Beyond Sequential Covering — Boosted Decision Rules

Krzysztof Dembczyiiski', Wojciech Kottowski!, and Roman Stowiriski’

' Poznari University of Technology, 60-965 Poznaii, Poland
kdembczynski@cs.put.poznan.pl, wkotlowski@cs.put.poznan.pl
2 Poznan University of Technology, 60-965 Poznani, Poland,
and Systems Research Institute, Polish Academy of Sciences, 01-447 Warsaw, Poland
rslowinski@cs.put.poznan.pl

Abstract. From the beginning of machine learning, rule induction has been re-
garded as one of the most important issues in this research area. One of the first
rule induction algorithms was AQ introduced by Michalski in early 80’s. AQ, as
well as several other well-known algorithms, such as CN2 and Ripper, are all
based on sequential covering. With the advancement of machine learning, some
new techniques based on statistical learning were introduced. One of them, called
boosting, or forward stagewise additive modeling, is a general induction proce-
dure which appeared to be particularly efficient in binary classification and re-
gression tasks. When boosting is applied to induction of decision rules, it can
be treated as generalization of sequential covering, because it approximates the
solution of the prediction task by sequentially adding new rules to the ensemble
without adjusting those that have already entered the ensemble. Each rule is fitted
by concentrating on examples which were the hardest to classify correctly by the
rules already present in the ensemble. In this paper, we present a general scheme
for learning an ensemble of decision rules in a boosting framework, using dif-
ferent loss functions and minimization techniques. This scheme, called ENDER,
is covered by such algorithms as SLIPPER, LRI and MLRules. A computational
experiment compares these algorithms on benchmark data.

1 Introduction

We consider the classification problem that consists in assigning objects described by
several attributes to pre-defined decision classes. Using a set of training examples, our
task is to build a classifier that assigns new objects to decision classes as accurately as
possible. There are several learning algorithms introduced for this task. In the following,
we consider classifiers based on decision rules.

Decision rule is a logical statement of the form: if [condition], then [decision]. If
an object satisfies the condition part of the rule, then the decision is taken; otherwise
no action is performed. A rule can be treated as a simple classifier that gives a constant
response for the objects satisfying the conditions, and abstains from the response for
all other objects. The main advantage of decision rules is their simplicity and human-
readable form.

Induction of decision rules has been widely considered in the early machine learning
approaches [1, 2, 3, 4]. The most popular algorithms were based on a sequential cov-
ering procedure (also known as separate-and-conquer approach). According to [4], this

J. Koronacki et al. (Eds.): Advances in Machine Learning I, SCI 262, pp. 209
springerlink.com (© Springer-Verlag Berlin Heidelberg 2010

210 K. Dembczynski, W. Kottowski, and R. Stowiriski

procedure can be described as follows: “learn a rule that covers a part of the given train-
ing examples, remove the covered examples from the training set (the separate part) and
recursively learn another rule that covers some of the remaining examples (the conquer
part) until no examples remain”.

Apart from the sequential covering, some other approaches to rule induction ex-
ist. For instance, the apriori-based algorithms are also used for induction of predictive
rules [5, 6]. There are several rule-based approaches of lazy learning type [7, 8], pos-
sibly combined with instance-based methods [9, 10]. Other algorithms are based on
Boolean reasoning and mathematical programming [11]. Let us also notice that decision
rule models are strongly associated with rough set approaches to knowledge discovery
[12,13, 14, 15, 16, 17].

Recently, some new algorithms have been introduced that follow another approach
to rule induction. They treat decision rules as subsidiary, base classifiers in the ensem-
ble. More precisely, decision rule classifiers are built using boosting [18] or forward
stagewise additive modeling [19]. The examples of such algorithms are SLIPPER [20],
LRI [21], RuleFit [22], and MLRules [23]. We will refer to this family of algorithms as
boosted decision rules.

In this paper, we discuss the relation between sequential covering and boosted deci-
sion rules. As we will see, these two procedures are quite similar and the latter can be
seen as a generalization of the former. We will show a general scheme for rule induc-
tion that we called ENDER. Different rule learning algorithms fall into this scheme as
special cases.

The paper is organized as follows. Section 2 states formally the problem of classifi-
cation. In Section 3, the decision rule is defined. Sequential covering is briefly described
in Section 4. We show how the boosted decision rules are related to sequential covering
in Section 5. Two instances of boosting algorithms for rule induction, SLIPPER and
MLRules, are also described there. Several extensions of boosted decision rules are dis-
cussed in Section 6. Experimental comparison of different rule induction algorithms is
given in Section 7. The last Section concludes the paper.

2 Classification Problem

We consider the classification problem in which the aim is to predict for an object an
unknown class label of attribute y taken from set {1,...,K}, knowing joint values of
attributes x = (x,x2,...,%,) € 2. The task is to find function f(x), called classifier,
that predicts accurately the value of y. The accuracy of a single prediction is measured
by loss function L(y, f(x)) which determines the penalty for predicting f(x) when the
actual value is y. The overall accuracy of function f(x) is measured by the expected
loss, called risk, over joint distribution P(y,x):

R(f) = ExL(y, f(x)).

Therefore, the optimal risk-minimizing classification function, called Bayes classifier,
is given by:
= argm}nnyL(y,f(x)).

