
Ensemble of Decision Rules for Solving Binary
Classification Problems in the Presence of

Missing Values

Jerzy Błaszczyński1, Krzysztof Dembczyński1, Wojciech Kotłowski1, Roman
Słowiński1,2, and Marcin Szeląg1

1 Institute of Computing Science, Poznań University of Technology,
60-965 Poznań, Poland

{kdembczynski, jblaszczynski, wkotlowski, rslowinski,
mszelag}@cs.put.poznan.pl

2 Institute for Systems Research, Polish Academy of Sciences, 01-447 Warsaw, Poland

Abstract. In this paper, we consider an algorithm that generates an
ensemble of decision rules. A single rule is treated as a specific subsidiary,
base classifier in the ensemble that indicates only one of the decision
classes. Experimental results have shown that the ensemble of decision
rules is as efficient as other machine learning methods. In this paper
we concentrate on a common problem appearing in real-life data that is
a presence of missing attributes values. To deal with this problem, we
experimented with different approaches inspired by rough set approach
to knowledge discovery. Results of those experiments are presented and
discussed in the paper.

1 Introduction

Decision rule is a logical expression in the form: if [conditions], then [decision].
If an object satisfies conditions of the rule, then it is assigned to the recommended
class. Otherwise the object remains unassigned. Decision rules were common in
the early machine learning approaches [1, 6], widely considered in the rough
set approaches to knowledge discovery (see for example, [20, 15, 23, 24]), and
within Logical Analysis of Data [3] where they are called patterns. The algorithm
described here follows a specific approach to decision rule generation. It treats
a single rule as a subsidiary, base classifier in the ensemble that indicates only
one of the decision classes.
Ensemble methods became a very popular approach to classification prob-

lems. These methods consist in forming an ensemble of classifiers that are simple
learning and classification procedures often referred to as base (or weak) learn-
ers. The ensemble members (i.e., base learners or classifiers) are applied to a
classification task and their individual outputs are then aggregated to one out-
put of the whole ensemble. The aggregation is computed as a linear combination
of outputs. The most popular methods that are used as base learners are de-
cision trees, for example C4.5 [21] or CART [5], and decision stumps (that are



one level decision trees). There are several approaches to construction of the en-
semble, the most popular are bagging [4] and boosting [22, 9]. These algorithms
have proven to be effective in reducing classification error of a base learner. In
other words, a committee of low performance learners creates a powerful and
quite simple solution for the classification problem. That is why these methods
are often treated as off-the-shelf methods-of-choice.

The ensemble of decision rules, in our approach, is constructed using a vari-
ation of forward stagewise additive modeling [10]. Similar technique is also used
by Friedman and Popescu [13]. However, one can observe substantial differences
between their algorithm and the one presented in this paper. In Friedman and
Popescu’s algorithm, the decision trees are used as the base classifiers, and then
each node (interior and terminal) of each resulting tree produces a rule. It is given
by the conjuction of conditions associated with all of the edges on the path from
the root to that node. Rule ensemble is then fitted by gradient directed regu-
larization [12]. The algorithm presented here generates directly a single rule, in
each iteration of forward stagewise additive modeling. This simpler way is as
efficient as other main machine learning methods [2]. Usually, it is enough to
generate around 50 rules to achieve satisfying accuracy and the rules, moreover,
are easy in interpretation. Our algorithm is also similar to SLIPPER introduced
by Cohen and Singer [7]. The difference is that SLIPPER uses AdaBoost [22]
schema to produce an ensemble of decision rules. Let us notice that AdaBoost is
a specific case of the forward stagewise additive modeling, so the latter is more
general approach [10].

In this paper, we concentrate on a common problem of data analysis. The
real-life data has often missing attributes values. There are several approaches
to deal with this problem. One might discard objects having missing values,
but this could lead to serious depletion of the training data. Another possibility
is to impute (i.e., fill in) missing values, with the mean, median or mode over
nonmissing values of objects on a given attribute. The approach taken here is
inspired by rough set theory.

The problem of missing values were studied in many places within rough set
theory (see, for example [14, 16–18]). According to Kryszkiewicz [18], generated
rules should remain true when all or some missing values will be replaced by
arbitrary values. Such an approach is compatible with knowledge discovery from
incomplete information systems. In fact, considered here classification problem
is quite different. We tried to adapt this approach to the ensemble of decision
rules. In this case, in classification procedure, it is reasonable that only universal
selector on a given attribute covers objects with missing values on this attribute.
It is so, because, the true value of the object on the attribute is unknown, and
we are certain that only universal selector will cover it. The goal of this paper
is to compare the approach mentioned-above with other approaches to missing
values.

