Sequential Normalized Maximum Likelihood in Log-loss Prediction

Wojciech Kotłowski¹ Peter Grünwald²

¹Institute of Computing Science, Poznań University of Technology, Poland

²Centrum Wiskunde & Informatica, Amsterdam, Netherlands

ITW 2012, Lausanne

Sequence of outcomes $x_1, x_2, \ldots \in \mathcal{X}$, revealed one by one.

- Sequence of outcomes $x_1, x_2, \ldots \in \mathcal{X}$, revealed one by one.
- In each iteration, after observing xⁿ = x₁, x₂,..., x_n, a forecaster predicts x_{n+1} by assigning a distribution P(·|xⁿ).

- Sequence of outcomes $x_1, x_2, \ldots \in \mathcal{X}$, revealed one by one.
- In each iteration, after observing xⁿ = x₁, x₂,..., x_n, a forecaster predicts x_{n+1} by assigning a distribution P(·|xⁿ).
- After x_{n+1} is revealed, the forecaster incurs logarithmic loss $-\log P(x_{n+1}|x^n)$.

- Sequence of outcomes $x_1, x_2, \ldots \in \mathcal{X}$, revealed one by one.
- In each iteration, after observing xⁿ = x₁, x₂,..., x_n, a forecaster predicts x_{n+1} by assigning a distribution P(·|xⁿ).
- After x_{n+1} is revealed, the forecaster incurs logarithmic loss $-\log P(x_{n+1}|x^n)$.
- $\begin{array}{l} \blacksquare \label{eq:product} \operatorname{\mathsf{Regret}} \text{ of the forecaster relative to a set of distributions} \\ \mathcal{P} = \{P_{\theta} | \theta \in \Theta\} \text{:} \\ \mathcal{R}(P, x^n) = \sum_{i=1}^n -\log P(x_i | x^{i-1}) \inf_{\theta \in \Theta} \sum_{i=1}^n -\log P_{\theta}(x_i | x^{i-1}). \end{array}$

- Sequence of outcomes $x_1, x_2, \ldots \in \mathcal{X}$, revealed one by one.
- In each iteration, after observing xⁿ = x₁, x₂,..., x_n, a forecaster predicts x_{n+1} by assigning a distribution P(·|xⁿ).
- After x_{n+1} is revealed, the forecaster incurs logarithmic loss $-\log P(x_{n+1}|x^n)$.
- $\begin{array}{l} \hline \quad \text{Regret of the forecaster relative to a set of distributions} \\ \mathcal{P} = \{P_{\theta} | \theta \in \Theta\}: \\ \mathcal{R}(P,x^n) = \sum_{i=1}^n -\log P(x_i | x^{i-1}) \inf_{\theta \in \Theta} \sum_{i=1}^n -\log P_{\theta}(x_i | x^{i-1}). \end{array} \end{array}$

Goal: minimize the worst-case regret.

- Sequence of outcomes $x_1, x_2, \ldots \in \mathcal{X}$, revealed one by one.
- In each iteration, after observing xⁿ = x₁, x₂,..., x_n, a forecaster predicts x_{n+1} by assigning a distribution P(·|xⁿ).
- After x_{n+1} is revealed, the forecaster incurs logarithmic loss $-\log P(x_{n+1}|x^n)$.
- Regret of the forecaster relative to a set of distributions $\mathcal{P} = \{P_{\theta} | \theta \in \Theta\}$: $\mathcal{R}(P, x^n) = \sum_{i=1}^n -\log P(x_i | x^{i-1}) - \inf_{\theta \in \Theta} \sum_{i=1}^n -\log P_{\theta}(x_i | x^{i-1}).$

Goal: minimize the worst-case regret.

■ We choose \mathcal{P} to be an exponential family of distributions (Gaussian, Bernoulli, Poisson, binomial, Gamma, etc.)

- Sequence of outcomes $x_1, x_2, \ldots \in \mathcal{X}$, revealed one by one.
- In each iteration, after observing xⁿ = x₁, x₂,..., x_n, a forecaster predicts x_{n+1} by assigning a distribution P(·|xⁿ).
- After x_{n+1} is revealed, the forecaster incurs logarithmic loss $-\log P(x_{n+1}|x^n)$.
- Regret of the forecaster relative to a set of distributions $\mathcal{P} = \{P_{\theta} | \theta \in \Theta\}$: $\mathcal{R}(P, x^n) = \sum_{i=1}^n -\log P(x_i | x^{i-1}) - \inf_{\theta \in \Theta} \sum_{i=1}^n -\log P_{\theta}(x_i | x^{i-1}).$

Goal: minimize the worst-case regret.

- We choose \mathcal{P} to be an exponential family of distributions (Gaussian, Bernoulli, Poisson, binomial, Gamma, etc.)
- No assumptions on the process generating the outcomes!

The minimax algorithm

Normalized maximum likelihood (NML) achieves the minimal worst-case regret:

$$P_{\text{NML}} = \arg\min_{P} \max_{x^n} \mathcal{R}(P, x^n) = \frac{k}{2} \log n + O(1)$$

🙂 Optimal

- 😣 Hard to calculate, often impractical
- 8 Requires knowledge of time horizon

Maximum likelihood (ML) strategy

Predicts with the best distribution on past outcomes: $P(x_{n+1}|x^n) = P_{\hat{\theta}_n}(x_{n+1}),$

where $\hat{\theta}_n = \arg \min_{\theta} \sum_{i=1}^n -\log P_{\theta}(x_i).$

⊖ Simple to calculate, often used in practice

- $\stackrel{\scriptstyle{\scriptstyle{\bullet}}}{\sim}$ Suboptimal: the constant in $O(\log n)$ much larger than $\frac{k}{2}$
- 8 Requires bounding the data to achieve logarithmic regret

Include the current (to be predicted) outcome into calculation of the maximum likelihood

Include the current (to be predicted) outcome into calculation of the maximum likelihood

Sequential normalized maximum likelihood (SNML):

$$P(x_{n+1}|x^n) \propto P_{\hat{\theta}_{n+1}}(x^{n+1}),$$
 where $\hat{\theta}_{n+1} = \arg\min_{\theta}\sum_{i=1}^{n+1} -\log P_{\theta}(x_i)$

Include the current (to be predicted) outcome into calculation of the maximum likelihood

Sequential normalized maximum likelihood (SNML):

$$P(x_{n+1}|x^n) \propto P_{\hat{\theta}_{n+1}}(x^{n+1}),$$

where $\hat{\theta}_{n+1} = \arg\min_{\theta} \sum_{i=1}^{n+1} -\log P_{\theta}(x_i)$

- Achieves asymptotically optimal regret $\frac{k}{2} \log n + O(1)$.
- SNML coincides with NML given that the current iteration is the last iteration.
- Relationship to Bayesian strategy with Jeffreys' prior.