Beyond Sequential Covering — Boosted Decision Rules 211

Since P(y,x) is generally unknown, the learning procedure uses only a set of training
examples {y;,x; } to construct f to be the best possible approximation of f*. Usually,
this is performed by minimization of the empirical risk:

1 N
Remp(f) = N ZL(yiaf(Xi))v
i=1

where f is chosen from a restricted family of functions.
The most natural loss function is the 0-1 loss:

Lot = { 1 W

The expected value of this loss function is simply a misclassification error of f(x)
defined by Pr(y # f(x)). Thus, Bayes classifier has the following form:

f1(x) = argrﬁir)l EyxLo-1(y, f(x)) = arg e Pr(y = k|x). 2)
By minimizing the 0-1 loss function, we estimate K regions in the attribute space, such
that in the k-th region, the k-th class is observed with the highest probability.

For the sake of simplicity, we will confine our considerations to the two-class prob-
lem, referred to as binary classification. Let us assume that y € {—1, 1} and the classifier
gives continuous responses, f(x) € R. In this case, the loss function can be expressed
by L(yf(x)), where yf(x) is called margin. The positive margin means no error, and
its magnitude tells, intuitively, what is the credibility of assigning an object to a given
class. The margin 0-1 loss function is therefore:

Lo-1(yf(x)) = v/ (x) <0,

where 7] is the Boolean test equal to 1 if predicate 7 is true, and 0 otherwise.

3 Decision Rule

Decision rule is a simple logical pattern having the form:
“if [condition] then [decision]”.

Its main advantage is simplicity and human-interpretable form that can model interac-
tions between several attributes for which the condition is defined. As an example of a
decision rule, let us consider a rule generated from the well-know CREDIT-G benchmark
data set concerning the problem of predicting a risk-level of bank customers:

if CHECKING STATUS = no checking account
and OTHER PAYMENT PLANS # bank

and AGE € [22.5,66.5]

and CREDIT AMOUNT < 10924.5,

then CUSTOMER = good.

212 K. Dembczynski, W. Kottowski, and R. Stowiriski

From a machine learning perspective, such a rule can be treated as a simple classifier
that gives a constant response to examples satisfying the condition part, and abstains
from the response for all other examples. Formally, a decision rule can be defined as
follows.

Let X; C 2" be a domain of attribute j € {1,...,n}. The condition part of the rule
consists of a conjunction of elementary expressions of the general form

xj €8, 3)

where x; is the value of object x on attribute j and S; is a subset of X;. In particular,
elementary expressions are of the form x; > s;, x; < s;, for quantitative attributes, and
Xj =sj, x; # s, for qualitative attributes, where s; is taken from a domain of attribute
j. Let @ be the set of elementary expressions constituting the condition part of the
rule, and let @(x) be a function indicating whether object x satisfies the conjunction
of elementary expressions @. In other words, @(x) defines an arbitrary axis-parallel
region in the attribute space. We say that a rule covers object x if it belongs to this
region, i.e. @(x) = 1. The number of training examples covered by the rule is referred
to as rule coverage. The decision, or response, denoted by ., is a real value assigned to
the region defined by @. Therefore, we define a decision rule as:

r(x) = oD (x).

Note that the decision rule takes only two values, r(x) € {a,0}, depending whether x
satisfies the condition part or not.

Having defined the decision rule, we now need an algorithm that induces such rules
from a set of training examples and combines them into a powerful classifier.

4 Sequential Covering

Almost all early algorithms for rule learning were based on sequential covering. The
most popular are AQ [1], CN2 [2], Ripper [3], and LEM [14]. Sequential covering relies
on learning a rule in each step, that covers a part of a given set of training examples,
removing the covered examples from the training set, and repeating this step until no
example remains. This procedure is repeated separately for each class. In each turn, the
rules cover examples from one class only. These examples are called positive, while the
others, negative.

This approach is more formally presented as Algorithm 4.1. It starts with an empty
set of decision rules and successively adds rules to it, until all positive examples are
covered. A single rule is built by the FindBestRule procedure in order to cover positive
examples only. This can be done by specializing the current rule by adding new ele-
mentary expressions to its condition part. In order to move towards the goal of finding
a rule that covers no negative examples, the algorithm selects the elementary expres-
sions that optimize the purity measure of the rule. The purity measure is a function of
the numbers of positive and negative examples. For instance, this can be the fraction of
positive examples in the set of covered examples.

This approach to rule induction encounters several problems. For example, the set
of decision rules does not usually cover the entire attribute space. Moreover, several

Beyond Sequential Covering — Boosted Decision Rules 213

Algorithm 4.1. Sequential covering
input : set of training examples {y;, x;}}’,
k — label of positive class.
output: set of decision rules Ry, for k-th class.
Ry =0
Pos = {x; :yi = k,i=1,...,N} // positive examples
Neg = {x; :yi #k,i=1,...,N} // negative examples
m=0
while Pos # 0 do
rm(x) = FindBestRule(Pos,Neg)
Pos = Pos — {x; : r,(x) = 1} // remove covered examples
Ri = R Urp(x)
m=m+1
end

rules may overlap. Thus, there is a problem how to classify new examples by a set of
rules. In many rule induction algorithms, the rule generation phase and the classification
phase are considered separately. First, the algorithm generates a set of rules. Next, one
of several possible strategies is used to classify new examples. Usually, different voting
schemes are considered. The weights of the rules used in the voting are simple statistics
computed over examples covered by the rules. A popular choice is a relative number
of covered examples or an estimate of conditional class probability within the rule. The
latter suggests that the rules are treated as independent ones, what is not true taking into
account how the sequential covering procedure works.

