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Abstract

We investigate the online version of Principle Component Analysis (PCA), where in each
trial t the learning algorithm chooses a k-dimensional subspace, and upon receiving the
next instance vector xt, suffers the “compression loss”, which is the squared Euclidean
distance between this instance and its projection into the chosen subspace. When viewed
in the right parameterization, this compression loss is linear, i.e. it can be rewritten as
tr(Wtxtx

>
t ), where Wt is the parameter of the algorithm and the outer product xtx

>
t

(with ‖xt‖ ≤ 1) is the instance matrix. In this paper generalize PCA to arbitrary positive
definite instance matrices Xt with the linear loss tr(WtXt).

We evaluate online algorithms in terms of their worst-case regret, which is a bound on
the additional total loss of the online algorithm on all instances matrices over the com-
pression loss of the best k-dimensional subspace (chosen in hindsight). We focus on two
popular online algorithms for generalized PCA: the Gradient Descent (GD) and Matrix
Exponentiated Gradient (MEG) algorithms. We show that if the regret is expressed as a
function of the number of trials, then both algorithms are optimal to within a constant
factor on worst-case sequences of positive definite instances matrices with trace norm at
most one (which subsumes the original PCA problem with outer products). This is sur-
prising because MEG is believed be suboptimal in this case. We also show that when
considering regret bounds as a function of a loss budget, then MEG remains optimal and
strictly outperforms GD when the instance matrices are trace norm bounded.

Next, we consider online PCA when the adversary is allowed to present the algorithm
with positive semidefinite instance matrices whose largest eigenvalue is bounded (rather
than their trace which is the sum of their eigenvalues). Again we can show that MEG is
optimal and strictly better than GD in this setting.

Keywords: online learning, regret bounds, expert setting, k-sets, PCA, Gradient Descent,
Matrix Exponentiated Gradient algorithm

1. Introduction

In Principal Component Analysis (PCA), the data points xt ∈ Rn are projected / com-
pressed onto a k-dimensional subspace. Such a subspace can be represented by its projec-
tion matrix P which is a symmetric matrix in Rn×n with k eigenvalues equal 1 and n − k

*. A preliminary version of this paper appeared in the 24th International Conference on Algorithmic Learn-
ing Theory (2013) (Nie et al., 2013).
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eigenvalues equal 0. The goal of uncentered PCA is to find the rank k projection matrix that
minimizes the total compression loss

∑
t ‖Pxt−xt‖2, i.e. the sum of the squared Euclidean

distances between the original and the projected data points.In centered PCA the goal is to
minimize

∑
t ‖P (xt−µ)− (xt−µ)‖2 where P is a projection matrix of rank k and m ∈ Rn

is a second mean parameter. For the sake of simplicity we focus on the optimal algorithms
for uncentered PCA. However we believe that our results will essentially carry over to the
centered case as was already partially done in Warmuth and Kuzmin (2008). Surprisingly,
this loss can be written as a linear loss (Warmuth and Kuzmin, 2008):∑
t

‖Pxt − xt‖2 =
∑
t

‖(P − I)xt‖2 =
∑
t

x>t (I − P )�2xt = tr
(
(I − P )

∑
t

xtx
>
t︸ ︷︷ ︸

C

)
,

where in the 3rd equality we used the fact that I −P is a projection matrix and therefore
(I − P )2 = I − P . The final expression of the compression loss is linear in the projection
matrix P − I as well as the covariance matrix C =

∑
t xtx

>
t . The projection matrix P − I

is a sum of n − k outer products: P − I =
∑n−k

i=1 uiu
>
i , where the ui are unit length and

orthogonal. The crucial point to note here is that the compression loss is linear in the
projection matrix P − I but not in the direction vectors ui.

The batch version of uncentered PCA is equivalent to finding the eigenvectors u1, . . . ,uk
belonging to the k largest eigenvalues of the covariance matrix C: if P =

∑k
i=1 uiu

>
i is

the k dimensional projection matrix formed from these k eigenvectors, then I − P is the
complimentary n−k dimensional projection matrix minimizing the linear loss tr((I−P )C).

In this paper we consider the online version of uncentered PCA (Warmuth and Kuzmin,
2008), where in each trial t = 1, . . . , T , the algorithm chooses (based on the previously
observed points x1, . . . ,xt−1) a subspace of dimension k described by its projection matrix
Pt of rank k. Then a next point xt (or instance matrix xtx

>
t ) is revealed and the algorithm

suffers the compression loss:

‖xt − Ptxt‖2 = tr
(
(I − Pt) xtx>t

)
. (1.1)

The goal here is to obtain an online algorithm whose cumulative loss over trials t = 1, . . . , T
is close to the cumulative loss of the best rank k projection matrix chosen in hindsight
after seeing all T instances. The maximum difference between the cumulative loss of the
algorithm and the best off-line comparator is called the (worst-case) regret. This regret
naturally scales with the maximum square L2-norm of the data points xt. For the sake of
simplicity we assume that all points have L2-norm bounded by one, i.e. ‖xt‖ ≤ 1 for all
t. In the paper we find the optimal algorithm for online PCA (and some generalizations),
where optimal here means that the upper bounds we prove for the regret of the algorithm
is at most a constant factor larger than the lower bound we can prove for the learning
problem.

There are two main families of algorithms in online learning, which differ in how the
parameter vector/matrix is updated: the Gradient Descent (GD) family (Cesa-Bianchi
et al., 1996; Kivinen and Warmuth, 1997; Zinkevich, 2003) and the Exponentiated Gradient
(EG) family (Kivinen and Warmuth, 1997). The updated parameters of both families of
algorithms are solutions to certain minimization problems which trade off a divergence to
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the last parameter against the loss on the current instance. The GD family uses the squared
Euclidean distance divergence in the trade-off, whereas the Exponentiated Gradient (EG)
family is motivated by the relative entropy divergence (Kivinen and Warmuth, 1997). The
first family leads to additive updates of the parameter vector/matrix. When there are no
constraints on the parameter space, then the parameter vector/matrix of the GD family
is a linear combination of the instances. However when there are constraints, then after
the update the parameter is projected onto the constraints (by a Bregman projection with
respect to the squared Euclidean distance). The second family leads to multiplicative update
algorithms. For that family, the components of the parameter are non-negative and if the
parameter space consists of probability vectors, then the non-negativity is already enforced
by the relative entropy divergence and less projections are needed.

What is the best parameter space for uncentered PCA? The compression loss (1.1) is
linear in the projection matrix matrix I − Pt which is of rank n− k. An online algorithm
has uncertainty over the best projection matrix. Therefore the parameter matrix Wt of
the algorithm is a mixture of such matrices (Warmuth and Kuzmin, 2008) which must be a
positive semi-definite matrix of trace n−k whose eigenvalues are capped at 1. The algorithm
chooses its projection matrix I−Pt by sampling from this mixture Wt, i.e. E[I−Pt] = Wt.
The loss of the algorithm is tr((I − Pt) xtx>t ) and its expected loss tr(Wt xtx

>
t ).

In Warmuth and Kuzmin (2008), a matrix version of the multiplicative update was
applied to PCA, whose regret bound is logarithmic in the dimension n. This algorithm
uses the quantum relative entropy in its motivation and is called the Matrix Exponentiated
Gradient (MEG) algorithm (Tsuda et al., 2005). It does a matrix version of a multiplicative
update and then projects onto the “trace equal n− k” and the “capping” constraints (Here
the projections are with respect to the quantum relative entropy).

For the PCA problem, the (expected) loss of the algorithm at trial t is tr(Wtxtx
>
t ).

