotonicity constraints may be relevant: a lower value of an object on an attribute with
other attributes being fixed, should not decrease the class assignment. In this paper, we assume, without
loss of generality, that only the first kind of monotonicity constraints holds.

As an example, consider the problem of house pricing, i.e., classification of houses with respect to
their prices, into one of the following classes: “cheap”, “moderate”, “expensive”, “very expensive”. The
classification is based on the following attributes: lot size, number of bedrooms, garages, whether a
house contains air conditioning, basement, etc. [29]. It is obvious that the price of house A should not
be less than that of house B if, for instance, house A has greater number of bedrooms and garages than
B, and opposite to B, has a basement, and, moreover, house A is as good as B on other attributes.

Problems of ordinal classification with monotonicity constraints are commonly encountered in real-
life applications. A typical representative is multiple-criteria classification (or sorting) considered within
multiple-criteria decision analysis (MCDA) [39, 24]. Moreover, in many other domains, ordinal and
monotone properties follow from the domain knowledge about the problem and should not be neglected.
They are encountered in such problems as bankruptcy risk prediction [43, 21, 41], breast cancer diag-
nosis [40], house pricing [36], Internet content filtering [28], credit rating [14], liver disorder diagnosis
[42], credit approval [17], surveys data [6] and many others.

In order to solve ordinal classification problem with monotonicity constraints, one can apply two
steps for improving the accuracy of the classifier. The first one consists in “monotonization” of the
dataset, i.e., exclusion of objects strongly violating the monotone relationships in order to make the
dataset monotone. The second one consists in imposing the constraints such that only monotone classi-
fication functions are taken into account.

Dominance-based Rough Set Approach (DRSA) [22, 23, 24] is one of the first approaches introduced
to deal with this type of problems. Replacing indiscernibility relation, considered in classical rough
sets [35], by a dominance relation, DRSA is able to handle inconsistencies following from violation
of monotone relationships. In this context, several specialized decision rule induction algorithms were
proposed that were able to capture the ordinal nature of data and handle domain knowledge in the form
of monotonicity constraints [26, 13] (we will refer to rules consistent with monotonicity constraints as
monotone rules). Among them, DOMLEM [25] seems to be the most popular one. It aims at finding a
minimal set of monotone rules covering the dataset, using the well-known sequential covering procedure
as a search heuristic.

In this paper, we follow a different methodology for monotone rule induction that is based on forward
stagewise additive modeling (FSAM) [19], i.e., greedy procedure for minimizing a loss function on the
dataset. The algorithm presented in this paper, called MORE (from MOnotone Rule Ensembles), treats a
single rule as a subsidiary base classifier in the ensemble. The rules are added to the ensemble iteratively,
one by one. Each rule is fitted by concentrating on the examples which were hardest to classify correctly
by rules that have already been generated. The advantage of this approach is that we use a single measure
only (value of the empirical risk) at all stages of the learning procedure: setting the best cuts (conditions),
stopping the rule’s growth and determining the weight of the rule; no additional features (e.g., impurity
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measures, pruning procedures) are considered. Such an approach was already considered in ordinary
classification problems and algorithms such as RuleFit [20], SLIPPER [7], LRI [45], MLRules [12]
or ENDER [11] exist. MORE can be seen as an extension of the last one from among the methods
mentioned above. It monotonizes the dataset (excludes strongly inconsistent objects) using Stochastic
DRSA [30, 9] and then generates monotone rules.

The main idea of MORE has been introduced in [10]. In this paper, we extend the algorithm, give
formal properties of this approach and present results of an extensive computational experiment.

2. Problem Statement

In the classification problem, the aim is to predict the unknown class label y ∈ Y = {1, . . . ,K}
(decision value) of an object x using the description of the object in terms of p (condition) attributes,
x = (x1, x2, . . . , xp) ∈ X , where X is the attribute space. Here, we assume without loss of generality
that value set of each attribute is a subset of R, so thatX ⊆ Rp. In the ordinal classification, it is assumed
that there is a meaningful order between classes which corresponds to the natural order between class
labels. We also assume the presence of monotonicity constraints in the data.

