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Abstract. Ordinal classification problems with monotonicity constraints
(also referred to as multicriteria classification problems) often appear
in real-life applications, however they are considered relatively less fre-
quently in theoretical studies than regular classification problems. We
introduce a rule induction algorithm based on forward stagewise addi-
tive modeling that is tailored for this type of problems. The algorithm
monotonizes the dataset (excludes highly inconsistent objects) using
Dominance-based Rough Set Approach and generates monotone rules.
Experimental results indicate that taking into account the knowledge
about order and monotonicity constraints in the classifier can improve
the prediction accuracy.

1 Introduction

An ordinal classification problem with monotonicity constraints consists in as-
signment of objects to finite number of ordered classes. Objects are described
by attributes with ordered value sets and monotonicity constraints are present
in the data: a higher value of an object on an attribute, with other values being
fixed, should not decrease its class assignment. Problems of ordinal classifica-
tion in the presence of monotonicity constraints are commonly encountered in
real-life applications. A typical representative is multiple-criteria classification
considered within multiple-criteria decision analysis (MCDA) [11]. Moreover, in
many other domains ordinal and monotone properties follow from the domain
knowledge about the problem and should not be neglected. They are encountered
in such problems as bankruptcy risk prediction [10], breast cancer diagnosis [18],
house pricing [14], credit rating [6] and many others.

In order to solve ordinal classification problem with monotonicity constraints,
one can apply two steps for improving the accuracy of the classifier. The first
one consists in “monotonization” of the dataset, i.e. exclusion of objects highly
violating the monotone relationships. The second one consists in imposing the
constraints such that only monotone functions are taken into account.

Dominance-based Rough Set Approach (DRSA) [11] is one of the first ap-
proaches introduced to deal with this type of problems. By replacing indiscerni-
bility relation, considered in classical rough sets [15], with a dominance relation,



DRSA is able to handle inconsistencies following from violation of monotone re-
lationships. In this context several specialized decision rule induction algorithms
were proposed that were able to capture the ordinal nature of data and handle
domain knowledge in the form of monotonicity constraints [12, 5] (we will refer
to rules consistent with monotonicity constraints as monotone rules). Among
them, DOMLEM [12] seems to be the most popular one. It aims at finding a
minimal set of monotone rules covering the dataset, using the well-known se-
quential covering procedure as a search heuristic.

We follow a different methodology for monotone rule induction that is based
on forward stagewise additive modeling (FSAM) [7], i.e. greedy procedure for
minimizing a loss function on the dataset. The algorithm introduced in this pa-
per, called MORE (from MOnotone Rule Ensembles), treats a single rule as a
subsidiary base classifier in the ensemble. The rules are added to the ensemble it-
eratively, one by one. Each rule is fitted by concentrating on the examples which
were hardest to classify correctly by rules that have already been generated. The
advantage of this approach is that we use a single measure only (value of the
empirical risk) at all stages of learning procedure: setting the best cuts (con-
ditions), stopping the rule’s growth and determining the weight of the rule; no
additional features (e.g. impurity measures, pruning procedures) are considered.
Such an approach was already considered in ordinary classification problems and
algorithms such as RuleFit [9], SLIPPER [2], LRI [21] or Ensemble of Decision
Rules [1]. The algorithm presented here can be seen as an extension of the last
from the mentioned above methods. It monotonizes the dataset (excludes highly
inconsistent objects) using DRSA and then generates monotone rules.

2 Problem Statement

In the classification problem, the aim is to predict the unknown class label
y ∈ Y = {1, . . . ,K} (decision value) of an object x using the description of the
object in terms of p (condition) attributes, x = (x1, x2, . . . , xp) ∈ X, where X is
the attribute space. Here, we assume without loss of generality that value set of
each attribute is a subset of R, so that X ⊆ Rp. In the ordinal classification, it
is assumed that there is a meaningful order between classes which corresponds
to the natural order between class labels. We also assume the presence of mono-
tonicity constraints in the data.

In order to formalize the concept of monotonicity, we define the dominance
relation as a binary relation on X in the following way: for any x,x′ ∈ X we
say that x dominates x′, denoted x � x′, if on every attribute, x has value not
smaller than x′, xj ≥ x′j , for all j = 1, . . . , p. The dominance relation is a partial
pre-order on X, i.e. it is reflexive and transitive. Having defined the dominance
relation, we define the monotone function to be any function f :X → Y satisfying
the monotonicity constraints:

x � x′ → f(x) ≥ f(x′) (1)

for any x,x′ ∈ X.