Consider the generalization to the loss tr(WtXt) where now Xt is any positive semi-definite
symmetric instance matrix and the parameter Wt is still a convex combination of rank n−k
dimensional projection matrices, i.e. Wt = E[I − Pt] where Pt is the rank k projection
matrix chosen by the algorithm at trial t. The linear loss tr(E[I−Pt]Xt) still has a meaning
in terms of a compression loss: For any decomposition of Xt into a linear combination of
outer products, i.e. Xt =

∑
q λqzqz

>
q (where the λi may be positive or negative and the

zq ∈ Rn don’t have to be orthogonal) we have

tr((I − Pt)Xt) =
∑
q

λq tr((I − Pt)zqz>q ) =
∑
q

λq ‖zq − Ptzq‖2. (1.2)

In this paper we analyze our algorithm for two classes of positive definite instance matrices.
Recall that in the vanilla PCA problem the instance matrices are the outer products, i.e.
Xt = xtx

>
t , where ‖xt‖ ≤ 1. Such instance matrices have a “sparse spectrum” in the sense

that they have at most one non-zero eigenvalue. Our first class consists of the convex hull
of outer products of length at most one or equivalently all positive semidefinite matrices
of trace norm at most one. We call this class L1-bounded instance matrices. The most
important fact to remember is that the case of L1-bounded instances contains vanilla PCA
with outer product instances as a special case.

Beginning with some of the early work on linear regression (Kivinen and Warmuth,
1997), it is known that multiplicative updates are especially useful when the non-negative
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instance vectors are allowed to be “dense”, i.e. their maximum component is bounded by
say one but it could contain many components of size up to one. In the matrix context
this means that the symmetric positive semi-definite instance matrices Xt have maximum
eigenvalue (or spectral norm) at most one and are thus “spectrally dense”. We call this
second class L∞-bounded instance matrices.

We will show that MEG is optimal for L∞-bounded instance matrices and GD is sub-
optimal in this case. However for L1-bounded instances one might suspect that MEG is
not able to fully exploit the spectral sparsity. For example, in the case of linear regression
GD is known to have the advantage when the instance vectors1 have bounded L2 norm
(Kivinen and Warmuth, 1997) and consistently with that, when GD is used for PCA with
L1-bounded instance matrices, then its regret is bounded by a term that is independent
of the dimension of the instances. The advantage of GD in the spectrally sparse case is
also supported by a general survey of Mirror Descent algorithms (to which GD and MEG
belong) for the case when the gradient vectors of the convex loss functions (which may have
negative components) lie in certain symmetric norm balls (Srebro et al., 2011). Again when
the gradient vectors of the losses are sparse, then GD has the advantage.

Surprisingly, the situation is quite different for PCA: We show that MEG achieves the
same regret bound as GD for online PCA with L1-bounded instances matrices (despite the
spectral sparseness) and the regret bounds for both algorithms are within a constant factor
of a new lower bound proved in this paper that holds for any algorithm for PCA with L1-
bounded instance matrices. This surprising performance of MEG seems to come from the
fact that gradients Xt of the linear loss tr(WtXt) of our generalized online PCA problem
are restricted to be non-negative. Therefore our results are qualitatively different from the
cases studied in Srebro et al. (2011) where the gradients of the loss functions are within a
p−norm ball, i.e. symmetric around zero.

Actually, there are two kinds of regret bounds in the literature: bounds expressed as a
function of the time horizon T and bounds that depend on an upper bound on the loss of the
best comparator (which we call a loss budget following Abernethy et al. (2008)). In typical
applications for PCA, there exists a low dimensional subspace which captures most of the
variance in the data and the compression loss is small. Therefore, guarding against the
worst-case loss that grows with the number of trials T is overly pessimistic. We can show
that when considering regret bounds as a function of a loss budget, MEG is optimal and
strictly better than GD by a factor of

√
k. This suggests that the multiplicative updates

algorithm is the best choice for prediction problems in which the parameters are mixtures
of projection matrices and the gradients of the losses are non-negative. Note that in this
paper we call an algorithm optimal for a particular problem if we can prove an upper bound
on its worst-case regret that is within a constant factor of the lower bound for the problem
(which must holds for any algorithm).

1.1 Related Work and Our Contribution:

The comparison of the GD and MEG algorithms has an extensive history (see, e.g. Kivinen
and Warmuth (1997); Warmuth and Vishwanathan (2005); Sridharan and Tewari (2010);
Srebro et al. (2011)). It is simplest to compare algorithms in the case when the loss is

1. Note that for x ∈ Rn, ‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1.
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linear. Linear losses are the least convex losses and in the regret bounds, convex losses are
often approximated by first-order Taylor approximations which are linear, and the gradient
of the loss function serves as the linear “loss/gain vector” (Kivinen and Warmuth, 1997;
Zinkevich, 2003). In this case it is often assumed that the gradient of the loss lies in an Lp
ball (which is a symmetric constraint) and the results are as expected: EG is optimal when
the parameter space is L1-bounded and the gradient vectors are L∞-bounded, and GD is
optimal when the both spaces are L2-bounded (Sridharan and Tewari, 2010; Srebro et al.,
2011).

In contrast for PCA, the gradient of the loss tr(WtXt) is the instance matrix Xt which
is assumed to be positive semi-definite. None of the previous work exploits this special
property of the PCA setup, where the gradient of the loss satisfies some non-negativity
property. In this paper we carefully study this case and show that MEG is optimal.

We also made significant technical progress on the lower bounds for online PCA. The
previous lower bounds (Warmuth and Kuzmin (2008) and Koolen et al. (2010)) were in-
complete in the following three ways: First, the lower bounds only apply to the case of
L∞-bounded instances and not to the more restricted case of L1-bounded instances. Sec-
ond, the previous lower bounds assume that the dimension k of target subspace is at least
n
2 and in common PCA problems, k is much smaller than n

2 . Third, the proofs rely on the
Central Limit Theorem and therefore the resulting lower bounds only hold in the limit as
T and n go to infinity (See Cesa-Bianchi et al. (1997); Cesa-Bianchi and Lugosi (2006);
Abernethy et al. (2009) for details). In this paper, we circumvent all three weak aspects of
the previous proofs: We give lower bounds for all four combinations of L1 or L∞-bounded
instance matrices versus k ≤ n

2 or k ≥ n
2 , respectively. All our lower bounds are non-

asymptotic, i.e. they hold for all values of the variables T and n. The new lower bounds use
a novel probabilistic bounding argument for the minimum of n random variables. Alternate
methods for obtaining non-asymptotic lower bound for label efficient learning problems in
the expert setting were given in (Audibert and Bubeck, 2010). However those techniques
are more complicated and it is not clear how to adapt them to the online PCA problem.

In summary, our contribution consists of proving tight upper bounds on the regret of
the two main online PCA algorithms, as well as proving lower bounds on the regret of any
algorithm for solving online PCA. For the case when the regret is expressed as a function
of the number of trials T , we show that MEG’s and GD’s regret bounds are independent
of the dimension n of the problem and are within a constant factor of the lower bound on
the regret of any online PCA algorithm. This means the both algorithms are optimal in
this case. For the case when the regret is a function of the loss budget, we prove that MEG
remains optimal, while we show that the regret of GD is suboptimal by a

√
k factor.

Furthermore, for the generalization of the PCA with L∞-bounded instance matrices,
we improve the known regret bound significantly by switching from a loss version to a gain
version of MEG depending on the dimension k of the subspace. If k ≥ n

2 , then the gain
version of MEG is optimal for L∞-bounded instances, and when k ≤ n

2 , then the loss version
is optimal. On the other hand, GD is non-optimal for both ranges of k.

A much shorter preliminary version of this manuscript appeared in the 24th International
Conference on Algorithmic Learning Theory (2013) (Nie et al., 2013). In this more detailed
journal version we give more background and complete proofs of all of our results (mostly
omitted or only sketched in the conference version). This paper also has the following
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additional material: A proof of the budget bound (3.5) for the gain version of MEG; an
extension of the lower bound on the regret of GD (Theorem 4.1) to the case of small
budgets; the analysis of the Follow the Regularized Leader variant of GD (Section 4.2) and
a discussion of its final parameter matrix (Appendix E); lower bounds on the regret when
the number of trials is small (Appendix G).