In order to formalize the concept of monotonicity, we define the dominance relation as a binary
relation on X in the following way: for any x,x′ ∈ X we say that x dominates x′, denoted x � x′, if on
every attribute, x has value not smaller than x′, xj ≥ x′j , for all j = 1, . . . , p. The dominance relation
is a partial pre-order on X , i.e., it is reflexive and transitive. Having defined the dominance relation, we
define the monotone function to be any function h : X → Y satisfying the monotonicity constraints:

x � x′ → h(x) ≥ h(x′), (1)

for any x,x′ ∈ X .
Now, the problem of ordinal classification with monotonicity constraints can be stated as a problem

of finding the monotone classification function h(x) that predicts accurately values of y. The accuracy
is measured in terms of the loss function L(y, h(x)), which is the penalty for predicting h(x) when the
actual value is y. The overall accuracy of function h(x) is defined as the expected loss (risk) according
to the probability distribution of data to be predicted:

R(h) = E[L(y, h(x))]. (2)

A Bayes classification function is a function h∗ minimizing the risk (2). We assume that h∗ is mono-
tone, which justifies restricting to the class of monotone classification functions. Since P (x, y) is
unknown, h∗ is unknown and the classification function is learned from a set of n training examples
{(x1, y1), . . . , (xn, yn)} (training set). In order to minimize the value of risk (2), the learning procedure
usually performs minimization of the empirical risk:

Remp(h) =
1
n

n∑
i=1

L(yi, h(xi)), (3)

which is the value of a loss function on the training set (i.e., training error). It is possible to use a variety
of loss functions for measuring accuracy; here, we assume the loss function to be the absolute error loss,

Labs(y, h(x)) = |y − h(x)|. (4)
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Notice that the proposed model shares the spirit of [31, 32] while being different from the previous rank
loss formulation found in [27].

Although in classification, a 0-1 loss is often considered (defined as L0−1(y, h(x)) = 1 if y 6= h(x),
0 otherwise), absolute error loss has the advantage over 0-1 loss of being sensitive to the difference be-
tween predicted and actual class labels, therefore, taking the order between classes into account. More-
over, absolute error loss has another very important property: its minimizer (Bayes classification func-
tion) does not depend on a particular encoding of class labels. Indeed, it is known [4], that for a given x,
the absolute error loss is minimized by the median of the conditional distribution P (y|x). The median
in the ordered set does not depend on the particular values of the elements in the set and takes only the
order into account.

Thus, although it seems that absolute error imposes a distance measure between the class labels
(equal to the difference between their indices), its minimization is invariant under arbitrary monotone
(order-preserving) transformation of the labels, so it is actually scale-free.

3. Decomposition into Binary Subproblems

One can solve the ordinal classification problem with loss function (4) by reducing the problem to K−1
binary problems. Let us define for a given class label y, K − 1 auxiliary class labels yk equal to 1 if
y ≥ k, otherwise −1, for each k = 2, . . . ,K, i.e. yk = sgn (y − k).1 Therefore, yk = 1 corresponds to
the class union “at least k”, while yk = −1 corresponds to the class union “at most k − 1”. We also say
that yk = 1 indicates a “positive” class, and yk = −1 indicates a “negative” class.

Suppose we have an access to the learning algorithm for binary classification problems, which, by
using auxiliary labels yk, can produce classifier h(x) ∈ {−1, 1} with small absolute error loss (or 0-1
loss, as they are equivalent in the binary case). Moreover, let us assume that each binary classifier has
the form hk(x) = sgn (fk(x)), where fk(x) is a real-valued function such that the magnitude |fk(x)|
corresponds to the confidence of prediction – the higher the magnitude, the more we are certain about
predicting the class sgn (fk(x)). Since fk(x) is an increasing function of the confidence of classification
to the class union {k, . . . ,K}, then it should hold:

fk+1(x) ≤ fk(x), (5)

because we are always more certain about classifying an object to the set {k, . . . ,K} than to its subset
{k + 1, . . . ,K}. If (5) holds, then the final classification procedure combining K − 1 binary classifiers
into a single K-class ordinal classifier h(x) is straightforward: we seek for the first k in the sequence of
k = 2, . . . ,K, where fk(x) changes the sign, and we classify x to the class labeled by this k. This is
equivalent to comprehensively writing h(x) = 1 +