The paper is organized as follows. In Section 2, the problem is formulated.
Section 3 presents the algorithm for construction of an ensemble of decision
rules. In Section 4 approaches taken to deal with problem of missing values are



presented. Section 5 contains experimental results. The last section concludes
the paper.

2 Problem Statement

Let us define the classification problem in a similar way as in [11, 13]. The aim
is to predict the unknown value of an attribute y (sometimes called output, re-
sponse variable or decision attribute) of an object using the known joint values
of other attributes (sometimes called predictors, condition attributes or indepen-
dent variables) x = (x1, x2, . . . , xn), where some of values may be missing. We
consider binary classification problem, and we assume that y ∈ {−1, 1}. In other
words, all objects for which y = −1 constitute decision class Cl−1, and all object
for which y = 1 constitute decision class Cl1. The goal of a learning task is to
find a function F (x) using a set of training examples {yi,xi}N

1 that classifies
accurately objects to these classes. The optimal classification procedure is given
by:

F ∗(x) = arg min
F (x)

EyxL(y, F (x))

where the expected value Eyx is over joint distribution of all variables (y,x) for
the data to be predicted. L(y, F (x)) is a loss or cost for predicting F (x) when
the actual value is y. The typical loss in classification tasks is:

L(y, F (x)) =
{

0 y = F (x),
1 y 6= F (x). (1)

The learning procedure tries to construct F (x) to be the best possible approxi-
mation of F ∗(x).

3 Ensembles of Decision Rules

Decision rule is a logical expression in the form: if [conditions], then [decision].
[conditions] are represented by a complex Φ = φ∝1 ∧ φ∝2 ∧ . . . ∧ φ∝t , where φ∝

is a selector and t is a number of selectors in the complex, also referred to as a
length of the rule. Selector φ∝ is defined as xj ∝ vj , where vj is a single value
or a subset of values from the domain of the j-th attribute; and ∝ is specified
as =,∈,≥ or ≤, depending on the characteristic of the j-attribute. In other
words, complex Φ is a set of selectors that allows to select a subset of objects.
Objects covered by complex Φ are denoted by cov(Φ) and referred to as cover
of a complex Φ. [decision] indicates one of the decision classes and is denoted
by d(x) = −1 or d(x) = 1. Let as denote a rule by r(x, c), where c represents
complex and decision of the rule, c = (Φ, d(x)). Then, the output of the rule
may be defined as follows:

r(x, c) =
{

d(x) x ∈ cov(Φ),
0 x 6∈ cov(Φ). (2)



Algorithm 1: Ensemble of decision rules
input : set of training examples (yi,xi), i = 1, ..., N ,

M – number of decision rules to be generated.
output: ensemble of decision rules {rm(x)}M

1 .
F0(x) := arg minα∈{−1,1}

PN
i L(yi, α); or F0(x) := 0; //default rule

F0(x) := ν · F0(x);
for m = 1 to M do

c := arg minc

P
i∈Sm(η) L(yi, Fm−1(xi) + r(xi, c));

rm(x) = r(x, c);
Fm(x) = Fm−1(x) + ν · rm(x);

end
ensemble = {rm(x)}M

1 ;

The loss of a single decision rule takes a specific form:

L(y, r(x, c)) =

0 y · r(x, c) = 1,
1 y · r(x, c) = −1,
l r(x, c) = 0,

(3)

where 0 ≥ l ≥ 1 is a penalty for specificity of the rule. It means, the lower the
value of l then the smaller the number of objects covered by the rule from the
opposite class.

Forward stagewise additive modeling [10] is a general schema that constructs
an ensemble. This schema may be suited to the problem of decision rules gen-
eration. We have used a variation of it that was also applied by Friedman and
Popescu [13]. In their approach, however, base classifiers are decision trees, from
which decision rules are produced. Here, the rule is generated directly in each
step of Algorithm 1. In this procedure, L(yi, F (x)) is a loss function, rm(x, c)
is a decision rule characterized by a set of parameters c and M is a number
of rules to be generated. Sm(η) represents a different subsample of size η ≤ N
randomly drawn with or without replacement from the original training data.
ν is so called “shrinkage” parameter, usually 0 ≤ ν ≤ 1. Values of ν determine
the degree to which previously generated decision rules rk(x,p), k = 1, . . . ,m,
affect the generation of a successive one in the sequence, i.e., rm+1(x,p).

