
Ensembles of Decision Rules

Jerzy BŁASZCZYŃSKI ∗, Krzysztof DEMBCZYŃSKI †,
Wojciech KOTŁOWSKI ‡, Roman SŁOWIŃSKI § ¶MARCIN SZELĄG ‖

Abstract. In most approaches to ensemble methods, base classifiers are decision
trees or decision stumps. In this paper, we consider an algorithm that generates an
ensemble of decision rules that are simple classifiers in the form of logical expression:
if [conditions], then [decision]. Single decision rule indicates only one of the deci-
sion classes. If an object satisfies conditions of the rule, then it is assigned to that
class. Otherwise the object remains unassigned. Decision rules were common in the
early machine learning approaches. The most popular decision rule induction algo-
rithms were based on sequential covering procedure. The algorithm presented here
follows a different approach to decision rule generation. It treats a single rule as a
subsidiary, base classifier in the ensemble. First experimental results have shown that
the presented algorithm is competitive with other methods. Additionally, generated
decision rules are easy in interpretation. which is not the case of other types of base
classifiers.

Keywords:
machine learing, decision rules, sequential covering, ensembles methods

1 Introduction

Ensemble methods became a very popular approach to classification problems. These
methods consist in forming an ensemble of classifiers that are simple learning and
classification procedures often referred to as base (or weak) learners. The ensemble
members (i.e., base learners or classifiers) are applied to a classification task and

∗Institute of Computing Science, Poznań University of Technology, 60-965 Poznań, Poland
†Institute of Computing Science, Poznań University of Technology, 60-965 Poznań, Poland
‡Institute of Computing Science, Poznań University of Technology, 60-965 Poznań, Poland
§Institute of Computing Science, Poznań University of Technology, 60-965 Poznań, Poland
¶Institute for Systems Research, Polish Academy of Sciences, 01-447 Warsaw, Poland
‖Institute of Computing Science, Poznań University of Technology, 60-965 Poznań, Poland



their individual outputs are then aggregated to one output of the whole ensemble.
The aggregation is computed as a linear combination of outputs. The most popular
methods that are used as base learners are decision trees, for example C4.5 [18] or
CART [6], and decision stumps (that are one level decision trees). There are several
approaches to construction of the ensemble, the most popular are bagging [4] and
boosting [19, 9]. These algorithms have proven to be effective in reducing classification
error of a base learner. In other words, a committee of low performance learners
creates a powerful and quite simple solution for the classification problem. That is
why these methods are often treated as off-the-shelf methods-of-choice.
In this paper, we consider an algorithm that generates an ensemble of decision

rules that are simple classifiers in the form of logical expression: if [conditions], then
[decision]. Single decision rule indicates only one of the decision classes. If an object
satisfies conditions of the rule, then it is assigned to recommended class. Otherwise the
object remains unassigned. Decision rules were common in the early machine learning
approaches [1, 7]. The most popular decision rule induction algorithms were based
on a sequential covering procedure. This procedure builds rules that cover objects
coming from one given decision class only. While buiding these rules, the positive and
negative examples are distinguished. The positive examples are those to be covered
by the rules. The negative examples are all the others. All objects already covered
by rules generated so far are deleted from the set of positive examples. Decision rule
models are widely considered in the rough set approaches to knowledge discovery
[17, 15, 20, 21]. They are also considered in Logical Analysis of Data [3] where they
are called patterns.
The algorithm described here follows a different approach to decision rule gen-