Now, the problem of ordinal classification with monotonicity constraints can
be stated as a problem of finding the monotone classification function f(x) that
predicts accurately values of y. The accuracy is measured in terms of the loss
function L(y, f(x)), which is the penalty for predicting f(x) when the actual
value is y. The overall accuracy of function f(x) is defined as the expected loss
(risk) according to the probability distribution of data to be predicted:

R(f) = E[L(y, f(x))] (2)

Since the data probability distribution is unknown, the function is learned from a
set of n training examples {(x1, y1), . . . , (xn, yn)} (training set). In order to min-
imize the value of risk (2), the learning procedure usually performs minimization
of the empirical risk :

Remp(f) =
1
n

n∑
i=1

L(yi, f(xi)), (3)

which is the value of a loss function on the training set (training error). It
is possible to use a variety of loss functions for measuring accuracy; here, for
simplicity, we assume the loss function to be the absolute error loss,

Labs(y, f(x)) = |y − f(x)|. (4)

Although in classification a 0-1 loss is often considered (defined as L0−1(y, f(x)) =
1 if y 6= f(x), 0 otherwise), absolute error loss has the advantage over 0-1 loss
of being sensitive to the difference between predicted and actual class label,
therefore taking the order between classes into account.

Solution to the ordinal classification problem with loss function (4) can be
obtained by reducing the problem to K − 1 binary problems. Let us define for
a given class label y, auxiliary class labels yk equal to 1 if y ≥ k, otherwise −1,
for each k = 2, . . . ,K. Then, we have y = 1 +

∑K
k=2

1
2 (yk + 1). Moreover, let

fk(x) ∈ R to be a function such that if f(x) ≥ k, then fk(x) > 0, and fk(x) < 0
otherwise. Then, we have:

Labs(y, f(x)) = |y − f(x)| =
K∑
k=2

∣∣∣∣12(yk − sgn(fk(x)))
∣∣∣∣ = K∑

k=2

L0−1(ykfk(x))

where L0−1(ykfk(x)) is so called margin 0-1 loss defined for binary problems
as L0−1(ykfk(x)) = θ(−ykfk(x)), where θ(a) is a step function, equal to 1 for
a ≥ 0, and 0 elsewhere. The only problem is to satisfy fk(x) ≥ fk−1(x), for
k = 3, . . . ,K. If this condition is violated, one can try to find gk(x), k = 2, . . . ,K
satisfying this condition and being as close to fk(x), k = 2, . . . ,K as possible:

min
K∑
k=2

(fk(x)− gk(x))2

This is the problem of isotonic regression [17]. The final prediction is then
f(x) = 1+

∑K
k=2

1
2 (sgn(gk(x))+1). However, one does not need to solve isotonic



regression at all. It can be shown that simple voting procedure gives the same
prediction. For a given object x, if fk(x) > 0, then each class indicated by labels
k, . . . ,K gets vote |fk(x)|; if fk(x) < 0, each class indicated by labels 1, . . . , k−1
gets vote |fk(x)|. Votes are summed for each k = 1, . . . ,K and x is classified to
the class with the highest score.

From the monotonicity assumption dominance principle follows: for any two
objects xi,xj from the dataset, such that xi � xj , it should hold yi ≥ yj . How-
ever, it still may happen that in the dataset there exists an object xi, dominating
another object xj , while it holds yi < yj . Such a situation violates the mono-
tonicity assumption, so we shall call objects xi and xj inconsistent. Notice that
no monotone function can approximate accurately inconsistent objects. There-
fore, DRSA [11] and its stochastic extension [4] is applied in order to monotonize
the data. Instead of using all data, we remove the inconsistent objects taking
into account only stochastic lower approximations of decision classes:

Cl≥k = {xi : Pr(y ≥ k|xi) ≥ α, i = 1, . . . , n},
Cl≤k = {xi : Pr(y ≤ k|xi) ≥ α, i = 1, . . . , n}

where Pr(y ≥ k|xi) (Pr(y ≤ k|xi)) is a probability, conditioned on xi, of class
label at least (at most) k and α ∈ (0.5, 1] is a chosen consistency level. The prob-
abilities are obtained using maximum likelihood estimation taking into account
monotonicity constraints [4].

3 Ensemble of Decision Rules

This section describes the general scheme for decision rule induction. Here we
focus on the binary classification case and assume that Y = {−1, 1}, where a
“positive” class is ranked higher (in the order) to a “negative” class. This algo-
rithm can be used in to each of the K − 1 binary problems resulting from the
reduction of the ordinal classification problem. One can also use lower approxi-
mations instead of whole dataset.