In the algorithm, in each consecutive iteration m we augment the function
Fm−1(x) by one additional rule rm(x) weighted by shrinkage parameter ν. This
gives a linear combinations of rules Fm(x). The additional rule rm(x) = r(x, c)
is chosen to minimize

∑
i∈Sm(η) L(yi, Fm−1(xi) + r(xi, c)). F0(x) corresponds

to the default rule in the ensemble generation process. It is set to F0(x) :=
arg minα∈{−1,1}

∑N
i L(yi, α) (i.e., it corresponds to the default rule indicating

the majority class) or there is no default rule (then F0(x) = 0). The default rule
is taken with the same “shrinkage” parameter ν as all other rules.



The loss of the linear combination of rules Fm(x) takes the following form in
the simplest case:

L(y, Fm(x)) =

0 y · Fm(x) > 0,
1 y · Fm(x) < 0,
l y · Fm(x) = 0.

(4)

Nevertheless, the interpretation of l in the above definition is not as easy as in
the case of a single rule. It depends on all other parameters used in Algorirhm 1.
L(y, Fm(x)) takes value equal to l in two cases. The first case is, when F0(x) is
set to zero (there is no default rule) and no rule generated in m iterations cover
object x. The second case is when rules covering object x indicate equally two
classes Cl−1 and Cl1. The interpretation of l is similar to the case of a single
rule, when F0(x) is set to zero and ν = 1/M . Note that ν = 1/M means that
each next rule is more important than all previously generated.
Classification procedure is performed according to:

F (x) = sign(a0 +
M∑

m=1

amrm(x, c)). (5)

In other words, it is a linear classifier in a very high dimensional space of de-
rived decision rules that are highly nonlinear functions of the original predictor
variables x. Parameters {am}M

0 can be obtained in many ways. For example,
they can be set to fixed values (for example, a0=0 and {am = 1/M}M

1 ), com-
puted by some optimization techniques, fitted in cross-validation experiments or
estimated in a process of constructing the ensemble (like in AdaBoost [22]).
To perform our experiment, we have used simple greedy heuristic to con-

struct a single decision rule. It consists in searching for c such that Lm =∑
i∈Sm(η) L(yi, Fm−1(xi) + r(xi, c)) is minimal. At the beginning, the complex
contains an universal selector (i.e., all objects are covered by the rule). In the
next step, a new selector is added to the complex and a decision of the rule is
set. The selector and the decision are chosen to give the minimal value of Lm.
This step is repeated until Lm is minimized. Remaining settings of the algorithm
are as follows. We have decided to generate default rule indicating the major-
ity class. Besides (4), we have tried several formulas for loss function. The best
results were obtained, when we used sigmoidal function:

L(y, Fm(x)) =
1

1− exp(y · Fm(x))
, (6)

and this formulation was used in the experiment (for a wide discussion on dif-
ferent formulas for loss function see [10]). The “shrinkage” parameter was set
to ν = 0.5. Each rule is generated using subsample of size η = N drawn with
replacement. The classification is performed according to (5), where a0 = F0(x)
and {a}M

1 are set to 1.



4 Missing Values

Decision rule models are well-suited to problems where objects have missing
values. A single decision rule involves only a part of attributes. So, the algorithm
can seek for such selectors on attributes that “avoid” missing values. In this
paper, we have performed the experiment in which we have compared simple,
but also effective methods to deal with missing values inspired by rough set
approach to knowledge discovery. We assume here that the missing value is
interpreted in such a way that its true value is one of all possible values from the
domain of the considered attribute. This is consistent with the disjunctive and
exclusive interpretation of multi-valued information systems given by Düntsch,
Gediga and Orłowska in [8].
There are two problems to be solved. The first one is the way, in which a

single rule is generated in the presence of missing values. The second one is the
way, in which an unseen object having missing values is classified by a rule. The
first problem can be solved in the following ways:

(1) objects with missing values are discarded from the further analysis (this is
the simplest solution; we implemented it to have comparison with further
approaches),

(2) object with missing values satisfies all selectors built on attributes on which
object has no value,

(3) object with missing values does not satisfy selectors built on attributes on
which object has no value,

(4) object with missing values does not satisfy selectors built on attributes on
which object has no value for the rules with decision concordant with a
decision of the object, and satisfies all selectors built on attributes on which
object has no value for the rules with decision opposite to a decision of the
object.