eration. It treats a single rule as a subsidiary, base classifier in the ensemble. As
it was mentioned above, it is a specific base classifier that indicates only one of the
decision classes. In our approach, the ensemble of decision rules is constructed us-
ing a variation of forward stagewise additive modeling [11]. Similar technique is also
used by Friedman and Popescu [14]. However, one can observe substantial differ-
ences between their algorithm and the one presented in this paper. In Friedman and
Popescu’s algorithm, the decision trees are used as base classifiers, and then each
node (interior and terminal) of each resulting tree produces a rule. It is setup by the
conjunction of conditions associated with all of the edges on the path from the root
to that node. Rule ensemble is then fitted by gradient directed regularization [13].
The algorithm presented here generates rules directly. Single rule is created in each
iteration of forward stagewise additive modeling. The rules are then used in a clas-
sification procedure by linear combination of their outputs. This simpler way is as
efficient as other main machine learning methods. Usually, it is enough to generate
around 50 rules to achieve satisfying accuracy and, moreover, the rules are easy in
interpretation. Our algorithm is also similar to SLIPPER introduced by Cohen and
Singer [8]. The difference is that SLIPPER uses AdaBoost [19] schema to produce
an ensemble of decision rules. Let us notice that AdaBoost is a specific case of the
forward stagewise additive modeling, so the latter is a more general approach [11].
The paper is organized as follows. In Section 2, the problem is formulated. Sec-

tion 3 presents the algorithm for construction of an ensembles of decision rules. Sec-



tion 4 contains experimental results and comparison to other methods. The last
section concludes the paper and outlines further research directions.

2 Problem Statement

Let us define the classification problem in a similar way as in [12, 14]. The aim is
to predict the unknown value of an attribute y (sometimes called output, response
variable or decision attribute) of an object using the known joint values of other
attributes (sometimes called predictors, condition attributes or independent variables)
x = (x1, x2, . . . , xn). We consider binary classification problem, and we assume that
y ∈ {−1, 1}. In other words, all objects for which y = −1 constitute decision class
Cl−1, and all objects for which y = 1 constitute decision class Cl1. The goal of a
learning task is to find a function F (x) using a set of training examples {yi,xi}N

1 that
classifies accurately objects to these classes. The optimal classification procedure is
given by:

F ∗(x) = arg min
F (x)

EyxL(y, F (x))

where the expected value Eyx is over joint distribution of all variables (y,x) for the
data to be predicted. L(y, F (x)) is a loss or cost for predicting F (x) when the actual
value is y. The typical loss in classification tasks is:

L(y, F (x)) =
{

0 y = F (x),
1 y 6= F (x). (1)

The learning procedure tries to construct F (x) to be the best possible approximation
of F ∗(x).

3 Ensembles of Decision Rules

Forward stagewise additive modeling [11] is a general schema of algorithm that creates
an ensemble. The variation of this schema used by Friedman and Popescu [14] is
presented as Algorithm 1. In this procedure, L(yi, F (x)) is a loss function, fm(x,p)
is the base learner characterized by a set of parameters p and M is a number of
base learners to be generated. Sm(η) represents a different subsample of size η ≤ N
randomly drawn with or without replacement from the original training data. ν is so
called “shrinkage” parameter, usually 0 ≤ ν ≤ 1. Values of ν determine the degree to
which previously generated base learners fk(x,p), k = 1, . . . ,m, affect the generation
of the successive one in the sequence, i.e., fm+1(x,p).
Classification procedure is performed according to:

F (x) = sign(a0 +
M∑

m=1

amfm(x,p)). (2)



Algorithm 1: Ensemble of base learners [14]

input : set of training examples {yi,xi}N
1 ,

M – number of base learners to be generated.
output: ensemble of base learners {fm(x)}M

1 .
F0(x) := arg minα∈<

∑N
i=1 L(yi, α);

for m = 1 to M do
pm := arg minp

∑
i∈Sm(η) L(yi, Fm−1(xi) + f(xi,p));

fm(x) = f(x,pm);
Fm(x) = Fm−1(x) + ν · fm(x);

end
ensemble = {fm(x)}M

1 ;

In other words, it is a linear classifier in a very high dimensional space of derived
variables that are highly nonlinear functions of the original predictor variables x.
These functions are generated by base learners, for example, they are decision trees.
Parameters {am}M

0 can be obtained in many ways. For example, they can be set to
fixed values (for example, a0=0 and {am = 1/M}M

1 ), computed by some optimization
techniques (see, for example, [13]), fitted in cross-validation experiments or estimated
in a process of constructing the ensemble (like in AdaBoost [19]).
According to Friedman and Popescu [14], several ensemble methods represent spe-

cial cases of Algorithm 1. Bagging method [4], for example, may be represented
by this algorithm and classification procedure (2) by setting ν = 0, using resam-
pling with replacement and η is given by a user, a0 = 0 and {am = 1/M}M