Decision rule is a logical statement of the form: if [condition], then [decision].
Let Xj be the set of all possible values for the j-th attribute. Condition part
of the rule consist of elementary expressions of the form xj ≥ sj or xj ≤ sj for
some sj ∈ Xj . Let Φ denote the set of elementary expressions constituting the
condition part of the rule, and let Φ(x) be an indicator function equal to 1 if an
objects x satisfies the condition part of the rule (we also say that a rule covers
an object), otherwise Φ(x) = 0. The decision is a single real value, denoted by
α. Therefore, we define a decision rule as:

r(x) = αΦ(x). (5)

Notice that the decision rule takes only two values, r(x) ∈ {α, 0}, depending
whether x satisfies the conditions or not. In this paper, we assume the classifi-
cation function is a linear combinations of M decision rules:

f(x) = α0 +
M∑
m=1

rm(x), (6)



Algorithm 1: Monotone Rule Ensemble – MORE
input : set of n training examples {(y1,x1), . . . , (yn,xn)},

M – number of decision rules to be generated.
output: default rule α0, ensemble of decision rules {rm(x)}M1 .

α0 = arg minα
∑n
i=1 σ(αyi);

f0(x) = α0;
for m = 1 to M do

Φm(x) = arg maxΦ

∣∣∣∑Φ(xi)=1 yiσ
′(yifm−1(xi))

∣∣∣;
αm = arg minα

∑
Φm(xi)=1 σ(yi(fm−1(xi) + α));

rm(x) = αmΦm(x);
fm(x) = fm−1(x) + rm(x);

end

where α0 is a constant value, which can be interpreted as a default rule, covering
the whole X. Object x is classified to the class indicated by the sign of f(x).
The combination (6) has very simple interpretation as a voting procedure: rules
with positive α vote for the positive class, while rules with negative α – for
the negative class. Object x is classified to the class with higher vote (which is
equivalent to the sign of f(x)). Notice that in order to maintain monotonicity
of f(x), it is necessary and sufficient that for the m-th rule, αm is positive when
all elementary expressions in Φm are of the form xj ≥ sj ; similarly, for negative
αm all the conditions must be of the form xj ≤ sj .

Rule induction is performed by minimizing the margin 0-1 loss function (clas-
sification error) on the set of n training examples (empirical risk). Notice that
this loss function, is neither smooth nor differentiable. Therefore, we approxi-
mate it with the sigmoid function:

σ(x) =
1

1 + ex
(7)

Thus, we minimize the following empirical risk:

Remp(f) =
n∑
i=1

σ(yif(xi)) (8)

However, finding a set of rules minimizing (8) is computationally hard, that is
why we follow here FSAM, i.e. the rules are added one by one, greedily mini-
mizing (8). We start with the default rule defined as:

α0 = arg min
α
Remp(α) = arg min

α

n∑
i=1

σ(αyi). (9)

Let fm−1(x) be a classification function after m − 1 iterations, consisting of
first m− 1 rules and the default rule. The m-th decision rule rm(x) = αmΦm(x)
should be obtained from rm = arg minr Remp(fm−1+r), but in order to speed up



computations, it is built in two steps. First, we obtain value of Φm(x). Then, we
obtain value of αm by solving the line-search problem with formerly determined
Φm(x). To explain the procedure for determining Φm(x), let us expand the value
of the loss function up to the first order using g(x+ α) ' g(x) + αdg(x)dx :

σ(yi(fm−1(xi) + α)) = σ(yifm−1(xi)) + αyiσ
′(yifm−1(xi)), (10)

where σ′(x) is a derivative of sigmoid function σ(x). Using (10) in (8) we ap-
proximate the empirical risk Remp(fm−1 + r) as:∑

Φ(xi)=1

[
σ(yifm−1(xi)) + αyiσ

′(yifm−1(xi))
]
+

∑
Φ(xi)=0

σ(yifm−1(xi)). (11)

However, minimizing (11) is equivalent to minimizing:

Lm(Φ) =
∑

Φ(xi)=1

yiσ
′(yifm−1(xi)) (12)

for any positive value of α or maximizing (12) for any negative value of α.
Thus, the general idea of algorithm for finding Φm is the following: first we
search for Φ+

m with positive α by minimizing Lm(Φ), next we search for Φ−m with
negative α by maximizing Lm(Φ), and we choose Φm with higher |Lm(Φ)|, Φm =
arg max{|Lm(Φ+

m)|, |Lm(Φ−m)|}. The procedure for finding Φ+
m (Φ−m) resembles

the way the decision trees are generated. Here, we look for only one branch
instead of the whole decision tree. At the beginning, Φ+

m (Φ−m) is empty and
in each next step an elementary expression xj ≥ sj (xj ≤ sj) is added to Φ+

m

(Φ−m) until Lm(Φ+
m) (Lm(Φ−m)) cannot be decreased. Let us underline that a

minimal value of Lm(Φ+
m) (Lm(Φ−m)) is a natural stop criterion, what differs

this procedure from those used for decision trees generation. After Φm has been
determined, αm can be obtained by simply using the line search procedure to:

αm = arg min
α

∑
Φm(xi)=1

σ(yi(fm−1 + α)). (13)

In our implementation, to speed up the computations, instead of solving (9) and
(13) we perform a gradient search with short step – we choose αm to be a small,
fixed value ±γ that corresponds to a learning rate.

4 Experimental Results

In order to test how our approach to rule induction behaves in practice, we
selected eight datasets, for which it is known that monotonicity constraints make
sense. Five datasets come from UCI repository [19]: Wisconsin Breast Cancer,
CPU Performance, Ljubljana Breast Cancer, Boston House Pricing, Car. The
other three were obtained from different sources: Den Bosch House Pricing [3],
Bankruptcy Risk [10] and Windsor House Pricing [13]. Due to lack of space we
omit the detailed characteristics of each dataset.



For each dataset we tested three regular classifiers which do not take order nor
monotonicity into account: support vector machines (SVM) with linear kernel
[20], j48 decision trees [16] and AdaBoost [8] with decision stump as a base
learner. We used their implementations from Weka package [22]. Moreover, we
also used two versions of our MORE algorithm. The first one induces decision
rules from class unions. The second (“MORE+”) employs Stochastic DRSA [4]
and induces rules from lower approximations with consistency level 0.5. For SVM
and j48, typical parameters from Weka were chosen; for AdaBoost we increased
the number of iteration to 100 to make it more competitive; for MORE we have
chosen M = 100 and γ = 0.5). For each dataset and for each algorithm, 10-fold
cross validation was used and repeated 20 times to decrease the variance of the
results. The measured error rate is mean absolute error, which is the value of
absolute error loss on the testing set.

The results shown in Table 1 show a great improvement in accuracy when
using monotone rule ensembles over the regular classifiers. This is probably due
to the fact, that MORE utilizes the domain knowledge. Poor results of ordinary
algorithms, e.g. AdaBoost for Windsor dataset, can be explained by the fact,
that those algorithms are not adjusted to minimize absolute error. On the other
hand, there is only a small improvement (if any) in using lower approximations
in rule induction comparing to the rule induction from raw class unions.

5 Conclusions

We introduced a novel rule induction algorithm for ordinal classification problem
in the presence of monotonicity constraints. The algorithm uses forward stage-
wise additive modeling scheme for generating the ensemble of decision rules
for binary problems. We show how to solve the ordinal classification problem
with absolute error by solving binary subproblems with zero-one error. Due to
specific nature of the problem, a syntax typical to monotone rules was used to
find the statistically best ensemble. Moreover, we show how to use DRSA to deal
with inconsistent objects. The experimental results show that incorporating such
domain knowledge into classification algorithms can dramatically improve the
prediction accuracy.

Table 1. Mean absolute error ± standard error. For each dataset, the best method
and all methods within one standard error below the best are marked with bold.

Dataset SVM j48 Adaboost MORE MORE+

DenBosch 0.2055±.0042 0.1689±.0041 0.1294±.0025 0.1181±.0031 0.1303±.0035
CPU 0.4366±.0028 0.1261±.0037 0.5727±.0027 0.0641±.0023 0.0641±.0023
Wisconsin 0.0324±.0004 0.0536±.0015 0.0406±.0007 0.0359±.0007 0.0331±.0008
Bankruptcy 0.1692±.0039 0.1756±.0028 0.2692±.0090 0.1256±.0059 0.1256±.0059
Ljubljana 0.3203±.0035 0.2437±.0015 0.2727±.0024 0.2781±.0018 0.2510±.0028
Boston 0.3856±.0016 0.3813±.0042 0.7659±.0029 0.3118±.0019 0.3101±.0019
Windsor 0.5774±.0028 0.6440±.0042 0.9294±.0029 0.5046±.0025 0.5040±.0029
Car 0.6752±.0012 0.6517±.0016 0.4005±.0001 0.0473±.0007 0.0490±.0007
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