The second problem can be solved in the following ways:

(a) an unseen object with missing values satisfies selectors built on attributes
on which object has no value,

(b) an unseen object with missing values does not satisfy selectors built on at-
tributes on which object has no value.

Approaches (2) and (a) are motivated by the fact that an object having a
missing value on an attribute may be treated as indiscernible with other object
on this attribute. So, any selector on this attribute is satisfied by this object.
One may also take another definition of indiscernibility, where only an universal
selector on the given attribute (i.e., all objects satisfy such an selector) covers an
object with missing value on this attribute. This definition is taken in approaches
(3) and (b).
The approach (4), in our opinion, is the most concordant with the rough set

theory. According to Kryszkiewicz [18], generated rules should remain true when
all or some missing values will be replaced by arbitrary values. Such an approach



Table 1. Approaches to missing values that were used.

Training phase Testing phase Abbrev. Training phase Testing phase Abbrev.
(1) (a) 1-a (3) (a) 3-a
(1) (b) 1-b (3) (b) 3-b
(2) (a) 2-a (4) (a) 4-a
(2) (b) 2-b (4) (b) 4-b

is compatible with knowledge discovery from incomplete information systems. In
fact, considered here classification problem is quite different. Nevertheless, the
linear combination of rules from the ensembles implies a partition of the space
of all joint predictor variable values x to some regions that might be interpreted
as granules of knowledge considered in rough set approaches. These granules
contain mainly object from one class. An object with missing value may either
belongs to such a granule or not depending on the true value of the attribute with
the missing value. It is also possible that the implied granule include a whole
domain of an attribute. Then objects with missing values on this attribute may
be contained in this granule. So, if a rule contains a selector built on attribute on
which an object has a missing value, it is reasonable to penalize, when this object
belongs to opposite class than the class indicated by the rule, and do not reward
when this object belongs to the class indicated also by the rule. It is implemented
by assuming that object with missing values does not satisfy selectors built on
attributes on which object has no value for the rules with decision concordant
with a decision of the object, and satisfies all selectors built on attributes on
which object has no value for the rules with decision opposite to a decision of
the object. Then, the loss of the rule increases when covering an object with
missing value from the opposite class, and do not decrease when covering an
object with missing value from the class concordant with the decision of the
rule.
In classification procedure, it is reasonable to proceed according to (b), i.e.,

only universal selectors on a given attribute covers an object with missing value
on this attribute. It is so, because, the true value of the object on the attribute
is unknown, and we are certain that only universal selector will cover it.

5 Experimental Results

We designed an experiment to compare performance of the ensemble of decision
rules with different approaches to missing values. To conduct this experiment
we implemented the method in Weka package [25]. We have decided to compare
all combinations of approaches described in Section 4.
For purpose of the experiment, we used four data sets taken from UCI [19]

repository of machine learning data sets. These sets contain two-class classifica-
tion problems that have large number of objects with missing values. The data



Table 2. Number of attributes and objects for data sets included in the experiment.

Data set Attributes Obj. class -1 Obj. class 1 Obj. with
missing values

colic 23 232 136 361
vote 17 267 168 203
labor 17 20 37 56
hepatitis 20 32 123 75

sets that we chosen are presented in Table 2. Hepatitis problem is highly unbal-
anced, but we have not used any technique to deal with this problem. Labor data
contains relatively small number of objects. We have decided to generate 15, 30,
and 60 rules and compare the performance of the algorithm for different number
of rules. To estimate classifiers error rates, we used 10-fold cross-validation that
we repeated 30 times. Results of the experiment are presented in Tables 3–4. In
those tables we show performance of classifiers on factors (given as percents):
correctly classified examples (C), true positive in class +1 (TP +1), precision in
class +1 (P +1), true positive in class -1 (TP -1), precision in class -1 (P -1).