1 . Ran-
dom Forest [5] is a specific variant of bagging, where the base learner is constructed
by randomized decision tree induction algorithm. AdaBoost uses exponential loss,
L(y, F (x)) = exp(−y ·F (x)), for y ∈ {−1, 1}, and corresponds to Algorithm 1 by set-
ting ν = 1 and Sm(η) to be a whole set of training examples. In AdaBoost, as it was
mentioned above, {am}M

0 are tuned during the process of constructing an ensemble.
Let us consider a base classifier that is a decision rule, the definition of which

is as follows. Decision rule is a logical statement: if [conditions], then [decision].
Condition part of a decision rule is represented by a complex Φ = φ∝1 ∧φ∝2 ∧ . . .∧φ∝t ,
where φ∝ is a selector and t is a number of selectors in the complex, also referred to as
a length of the rule. Selector φ∝ is defined as xj ∝ vj , where vj is a single value or a
subset of values from the domain of the j-th attribute; and ∝ is specified as =,∈,≥ or
≤, depending on the characteristic of the j-th attribute. In other words, complex Φ is
a set of selectors that allows to select a subset of objects. Objects covered by complex
Φ are denoted by cov(Φ) and referred to as cover of a complex Φ. Decision part of a
rule indicates one of the decision classes and is denoted by d(x) = −1 or d(x) = 1.
Let as denote a rule by r(x, c), where c represents both complex and decision of the
rule, c = (Φ, d(x)). Then, the output of the rule may be defined as follows:

r(x, c) =
{

d(x) x ∈ cov(Φ),
0 x 6∈ cov(Φ). (3)



Algorithm 2: Ensemble of decision rules

input : set of training examples {yi,xi}N
1 ,

M – number of decision rules to be generated.
output: ensemble of decision rules {rm(x)}M

1 .
F0(x) := arg minα∈{−1,1}

∑N
i=1 L(yi, α); or F0(x) := 0; //default rule

F0(x) := ν · F0(x);
for m = 1 to M do

c := arg minc

∑
i∈Sm(η) L(yi, Fm−1(xi) + r(xi, c));

rm(x) = r(x, c);
Fm(x) = Fm−1(x) + ν · rm(x);

end
ensemble = {rm(x)}M

1 ;

The loss of a single decision rule takes a specific form:

L(y, r(x, c)) =

 0 y · r(x, c) = 1,
1 y · r(x, c) = −1,
l r(x, c) = 0,

(4)

where 0 ≥ l ≥ 1 is a penalty for specificity of the rule. This means, the lower the
value of l, the smaller the number of objects covered by the rule from the opposite
class.
The ensemble algorithm creating decision rules (presented as Algorithm 2) is an

extension of Algorithm 1 suited for this task. In the algorithm, in each consecutive
iteration m we augment the function Fm−1(x) by one additional rule rm(x) weighted
by shrinkage parameter ν. This gives a linear combination of rules Fm(x). The
additional rule rm(x) = r(x, c) is chosen to minimize

∑
i∈Sm(η) L(yi, Fm−1(xi) +

r(xi, c)). F0(x) corresponds to the default rule in the ensemble generation process.
It is set to F0(x) := arg minα∈{−1,1}

∑N
i L(yi, α) (i.e., it corresponds to the default

rule indicating the majority class) or there is no default rule (then F0(x) := 0). The
default rule is taken with the same “shrinkage” parameter ν as all other rules.
The loss of the linear combination of rules Fm(x) takes the following form in the

simplest case:

L(y, Fm(x)) =

 0 y · Fm(x) > 0,
1 y · Fm(x) < 0,
l y · Fm(x) = 0.

(5)

Nevertheless, the interpretation of l in the above definition is not as easy as in the case
of a single rule. It depends on all other parameters used in Algorithm 2. L(y, Fm(x))
takes value equal to l in two cases. The first case is, when F0(x) is set to zero (there
is no default rule) and no rule generated in m iterations covers object x. The second
case is when rules covering object x indicate equally two classes Cl−1 and Cl1. The
interpretation of l is similar to the case of a single rule, when F0(x) is set to zero
and ν = 1/M , for example. Note that ν = 1/M means that each next rule is more
important than all previously generated.