∑K
k=2 1fk(x)≥0. 2

However, binary problems are solved independently, so we cannot guarantee that such constraints
hold in each case. We deal with violation of constraints (5) using the isotonic regression in the following
way. Fix x and notice that from (5) it follows that fk(x) must be a monotonically decreasing function of
k. If fk(x) is not monotonically decreasing, we search for another function gk(x) which is monotonically

1We define the sign function as sgn (x) = 1 if x ≥ 0, and −1 otherwise.
2We define the indicator function as 1A = 1 if predicate A holds, and 0 otherwise.
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decreasing and is as close as possible to fk(x) in the sense of squared error:

min
K∑
k=2

(fk(x)− gk(x))2.

This is the problem of isotonic regression [5, 38]. It can be thought of as “monotonizing” function fk(x)
which, possibly, violates constraints (5).

What is surprising, we do not even need to solve the isotonic regression. Let us consider the following
algorithm of combiningK−1 classifiers fk(x), k = 2, . . . ,K, to obtain a class label h(x) ∈ {1, . . . ,K}.
The algorithm calculates votes for each class and the class with the highest vote is chosen as the predic-
tion h(x). Let us denote the vote for class k as votek. The vote is calculated in the following way:

votek(x) =
k∑
l=2

fl(x). (6)

Note, that according to (6) vote1(x) = 0. The following theorem holds:

Theorem 3.1. Consider the classifier:

b(x) = 1 +
K∑
k=2

1gk(x)≥0,

where for each k = 2, . . . ,K, gk(x) is the isotonic regression of fk(x). Let votek =
∑k

l=2 fl(x) and
let us define the classifier h(x) = arg maxk votek (in case of ties, we choose the highest label). Then,
h(x) = b(x).

Proof:
Let us fix x; we will omit the dependency on x and write fk, gk, h, b, etc. Notice that h is such that for
any k > h it holds voteh > votek, while for any k ≤ h it holds voteh ≥ votek. To show that b = h, it
is enough to show that if k > b then voteb > votek, and if k ≤ b then voteb ≥ votek.

Let us define G+ = {k : gk ≥ 0} and similarly G− = {k : gk < 0}. Notice that G+ = {2, . . . , b}
and G− = {b+ 1, . . . ,K}. Moreover, let us also denote f(A) =

∑
k∈A fk. We will use Theorem 1.4.3

from [16], which states that for every k = 2, . . . ,K it holds:

f({2, . . . , k} ∩G−) < 0, f({k + 1, . . . ,K} ∩G+) ≥ 0.

Suppose k ≤ b. Then:

voteb − votek =
b∑

l=k+1

fl = f({2, . . . , b} ∩ {k + 1, . . . ,K}) = f({k + 1, . . . ,K} ∩G+) ≥ 0,

so that voteb ≥ votek. Similarly, if k > b then:

votek − voteb =
k∑

l=b+1

fl = f({2, . . . , k} ∩ {b+ 1, . . . ,K}) = f({2, . . . , k} ∩G−) < 0,

so that voteb > votek, which ends the proof. ut
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Thus, we end up with a simple procedure of combining binary classifiers by summing their votes for
each class union and predicting the class with the highest vote.

We would like to have the monotonicity property of the classifier created according to Theorem 3.1,
i.e., if x � x′ then h(x) ≥ h(x′). The following theorem gives sufficient conditions for monotonicity:

Theorem 3.2. For each k = 2, . . . ,K, let fk(x) be a monotone function, i.e.: x � x′ → fk(x) ≥
fk(x′). Then, the classifier h(x), obtained by choosing the class label with the highest vote (6), is a
monotone function.

Proof:
Choose any r, s ∈ {1, . . . ,K} such that r ≥ s and let x � x′. Then:

voter(x)− votes(x) =
r∑

k=s+1

fk(x) ≥
r∑

k=s+1

fk(x′) = voter(x′)− votes(x′). (7)

In other words, the difference in votes for any two classes r and s (where r ≥ s) is a monotone function,
according to definition (1).