It is easy to observe that discarding objects with missing values in the case
of colic and labor data sets is an unacceptable technique. However, for vote and
hepatitis problem, where the number of objects with missing values is relatively
smaller, the difference to more advance techniques is not so visible. For colic
problem technique 2-b seems to be the worst. One may see a slight superiority
of the 4-b approach. The higher number of rules in this case do not improve
the results significantly. It is hard to indicate the best technique in the case
of vote data. Also, the performance is good regardless for the number of rules
and chosen approach to missing values. We expect that there are some easy to
discover general patterns in this problem. The best performance for hepatitis
problem is achieved by the 3-a technique (particularly, the true positive ratio for
class 1 has an acceptable high level). The number of rules in this case plays an
important role. For 60 rules the true positive ratio is the highest. In our opinion,
it is caused by unbalanced number of objects in decision classes. For the labor
problem that contains relatively small number of objects, one may see that the
higher the number of rules than the performance is better. The best results for
labor are obtained by 2-a and 3-b techniques.

Concluding the above results, it is hard to point out the best approach to deal
with missing values. For sure, it is not a good idea to discard objects with some
missing values from the analysis. In some cases, it does not decrease results,
but it can provide to unacceptable results. It seems that the poorest results
from the more advance techniques are taken for 2-b. The increase of number
of rules, certainly, does not lead to worse results. However, in some cases, it
does not improve results significantly, but the cost of computations is of course
higher. Unfortunately, we can not say that the technique 4-b, which is the most



Table 3. Classification results in percents [%], part 1; C indicates Correctly classified
examples, TP +1 True Positive in class +1, P +1 Precision in class +1, TP -1 True
Positive in class -1, P -1 Precision in class -1.

Classifier colic vote
C TP +1 P +1 TP -1 P -1 C TP +1 P +1 TP -1 P -1

15 rules, 1-a 63.04 100.00 0.00 63 0 94.89 92.52 98.66 99.11 89.22
15 rules, 1-b 63.04 100.00 0.00 63 0 95.63 94.80 97.00 98.10 92.10
15 rules, 2-a 84.92 91.78 73.22 85.39 83.97 95.57 94.13 97.84 98.56 91.32
15 rules, 2-b 79.58 95.29 52.80 77.54 86.85 95.59 94.80 96.90 98.03 92.09
15 rules, 3-a 84.86 92.03 72.63 85.16 84.29 94.97 92.78 98.42 98.95 89.57
15 rules, 3-b 84.98 92.01 72.99 85.33 84.29 95.63 94.80 97.00 98.10 92.10
15 rules, 4-a 85.57 93.90 71.35 84.84 87.30 95.49 93.92 97.96 98.65 91.05
15 rules, 4-b 85.52 93.76 71.46 84.86 87.06 95.59 94.80 96.90 98.03 92.09
30 rules, 1-a 63.04 100.00 0.00 63 0 95.26 93.75 97.66 98.45 90.76
30 rules, 1-b 63.04 100.00 0.00 63 0 95.62 94.80 96.98 98.09 92.10
30 rules, 2-a 85.08 91.67 73.83 85.67 83.91 95.51 94.70 96.82 97.97 91.95
30 rules, 2-b 79.59 94.25 54.58 78.01 84.80 95.54 94.85 96.66 97.87 92.14
30 rules, 3-a 85.14 92.25 73.02 85.37 84.71 95.57 94.52 97.26 98.22 91.75
30 rules, 3-b 85.64 92.14 74.56 86.06 84.78 95.58 94.80 96.86 98.01 92.08
30 rules, 4-a 85.51 93.62 71.67 84.94 86.82 95.39 94.72 96.46 97.74 91.95
30 rules, 4-b 85.69 93.78 71.89 85.06 87.14 95.48 94.90 96.40 97.70 92.21
60 rules, 1-a 63.04 100.00 0.00 63 0 95.57 94.70 96.96 98.05 91.99
60 rules, 1-b 63.04 100.00 0.00 63 0 95.56 94.86 96.68 97.89 92.16
60 rules, 2-a 84.64 90.86 74.02 85.65 82.64 95.63 95.35 96.04 97.47 92.87
60 rules, 2-b 80.17 93.65 57.18 78.89 84.11 95.66 95.34 96.14 97.53 92.85
60 rules, 3-a 84.72 92.25 71.87 84.84 84.50 95.61 95.29 96.08 97.50 92.78
60 rules, 3-b 85.76 91.94 75.20 86.35 84.58 95.54 95.09 96.24 97.60 92.49
60 rules, 4-a 85.34 92.5 73.11 85.44 85.12 95.90 95.77 96.10 97.51 93.44
60 rules, 4-b 85.91 93.29 73.31 85.64 86.53 95.48 94.90 96.40 97.70 92.21

concordant with rough set approach, is the one achieving the best results. Some
further investigations are still required.