1.2 Outline of the Paper:

In Section 2, we start with describing the MEG and GD algorithms for online PCA. In
particular, we present two versions of the MEG algorithm: the Loss MEG algorithm intro-
duced in (Warmuth and Kuzmin, 2008), and the Gain MEG algorithm, which is the same
as Loss MEG except for a sign change in the exponential. Following the description of each
algorithm, we then derive in Section 3 their regret bounds expressed as functions of the
number of trials T . These bounds are compared in Section 3.2 for all four combinations of
L1 or L∞-bounded instance matrices versus k ≤ n

2 or k ≥ n
2 , respectively (see Table 3.2).

Next we consider regret bounds expressed as functions of the loss budget. In Section 4,
we prove a lower bound on GD’s regret which shows that the regret of GD is at least

√
k

times larger than the regret of Loss EG. A similar lower bound is proved for the Follow the
Regularized Leader variant of GD in Section 4.2. In Section 5 we prove lower bounds for
online PCA with L1 and L∞-bounded instances that hold for any online algorithm, and in
Section 6 we conclude with a summary of which algorithms are optimal.

2. The Online Algorithms

Online uncentered PCA uses the following protocol in each trial t = 1, . . . , T : the algorithm
probabilistically chooses a projection matrix Pt ∈ Rn×n of rank k. Then a point xt ∈ Rn is
received and the algorithm suffers the loss tr((I − Pt)xtx>t ).

We also consider the generalization where the instance matrix is any positive definite
matrix Xt instead of an outer product xtx

>
t . In that case the loss of the algorithm is

tr((I − Pt)Xt). As discussed in the introduction (e.g. Equation (1.2)), this linear loss has
a compression loss interpretation. It is “complementary” to the gain tr(PtXt), i.e.

tr((I − Pt)Xt)︸ ︷︷ ︸
loss

= tr(Xt)︸ ︷︷ ︸
constant

− tr(PtXt)︸ ︷︷ ︸
gain

,

and the n−k dimensional projection matrix I−Pt is “complementary” to the k dimensional
projection matrix Pt. These two complementations are inherent to our problem and will be
present throughout the paper.

In the above protocol, the algorithm is allowed to choose its k dimensional subspace
Pt probabilistically. Therefore we use the expected compression loss E[tr((I − Pt)Xt)] as
the loss of the algorithm. The regret of the algorithm is then the difference between its
cumulative loss and the loss of the best k subspace:

R =

T∑
t=1

E[tr((I − Pt)Xt)] − min
P projection

matrix of rank k

T∑
t=1

tr((I − P )Xt).

6



Online PCA with Optimal Regret

The regret can also be rewritten in terms of gain, but this gives the same value of the
regret. Therefore, throughout the paper we use (expected) losses and “loss” regrets (as
defined above) to evaluate the algorithms.

Now we rewrite the loss of the algorithm as tr(E[I − Pt]Xt) which shows that for
any random prediction Pt of rank k, this loss is fully determined by E[I − Pt], a convex
combination of rank m = n − k projection matrices. Hence it is natural to choose the set
Wm of convex combinations of rank m projection matrices as the parameter set of the
algorithm. By the definition of projection matrices, Wm is the set of positive semi-definite
matrices of trace m and eigenvalues not larger than 1. The current parameter Wt ∈Wm

of the online algorithm expresses its “uncertainty” about which subspace of rank m is best
for the online data stream seen so far and the (expected) loss in trial t becomes tr(WtXt).
Alternatively, the complementary set Wk of rank k projection matrices can be used as the
parameter set (In that case the loss is tr((I −Wt)Xt)). As discussed, there is a one-to-
one correspondence between the two parameter sets: Given W ∈Wk, then I −W is the
corresponding convex combination in Wm.

The second reason why convex combinations are natural parameter spaces is that since
the loss is linear, the convex combination with the minimum loss occurs at a “pure” pro-
jection matrix, i.e.

min
W∈Wm

T∑
t=1

tr(WXt) = min
P projection

matrix of rank k

T∑
t=1

tr((I − P )Xt) and

min
W∈Wk

T∑
t=1

tr((I −W )Xt) = min
P projection

matrix of rank k

T∑
t=1

tr((I − P )Xt). (2.1)

Our protocol requires the algorithm to predict with a rank k projection matrix. There-
fore, given a parameter matrix Wt in say Wm, the online algorithm still needs to produce a
random projection matrix Pt of rank k at the beginning of trial t such that E[I−Pt] = Wt.
A simple greedy algorithm for achieving this is given in (Warmuth and Kuzmin, 2008)
(Algorithm 2) which efficiently decomposes Wt into a convex combination of up to n pro-
jection matrices of rank m (the algorithm requires the eigenvalue decomposition of Wt,
which has O(n3) time complexity in general, followed by a mixture decomposition of the
eigenvalues which runs in O(n2) time). Using the mixture coefficients it is now easy to
sample a projection matrix I − Pt from parameter matrix Wt.

We now motivate the two main online algorithms used in this paper: the GD and MEG
algorithms. The GD algorithm is straightforward and the MEG algorithm was introduced
in Tsuda et al. (2005). Both are examples of the Mirror Descent family of algorithms
developed much earlier in the area of convex optimization (Nemirovski and Yudin, 1978).
The Mirror Descent algorithms update their parameter by minimizing a trade-off function
of a divergence between the new and old parameter and the loss of the new parameter on
the current instance, while constraining the new parameter to lie in the parameter set.

For the problem of online PCA, the update specializes into the following two versions
depending on the choice of the parameter set:
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Loss update on parameter set Wm (i.e., Wt+1,W ,Wt ∈Wm):

Wt+1 = argmin
W∈Wm

(∆(W ,Wt) + η tr(WXt)) . (2.2)

Gain update on parameter set Wk (i.e., Wt+1,W ,Wt ∈Wk):

Wt+1 = argmin
W∈Wk

(∆(W ,Wt) + η tr((I −W )Xt))

= argmin
W∈Wk

(∆(W ,Wt)− η tr(WXt)) . (2.3)

Here ∆(W ,Wt) is the motivating Bregman divergence that will be different for the MEG
and GD algorithms. The Loss update minimizes a trade-off with the expected loss tr(WXt)
which is a matrix version of the dot loss used for motivating the Hedge algorithm (Freund
and Schapire, 1995). Note that in the gain version, minimizing the loss − tr(WXt) is the
same as maximizing the gain tr(WXt). Recall that there is a one-to-one correspondence
between Wm and Wk, i.e. I minus a parameter in Wm gives the corresponding parameter
in Wk and vice versa. Therefore, one can for example rewrite the Gain update (2.3) with
the parameter set Wm as well:

W̃t+1 = argmin
W∈Wm

(
∆(I −W , I − W̃t) + η tr(WXt)

)
, (2.4)

where the above solution W̃t+1 ∈Wm of the Gain update is related to the solution Wt+1 ∈
Wk of (2.3) by the same complimentary relationship, i.e. W̃t+1 = I−Wt+1, for t = 1, . . . , T .
Notice that the Loss update is motivated by the divergence ∆(W ,Wt) on parameter space
Wm (2.2). On the other hand, when the Gain update is formulated with parameter Wm,

then it is motivated by the divergence ∆(I −W , I − W̃t) (2.4).
Now we define the GD and MEG algorithms for online PCA. For the GD algorithm, the

motivating Bregman divergence is the squared Frobenius norm between the old and new
parameters: ∆(W ,Wt) = 1

2‖W −Wt‖2F (Kivinen and Warmuth, 1997; Zinkevich, 2003).
With this divergence, the Loss update is solved in the following two steps:

GD update:
Descent step: Ŵt+1 = Wt − ηXt,

Projection step: Wt+1 = argmin
W∈Wm

‖W − Ŵt+1‖2F . (2.5)

Note, that the split into two steps happens whenever a Bregman divergence is traded off
with a linear loss and domain is convex (See Helmbold and Warmuth (2009), Section 5.2, for
a discussion). For the squared Frobenius norm, the Gain update is equivalent to the Loss
update, since when formulating both updates on parameter set Wm, then the divergence
‖W −Wt‖2F of the Loss update (2.2) and the divergence ‖(I −W ) − (I −Wt)‖2F of the