Now, suppose the contrary, that h(x) < h(x′). From the definition of h(x), we have that for all k >
h(x), voteh(x)(x) > votek(x) (since h(x) is the highest label with the greatest vote). In particular, it
holds for k = h(x′), so voteh(x′)(x)−voteh(x)(x) < 0. But then, using (7), we also have voteh(x′)(x′)−
voteh(x)(x′) < 0, which means, that h(x′) is not the label with the highest vote for x′, a contradiction.

ut

Thus, if the binary functions fk(x) are all monotone, then so is h(x).

4. Data Monotonization

From the monotonicity assumption the dominance principle follows: for any two objects xi,xj from
the dataset, such that xi � xj , it should hold yi ≥ yj . However, it still may happen that in the dataset
there exists an object xi, dominating another object xj , while it holds yi < yj . This is possible since
the monotonicity constraints hold only in the probabilistic sense due to inherent uncertainty of the data
generation stochastic process. Such a situation violates the monotonicity assumption, so we shall call
objects xi and xj inconsistent. Notice that no monotone function can approximate accurately inconsistent
objects. Therefore, stochastic extension of DRSA [30, 9] is applied in order to monotonize the data.

Stochastic DRSA estimates the conditional probabilities P (y ≥ k|xi), or equivalently P (yk =
1|xi). This is done in a nonparametric way, using the multiple isotonic regression estimator [30]. Let
us consider the k-th binary problem. All the objects for which P (yk = 1|xi) ≥ α form the so called
lower approximation of class yk = 1, while all the objects for which P (yk = −1|xi) ≥ α – the lower
approximation of class yk = −1. The rest of the objects is discarded.

The idea of DRSA is to use in the k-th binary problem lower approximation of positive (yk = 1)
and negative (yk = −1) classes, instead of the original classes. This requires that inconsistent objects
are effectively relabeled. Indeed, suppose the label of object xi in the k-th binary problem is yik = −1.
Then, if such an object enters lower approximation of class yk = 1, then we can think of it as giving to
the object a new label y∗ik = 1.



Dembczyński, Kotłowski, Słowiński / Rule Ensembles for Ordinal Classification. . . 1007

It follows from the properties of isotonic regression that probability P (yk = 1|x) is a monotone func-
tion of x. Therefore, the dataset with new labels y∗k will be always consistent. From the computational
point of view, it can be shown that for α = 0.5 the new labels (assignments to the lower approximations)
are obtained from the solution of the following optimization problem:

minimize
n∑
i=1

1yik 6=y∗ik

subject to xi � xj → y∗ik ≥ y∗jk i, j = 1, . . . , n,
y∗ik ∈ {−1, 1} i = 1, . . . , n.

Although the variables are integer, the problem can be effectively solved as a simple linear program [30].
Note that this is the problem of reassignment – the objective is to reassign the smallest number of objects
in order to make the dataset monotone. That is why Stochastic DRSA is a monotonization process.

Thus, we enter the phase of rule induction with a consistent dataset.

5. Ensemble of Decision Rules

This section describes the general scheme for decision rule induction. It follows from the previous
sections that we can focus only on the binary classification case, since the multi-class case is reduced to
the sequence of K − 1 binary problems. Thus, assume that Y = {−1, 1}, where a “positive” class is
ranked higher (in the order) to a “negative” class.

Decision rule is a logical statement of the form: if [condition], then [decision]. Let Xj be the set
of all possible values for the j-th attribute. Condition part of the rule consists of elementary expressions
of the form xj ≥ sj or xj ≤ sj for some sj ∈ Xj . Let Φ denote the set of elementary expressions
constituting the condition part of the rule, and let Φ(x) be an indicator function equal to 1 if an object
x satisfies the condition part of the rule (we also say that a rule covers an object), otherwise Φ(x) = 0.
The decision is a single real value, denoted by α. Therefore, we define a decision rule as:

r(x) = αΦ(x). (8)