6 Conclusions and Future Plans

We have described a general algorithm constructing an ensemble of decision rules,
for which we have experimented with different approaches to deal with missing
values. These approaches were inspired by rough set approach to knowledge
discovery. It seems that it is hard to point out the best approach. Let us underline
that the decision rule models are well-suited to problems where objects have
missing values. A single decision rule involves only a part of attributes. So, the
algorithm can seek for such selectors on attributes that “avoid” missing values.
We plan to use another techniques that deal with missing values. These migth
be, for example, surrogate selectors by similarity to surrogate splits in CART [5]
and the approach taken in C4.5 [21].



Table 4. Classification results in percents [%], part 1; C indicates Correctly classified
examples, TP +1 True Positive in class +1, P +1 Precision in class +1, TP -1 True
Positive in class -1, P -1 Precision in class -1.

Classifier hepatitis labor
C TP +1 P +1 TP -1 P -1 C TP +1 P +1 TP -1 P -1

15 rules, 1-a 81.74 15.94 98.87 77.40 81.90 38.13 90.00 10.08 35.11 64.91
15 rules, 1-b 81.51 16.68 98.39 74.30 81.96 37.72 90.00 9.45 34.95 63.35
15 rules, 2-a 83.01 29.07 97.04 72.29 84.02 84.21 63.50 95.41 88.19 82.93
15 rules, 2-b 82.82 25.63 97.70 75.74 83.47 74.56 31.83 97.66 89.05 72.71
15 rules, 3-a 82.92 27.10 97.46 73.94 83.71 79.82 66.50 87.04 73.92 82.94
15 rules, 3-b 82.86 25.85 97.71 74.73 83.51 84.39 64.00 95.41 88.44 83.21
15 rules, 4-a 81.81 19.09 98.14 73.52 82.34 81.17 58.83 93.25 82.57 80.77
15 rules, 4-b 81.57 17.72 98.20 72.16 82.10 82.75 58.83 95.68 88.07 81.19
30 rules, 1-a 82.95 27.20 97.46 74.39 83.73 38.13 90.00 10.08 35.11 64.91
30 rules, 1-b 82.99 31.05 96.49 70.99 84.33 38.25 90.00 10.26 35.16 65.36
30 rules, 2-a 83.72 40.02 95.08 68.24 85.92 88.66 76.33 95.32 89.96 88.23
30 rules, 2-b 82.60 34.28 95.16 65.12 84.79 79.59 47.67 96.85 89.60 77.54
30 rules, 3-a 84.37 46.36 94.25 67.99 87.12 82.81 77.83 85.51 74.71 87.75
30 rules, 3-b 82.65 38.13 94.22 63.36 85.43 87.95 74.17 95.41 89.90 87.31
30 rules, 4-a 82.06 29.49 95.72 64.49 83.94 84.39 69.17 92.62 83.59 84.83
30 rules, 4-b 82.13 29.81 95.72 64.84 84.00 84.15 66.33 93.79 85.56 83.84
60 rules, 1-a 83.81 33.98 96.76 74.59 84.93 38.13 90.00 10.08 35.11 64.91
60 rules, 1-b 83.25 33.66 96.13 69.57 84.80 38.13 90.00 10.08 35.11 64.91
60 rules, 2-a 83.03 42.93 93.47 63.18 86.30 90.82 83.50 94.78 89.75 91.45
60 rules, 2-b 83.01 37.62 94.81 65.77 85.40 83.28 60.00 95.86 88.94 81.67
60 rules, 3-a 84.52 55.22 92.15 64.78 88.78 86.14 80.33 89.29 80.58 89.40
60 rules, 3-b 83.23 41.89 93.98 64.46 86.15 90.58 81.67 95.41 90.59 90.62
60 rules, 4-a 81.81 33.34 94.41 60.93 84.50 86.37 74.50 92.80 84.97 87.11
60 rules, 4-b 81.59 31.68 94.57 60.46 84.19 86.78 73.83 93.79 86.58 86.99

Acknowledgements. The authors wish to acknowledge financial support from the
Ministry of Education and Science (grant no. 3T11F 02127).