Gain update (2.4) are the same. A procedure for projecting Ŵt+1 into Wm with respect to
the squared Frobenius norm is given in Algorithm 2 of Arora et al. (2013). The expensive

part of this procedure is obtaining the eigendecomposition of Ŵt+1.
The MEG algorithm uses the (un-normalized) quantum relative entropy ∆(W ,Wt) =

tr(W (logW − logWt) +Wt −W ) as its motivating Bregman divergence (Tsuda et al.,
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T Number of trials
n Dimension of data points xt ∈ Rn and instance matrices Xt ∈ Rn×n
k Rank of the subspace of PCA into which the data is projected
m Complement of k, m = n− k

(used for the rank of subspace of Loss MEG)

L1-bounded positive semi-definite matrices Xt s.t. tr(Xt) ≤ 1
instances (subsumes the special case when the Xt are of the form xtx

>
t , w. ‖xt‖ ≤ 1)

L∞-bounded positive semi-definite matrices Xt with spectral norm at most one,
instances that is λmax(Xt) ≤ 1
BL Upper bound on loss of best subspace of rank n− k, c.f. (3.1)
BG Upper bound on gain of best subspace of rank k, c.f. (3.2).

Table 3.1: Summary of various symbols and terms used in Section 3.

2005) which is based on the matrix logarithm log. With this divergence the solutions to
the Loss update (2.2) and Gain update (2.3) are the following expressions which make use
of the matrix exponential exp (the inverse of log):

Loss MEG update:
Descent step: Ŵt+1 = exp(logWt − ηXt),

Projection step: Wt+1 = argmin
W∈Wm

∆(W , Ŵt+1). (2.6)

Gain MEG update:
Descent step: Ŵt+1 = exp(logWt + ηXt),

Projection step: Wt+1 = argmin
W∈Wk

∆(W , Ŵt+1). (2.7)

Note that the only difference between the gain and loss versions of MEG is a sign flip in
the exponential. The projection steps in the algorithms are with respect to the quantum
relative entropy. An efficient procedure for solving such projections is given in Algorithm 4
of Warmuth and Kuzmin (2008): it does a projection with respect to the standard relative
entropy on the vector of eigenvalues of the parameter matrix. Finally note that the com-
putational complexity of all described updates (GD, Loss MEG, Gain MEG) is dominated
by the time required for obtaining the eigendecomposition of the parameter matrix Wt+1

(or Ŵt+1), which is O(n3) in general.

3. Upper Bounds on the Regret

Recall that the instance matrices Xt are always assumed to be positive semi-definite matri-
ces. We call such instance matrices L1-bounded, if the trace norm of the instance matrices
is at most one, i.e. tr(Xt) ≤ 1 always holds. In particular, this happens for the vanilla
PCA setting where the data received at trial is a point xt ∈ Rn s.t. ‖xt‖2 ≤ 1. In this case
the instance matrices have the form Xt = xtx

>
t and tr(xtx

>
t ) = x>t xt = ‖xt‖2 ≤ 1. Note

that in the L1-bounded case, the sums of the eigenvalues of the Xt are at most one. We
also study the case when the maximum eigenvalue of the instance matrices Xt is at most
one and call the latter the L∞-bounded case.
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In this section, we present regret upper bounds for the three online algorithms introduced
in the previous section, which are Loss MEG, Gain MEG and GD. All three algorithms are
examples from the Mirror Descent family of algorithms. Our proof techniques require us
to use different restrictions on the worst-case sequences that the adversary can produce.
For the Loss MEG algorithm, we give the adversary a loss budget, i.e. the adversary must
produce a sequence of instances X1 . . .XT for which the loss of the best subspace is upper
bounded by the loss budget BL:

min
P projection

matrix of rank k

T∑
t=1

tr((I − P )Xt) ≤ BL. (3.1)

We call a regret bound that depends on this parameter a loss budget dependent bound. A
bound of this type was first proved for Loss MEG in Warmuth and Kuzmin (2008). The
latter paper is the precursor of this paper in which the analysis of online algorithms for
PCA was started.

For the algorithm of Gain MEG, we give the adversary a gain budget BG, i.e. an upper
bound on the gain of the best subspace:

max
P projection

matrix of rank k

T∑
t=1

tr(PXt) ≤ BG. (3.2)

Now the adversary can only produce sequences for which all subspaces have gain at most
BG. We call this type of bound a gain budget dependent bound.

Finally we prove regret bounds of a third type for the GD algorithm. For this type
the regret is a function of the number of trials T , and we call such a regret bound a time
dependent regret bound.

We present the three regret bounds in the next subsection and compare them in the
following subsection. As we shall see, upper bounds of the regret in terms of a budget
imply time dependent bounds, and for lower bounds the implication is reversed. The main
symbols and terms used throughout this section are summarized in Table 3.1.

3.1 Upper Bounds on the Regret of Loss MEG, Gain MEG, and GD

The Loss MEG algorithm (2.6) is the original MEG algorithm developed in the precursor
paper of Warmuth and Kuzmin (2008) for online PCA. This paper proves a loss budget
dependent upper bound on the regret of Loss MEG. The is done by exploiting the fact that
PCA learning has the so called expert setting as a special case (See extensive discussion at
the beginning of Section 4). More precisely the following bound is proven by lifting a regret
bound developed for learning well compared to the best subset of m = n− k experts to the
matrix case, where subsets of size m generalize to projection matrices of rank m.

Loss budget dependent bound of Loss MEG:

RLoss MEG ≤
√

2BL m log
n

m
+m log

n

m
. (3.3)

10
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This bound follows from Theorem 6 of Warmuth and Kuzmin (2008), and holds for any
sequence of instance matrices (L∞ as well as L1-bounded) for which the total compression
loss of the best rank m subspace does not exceed the loss budget BL (Condition (3.1)).

We begin by showing that the right-hand side of (3.3) is bounded above by an expression
that does not depend on the dimension n of the data points:

RLoss MEG ≤
√

2BL k + k. (3.4)

This follows immediately from the following inequality and the relationship m = n − k
(n = m+ k):

m log
n

m
= m log

(
k +m

m

)
= m log

(
1 +

k

m

)
≤ m k

m
= k.

As mentioned at the beginning of this subsection (and discussed in more detail later in
Section 4), online PCA specializes to the problem of learning well compared to the best set
of m = n−k experts. Regret bounds for the expert setting typically depend logarithmically
on the number of experts n. Therefore the above dimension free regret bound might seem
puzzling at first. However there is no contradiction. In the current setup we have m = 1
and k = n − m = n − 1 for the vanilla single expert case, and the above dimension free
bound (3.4) becomes

√
2BL(n− 1). This bound is not close to the optimum loss budget

dependent regret bound for the single expert case which is O(
√
BL log n+log n). This latter

bound is obtained by plugging m = 1 into the original regret bound (3.3). Thus for m = 1,
the above dimension free approximation (3.4) of the original bound is loose. However, when
k ≤ n

2 , then as we shall see in Section 5, the dimension free approximation actually is tight.
In the precursor paper (Warmuth and Kuzmin, 2008), a different but weaker approximation
of the original bound was proved that still has an additional logarithmic dependence when
k ≤ n

2 : O(
√
BLk log n

k + k log n
k ).

We next develop a regret bound for Gain MEG (2.7). The proof technique is a variation
of the original regret bound for Loss MEG (and is given for the sake of completeness in
Appendix A).

Gain budget dependent bound of Gain MEG:

RGain MEG ≤
√

2BG k log
n

k
. (3.5)

This bound holds for any sequence of instance matrices (L1 as well as L∞-bounded) for
which the total gain of the best rank k subspace does not exceed the gain budget BG
(Condition (3.2)).

Finally, we give a simple regret bound for the GD algorithm. This bound (also observed
in Arora et al. (2013) and proved for the sake of completeness in Appendix B) is based on
two standard techniques: the use of the squared Frobenius norm (Kivinen and Warmuth,
1997) as a measure of progress and the use of the Pythagorean Theorem for handling the
projection step (Herbster and Warmuth, 2001).