5 Boosted Decision Rules

The problem described above can be easily solved, if we first assume some form of the
ultimate rule-based classifier. Let the classification function be a linear combination of
M rules:

M
fm(x) =0+ Y, ru(x), (4)
m=1

where oy is a constant value, which can be interpreted as a default rule, covering the
whole attribute space. This is an ensemble of simple and interpretable base classifiers.
Single decision rule r,,(x) defines an increase or decrease of fs(x) by o, if a condition
@,,(x) is met. In other words, this is a weighted majority voting. The prediction is made
by sgn(f (x)).

Having such a form of the classifier, we can proceed in a similar way to sequential
covering. We add the rules one by one in order to minimize the empirical risk. In each
subsequent iteration, a new rule is added by taking into account previously generated
rules. Let f,,_1(x) be a classification function after m — 1 iterations, consisting of the
first m — 1 rules and the default rule. In the m-th iteration, a decision rule can be obtained
by solving:

N
Fm(X) = argrrr(li?Remp(fm_l (x)+r(x)) = argrgig ZL(yi,fm_l (xi) +a®(x;)). (5)

i=1

214 K. Dembczynski, W. Kottowski, and R. Stowiriski

This procedure corresponds to sequential covering, since the value of the margin 0-1
loss function decreases down to O for all correctly covered training examples, and there
is no need for another rule to cover them again. This corresponds to removing such
objects from the training set. All the rules will obtain the same absolute value of rule
response ||, and the sign decides for which class the rule votes. The classification is
then a simple majority voting.

Instead of the margin 0-1 loss, one can use, however, another loss function, like expo-
nential loss or logit loss. These are surrogates (upper-bounding the 0-1 loss) commonly
used in classification tasks. These functions are convex and differentiable, which makes
the minimization process easier to cope with. The exponential loss is defined as:

Lexp f(x) = eXP(_Yf(X))~ (6)
This loss function is used in AdaBoost [18]. The logit loss
Liog (yf(x)) = log(1 +exp(—2yf(x))) (7

is commonly used in statistics. These two loss functions are sensitive to the value of
yf(x). The Bayes classifier for both of them has the form [19]:

1 Pr(y = 1|x)

*
J(x) =, log ®)
x) 2 CPr(y=—1|x)’
S
” (= 0—11loss
—— Exponential loss
—— Logit loss

[in)

&

<]

[a\]
—~~
—
NS
Rl
~—
~

(o=}

=

0

=

S]

(o=}

T T T T T
—2 —1 0 1 2

Fig. 1. Loss functions L(yf(x)) expressed through the margin yf(x) for binary classification

Beyond Sequential Covering — Boosted Decision Rules 215

Algorithm 5.1. Ensemble of decision rules — ENDER
input : set of training examples {y,-,x,-}]lv R
L(y, f(x)) — loss function,
M — number of decision rules to be generated.
output: ensemble of decision rules fjs(x).

o = argming ¥V | L(y;, @)

fo(x) = ap;

form=11toM do
@, = argming %, (D)
Oy = argming vazl L(yis fin1 (%) + 0Dy (X))
rm(x) = amq)m(x)

end

which is the logit transform of the conditional probabilities. Expression (8) can be

inverted to give:
1

I +exp(=2/f*(x))
Therefore, minimization of these loss functions on the training set can be seen as es-
timation of conditional probabilities Pr(y = 1|x). The sign of f(x) estimates in turn
the class with a higher probability. Characteristics of these loss functions are shown in
Figure 1.

Using these loss functions in (5) results in the boosting-like algorithm for rule in-
duction, we presented in [24] and called ENDER. We outline its main steps in Algo-
rithm 5.1. First, the default rule is computed:

Pr(y =1|x) ©)

N
wagqpéLwﬂ) (10)

14
In each next iteration, we proceed in two steps:

1. Find @, by minimizing a functional .%,,(®) derived from (5) that does not depend

of o
CDm:argmqi)n.i”m((D). (11)
2. Find oy, the solution to the following line-search problem:
N
qu@QyZLmJ%ﬂm+aQAm) (12)
i=1

The algorithm finds iteratively the best rules minimizing the empirical risk. Z(®),
which denotes a purity measure, is greedily minimized by a heuristic that builds the
condition part of the decision rule. It works in a similar way to the FindBestRule pro-
cedure. The difference is that it does not stop when no negative example is covered, but
when %, (®,,) cannot be decreased. The response of the rule is the weight in a voting
procedure. It is computed by taking into account the previously generated rules, thus

216 K. Dembczynski, W. Kottowski, and R. Stowiriski

the dependencies between rules are not ignored. The entire procedure is very intuitive
and, formally, well-founded. Below, we will state that several rule learning algorithms
fall into this ENDER scheme.

In the case of the exponential loss, the ENDER algorithm works as follows. The
response of the decision rule is computed according to:

A A Y B(xg)e (X))
i = argmin 3, U165 tnte) _ | jog T P

. 13
i=1 2 - I(D(xi)efm—l(xf) (13)

The solution of o, can be put to (5), and after straightforward transformations, we get
the following form of the purity measure:

Lo(®) = <Z q)(xi)wﬁm)) + (Y cp(xi)wﬁ’”)) (14)
Y

yi=] =1

where wl(m) = e Vifm-1(%) can be treated as a weight of the i-th training example in the
m-th iteration. This is also how the SLIPPER algorithm works [20].