Another possible formulation for the loss function are as follows (for a wide dis-
cussion on different formulas for loss function see [11]):

L(y, Fm(x)) =
1

1− β · exp(y · Fm(x))
, (6)

L(y, Fm(x)) =
{

0 y · Fm(x) ≥ 1,
1− y · Fm(x) y · Fm(x) < 1,

(7)

L(y, Fm(x)) = exp(β · y · Fm(x)), (8)

L(y, Fm(x)) = log(1 + exp(β · y · Fm(x)). (9)

Algorithm 2 is characterized by parameters that make it flexible. For example,
one can parameterize it to obtain a procedure similar to sequential covering. This
procedure in each phase builds rules that cover objects coming from one given decision
class only. In each phase, the positive and negative examples are distinguished. The
positive examples are those to be covered by the rules. The negative examples are all
others. In the given phase, all objects already covered by rules generated so far are
deleted from the set of positive examples. Usually, the output of the procedure is a
decision list (i.e., ordered list of rules from the most important to the less important
one). The classification is performed in such a way that it is sequentially checked
whether x is covered by rules from the list. If x is covered by the first rule, then the
class indicated by this rule is the output of the classification. If not, then the next
rule from the list is checked, until the procedure arrives to the default rule indicating
the majority class. To parametrize the Algorithm 2 to obtain sequential covering
procedure one should choose a specific heuristic algorithm for creating single rule, set
F0(x) = 0, and ν = 2M−m. Such value of ν means that the rule first generated is
more important than all rules generated later. To conduct classification consistent
with the decision list, it is performed according to (2) by setting a0 to indicate the
majority class and am = 2M−m+1.
To perform our experiments, we have used simple greedy heuristic to construct a

single decision rule. It consists in searching for c such that

Lm =
∑

i∈Sm(η)

L(yi, Fm−1(xi) + r(xi, c))

is minimal. At the beginning, the complex contains an universal selector (i.e., selector
that covers all objects). In the next step, a new selector is added to the complex and
the decision of the rule is set. The selector and the decision are chosen to give the
minimal value of Lm. This step is repeated until Lm is minimized. Additionally,
another stop criterion can be introduced. It may be the length of the rule.
As the results show in the next section, it is enough to generate around fifty rules.

Such a number of rules gives satisfying classification accuracy and allows to interpret
them. Let us notice, however, that the whole procedure may generate the same (or
very similar) rule several times. For the interpretation purposes, it will be necessary
to find a method that cleans and compresses the set of rules. Construction of such a
method is included in our future plans.



4 Experimental Results

We designed an experiment to compare performance of the ensemble of decision
rules to other classifiers. To conduct this experiment we implemented presented here
method using Weka package [22]. Other methods that were used in experiment were
also implemented in Weka and they are included in the standard Weka package. We
used in the experiment a wide range of methods starting from regular classifiers: naive
Bayes, logistic regression (Logistic), normalized Gaussian radial basis function net-
work (RBF Network), sequential minimal optimization algorithm for training linear
support vector machines (SMO), instance based learning (IBk), C4.5 trees (J48) and
PART rules. We also compared our algorithm to classifiers trained in boosting and
bagging. Specifically, we used AdaBoost with decision stumps, reduced-error pruning
trees (REPTrees), C4.5 (J48) and PART rules. The same classifiers exempt for deci-
sion stumps were used in bagging. In Logistic Boost we used two classifiers: decision
stumps and REPTrees. Boosting and bagging were always set to perform fifty itera-
tions. Another method to compare was random forest, also used with fifty iterations.
Other settings were kept to default values suggested by Weka.
We set the paremeters of the ensemble of decision rules as follows. We have decided

to generate default rule indicating the majority class. The function (6) with β = 1
was used as the loss functions. The “shrinkage” parameter was set to ν = 0.5. Each
rule was generated from the sample drawn with replacement (bootstrap sample) for
η = N . We have decided to generate fifty rules. The classification is performed
according to (2), where a0 = F0(x) and {am}M