Notice that the decision rule takes only two values, r(x) ∈ {α, 0}, depending whether x satisfies the
condition or not. In this paper, we assume the classification function is a linear combination of M
decision rules:

f(x) = α0 +
M∑
m=1

rm(x), (9)

where α0 is a constant value, which can be interpreted as a default rule, covering the whole X . Object x
is classified to the class indicated by the sign of f(x). The combination (9) has very simple interpretation
as a voting procedure: rules with positive α vote for the positive class, while rules with negative α – for
the negative class. Object x is classified to the class with a higher vote (which is equivalent to the sign
of f(x)). Notice that in order to maintain monotonicity of f(x), it is necessary and sufficient that for the
m-th rule, αm is positive when all elementary expressions in Φm are of the form xj ≥ sj ; similarly, for
negative αm all the conditions must be of the form xj ≤ sj .



1008 Dembczyński, Kotłowski, Słowiński / Rule Ensembles for Ordinal Classification. . .

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

yf(x)

L
(y

,f
(x

))

0−1 loss
Sigmoid loss

Figure 1. Sigmoid approximation of the 0-1 loss.

Rule induction is performed by minimizing the 0-1 loss function (classification error) on the set of
n training examples (empirical risk). Notice that this loss function, is neither smooth nor differentiable.
Therefore, we approximate it with the sigmoid function (see Figure 1):

σ(x) =
1

1 + ex
. (10)

Thus, we minimize the following empirical risk:

Remp(f) =
n∑
i=1

σ(yif(xi)). (11)

However, finding a set of rules minimizing (11) is computationally hard, that is why we follow here
FSAM, i.e., the rules are added one by one, greedily minimizing (11). We start with the default rule
defined as:

α0 = arg min
α
Remp(α) = arg min

α

n∑
i=1

σ(αyi). (12)

The default rule is a real value but can be thought of as a rule covering the whole space X . In each
subsequent iteration, a new rule is added by taking into account previously generated rules. Let fm−1(x)
be a classification function after m − 1 iterations, consisting of first m − 1 rules and the default rule.
The m-th decision rule rm(x) = αmΦm(x) should be obtained from rm = arg minr Remp(fm−1 + r),
but this is still computationally hard, because we need to determine both the optimal Φm(x) and am
simultaneously. Therefore, we restrict our algorithm to the case, in which all rules have decisions of the
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Algorithm 1: Monotone Rule Ensemble (MORE).
input : set of n training examples {(y1,x1), . . . , (yn,xn)},

M – number of decision rules to be generated.
output: monotone rule ensemble {α0, r1(x), . . . , rM (x)}.
α0 = arg minα=±β

∑n
i=1 σ(αyi);

f0(x) = α0;
for m = 1 to M do

Φ+
m(x) = arg minΦ L+

m(Φ) ;
Φ−m(x) = arg minΦ L−m(Φ) ;
if L+

m(Φ+
m) ≤ L−m(Φ−m) then

Φm = Φ+(m);αm = β;
else

Φm = Φ−(m);αm = −β;
end
rm(x) = αmΦm(x);
fm(x) = fm−1(x) + rm(x);

end

same magnitude, equal to β, i.e., we only allow αm = ±β, where β is a parameter of the problem. With
such a restriction, the optimal rule in the m-th iteration is defined as:

Φm(x) = arg min
Φ,α=±β

n∑
i=1

σ[yi(fm−1(xi)± αΦ(x))], (13)

and it requires calculating the values of sigmoid loss only at three points: fm−1(xi), fm−1(xi) + β
and fm−1(xi) − β, for every object xi. In each subsequent iteration, problem (13) can be solved via a
heuristic procedure for rule generation, described below.

Let us define:

L+
m(Φ) =

n∑
i=1

σ[yi(fm−1(xi) + βΦ(x))], L−m(Φ) =
n∑
i=1

σ[yi(fm−1(xi)− βΦ(x))].

Then, using (13), we can comprehensively write Φm(x) = arg min
{

minΦ{L+
m(Φ)},minΦ{L−m(Φ)}

}
.

The general idea of the algorithm for finding Φm is the following: first we search for Φ+
m by min-

imizing L+
m(Φ), which corresponds to searching the best rule voting for the positive class. Next, we

search for Φ−m by minimizing L−m(Φ), which gives us the best rule voting for the negative class. Then,
both rules are compared and the one with lower empirical risk is chosen, while another one is discarded.