In the MLRules algorithm [23], which is the next to describe, we derive rules from
the maximum likelihood principle that can be seen as minimization of the logit loss (7)
by the so-called gradient descent technique.

In case of the logit loss, there is no analytical solution to (12). To speed up the
computations, instead of numerically solving the line search problem, we perform a
single Newton-Raphson step, similarly as in [25]:

2o(x;)=1 aaaLlog(yi(fmfl (Xi) + 0D (x;)))

(15)
Lo(x)=1 38;2 Liog (vi(fin—1(Xi) + 2@ (xi)))

Oy = —

a=0

From (5) we derive the form of ., (®), in such a way that .%,,(®) does not depend
on ¢. This can be done by approximating (5) up to the first order with respect to o:

N
rn(x) = argmin Y. (L0, f1 (1) — 0 (x)i"), (16)
=]
where
_m) _ OL(yi, f(xi)) ‘
W, = — .
I ix)=fou 1 (x0)
Since vT/Sm), i=1,...,N, is the negative gradient of the function to be minimized, this

technique is called gradient descent. It is easy to see that the optimal solution with
respect to @ is obtained by minimizing:

Ln(@)=— Y o, (17)

since ¥ L(yi, fn—1(X;)) is constant at a given iteration, and thus it does not change the
solution. Observe that for a given value of ¢, the solution only depends on

Beyond Sequential Covering — Boosted Decision Rules 217

Zo(x;)=1 ng) , so the minimization of (17) can be finally reformulated to the minimiza-

tion of the following term:

(m)

Ln(P@) = — i

w
q)(Xl'):l

. (18)

because the sign and the magnitude of o may be established afterwards.

Another boosted rule induction algorithm, LRI [21], uses a specific reweighting
schema (cumulative error), similar to Breiman’s Arc-xf algorithm [26]. For the two-
class problem, however, this method can also be explained in terms of the loss function
minimization, as it was done in [27] for Arc-xf. It follows that LRI minimizes a poly-
nomial loss function by the gradient descent technique. Let us also point out that a
single rule in LRI is a bit more complex in comparison with those generated by other
algorithms, because the rule is a DNF-formula, i.e., disjunction of conjunctions of ele-
mentary expressions, instead of a single conjunction.

6 Extensions

6.1 Rule Coverage

Several problems associated with a typical sequential covering approach have been
pointed out in [28]. One of the problems concerns the discrimination and complete-
ness of the rule. In other words, “how good are the examples from positive class sep-
arated from negative examples, and how many positive examples are covered?” The
usual way of answering this question consists in using different purity measures and
their combinations, sometimes defined ad hoc, to control the process of constructing a
single decision rule. In the approach followed by ENDER, the answer is very natural.
In each iteration, where we find a rule which is minimizing the empirical risk, we can
slightly modify the minimization technique in order to control the trade-off between
discrimination and completeness.

Let us restrict & in (5) to o € {—f, B}, where B is a parameter of the algorithm.
Then, (5) becomes:

rm(X) = arg min < > LSt (%) EB)+ Y, L, S (x,-))> . (19
2B\ (x)=1 @ (x))=0

Since B is fixed, we refer this technique to as constant-step minimization. In the case of

the exponential loss, we can prove the following theorem.

Theorem 1. [29] The problem of solving (19) for exponential loss (6) and step length

B is equivalent to minimization of

L @) = w0 3w, (20)
I€ER_ (D(X,‘):()
where R_ = {i : yia®(x;) < 0} indicates the training examples misclassified by the

rule, and.:

1—e P 1-/

m) _ L =yifm-1(x) - =
w; e ; 14 B P’ B =log ’

218 K. Dembczynski, W. Kottowski, and R. Stowiriski

Expression (20) has a nice interpretation. The first term corresponds to examples “mis-
classified” by the rule, while the second term — to examples which are not classified by
the rule at all. Value / plays the role of a penalty for abstaining from classification and
establishes a trade-off between not classified and misclassified examples. It is easy to
see that for B > 0, £ € [0,0.5). Increasing ¢ (or decreasing f3) results in more general
rules, covering more examples. For f — 0 we get the gradient descent technique ap-
plied to the exponential loss. This means that the gradient descent produces the most
general rules in the sense of coverage.

6.2 Regularization

A decision rule has the form of an n-dimensional rectangle, where n is the number
of attributes. It can be shown, that the class of n-dimensional rectangles has Vapnik-
Chervonenkis (VC) dimension equal to 2n, and it does not depend on the number of
elementary expressions. Theoretical results [30] suggest that an ensemble with a sim-
ple base classifier (with low VC dimension) and high prediction confidence (margin)
on the data set generalizes well, regardless of the size of the ensemble. Nevertheless,
computational experiments show that the performance of rule ensemble can deteriorate
as the number of rules grows, especially for the problems with a high level of noise.
Similar phenomenon has been observed for other boosting algorithms, in particular for
AdaBoost [27, 31, 32]. Therefore, in order to decrease the influence of the noise, the
boosting algorithms should be used with regularization.