11
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Time dependent regret bound of GD:

RGD ≤


√
T km

n for L1-bounded instances

√
T km for L∞-bounded instances

. (3.6)

Note that each regret bound is expressed as a function of a loss budget, a gain budget
or a time bound. They are obtained by setting the fixed learning rate of the algorithm as
a function of one of these three parameters. The resulting basic algorithms can be used
as sub-modules: For example the algorithm can be stopped as soon as the loss budget is
reached and restarted with twice the budget and the corresponding re-tuned learning rate.
This heuristic is known as the “doubling trick” (Cesa-Bianchi et al., 1997). Much fancier
tuning schemes are explored in (van Erven et al., 2011; de Rooij et al., 2014) and are not
the focus of this paper.

3.2 Comparison of the Regret Upper Bounds

Our goal is to find algorithms that achieve the optimal loss budget dependent and time
dependent regret bounds where optimal means that the bound is within a constant factor
of optimum. We are not interested in gain dependent regret bounds per se, i.e. bounds in
terms of a gain budget BG, because the maximal gain is typically much larger than the
minimal loss. However when the gain budget restricted regret bounds are converted to time
bounds, then for some setting (discussed below) the resulting algorithm becomes the only
optimal algorithm we are aware of.

The only known loss budget dependent regret bound is bound (3.3) for Loss MEG ob-
tained in the original paper for online learning of PCA (Warmuth and Kuzmin, 2008). We
will show later in Section 5 that this upper bound on the regret is optimal. There are no
known loss budget dependent upper bounds on the regret of GD. However in Section 4, we
prove a lower bound on GD’s regret in terms of the loss budget which shows that GD’s
regret is suboptimal by at least a factor of

√
k when the regret is expressed as a function

of the loss budget. The discussion of the time dependent regret upper bounds is more in-
volved. We first convert the budget dependent regret bounds of the MEG algorithms into
time dependent bounds. We shall see later, for lower bounds on the regret, time dependent
bounds lead to budget dependent bounds (see Corollary 5.7). Before we do this, recall that
the instance matrices Xt are L1-bounded if their trace is at most one, and for L∞-bounded
instance matrices, their maximum eigenvalue is at most one. Note that for any vector xt
of length at most one, tr(xtx

>
t ) ≤ 1, and therefore vanilla PCA belongs to the case of

L1-bounded instance matrices.

Theorem 3.1 When the instances are L1-bounded, then for the online PCA with T trials,
the following regret bounds hold for the Loss MEG and Gain MEG algorithms, respectively:

RLoss MEG ≤ m

√
2T

n
log

n

m
+m log

n

m
, RGain MEG ≤

√
2T k log

n

k
. (3.7)
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Similarly, when the instances are L∞-bounded, then the following regret bounds hold:

RLoss MEG ≤ m
√

2T log
n

m
+m log

n

m
, RGain MEG ≤ k

√
2T log

n

k
. (3.8)

Proof The theorem will be proved by developing simple upper bounds on the loss/gain of
the best rank k subspace that depend on the sequence length T . These upper bounds are
then used as budgets in the previously obtained budget dependent bounds.

The best rank k subspace picks k eigenvectors of the covariance matrix C =
∑T

t=1Xt

with the largest eigenvalues. Hence the total compression loss equals the sum of the smallest
m eigenvalues of C. If ω1, . . . , ωn denote all the eigenvalues of C, then:

n∑
i=1

ωi = tr(C) =

T∑
t=1

tr (Xt) ≤

{
T for L1-bounded instances

Tn for L∞-bounded instances
.

where the inequality follows from our definition of L1-bounded and L∞-bounded instance
matrices. This implies that the sum of the m smallest eigenvalues is upper bounded by
Tm
n and Tm, respectively. By using these two bounds as the loss budget BL in (3.3), we

get the time dependent bound for Loss MEG for L1-bounded and L∞-bounded instances,
respectively.

For the regret bounds of Gain MEG, we use the fact that BG is upper bounded by
T when instances are L1-bounded and upper bounded by kT when the instances are L∞-
bounded, and plug these values for BG into (3.5).

Table 3.2 compares time dependent upper bounds for each of the three algorithms (Loss
MEG, Gain MEG, GD) where we consider each of the 4 variants of the problem: L1-bounded
or L∞-bounded instance matrices versus k ≤ n

2 or k ≥ n
2 .

As far as time dependent bounds are concerned, no single algorithm is optimal in all
cases. In Table 3.2, the optimum bounds are shown in bold. The lower bounds matching
these bold bounds within a constant factor will be proved in Section 5. Note that one version
of MEG (either the loss or gain version) is optimal in each case, while GD is optimal only
in first case (This is the most important case in practice: vanilla online PCA with k � n).
For the remaining three cases, consider the ratio between the GD’s bound and the better
of the two MEG bounds, which is

�

√
n
m/
(
log n

m

)
, when the instances are L1-bounded and k ≥ n

2 ,

�

√
n
k /
(
log n

k

)
, when the instances are L∞-bounded and k ≤ n

2 and

�

√
n
m/
(
log n

m

)
, when the instances are L∞-bounded and k ≥ n

2 .

Since none of these three ratios can be upper bounded by a constant, GD is clearly subop-
timal in each of the remaining three cases.
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L1-bounded instances L∞-bounded instances

k ≤ n
2 k ≥ n

2 k ≤ n
2 k ≥ n

2

Loss MEG
√
Tk

√
Tm

(
log n

m

) /
n
m

√
Tkm

√
Tm2 log n

m

Gain MEG
√
Tk log n

k

√
Tm

√
Tk2 ln n

k

√
Tkm

GD
√
Tk

√
Tm

√
Tkm

√
Tkm

Table 3.2: Comparison of the time dependent upper bounds on the regret of the Loss MEG,
Gain MEG, and GD algorithms. Each column corresponds to one of the four
combinations of L1-bounded or L∞-bounded instance matrices versus k ≤ n

2
or k ≥ n

2 , respectively. All bounds were given in Section 3.1 and Section 3.2:
constants are omitted, we only show the leading term of each bound, and when
we compare Loss and Gain MEG bounds, we use m ln n

m = Θ(k) when k ≤ n
2

and k ln n
k = Θ(m) when k ≥ n

2 . Recall that m is shorthand for n− k. The best
(smallest) bound for each case (column) is shown in bold. In Section 5, all bold
bounds will be shown to be optimal (within constant factors).

4. Lower Bounds on the Regret of GD

Recall that vanilla online PCA uses L1-bounded instance matrices and the subspace dimen-
sion k is typically at most n

2 . In this case Loss MEG has regret O(
√
Tk) and the regret of

GD is O(
√
Tk) as well. As for loss budget dependent regret bounds, Loss MEG has regret

O(
√
BLk + k) and we initially conjectured that GD has the same bound. However, this is

not true: we will now show in this section an Ω(max{min{BL, k
√
BL}, k}}) lower bound on

the regret of GD for L1-bounded instance sequences when k ≤ n
2 . In contrast, Loss MEG’s

regret bound of O(
√
BLk + k) will be shown to be optimal in Section 5 for this case. It

follows that GD is suboptimal by at least a factor of
√
k when BL = Ω(k2). A detailed

comparison of the lower bound for GD and the optimum upper bound is given in Table 4.1.

It suffices to prove lower bounds on GD’s regret on a restricted class of instance matrices:
We assume that all instance matrices are in the same eigensystem, i.e. they are diagonal
matrices X = diag(`) with ` ∈ Rn≥0. We call the diagonals ` the loss vectors. All loss
vectors in our lower bounds are restricted to be bit vectors in {0, 1}n. In the L1-bounded
instance case, the loss vectors are further restricted to be one of the n unit bit vectors ei,
i.e. X = diag(ei) = eie

>
i . In the L∞-bounded instance case, the loss vectors ` are arbitrary

n-dimensional bit vectors.