The procedures for finding both rules Φ+
m and Φ−m are analogous, therefore, they are presented si-

multaneously:

• At the beginning, Φ±m is empty (no elementary condition is specified), i.e., Φ±m(x) ≡ 1.

• In each step, an elementary condition xj ≥ sj (for a rule voting for the positive class) or xj ≤
sj (for a rule voting for the negative class) is added to Φ±m that minimizes L±m(Φ). Such ex-
pression is searched by consecutive testing of elementary conditions, attribute by attribute. Let
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x
(1)
j , x

(2)
j , . . . , x

(N)
j be a sequence of ordered values of the j-th attribute, such that x(i−1)

j ≥ x
(i)
j ,

for i = 2, . . . , n. Each elementary condition of the form xj ≥ sj (for rules voting for the positive

class) or xj ≤ sj (for rules voting for the negative class) for each sj =
x
(i−1)
j +x

(i)
j

2 is tested.

• The previous step is repeated until L±m(Φ) cannot be decreased.

The above procedure is very fast and proved to be efficient in computational experiments. The attributes
can be sorted once before generating any rule. Notice that the procedure resembles the way the decision
trees are generated. Here, however, we look for only one path from the root to the leaf instead of the
whole decision tree. Let us underline that a minimal value of L±m(Φ) is a natural stop criterion, what
differentiates this procedure from those used for generation of decision trees.

The whole procedure is presented as Algorithm 1.

6. Analysis of the Step Length

We now analyze the behavior of the rule induction algorithm depending on the value of the parameter β,
i.e., the magnitude of the decision for each rule. Notice that this parameter corresponds to the scale of
the loss function, since:

f(x) = α0 +
M∑
m=1

αmΦm(x) = β

(
±1 +

M∑
m=1

±Φm(x)

)
= βf̃(x),

where f̃(x) = ±1 +
∑M

m=1±Φm(x). Then:

σ(yf(x)) =
1

1 + exp(βyf̃(x))
.

Thus, small values of β cause the loss function to broaden and the changes on the slope of the function
are smaller (the loss becomes similar to the linear function). On the other hand, large values of β cause
the sigmoid loss to become similar to the 0-1 loss. In general, large values of β correspond to a more
complex model [33], because we are able to decrease the error significantly in a smaller number of steps.

For a better insight into the problem, we state the following general theorem:

Theorem 6.1. Assume αm is fixed and equal to ±β. Minimization of (13) for any twice differentiable
loss function L(yf(x)) and for any β is equivalent to the minimization of:

L(Φ) =
∑
i∈R−

wmi +
1
2

∑
Φ(xi)=0

(wmi − βvmi ) , (14)

where:

R− = {i : αmyi < 0}, (15)

wmi = − ∂

∂u
L(u)

∣∣∣∣
u=yifm−1(xi)

, (16)

vmi =
1
2
∂2

∂u2
L(u)

∣∣∣∣
u=yifm−1(xi)+γiαmyi

, (17)
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for some γi ∈ [0, 1].

Proof:
From Taylor expansion it follows that for a twice differentiable loss function, we have:

L(u+ z) = L(u) + z
∂

∂u
L(u) +

z2

2
∂2

∂u2
L(u+ γz)

for some γ ∈ [0, 1]. By denoting Li = L(yi(fm−1(xi))), using (16)-(17) and substituting u =
yifm−1(xi) and z = αmyi, we have for every xi such that Φ(xi) = 1:

L(yi(fm−1(xi) + αm)) = Li − αmyiwmi + β2vmi .

Thus, the empirical risk becomes:

L(Φ) =
∑

Φ(x)i=1

(
Li − αmyiwmi + β2vmi

)
+

∑
Φ(x)i=0

Li.