1 are set to 1. Precise information
about values of classifiers’ parameters is presented in Table 1.
For purpose of the experiment, we used six data sets taken from UCI [16] repository

of machine learning data sets. These sets contain two-class classification problems
with no missing values. The data sets that we chosen are presented in Table 2.
To estimate classifiers error rates, we used leaving-one-out technique. Results of
the experiment are presented in Tables 3–5. In those tables we show performance
of classifiers on factors (given as percents): correctly classified examples (C), true
positive in class +1 (TP +1), precision in class +1 (P +1), true positive in class -1
(TP -1), precision in class -1 (P -1). First results of our algorithm are promising.
It is comparable to other methods. In one case it gave the best result in terms of
correctly classified examples (ionosphere) and in terms of precision (credit-g). The
rest of results did not differ importantly from results of other methods. Even more,
they were comparable to the best results for each of considered problems. It is worth
noting that C4.5 trees and PART rules generated in fifty iterations of boosting and
bagging are more complex classifiers than decision stumps and ensemble of decision
rules (also generated in fifty iterations). This justifies worse results of our classifier
for some of problems, for example for kr-vs-kp (see Table 5). We can obtain better
results by increasing the number of iterations.
Further experiments on ensembles of decision rules with different number of rules

and on other classification problems are planned.



Table 1: Classification methods and parameters that were used.

Classifier Abbrev.
NaiveBayes NB
Logistic -R 1.0E-8 -M -1 Log
RBFNetwork -B 2 -S 1 -R 1.0E-8 -M -1 -W 0.1 RBFN
SMO -C 1.0 -E 1.0 -G 0.01 -A 250007 -L 0.0010 SMO
-P 1.0E-12 -N 0 -V -1 -W 1
IBk -K 5 -W 0 IBL
AdaBoostM1 -P 100 -S 1 -I 50 -W DecisionStump AB DS
AdaBoostM1 -P 100 -S 1 -I 50 AB REPT
-W REPTree -M 2 -V 0.0010 -N 3 -S 1 -L -1
AdaBoostM1 -P 100 -S 1 -I 50 AB J48
-W J48 -C 0.25 -M 2
AdaBoostM1 -P 100 -S 1 -I 50 -W PART -M 2 -C 0.25 -Q 1 AB PART
Bagging -P 100 -S 1 -I 50 BA REPT
-W REPTree -M 2 -V 0.0010 -N 3 -S 1 -L -1
Bagging -P 100 -S 1 -I 50 -W J48 -C 0.25 -M 2 BA J48
Bagging -P 100 -S 1 -I 50 -W PART -M 2 -C 0.25 -Q 1 BA PART
LogitBoost -P 100 -F 0 -R 1 -L -1.8e308 -H 1.0 -S 1 LB DS
-I 50 -W DecisionStump
LogitBoost -P 100 -F 0 -R 1 -L -1.8e308 -H 1.0 -S 1 LB REPT
-I 50 -W REPTree -M 2 -V 0.0010 -N 3 -S 1 -L -1
J48 -C 0.25 -M 2 J48
RandomForest -I 50 -K 0 -S 1 RF
PART -M 2 -C 0.25 -Q 1 PART
Ensemble of Decision Rules, L(y, Fm(x)) = 1

1−exp(y·Fm(x)) , EDR
M = 50, bootstrap sample η = N , ν = 0.5, a0 = F0(x), {am}M

1 = 1

Table 2: Number of attributes and objects for data sets included in the experiment.