When all instance matrices are diagonal then the off-diagonal elements in a parameter
matrix W are irrelevant and therefore the algorithm’s loss and regret is determined by
the diagonals of the parameter matrices W which is of trace m. Therefore without loss
of generality we can assume that the parameter matrices are diagonal as well, i.e. W =
diag(w) wherew is a weight vector in [0, 1]n with total weight m. Note that the loss becomes
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Regret bounds for L1-bounded instances, k ≤ n
2 BL ≤ k k ≤ BL ≤ k2 k2 ≤ BL

Upper bound on regret of Loss MEG (see (3.3)) O(k) O(
√
BLk) O(

√
BLk)

Lower bound on regret of GD (see Theorem 4.1) Ω(k) Ω(BL) Ω(k
√
BL)

Table 4.1: Comparison of the loss budget dependent regret bounds for online PCA with
k ≤ n

2 . Given dimension k of the subspace, each column shows the values of
the two bounds for a specific range of the loss budget BL. The first row gives
the upper bound on the regret of Loss MEG in bold, which will be shown to be
optimal in Section 5. The second row gives the lower bound on the regret of GD,
which is suboptimal whenever BL ≥ k.

a dot product between the weight vector and the loss vector:

tr(WX) = tr(diag(w) diag(`)) = w · `.

What is the prediction of the algorithm with a diagonal parameter matrixW = diag(w)?
It probabilistically predicts with an m dimensional projection matrix P s.t. E[P ] =
diag(w). This means P is a subset of size m from {e1e

>
1 , e2e

>
2 , . . . , ene

>
n }. The diago-

nals of such projection matrices consists of exactly m ones and n −m = k zeros. In other
words the diagonals are indicator vectors of the chosen subsets of size m and the expected
indicator vector equals the weight vector w.

We just outlined one of the main insights of (Warmuth and Kuzmin, 2008): The restric-
tion of the PCA problem to diagonal matrices corresponds to learning a subset of size m.
The n components of the vectors are usually called experts. At trial t the algorithm chooses
a subset of m experts. It then receives a loss vector ` ∈ Rn≥0 for the experts and incurs the
total loss of the chosen m experts. The algorithm maintains its uncertainty over the m-sets
by means of a parameter vector w ∈ [0, 1]n with total weight m, and it chooses the subset
of size m probabilistically so that the expected indicator vector equals w. We denote the
set of such parameter vectors as Sm. In the L1-bounded instance case, the loss vector is a
unit bit vector (only one expert incurs a unit of loss). In the L∞-bounded instance case,
the loss vectors are restricted to be n-dimensional bit vectors.

4.1 Lower Bound on the Regret of the GD Algorithm

The GD algorithm for online PCA (2.5) specializes to the following update of the parameter
vector for learning sets:

Descent step: ŵt+1 = wt − η`t,
Projection step: wt+1 = argminw∈Sm ‖w − ŵt+1‖2.

(4.1)

We now give a lower bound on the regret of the GD algorithm for the m-set problem.
This lower bound is expressed as a function of the loss budget.

Theorem 4.1 Consider the m = n − k set problem with k ≤ n/2 and unit bit vectors as
loss vectors. Then for any fixed learning rate η ≥ 0, the GD algorithm (4.1) can be forced
to have regret Ω(max{min{BL, k

√
BL}, k}).
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We prove this theorem in Appendix C. From the fact that m-set problem is a special
case of PCA problem, we get the following corollary, which shows that the GD algorithm
is suboptimal (see Table 4.1 for an overview):

Corollary 4.2 Consider the PCA problem with k ≤ n/2 and L1-bounded instance matrices.
Then for any fixed learning rate η ≥ 0, the GD algorithm (2.5) can be forced to have regret
Ω(max{min{BL, k

√
BL}, k}).

4.2 Lower Bound on the Regret of the Follow the Regularized Leader GD
Algorithm (FRL-GD)

In the previous section, we showed that for online PCA with L1-bounded instance matrices
and k ≤ n

2 , the GD algorithm is suboptimal for loss budget dependent regret bounds.
However, our lower bounds are only for the Mirror Descent version of GD given in (2.5).
This algorithm is prone to “forgetting” lots of information about the past losses when
projections with respect to inequality constraints are involved. Recall that at the end of
each trial t, the mirror descent algorithm uses the last parameter Wt as a summary of the
knowledge attained so far, and minimizes a trade-off between a divergence to theWt and the
loss on the last data point xt to determine the next parameter Wt+1. When the parameter
resulting from the trade-off lies outside the parameter set, then it is projected back into
the parameter set (see update (2.5)). In the case when the projection enforces inequality
constraints on the parameters, information about the past losses may be lost. This issue
was first discussed in Section 5.5 of Helmbold and Warmuth (2009). Curiously enough,
Bregman projections with respect to only equality constraints do not lose information.

We now demonstrate in more detail the “forgetting” issue for the Mirror Descent GD
algorithm when applied to online PCA. First recall that the batch PCA solution consists
of the subspace spanned by the k eigenvectors belonging to the k largest values of the
covariance matrix C =

∑T
t=1 xtx

>
t . The complementary space is the m = n−k dimensional

subspace formed by the m eigenvectors of m largest eigenvalues of −C. Hence, the final
parameter WT+1 of the on-line algorithm should have the same eigenvectors as −C, as well
as the order of their corresponding eigenvalues. The descent step of (2.5) accumulates the

scaled negated instance matrices Xt = xtx
>
t , i.e. Ŵt+1 = Wt − ηXt. In the projection

step of (2.5), the parameter matrix Ŵt+1 is projected back to the parameter set Wm by
enforcing an equality constraint tr(Wt+1) = m and inequality constraints that keep all the

eigenvalues of Wt+1 are in the range [0, 1]. The equality constraint on Ŵt+1 results in

adding to Ŵt+1 a scaled version of the identity matrix I (See Appendix C). These iterated
shifts do not affect either the eigenvectors or the order of their corresponding eigenvalues.
However, when the inequality constraints are enforced, then at trial t the eigenvalues of
Ŵt+1 that are larger than 1 or less than 0 are capped at 1 and 0, respectively. Performing
such a non-uniform capping of Ŵt+1’s eigenvalues in each trial will result in a final parameter
WT+1 with an eigensystem that is typically different from −C. Therefore the PCA solution
extracted from WT+1 and the covariance matrix C will not be the same.

There is another version of the GD algorithm that does not “forget”: The Follow the
Regularized Leader GD (FRL-GD) algorithm (see, e.g., Shalev-Shwartz and Singer (2007)2)

2. This algorithm is also called as the Incremental Off-line Algorithm in (Azoury and Warmuth, 2001).
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trades off the total loss on all data points against the Frobenius norm of the parameter
matrix:

Follow the regularized leader:

Ŵt+1 = argmin

‖W ‖2F + η
t∑

q=1

tr(WXq)

 = −η
t∑

q=1

Xq,

Projection step:

Wt+1 = argmin
W∈Wm

‖W − Ŵt+1‖2F = argmin
Eigenvalues of W in

[0, 1] and tr(W ) = m

‖W − Ŵt+1‖2F .

(4.2)

Note that in each trial, the update (4.2) projects a parameter Ŵt+1 that accumulates all
the past scaled negated instance matrices (−ηXt) back to trial one. In contrast, the Mirror
Descent update in (2.5) performs projection iteratively, i.e. it projects parameter matrices
of previous trials that are projections themselves. Therefore, the FRL-GD algorithm cir-
cumvents the forgetting issue introduced by iterative projections with respect to inequality
constraints. In fact the final parameter WT+1 of the FRL-GD is the projection of the
scaled negated covariance matrix ŴT+1 = −η

∑T
t=1 xtx

>
t = −ηC. We will show essentially

in Appendix E that a single projection operation does not change the set of eigenvectors
belonging to the m largest eigenvalues. This means that the eigenvectors belonging to the
k smallest eigenvalues of WT+1 agree with the eigenvectors of C belonging to the k largest
eigenvalues of C.