The term
∑n

i=1 Li is constant, so it can be dropped from the optimization process. Thus, we equivalently
minimize:

L(Φ) =
∑

Φ(x)i=1

−αmyiwmi + β2vmi =
∑
i∈R−

βwmi −
∑
i∈R+

βwmi +
∑

Φ(x)i=1

β2vmi ,

where R+ = {i : αmyi > 0} and R− is defined by (15). We now use the fact that
∑

i∈R+
=∑n

i=1−
∑

i∈R− −
∑

Φ(xi)=0 and that
∑

Φ(xi)=1 =
∑n

i=1−
∑

Φ(xi)=0 to obtain:

L(Φ) =
n∑
i=1

(β2vmi − βwmi ) + 2β
∑
i∈R−

wmi + β
∑

Φ(xi)=0

(wmi − βvmi ),

and by dropping the first constant term and dividing by constant value 2β, we prove the theorem. ut

Thus, β establishes a trade-off between misclassified and unclassified examples. Values vmi are
always positive, because the loss function is decreasing. Sigmoid loss is convex for yf(x) > 0, and
concave for yf(x) < 0, therefore, as β increases, uncovered examples satisfying yifm−1(xi) > 0
(“correctly classified”) are penalized less, while the penalty for uncovered “misclassified” examples
(yifm−1(xi) < 0) increases. This leads to the following conclusion: although the rule covers only a part
of the examples, with respect to uncovered examples it still tries to make a small error; remark that the
weights of the uncovered examples depend on the curvature of the function (second derivative) rather
than on the slope (first derivative).

7. Experimental Results

We found 12 datasets, for which it is known that monotonicity constraints should hold. We did not search
for monotonicity directions by calculating any particular statistics, rather we obtained the directions using
the domain knowledge about the problem. Four datasets, which are the results of surveys, were taken
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Table 1. Description of datasets used in experiments.

DATA SET #ATTRIBUTES #OBJECTS #CLASSES

ESL 4 488 8
SWD 10 1000 4
LEV 4 1000 5
ERA 4 1000 8
HOUSING 8 506 4
WINDSOR 11 546 4
DENBOSCH 9 119 2
WISCONSIN 9 699 2
LJUBLJANA 8 286 2
CAR 6 1728 4
CPU 6 209 4
BALANCE 4 625 3

from [2, 3]: employee selection (ESL), social workers decisions (SWD), lecturers evaluation (LEV) and
employee rejection/acceptance (ERA). Three datasets are related to the problem of house pricing: Boston
housing from the UCI repository [1], Windsor housing [29] and DenBosch housing [8]. From those three
house pricing datasets only DenBosch dataset contained a discrete output variable (price discretized into
two levels). We decided to discretize the price variable in (Boston) Housing and Windsor into four levels
containing equal numbers of objects (i.e., quartiles of the price distribution), similarly as in [17].

There are also five other datasets taken from the UCI repository: Wisconsin breast cancer, Ljubljana
breast cancer, Car evaluation, CPU performance (for which the class attribute was also discretized into
four levels) and Balance scale.

For all datasets, objects with missing values were removed, since not every method is able to deal
with missing values (rule ensembles have a very natural way of handling the missing values, which
is included in our implementation, however, its description is beyond the scope of this paper). The
quantitative characteristics of the datasets are shown in Table 1.

Absolute error loss was the measure of accuracy. For each dataset we tested three regular classifiers
which do not take monotonicity constraints into account: support vector machines (SVM) with linear
kernel [44], j48 decision trees [37] and nearest neighbors [15] (kNN). We used their implementations
from Weka package [46]. Unfortunately, both SVM and j48 are designed to minimize 0-1 error and do
not handle the order between class labels; using it directly on multi-class problems led to very poor results
in terms of the mean absolute error. Therefore, we decided to improve its performance and use it in the
ordinal setting by combining it with a simple approach to ordinal classification proposed in [18]. Since
kNN estimates the conditional probabilities, we simply used the median of the distribution (minimizer of
the absolute error). For SVM and j48, typical parameters from Weka were chosen; for kNN we increased
the number of neighbors (k) to 5 in order to better estimate the conditional distribution.