Data set Attributes Obj. class -1 Obj. class 1
German Credit (credit-g) 21 300 700
Pima Indians Diabetes (diabetes) 9 268 500
Heart Statlog (heart-statlog) 14 120 150
J. Hopkins University Ionosphere (ionosphere) 35 126 225
King+Rook vs. King+Pawn on a7 (kr-vs-kp) 37 1527 1669
Sonar, Mines vs. Rocks (sonar) 61 97 111

5 Conclusions and Future Plans

We have described a general algorithm creating an ensemble of decision rules. First
experimental results show that the algorithm is comparable to other methods that are
popular in machine learning. Moreover, the algorithm has also an additional advan-
tage. Its output is a set of decision rules that are easy in interpretation. The idea of
the algorithm comes from considerations on Friedman and Popescu’s paper [14], where
rules are obtained from decision trees. As we have started working on our algorithm,
we have also found another similar approach to decision rule generation proposed by
Cohen and Singer [8]. The algorithm presented here generates directly (not from a
decision trees) decision rules and is more flexible in comparison to [8]. Unfortunately,
we had not yet managed to compare our algorithm to these two approaches. We will
try to make this comparison in the future. Additionally, our research plans include



Table 3: Classification results in percents [%], part 1; C indicates Correctly classified
examples, TP +1 True Positive in class +1, P +1 Precision in class +1, TP -1 True
Positive in class -1, P -1 Precision in class -1.

Classifier credit-g diabetes
C TP +1 P +1 TP -1 P -1 C TP +1 P +1 TP -1 P -1

NB 75.1 86.4 79.7 48.7 60.6 75.7 84 79.7 60.1 66.8
Log 75.1 86.3 79.8 49 60.5 77.7 88.6 79.5 57.5 73
RBFN 72.6 86.6 77.1 40 56.1 73.7 85.2 76.9 52.2 66.4
SMO 74.1 86.6 78.6 45 59 76.8 89.8 78 52.6 73.4
IBL 73.6 89.1 76.8 37.3 59.6 74.1 83.2 78.3 57.1 64.6
AB DS 71 84.1 76.7 40.3 52.2 76.7 76 79.8 59.3 69.4
AB REPT 73.1 84.7 78.5 46 56.3 73.6 80.8 79.1 60.1 62.6
AB J48 73.7 85.9 78.6 45.3 57.9 73.2 80.8 78.6 59 62.2
AB PART 73.7 85.1 78.9 47 57.6 76.3 84.4 80.2 61.2 67.8
BA REPT 74.9 87 79.2 46.6 60.6 75.4 83.4 79.7 60.4 66.1
BA J48 73.5 86.6 78 43 58.8 76.3 84 80.5 61.9 67.5
BA PART 76.1 87.9 80 48.7 63.2 75.3 85.8 78.3 55.6 67.7
LB DS 76.4 87.9 80.3 49.7 63.7 74.7 84.8 78.2 56 66.4
LB REPT 71.5 86.3 76.2 37 53.6 75.4 83.4 79.7 60.4 66.1
J48 70.9 84.7 76.3 38.7 52 73.8 81.6 78.9 59.3 63.3
RF 75.7 89.1 78.9 44.3 63.6 75.3 84.4 79 58.2 66.7
PART 69.9 80.3 77.5 45.7 49.8 67.7 69 78.8 65.3 53
EDR 75.3 90.4 77.9 40 64.2 75.5 86 78.5 56 68.2

deep insight into the algorithm, from the theoretical and experimental point of view.
We plan to conduct experiments with other types of loss function, and to check how
the algorithm works with different values of other parameters. We also plan to verify
other heuristics to generate single rule. An interesting issue may be to randomize the
process of generating single rule as it is done in random forest. The classification,
in this paper, was performed by setting {am}M

0 to fixed values. We want to check
some other solutions, also some optimizations techniques of these parameters. As it
was mentioned above the set of rules generated by the ensemble should be cleaned
and compressed. Construction of a method preparing a set of rules that is easy in
interpretation is also included in our future research plans.

Acknowledgements. The authors wish to acknowledge financial support from the
State Committee for Scientific Research (KBN grant no. 3T11F 02127).