As pointed out in many places (see, for example, [19]), a regularized classifier can
achieve much better results. The form of regularization, which is particularly useful, is
the L;-penalty, also called /asso. In the case of rule ensemble, this would lead to the
problem consisting in fitting o, of all possible rules and minimizing an additional term
> |t |. To approximate a solution of such a regularized problem, ENDER follows a
strategy that is called shrinkage [19]. It consists in shrinking a newly generated rule
Fm(X) = 04, Py (X) towards rules already present in the ensemble:

fm(x) = fm-1 (X) + V’I’m(X),

where v € (0, 1] is a shrinkage parameter that can be regarded as controlling the learning
rate. For small v, we obtain a solution that is close to the regularized one.

Such an approach works even better, when weak learners are uncorrelated. That is
why the procedure for finding @,, works on a subsample of original data that is a frac-
tion { of the set of training examples, drawn without replacement [33]. Such an ap-
proach leads to a set of rules that are more diversified and less correlated. Moreover,
finding @,, on a subsample reduces the computational complexity. Note, however, that
a small v requires a larger M.

Independently on the fact whether @,, was found using a subsample or not, we cal-
culate the value of o, on all training examples. This usually decreases |o,|, so it plays
also the role of regularization, and avoids overfitting the rule to the training set.

These above three elements (shrinking, sampling, and calculating oy, on the entire
training set) used in ENDER constitute a competitive technique to pruning often used
in the rule induction algorithms. Our experiments showed that it significantly improves
the accuracy of the classifier.

Beyond Sequential Covering — Boosted Decision Rules 219

6.3 Regression Problem

Boosting-like formulation of the rule induction algorithm allows to cope with the prob-
lem of regression [34]. In this problem, one usually considers the squared-error loss:

Ly (y. f(x)) = (y— f(x))*. 1)

It is easy to show that for this loss function, the ENDER algorithm computes the rule
response according to:

N _ Zox)=1 0= fu-1(x3)

Oy = argmin 3, (i — fon-1(X1) = 0Py (x:))* N oowy @
i=1 i=1 i

which is the average over the residuals y; — f,,—1(x;) for examples covered by the rule.
The form of .%,,(®) is, in turn, the following:

‘ Yao(x)=1 Vi — fn-1 (Xi))’
VL @)
This form results from putting (22) to (5), and solving the latter with respect to @.

As we see, the application of boosted decision rules to solving the regression problem
is straightforward.

Zn(P) (23)

6.4 Building Single Rules

There remains a question: how to generate the condition part of the rule. This question
is associated with another one [28]: how close is the generated rule to the best one. In
other words, how good are the procedures building condition parts of the rules.

The procedure used in ENDER follows a typical strategy of many other rule learning
algorithms. It gives approximate results, as it is based on a greedy approach, but it is
very efficient therefore.

Just to mention, the AQ algorithm follows a different rule induction strategy. Its main
idea is to generate the so-called star for a selected positive example. The star is a set
of candidate condition parts. One of these condition parts is selected by using the beam
search in the space of the star members.

Some other procedures could be introduced to ENDER in order to generate bet-
ter rules. These procedures could aim at improving the performance and/or the inter-
pretability of the rule ensemble.

7 Experiment

We compared five rule induction algorithms: Ripper with sequential covering proce-
dure, SLIPPER, LRI, MLRules, and ENDER with constant step minimization. We
selected the following parameters for each method:

220 K. Dembczynski, W. Kottowski, and R. Stowiriski

— Ripper: we used JRipper (Weka [35] implementation of the algorithm) with default
parameters.

— SLIPPER: we set the maximum number of iterations to 500, the rest of parame-
ters was default (we kept the internal cross validation, used to choose the optimal
number of rules, switched on).

— LRI: according to the experiment in [21], we set the rule length to 5, froze feature
selection after 50 rounds, and chose 200 rules per class and 2 disjuncts, since some
previous tests showed that those values work well in practice.

— MLRules: according to the experiment in [23], we set { = 0.5,v = 0.1,M = 500;
those parameters have been optimized on an artificial data set.

— ENDER: according to the experiment in [29], we took the algorithm with constant
step minimization 3 = 0.2 of the exponential loss (CS-Exp), with other parameters
set to v=0.1, { = 0.25, M = 500; those parameters have been optimized on an
artificial data set.

We used 20 binary classification problems, all taken from the UCI Repository [36].
Each test was performed using 10-fold cross validation (with exactly the same train/test
splits for each classifier), and an average 0-1 loss on testing folds was calculated. The
results are shown in Table 1.

Table 1. Test errors and ranks (in parenthesis). In the last row, the average rank is computed for
each classifier.

DATA SET MLRULES ENDER SLIPPER LRI JRIPPER
CS-Exp
HABERMAN 26.2 (2.0) 26.2(3.0) 26.8 (4.0) 27.5(5.0) 25.8(1.0)
BREAST-C 25.9 (1.0) 27.2(3.0) 27.9 (4.0) 29.3(5.0) 26.9(2.0)
DIABETES 24.7 (2.0) 24.6(1.0) 25.4 (4.0) 25.4(3.0) 26.2(5.0)
CREDIT-G 24.1 (3.0) 22.8(1.0) 27.7 (4.0) 23.9(2.0) 28.2(5.0)
CREDIT-A 13.3 (3.0) 12.3(2.0) 17.0(5.0) 12.2(1.0) 13.9(4.0)
IONOSPHERE 6.0 (2.0) 5.7(1.0) 6.5(3.0) 6.8(4.0) 12.0(5.0)
COLIC 13.9 (1.0) 14.4(2.0) 15.0(4.0) 16.1(5.0) 14.4(3.0)
HEPATITIS 16.2 (1.0) 18.8(4.0) 16.7(2.0) 18.0(3.0) 20.2(5.0)
SONAR 12.0 (1.0) 16.4(3.0) 26.4 (4.0) 14.9(2.0) 29.7(5.0)
HEART-STATLOG 16.7 (1.0) 17.4(2.0) 23.3(5.0) 19.6(3.0) 20.4(4.0)