For MORE we have chosen the number of rules M = 50 and the step length β = 0.5. Those values
were not optimized on the described datasets in any way. For each dataset and for each algorithm, 10-fold
cross validation was used and repeated 10 times to decrease the variance of the results. The measured
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error rate is the mean absolute error, which is the value of the absolute error loss on the testing set.
We calculated the average error along with the standard deviation (to avoid underestimation, standard
deviation was calculated by taking into account the dependence between the subsequent testing samples
in the repeated cross-validation, as described in [34]).
Table 2. Mean absolute error ± standard error. For each dataset, the best method and all methods within one
standard error below the best are marked in bold.

DATASET J48 SVM KNN MORE

DENBOSCH 0.172 ±0.031 0.202 ±0.034 0.199 ±0.034 0.133 ±0.029

WISCONSIN 0.046 ±0.009 0.03 ±0.007 0.027 ±0.007 0.031 ±0.006

ESL 0.369 ±0.021 0.355 ±0.022 0.345 ±0.023 0.344 ±0.022

SWD 0.442 ±0.015 0.435 ±0.015 0.433 ±0.016 0.441 ±0.016

LEV 0.415 ±0.017 0.444 ±0.015 0.398 ±0.017 0.413 ±0.015

ERA 1.217 ±0.031 1.271 ±0.028 1.278 ±0.031 1.269 ±0.029

HOUSING 0.332 ±0.022 0.314 ±0.024 0.326 ±0.023 0.288 ±0.022

CPU 0.1 ±0.018 0.371 ±0.029 0.142 ±0.025 0.065 ±0.016

BALANCE 0.271 ±0.021 0.137 ±0.017 0.169 ±0.015 0.126 ±0.014

LJUBLJANA 0.259 ±0.02 0.299 ±0.023 0.249 ±0.016 0.251 ±0.021

WINDSOR 0.565 ±0.024 0.491 ±0.025 0.604 ±0.025 0.538 ±0.024

CAR 0.09 ±0.007 0.078 ±0.007 0.086 ±0.004 0.061 ±0.005

The results are shown in Table 2. For each dataset, the best method, and all methods within one
standard error below the best, are marked in bold. Judging by the number of times MORE is among the
best classifiers, we can conclude that an improvement in accuracy was obtained when using monotone
rule ensembles over the regular classifiers. Notice, however, that improvement in prediction ability is
not the only advantage: the model build consistently with the domain knowledge is more likely to be
accepted and trusted by the domain experts, and, moreover, the decision rules entering the ensemble
represent interesting patterns which have straightforward interpretation. For example, in the case of the
“housing” dataset, we got the rules like:

if nitric oxides concentration ≥ 0.66
and % lower status of the population ≥ 13.0
and average number of rooms per dwelling ≤ 7.35
and crime rate ≥ 2.15

=⇒ price is at most “low”

8. Conclusions

We introduced a novel rule induction algorithm, called MORE, for ordinal classification problem in the
presence of monotonicity constraints. The algorithm uses forward stagewise additive modeling scheme
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for generating an ensemble of decision rules for binary problems. We showed how to solve the ordinal
classification problem with absolute error by solving binary subproblems with zero-one error. Due to
specific nature of the problem, a syntax typical to monotone rules was used to find the statistically best
ensemble. Moreover, we showed how to use stochastic DRSA to monotonize the dataset before the
rules are generated. The main advantages of our algorithm is its comprehensibility (decision rules are
probably the easiest model to interpret) and consistency with the domain knowledge. Moreover, the
experimental results show that incorporating the domain knowledge about monotonicity in the classifier
can significantly improve the prediction accuracy.
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[25] Greco, S., Matarazzo, B., Słowiński, R., Stefanowski, J.: An Algorithm for Induction of Decision Rules
Consistent with the Dominance Principle, in: Rough Sets and Current Trends in Computing (W. Ziarko,
Y. Yao, Eds.), vol. 2005 of Lecture Notes in Artificial Intelligence, Springer, Berlin, 2001, 304–313.
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[30] Kotłowski, W., Dembczyński, K., Greco, S., Słowiński, R.: Stochastic Dominance-based Rough Set Model
for Ordinal Classification, Information Sciences, 178(21), 2008, 4019–4037.

[31] Lin, H.-T., Li, L.: Large-Margin Thresholded Ensembles for Ordinal Regression: Theory and Practice, in:
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