References

1. Michalski, R.S.: A Theory and Methodology of Inductive Learning. In Michal-
ski, R.S., Carbonell, J.G., Mitchell, T.M. (eds.): Machine Learning: An Artificial
Intelligence Approach. Palo Alto, Tioga Publishing, (1983) 83–129

2. Błaszczyński, J., Dembczyński, K., Kotłowski, W., Słowiński, R., Szeląg, M.: En-
semble of Decision Rules. (submitted) (2005)

3. Boros, E., Hammer, P. L., Ibaraki, T., Kogan, A., Mayoraz, E., Muchnik, I.: An
Implementation of Logical Analysis of Data. IEEE Trans. on Knowledge and Data
Engineering 12 (2000) 292–306

4. Breiman, L.: Bagging Predictors. Machine Learning 24 2 (1996) 123–140
5. Breiman, L., Friedman, J. H., Olshen, R. A., Stone, C. J.: Classification and Re-
gression Trees. Wadsworth, (1984)



6. Clark, P., Nibbet, T.: The CN2 induction algorithm. Machine Learning 3 (1989)
261–283

7. Cohen, W., W., Singer, Y.: A simple, fast, and effective rule learner. Proc. of 16th
National Conference on Artificial Intelligence (1999) 335–342

8. Düntsch, I., Gediga, G., Orłowska, E.: Relational attribute systems. International
Journal of Human-Computer Studies, 55 (2001) 293–309

9. Friedman, J. H., Hastie, T. and Tibshirani, R.: Additive logistic regres-
sion: a statistical view of boosting. Stanford University Technical Report,
http://www-stat.stanford.edu/~jhf/ (last access: 1.05.2006), August (1998)

10. Friedman, J. H., Hastie, T. and Tibshirani, R.: Elements of Statistical Learning:
Data Mining, Inference, and Prediction, Springer (2003)

11. Friedman, J. H.: Recent advances in predictive (machine) learning. Stanford
University Technical Report, http://www-stat.stanford.edu/~jhf/ (last access:
1.05.2006), November (2003)

12. Friedman, J. H., Popescu, B. E.: Gradient directed regularization. Stanford Uni-
versity Technical Report, http://www-stat.stanford.edu/~jhf/ (last access:
1.05.2006), February (2004)

13. Friedman, J. H., Popescu, B. E.: Predictive Learning via Rule Ensembles. Stanford
University Technical Report, http://www-stat.stanford.edu/~jhf/ (last access:
1.05.2006), February (2005)

14. Greco S., Matarazzo, B. and Słowiński, R.: Dealing with missing data in rough set
analysis of multi-attribute and multi-criteria decision problems. [In]: Zanakis, S.
H., Doukidis, G., Zopounidis C. (eds.), Decision Making: Recent Developments and
Worldwide Applications. Kluwer Academic Publishers, Dordrecht (2000) 295–316

15. Grzymala-Busse, J., W.: LERS — A system for learning from examples based
on rough sets. In Słowiński, R. (ed.): Intelligent Decision Support, Handbook of
Applications and Advances of the Rough Sets Theory. Kluwer Academic Publishers
(1992) 3–18

16. Grzymala-Busse, J. W., Hu, M.: A Comaprison of Several Approaches in Missing
Attribute Values in Data Mining, LNAI 2005 (2000) 378–385

17. Grzymala-Busse, J. W.: Incomplete Data and Generalization of Indiscernibility
Relation, Definability, and approximation, LNAI 3614 (2005) 244–253

18. Kryszkiewicz, M.,: Rough Set approach to incomplete information systems. Infor-
mation Sciences 112 (1998) 39–49

19. Newman, D., J., Hettich, S., Blake, C., L., Merz, C.,J. (UCI) Repository of machine
learning databases. http://www.ics.uci.edu/∼mlearn/MLRepository.html (last
access: 01.05.2006), Dept. of Information and Computer Sciences, University of
California, Irvine (1998)

20. Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer
Academic Publishers, Dordrecht, (1991)

21. Quinlan, J. R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)
22. Schapire, R. E., Freund, Y., Bartlett, P, Lee, W. E.: Boosting the margin: A new
explanation for the effectiveness of voting methods. The Annals of Statistics 26 5
(1998) 1651–1686

23. Skowron, A.: Extracting laws from decision tables - a rough set approach. Compu-
tational Intelligence 11 371–388

24. Stefanowki, J.: On rough set based approach to induction of decision rules. In
Skowron,A. and Polkowski, L. (eds): Rough Set in Knowledge Discovering, Physica
Verlag, Heidelberg (1998) 500–529

25. Witten, I., H., Frank, E.: Data Mining: Practical machine learning tools and tech-
niques, 2nd Edition. Morgan Kaufmann, San Francisco (2005)