LIVER-DISORDERS 27.5 (3.0)

24.9(1.0) 30.7 (4.0)

26.6(2.0) 33.0(5.0)

VOTE 3.4 (1.0) 3.4(2.0) 5.0(5.0) 3.9(3.0) 4.6(4.0)
HEART-C-2 16.5 (2.0) 15.2(1.0) 19.5(4.0) 18.5(3.0) 20.5(5.0)
HEART-H-2 18.0 (2.0) 17.3(1.0) 20.0(5.0) 18.3(3.0) 20.0(4.0)
BREAST-W 3.1 (1.0) 3.6(3.0) 4.3(4.5) 3.3(2.0) 4.3(4.5)
SICK 1.6 (2.0) 1.8(4.0) 1.6(1.0) 1.8(5.0) 1.7(3.0)
TIC-TAC-TOE 11.3 (4.0) 8.1(3.0) 2.4(1.0) 12.2(5.0) 2.8(2.0)
SPAMBASE 4.7 (2.0) 4.6(1.0) 5.9(4.0) 4.9(3.0) 7.2(5.0)
CYLINDER-BANDS 14.4 (1.0) 19.4(3.0) 21.7 (4.0) 16.5(2.0) 31.5(5.0)
KR-VS-KP 1.0 (3.0) 1.0(2.0) 0.6(1.0) 3.1(5.0) 1.0(4.0)
AVG. RANK 1.9 2.15 3.63 3.3 4.03

Beyond Sequential Covering — Boosted Decision Rules 221

CD = 1.364
SLIPPER ENDER CS-Exp
JRipper LRI MLRules
T T T T 1
5 4 3 2 1
Rank

Fig. 2. Critical difference diagram

To compare multiple classifiers on multiple data sets, we follow [37], and apply the
Friedman test, which uses ranks of each algorithm to check whether all the algorithms
perform equally well (null hypothesis). Friedman statistics gives 27.71, which exceeds
the critical value 9.488 (for confidence level 0.05), and thus we can reject the null hy-
pothesis. Next, we proceed to a post-hoc analysis and calculate the critical difference
(CD) according to the Nemenyi statistics. We obtain CD = 1.364 which means that al-
gorithms with difference in average ranks greater than 1.364 are significantly different.
In Figure 2, average ranks were marked on the rank scale, and groups of the classi-
fiers that are not significantly different were connected. This shows that MLRules out-
performs LRI, SLIPPER and JRipper. ENDER CS-Exp, in turn, is significantly better
than SLIPPER and JRipper. On the other hand, none of the three rule algorithms: LRI,
SLIPPER, JRipper, is significantly better than any other. However, the worst results are
obtained by JRipper.

The results can be interpreted in the following way. The boosting approach improves,
in general, the sequential procedure. The highest improvement is achieved, however,
when boosting is combined with regularization, which is applied in both, MLRules and
ENDER CS-Exp. As explained above, this is justified by the recent results in theoretical
analysis of boosting algorithms. The two other rule ensemble algorithms, SLIPPER and
LRI, do not employ such regularization. The former uses rule pruning, but this seems
to be not enough.

The main advantage of rules is their simplicity and interpretability, provided that
the number of rules in the ensemble is not too high. To ease the interpretation of rules
obtained by ENDER, one can apply one of techniques proposed in [22], for example,
the post-processing phase in which the rules are refitted by using lasso regularization.
Another possibility is to sort the rules in the ensemble using some interestingness mea-
sures, as it is done in the case of association rules. Many such measures were already
introduced in the literature [38], however, recent results of comparative studies give pri-
ority to some Bayesian confirmation measures having desirable properties of symmetry
and monotonicity [39, 40].

On the other hand, ENDER can be parameterized in such a way that only few short
decision rules are generated — such rules can easily be interpreted while still maintaining
good performance. To this aim we have to use no shrinking and no sampling. Moreover,
we control the coverage of the rules by using the constant-step minimization.

222

K. Dembczynski, W. Kottowski, and R. Stowiriski

Table 2. Decision rules for the CREDIT-G data set. The decision part of the rule specifies the class
(sign of the rule response), the weight (absolute value of the response) of the rule (in the first
parenthesis), and the numbers of training examples that are correctly classified or misclassified
by the rule (in the second parenthesis, separated by “:”).

#

1.