Encouraged by this observation, we initially conjectured that the FRL-GD is strictly
better than the commonly studied Mirror Descent version. More concretely, we conjectured
that the FRL-GD has the optimal loss budget dependent regret bound for vanilla online
PCA (as Mirror Descent MEG does which enforces the non-negativity constraints with its di-
vergence). Unfortunately, we are able to show the opposite: The Ω(max{min{BL, k

√
BL}, k})

lower bound we showed for (Mirror Descent) GD in Theorem 4.1 also holds for FRL-GD.
To be precise, we have the following theorem and corollary:

Theorem 4.3 Consider the m = n − k set problem with k ≤ n/2 and unit bit vectors as
loss vectors. Then for any fixed learning rate η ≥ 0, the vector version of the FRL-GD
algorithm (4.2) can be forced to have regret Ω(max{min{BL, k

√
BL}, k}).

The proof is given in Appendix D. Theorem 4.3 immediately gives the lower bound on the
regret of FRL-GD algorithm for the online PCA:

Corollary 4.4 Consider the PCA problem with k ≤ n/2 and L1-bounded instance matrices.
Then for any fixed learning rate η ≥ 0, the FRL-GD algorithm (4.2) can be forced to have
regret Ω(max{min{BL, k

√
BL}, k}).

This shows that the worst case regret of the FRL-GD algorithm is the same as that of
(Mirror Descent) GD, and hence suboptimal.
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5. General Lower Bounds and Optimal Algorithms

In the previous section, we presented lower bounds on the regret of the GD algorithms. In
this section we present lower bounds on the regret of any algorithm that solves the online
PCA problem with L1 and L∞-bounded instance matrices. More importantly, these lower
bounds match all our upper bounds on the regret of the MEG algorithms within a constant
factor (See bold entries in Table 3.2 and Table 4.1). To be precise, we will prove in this
section a series of regret lower bounds that match our loss budget dependent upper bound
(3.3) on the regret of Loss MEG, and our time dependent upper bounds (Theorem 3.1) on
the regret of Loss MEG and Gain MEG, respectively. For the time dependent bounds, our
lower bounds will match the lower of the two MEG bounds in each of the four sub-cases
of the problem, i.e. L1 and L∞-bounded instance matrices versus k ≤ n

2 or k ≥ n
2 (See

Table 3.2 for a summary). Note that in one case the GD algorithm is also optimal: time
dependent regret bounds for PCA with L1-bound instances when k ≤ n

2 .
We begin with an overview of our proof techniques for proving lower bounds that hold

for any algorithm. When proving upper bounds on the regret (in Section 3), we first proved
upper bounds as a function of the loss budget BL and then converted them into time
dependent upper bounds. For lower bounds on the regret, the order is reversed: we first
will show time dependent lower bounds and then convert them into loss budget dependent
lower bounds. As discussed in Section 4, it suffices to prove lower bounds for the m-set
problem, which is the hard special case when all instances are diagonal.

Let A be the set of all online algorithms for the m-set problem. Such algorithms
maintain a weight vector in Sm (consisting of all vectors in [0, 1]n of total weight m). For
an algorithm A ∈ A, we denote its regret by R(A, `1, . . . , `T ) where `1, . . . , `T is a sequence
of T loss vectors. The loss vectors `t lie in a constraint set L. The constraint set L either
consists of all n dimensional unit bit vectors (the restriction of the L1-bounded case we
use in the lower bounds), or L = {0, 1}n (the restriction used for the L∞-bounded case).
We use the standard method of lower bounding the regret for worst case loss sequences
from L by the expected regret when the loss vectors are generated i.i.d. with respect to a
distribution P on L:

min
over any

alg. A ∈ A

{
max

over loss vectors
`1, . . . , `T ∈ L

R(A, `1, . . . , `T )

}
≥ min

over any
alg. A ∈ A

{
E`1,...,`T∼PT [ R(A, `1, . . . , `T ) ]

}
.

Each lower bound is proved as follows: Choose a distribution P on L, and then show a
lower bound on the expected regret of any algorithm A ∈ A. Note that this expectation
becomes the expected loss of A minus the expected loss of the best comparator (i.e. the
best m-set). We first prove time dependent regret lower bounds with L1 and L∞-bounded
instance vectors in sections 5.1 and 5.2, respectively. Finally we convert these lower bounds
into loss budget dependent lower bounds (in Section 5.3).

5.1 Time Dependent Lower Bounds for Online PCA

Recall that m = n− k. First, we give a lower bound on the regret of any algorithm for the
m-set problem, when k ≤ n

2 :
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Theorem 5.1 Consider the m-set problem with unit bit vectors as loss vectors. Then for
k ≤ n

2 and T ≥ k, any online algorithm suffers worst case regret at least Ω(
√
Tk).

The proof is given in Appendix F. We lower bound the expected loss w.r.t. the distribution
P which is uniform on the first 2k unit bit vectors. Note that Theorem 5.1 requires the
condition T ≥ k. For the case T < k, there is a lower bounds of Ω(T ) (See Theorem G.1
in Appendix G). When the loss vectors are bit vectors, then any algorithm has loss (and
regret) O(T ). Therefore when T < k, any algorithm achieves the minimax regret up to a
constant factor.

We now consider the uncommon case when k ≥ n
2 :

Theorem 5.2 Consider the m-set problem with unit bit vectors as loss vectors. Then for
k ≥ n

2 and T ≥ n log2(n/m), any online algorithm suffers worst case regret of at least

Ω(m
√

T
n ln n

m).

We now set P to the uniform distribution on all n unit bit vectors (See Appendix F). The
small T case (here T < n log2(n/m)) is slightly more involved. There is a lower bound of
Ω(mn T ) regret for any algorithm (see Theorem G.3 in Appendix G). Also the algorithm
which predicts with the uniform weight m

n on all experts achieves the matching regret of
O(mn T ).

Recall that the m-set problem with unit bit vectors as loss vectors is a special case of
the online PCA problem with L1-bounded instance matrices. Combining the above two
lower bounds for different ranges of k with our upper bound (Theorem 3.1) on the regret
of Loss MEG for online PCA with L1-bounded instances gives the following corollary:

Corollary 5.3 Consider the problem of online PCA with L1-bounded instance matrices.

Then for T ≥ n log2(n/m), the Θ(m
√

T
n ln n

m) regret of Loss MEG is within a constant

factor of the minimax regret.

Note that we do not use the condition T ≥ k of Theorem 5.1, since when k ≤ n
2 , k =

Θ(n log2(n/m)).

5.2 Time Dependent Lower Bound for the Generalization with L∞-Bounded
Instance Matrices

We first give the time dependent lower bound for the m-set problem with bit vectors.

Theorem 5.4 Consider the m-set problem with bit vectors as loss vectors. Then for T ≥
log2

n
min{k,m} , any online algorithm suffers worst case regret of at least

Ω(k

√
T ln

n

k
) when k ≤ n

2
or Ω(m

√
T ln

n

m
) when k ≥ n

2
.

The proof is given in Appendix F. The distribution P is such that each expert incurs a
unit of loss with probability 1/2 independently from the other experts. For the small T
case (T < log2

n
min{k,m}), there is a lower bound of Ω(min{Tm, Tk}) (See Theorem G.4

and Theorem G.5 in Appendix G). A matching upper bound of O(min{Tm, Tk}) on the
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regret of any algorithm can be reasoned as follows: At each trial, the algorithm plays with
Wt ∈Wm and suffers loss tr(WtXt). Since tr(Wt) = m, the algorithm suffers loss at most
m per trial and for T trials, and the cumulative loss (and thus regret) is at most Tm. The Tk
upper bound can be showed similarly by considering the “gain” of the best rank k projector
P ∗, which is

∑T
t=1 tr(P ∗Xt) ≤ Tk. Combining the lower bounds of Theorem 5.4 with

the upper bounds on the regret of Loss MEG and Gain MEG when the instance matrices
are L∞-bounded (Inequality (3.8)), results in the following corollary, which states that the
Gain MEG is optimal for k ≤ n

2 while the Loss MEG is optimal for k ≥ n
2 .