References

[1] Michalski, R. S.: A Theory and Methodology of Inductive Learning. In Michalski,
R. S., Carbonell, J. G., Mitchell, T. M. (eds.): Machine Learning: An Artificial
Intelligence Approach. Palo Alto, Tioga Publishing, (1983) 83–129

[2] Booker, L. B., Goldberg, D. E., Holland, J. F.: Classifier systems and genetic al-
gorithms. In Carbonell, J. G. (ed.): Machine Learning. Paradigms and Methods.
The MIT Press, Cambridge, MA (1990) 235–282



[3] Boros, E., Hammer, P. L., Ibaraki, T., Kogan, A., Mayoraz, E., Muchnik, I.:
An Implementation of Logical Analysis of Data. IEEE Trans. on Knowledge and
Data Engineering 12 (2000) 292–306

[4] Breiman, L.: Bagging Predictors. Machine Learning 24 2 (1996) 123–140

[5] Breiman, L.: Random Forests. Machine Learning 45 1 (2001) 5–32

[6] Breiman, L., Friedman, J. H., Olshen, R. A., Stone, C. J.: Classification and
Regression Trees. Wadsworth, (1984)

[7] Clark, P., Nibbet, T.: The CN2 induction algorithm. Machine Learning 3 (1989)
261–283

[8] Cohen, W. W., Singer, Y.: A simple, fast, and effective rule learner. Proc. of
16th National Conference on Artificial Intelligence (1999) 335–342

[9] Friedman, J. H., Hastie, T. and Tibshirani, R.: Additive logistic regression: a
statistical view of boosting. Dept. of Statistics, Stanford University Technical Re-
port, http://www-stat.stanford.edu/~jhf/ (last access: 1.05.2006), August
(1998)

[10] Friedman, J. H., Popescu, B. E.: Importance Sampled Learning
Ensembles. Dept. of Statistics, Stanford University Technical Report,
http://www-stat.stanford.edu/~jhf/ (last access: 1.05.2006), September
(2003)

[11] Friedman, J. H., Hastie, T., Tibshirani, R.: Elements of Statistical Learning:
Data Mining, Inference, and Prediction, Springer (2003)

[12] Friedman, J. H.: Recent advances in predictive (machine) learning.
http://www-stat.stanford.edu/~jhf/ (last access: 1.05.2006), November
(2003)

[13] Friedman, J. H., Popescu, B. E.: Gradient directed regularization. Stanford Uni-
versity Technical Report, http://www-stat.stanford.edu/~jhf/ (last access:
1.05.2006), February (2004)

[14] Friedman, J. H., Popescu, B. E.: Predictive Learning via Rule
Ensembles. Dept. of Statistics, Stanford University Technical Report,
http://www-stat.stanford.edu/~jhf/ (last access: 1.05.2006), February
(2005)

[15] Grzymala-Busse, J. W.: LERS — A system for learning from examples based on
rough sets. In Słowiński, R. (ed.): Intelligent Decision Support, Handbook of Ap-
plications and Advances of the Rough Sets Theory. Kluwer Academic Publishers
(1992) 3–18



[16] Newman, D. J., Hettich, S., Blake, C. L., Merz,
C. J. (UCI) Repository of machine learning databases.
http://www.ics.uci.edu/∼mlearn/MLRepository.html (last access:
01.05.2006), Dept. of Information and Computer Sciences, University of
California, Irvine (1998)

[17] Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer
Academic Publishers, Dordrecht, (1991)

[18] Quinlan, J. R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)

[19] Schapire, R. E., Freund, Y., Bartlett, P., Lee, W. E.: Boosting the margin: A
new explanation for the effectiveness of voting methods. The Annals of Statistics
26 5 (1998) 1651–1686

[20] Skowron, A.: Extracting laws from decision tables - a rough set approach. Com-
putational Intelligence 11 371–388

[21] Stefanowki, J.: On rough set based approach to induction of decision rules. In
Skowron, A. and Polkowski, L. (eds): Rough Set in Knowledge Discovering,
Physica Verlag, Heidelberg (1998) 500–529

[22] Witten, I. H., Frank, E.: Data Mining: Practical machine learning tools and
techniques, 2nd Edition. Morgan Kaufmann, San Francisco (2005)



Table 4: Classification results in percents [%], part 2; C indicates Correctly classified
examples, TP +1 True Positive in class +1, P +1 Precision in class +1, TP -1 True
Positive in class -1, P -1 Precision in class -1.