RULE

if CHECKING STATUS = no checking account
and OTHER PAYMENT PLANS # bank

and AGE € [22.5,66.5]

and CREDIT AMOUNT < 10924.5,

then CUSTOMER = good (0.853) (302:23)

if DURATION > 15.5

and PURPOSE ¢ {used car, retraining}
and SAVINGS STATUS < 500

and AGE < 63.5

and CHECKING STATUS < 200,

then CUSTOMER = bad (0.606) (161:164)

if CREDIT HISTORY = critical /other existing credit
and CREDIT AMOUNT < 7806.5

and DURATION < 37.5

and PURPOSE # education

and AGE > 23.5

and OTHER PAYMENT PLANS = none

and OTHER PARTIES € {none, guarantor},

then CUSTOMER = good (0.883) (182:14)

if CHECKING STATUS < 0

and OTHER PARTIES = none

and SAVINGS STATUS < 500

and CREDIT AMOUNT > 438.0

and FOREIGN WORKER = no

and JOB # highqualif, sel femp, mgmt
and INSTALLMENT COMMITMENT > 1.5
and PURPOSE # business

and AGE < 66.0,

then CUSTOMER = bad (0.636) (95:48)

if PURPOSE = radio, tv

and PROPERTY MAGNITUDE # no known property
and AGE € [22.5,65.5]

and CREDIT AMOUNT < 4094.5

and CREDIT HISTORY # no credits, all paid

and DURATION > 39.0

and OTHER PARTIES € {none, guarantor},

then CUSTOMER = good (0.646) (168:24)

Beyond Sequential Covering — Boosted Decision Rules 223

Consider, for example, the CREDIT-G data set. We use ENDER with the exponen-
tial loss and constant-step minimization. We limit the number of rules to 5. We do not
perform regularization, i.e. no shrinking and no sampling is used. To obtain good per-
formance and interpretable rules, we tune parameter 3 only.

The rules are presented in Table 2. Parameter 3 has been set to 0.2. In 10-fold cross-
validation, the algorithm obtained the misclassification error equal to 26.2, which is
comparable to results obtained by other algorithms (see Table 1). Let us remark that in
this data set, 700 examples belong to the class of good customers, and 300 examples to
the class of bad customers. That is why the rules voting for the latter class can cover
more examples from the former class (see, the second rule).

8 Conclusions

We have shown how the algorithms for rule induction evolved from the sequential cov-
ering approach to the boosted rule ensembles. This latter framework for rule induction
algorithms have several important advantages.

Our results confirm the observation given in [20], that boosted rule ensembles are
in fact simpler and better-understood formally than other state-of-the-art rule learners.
They can be used with different loss functions. The purity measure is defined in a natural
way by performing different minimization techniques. One of them allows to control the
rule coverage. The proper regularization increases significantly the performance of the
algorithm. It is also easy to use the boosted decision rules to regression problems.

There are still, however, several problems waiting for a better solution. One of them
is the procedure for building the condition part of a single rule. Another one is the
improvement of interpretability of a rule ensemble.

Acknowledgements. The authors wish to acknowledge financial support from the Min-
istry of Science and Higher Education (grant no. N N519 314435).

References

1. Michalski, R.S.: A Theory and Methodology of Inductive Learning. In: Michalski, R.S., Car-
bonell, J.G., Mitchell, T.M. (eds.) Machine Learning: An Artificial Intelligence Approach,
pp- 83—129. Tioga Publishing, Palo Alto (1983)

2. Clark, P, Niblett, T.: The CN2 induction algorithm. Machine Learning 3, 261-283 (1989)

3. Cohen, W.W.: Fast Effective Rule Induction. In: Proc. of International Conference of Ma-
chine Learning, pp. 115-123 (1995)

4. Firnkranz, J.: Separate-and-Conquer Rule Learning. Artificial Intelligence Review 13(1),
3-54 (1996)

5. Jovanoski, V., Lavrac, N.: Classification Rule Learning with APRIORI-C. In: Proc. of the
10th Portuguese Conference on Progress in Artificial Intelligence, Knowledge Extraction,
Multi-agent Systems, Logic Programming and Constraint Solving, London, UK, pp. 44-51.
Springer, Heidelberg (2001)

6. Stefanowski, J., Vanderpooten, D.: Induction of Decision Rules in Classification and
Discovery-oriented Perspectives. International Journal on Intelligent Systems 16(1), 13-27
(2001)

224

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

K. Dembczynski, W. Kottowski, and R. Stowiriski

Bazan, J.G.: Discovery of Decision Rules by Matching New Objects Against Data Tables.
In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 521-528.
Springer, Heidelberg (1998)

Goéra, G., Wojna, A.: RIONA: A New Classification System Combining Rule Induction and
Instance-based Learning. Fundamenta Informaticae 54, 369-390 (2002)

Domingos, P.: Unifying Instance-based and Rule-based Induction. Machine Learning 24,
141-168 (1996)

Goéra, G., Wojna, A.: Local Attribute Value Grouping for Lazy Rule Induction. In: Alpigini,
J.J., Peters, J.F., Skowron, A., Zhong, N. (eds.) RSCTC 2002. LNCS (LNAI), vol. 2475, pp.
405-412. Springer, Heidelberg (2002)

Boros, E., Hammer, P.L., Ibaraki, T., Kogan, A., Mayoraz, E., Muchnik, I.: An Implementa-
tion of Logical Analysis of Data. IEEE Transactions on Knowledge and Data Engineering 12,
292-306 (2000)

Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer Academic
Publishers, Dordrecht (1991)

Stowinski, R. (ed.): Intelligent Decision Support. In: Handbook of Applications and Ad-
vances of the Rough Set Theory. Kluwer Academic Publishers, Dordrecht (1992)
Grzymala-Busse, J.W.: LERS — A System for Learning from Examples based on Rough
Sets. In: Stowinski, R. (ed.) Intelligent Decision Support, Handbook of Applications and
Advances of the Rough Sets Theory, pp. 3-18. Kluwer Academic Publishers, Dordrecht
(1992)

Skowron, A.: Extracting Laws from Decision Tables - A Rough Set Approach. Computa-
tional Intelligence 11, 371-388 (1995)

Stefanowski, J.: On Rough Set based Approach to Induction of Decision Rules. In: Skowron,
A., Polkowski, L. (eds.) Rough Set in Knowledge Discovering, pp. 500-529. Physica Verlag,
Heidelberg (1998)

Greco, S., Matarazzo, B., Stowinski, R., Stefanowski, J.: An algorithm for induction of de-
cision rules consistent with the dominance principle. In: Ziarko, W.P., Yao, Y. (eds.) RSCTC
2000. LNCS (LNAI), vol. 2005, pp. 304-313. Springer, Heidelberg (2001)

Freund, Y., Schapire, R.E.: A Decision-theoretic Generalization of On-line Learning and an
Application to Boosting. Journal of Computer and System Sciences 55(1), 119-139 (1997)
Hastie, T., Tibshirani, R., Friedman, J.H.: Elements of Statistical Learning: Data Mining,
Inference, and Prediction. Springer, Heidelberg (2003)

Cohen, W.W., Singer, Y.: A Simple, Fast, and Effective Rule Learner. In: Proc. of National
Conference on Artificial Intelligence, pp. 335-342 (1999)

Weiss, S.M., Indurkhya, N.: Lightweight Rule Induction. In: Proc. of International Confer-
ence on Machine Learning, pp. 1135-1142 (2000)

Friedman, J.H., Popescu, B.E.: Predictive Learning via Rule Ensembles. Annals of Applied
Statistics 2(3), 916-954 (2008)

Dembczyiiski, K., Kottowski, W., Stowinski, R.: Maximum Likelihood Rule Ensembles. In:
Proc. of International Conference on Machine Learning, pp. 224-231 (2008)

Btaszczynski, J., Dembcezyniski, K., Kottowski, W., Stowiriski, R., Szelag, M.: Ensembles of
Decision Rules. Foundations of Computing and Decision Sciences 31(3-4), 221-232 (2006)
Friedman, J.H.: Greedy Function Approximation: A Gradient Boosting Machine. Annals of
Statistics 29(5), 1189-1232 (2001)

Breiman, L.: Bagging Predictors. Machine Learning 24(2), 123-140 (1996)

Mason, L., Baxter, J., Bartlett, P., Frean, M.: Functional Gradient Techniques for Combining
Hypotheses. In: Bartlett, P., Scholkopf, B., Schuurmans, D., Smola, A.J. (eds.) Advances in
Large Margin Classifiers, pp. 33-58. MIT Press, Cambridge (1999)

Fiirnkranz, J.: Rule-based Classification. In: From Local Patterns to Global Models
ECML/PKDD 2008 Workshop (2008)

29.

30.

31.

32.

33.

34.

35.

36.
37.

38.

39.

40.

Beyond Sequential Covering — Boosted Decision Rules 225

Dembczyriski, K., Kottowski, W., Stowiniski, R.: A General Framework for Learning an En-
semble of Decision Rules. In: Fiirnkranz, J., Knobbe, A. (eds.) From Local Patterns to Global
Models ECML/PKDD 2008 Workshop (2008)

Schapire, R.E., Freund, Y., Bartlett, P., Lee, W.S.: Boosting the Margin: A New Explanation
for the Effectiveness of Voting Methods. Annals of Statistics 26(5), 1651-1686 (1998)
Friedman, J.H., Hastie, T., Tibshirani, R.: Additive Logistic Regression: A Statistical View
of Boosting. Annals of Statistics (with discussion) 28(2), 337-407 (2000)

Dietterich, T.G.: An Experimental Comparison of Three Methods for Constructing Ensem-
bles of Decision Trees: Bagging, Boosting, and Randomization. Machine Learning 40(2),
139-158 (2000)

Friedman, J.H., Popescu, B.E.: Importance Sampled Learning Ensembles. Research report,
Dept. of Statistics, Stanford University (2003)

Dembczyriski, K., Kottowski, W., Stowiriski, R.: Solving Regression by Learning an Ensem-
ble of Decision Rules. In: Rutkowski, L., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.)
ICAISC 2008. LNCS (LNAI), vol. 5097, pp. 533-544. Springer, Heidelberg (2008)

Witten, [.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd
edn. Morgan Kaufmann, San Francisco (2005)

Asuncion, A., Newman, D.J.: UCI Machine Learning Repository (2007)

Demsar, J.: Statistical Comparisons of Classifiers over Multiple Data Sets. Journal of Ma-
chine Learning Research 7, 1-30 (2006)

Hilderman, R.J., Hamilton, H.J.: Knowledge Discovery and Measures of Interest. Kluwer
Academic Publishers, Boston (2001)

Greco, S., Pawlak, Z., Stowiniski, R.: Can Bayesian confirmation measures be useful for
rough set decision rules? Engineering Applications of Artificial Intelligence 17, 345-361
(2004)

Brzeziniska, 1., Greco, S., Stowiriski, R.: Mining Pareto-optimal Rules with Respect to
Support and Anti-support. Engineering Applications of Artificial Intelligence 20, 587-600
(2007)

	Beyond Sequential Covering – Boosted Decision Rules
	Introduction
	Classification Problem
	Decision Rule
	Sequential Covering
	Boosted Decision Rules
	Extensions
	Rule Coverage
	Regularization
	Regression Problem
	Building Single Rules

	Experiment
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