Classifier heart-statlog ionosphere
C TP +1 P +1 TP -1 P -1 C TP +1 P +1 TP -1 P -1

NB 83 86.7 83.3 78.3 82.5 82.6 86.5 71.2 80.4 91.4
Log 83 86.7 83.3 78.3 82.5 89.2 78.6 90 95.1 88.8
RBFN 81.5 84.7 82.5 77.5 80.2 91.7 90.5 87 92.4 94.5
SMO 83 86 83.8 79.2 81.9 88 71.4 93.8 97.3 85.9
IBL 80 82.7 81.6 76.7 78 85.5 63.5 94.1 97.8 82.7
AB DS 82.6 86 83.2 78.3 81.7 93.2 84.1 96.4 98.2 91.7
AB REPT 76.7 76.7 80.4 76.7 72.4 91.7 84.9 91.5 95.6 91.9
AB J48 78.9 82 80.4 75 76.9 94 85.7 97.3 98.7 92.5
AB PART 83 84.7 84.7 80.8 80.8 92.6 84.9 93.9 96.9 92
BA REPT 82.6 86.7 82.8 77.5 82.3 91.2 84.9 89.9 94.7 91.8
BA J48 81.1 84.7 81.9 76.7 80 93.4 82.5 99 99.6 91.1
BA PART 81.9 84 83.4 79.2 79.8 92.9 84.1 95.5 97.8 91.7
LB DS 81.1 84.7 81.9 76.7 80 91.5 81.7 93.6 96.9 90.5
LB REPT 79.3 84.7 79.4 72.5 79.1 91.5 88.9 87.5 92.9 93.7
J48 75.2 77.3 77.9 72.5 79.9 87.5 81 83.6 91.1 89.5
RF 82.2 85.3 83.1 78.3 81 93.4 86.5 94.8 97.3 92.8
PART 77 78.7 79.7 75 73.8 89.5 81.7 88 93.8 90.2
EDR 82.2 85.3 83.1 78.3 81 94.3 88.1 95.7 97.8 93.6

Table 5: Classification results in percents [%], part 3; C indicates Correctly classified
examples, TP +1 True Positive in class +1, P +1 Precision in class +1, TP -1 True
Positive in class -1, P -1 Precision in class -1; “-” means that no results were obtained.

Classifier kr-vs-kp sonar
C TP +1 P +1 TP -1 P -1 C TP +1 P +1 TP -1 P -1

NB 87.9 89.7 87.5 86 88.4 67.3 81.4 61.2 55 77.2
Log 97.7 97.6 97.9 97.7 97.4 75.5 70.1 76.5 80.2 75.4
RBFN 84.3 86.2 84.2 82.3 84.5 71.2 72.2 68 70.3 74.2
SMO 95.5 95.6 95.8 95.4 95.2 76.9 71.1 77.5 82 76.5
IBL 96.6 98.4 95.1 94.5 98.2 82.2 76.3 84.1 87.4 80.8
AB DS 94.1 96.9 92.2 91 96.5 83.7 79.4 84.6 87.4 82.9
AB REPT 99.4 99.5 99.3 99.3 99.5 80.3 73.2 82.6 86.5 78.7
AB J48 99.7 99.8 99.6 99.5 99.7 85.6 78.4 89.4 91.9 82.9
AB PART 99.7 99 99.6 99.5 99.9 85.6 82.5 86 88.3 85.2
BA REPT 99.1 99.4 98.9 98.8 99.3 76.4 67 79.3 84.7 74.6
BA J48 99.4 99.5 99.3 99.3 99.5 80.3 73.2 82.6 86.5 78.7
BA PART 99.5 99.6 99.4 99.3 99.5 83.7 78.4 85.4 88.3 82.4
LB DS 96 96.4 95.9 95.5 96 83.2 78.4 84.4 87.4 82.2
LB REPT - - - - - 71.6 64.9 71.6 77.5 71.7
J48 99.5 99.6 99.5 99.5 99.5 68.3 66 66 73 73
RF 99.4 99.6 99.2 99.1 99.5 86.1 80.4 88.6 91 84.2
PART 99 99.3 98.9 98.8 99.2 73.6 74.2 70.6 73 76.4
EDR 94.1 97 92.1 91 96.5 80.7 73.2 83.5 87.4 78.9