Corollary 5.5 Consider the generalization of online PCA where the instance matrices are
L∞-bounded.

� When k ≤ n
2 and T ≥ log2

n
k , then the regret Θ(k

√
T log n

k ) of Gain MEG is within a
constant factor of the minimax regret.

� When k ≥ n
2 and T ≥ log2

n
m , then the regret Θ(m

√
T log n

m) of Loss MEG is within
a constant factor of the minimax regret.

5.3 Loss Budget Dependent Lower Bounds

In this subsection, we give regret lower bounds that are functions of the loss budget BL
(defined in (3.1)). Similar to our loss budget dependent upper bound (3.3) on the regret of
Loss MEG, the loss dependent lower bounds are the same for both unit and arbitrary bit
vectors:

Theorem 5.6 For the m-set problem with either unit or arbitrary bit vectors as loss vectors,
any online algorithm suffers worst case regret at least Ω(

√
BLm ln n

m) +m ln n
m).

The proof of the theorem is given in Appendix H. We convert the time dependent lower
bounds given in Theorem 5.1 and Theorem 5.2 into loss budget dependent ones. Note that
unlike our time dependent lower bounds, Theorem 5.6 is stated for the full range of the loss
budget parameter BL. The proof also distinguishes between a small and a large budget
case depending on whether BL ≤ m ln n

m . The lower bound of Θ(m ln n
m) follows from a

conversion. However the upper bound of O(m ln n
m) for the small budget case is non-trivial.

Incidentally, this upper bound is achieved by Loss MEG.
Finally, combining this lower bound with the upper bounds (3.3) on the regret of Loss

MEG, gives the following corollary, which establishes the optimality of Loss MEG no matter
if the instance matrices are L1 or L∞-bounded.

Corollary 5.7 Consider the problem of online PCA with L1 or L∞-bounded instance ma-
trices. Then the regret Θ(

√
BLm ln n

m + m ln n
m) of Loss MEG is within a constant factor

of the minimax regret.

6. Conclusion

In this paper, we carefully studied two popular online algorithms for PCA: the Gradient
Descent (GD) and Matrix Exponentiated Gradient (MEG) algorithms. For the case when
the instance matrices are L1-bounded, we showed that both algorithms are optimal to within
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a constant factor when the worst-case regret is expressed as a function of the number of
trials. Furthermore, when considering regret bounds as a function of a loss budget, then
MEG remains optimal and strictly outperforms GD for L1-bounded instances. We also
studied the case when the instance matrices are L∞-bounded. Again we show MEG to be
optimal and strictly better than GD in this case. It follows that MEG is the algorithm of
choice for both cases. Note that that vanilla PCA (where the instances are outer products
of vectors of length at most one) is subsumed by the case of L1-bounded instance matrices.

In this paper we focused on obtaining online algorithms with optimal regret and we
ignored efficiency concerns. Straightforward implementations of both the GD and MEG
online PCA updates required O(n3) computation per trial (because they require an eigen-
decomposition of the parameter matrices). This leads to a major open problem for online
PCA (Hazan et al., 2010): Is there any algorithm that can achieve optimal regret with
O(n2) computation per trial. To this end, Arora et al. (2013) considers the Gain version
of GD (Equation (2.3), with the squared Euclidean distance as the divergence) where the
projection enforces the additional constraint that the parameter matrix Wt has rank k̂.
Encouraging experimental results are provided for the choice k̂ = k + 1. However, as we
shall see immediately, in the most basic case when the instance matrices are outer products
of unit length vectors xt that are chosen by an adversary, then any algorithm that uses
parameter matrices of rank k̂ less than n can be forced to suffer worst case regret linear
in T . Recall that the parameter matrix Wt at trial t is simply the expected projection
matrix of rank k chosen by the algorithm and this matrix is defined for any (deterministic
or randomized) algorithm. We give an adversary argument for any algorithm for which the
rank of the parameter matrix Wt at any trial t is at most k̂. The parameter matrices are
known to the adversary. Also the initial parameter matrix W1 must have rank k̂ and be
known to the adversary. For any algorithm following this setup the adversary argument
proceeds as follows: At the beginning of the game the adversary fixes any subspace Q of
dimension k̂ + 1. In each trial, the adversary picks a unit length vector xt ∈ Q, which is
in the null space of the parameter matrix Wt of the algorithm (This is always possible,
because the dimension of Q is larger than the rank of Wt). After T trials, the algorithm
has zero gain, while the total gain T is accumulated within subspace Q. This means that
there are k orthogonal directions within Q with the total gain at least k

k̂+1
T and therefore,

the algorithm suffers regret at least k

k̂+1
T .

Besides restricting the rank of the parameter matrix, a second approach is to add per-
turbations to the current covariance matrix and then find the eigenvectors of the k-largest
eigenvalues (Hazan et al., 2010). So far this approach has not led to algorithms with optimal
regret bounds and O(n2) update time. Some partial results recently appeared in Garber
et al. (2015) and Kotlowski and Warmuth (2015).
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IIS-1118028. Wojciech Kot lowski was supported by the Polish National Science Centre
grant 2013/11/D/ST6/03050 and by the Foundation for Polish Science grant Homing Plus
2012-5/5.
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Appendix A. Proof of Upper Bound (3.5) on the Regret of Gain MEG

Proof The proof is based on the by now standard proof techniques of Tsuda et al. (2005).
LetWt ∈Wk be the parameter of the Gain MEG algorithm at trial t andXt be the instance
matrix at this trial. Now plugging the (un-normalized) relative entropy ∆(W ,Wt) =
tr(W (logW − logWt) +Wt−W ) into the descent step of the Gain MEG algorithm (2.7)
gives:

Ŵt+1 = exp(logWt + ηXt) where η ≥ 0 is the learning rate.

Take any projection matrixW ∈Wk as a comparator and use ∆(W ,Wt)−∆(W ,Wt+1)
as a measure of progress towards W :

∆(W ,Wt)−∆(W ,Wt+1) ≥ ∆(W ,Wt)−∆(W , Ŵt+1)

= tr(W (log Ŵt+1 − logWt) +Wt − Ŵt+1)

= tr(ηWXt) + tr(Wt − exp(logWt + ηXt))

≥ tr(ηWXt) + tr(Wt −Wt exp(ηXt))

= tr(ηWXt) + tr(Wt(I − exp(ηXt)),

(A.1)

where the first inequality follows from the Pythagorean Theorem and the second from the
Golden-Thompson inequality: tr(exp(logWt + ηXt) ≤ tr(Wt exp(ηXt)). By Lemma 2.1
of Tsuda et al. (2005),

tr(Wt(I − exp(ηXt))) ≥ (1− eη) tr(WtXt),

and therefore

∆(W ,Wt)−∆(W ,Wt+1) ≥ η tr(WXt)︸ ︷︷ ︸
gain of the
comparator

+ (1− eη) tr(WtXt)︸ ︷︷ ︸
gain of the
algorithm

.

Summing over trials gives:

η
T∑
t=1

tr(WXt)︸ ︷︷ ︸
total gain GW of
the comparator W

+ (1− eη)
T∑
t=1

tr(WtXt)︸ ︷︷ ︸
total gain GA
of Gain MEG

≤ ∆(W ,W1)︸ ︷︷ ︸
≤ k log n

k
with initialization

W1 = k
n
I

− ∆(W ,WT+1)︸ ︷︷ ︸
≥0

.

We now rearrange the terms to bound the regret of Gain MEG:

GW −GA ≤ 1

eη − 1
k log

n

k
+

(
1− η

eη − 1

)
GW . (A.2)

Since eη ≥ 1 + η, the coefficient 1
eη−1 of the first term on the RHS is upper bounded by 1

η .
Next we upper bound the coefficient of the second term by η:

1− η

eη − 1
= 1− ηe−η

1− e−η
≤ 1− ηe−η

η
= 1− e−η ≤ η.
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The inequality (3.5) on the regret of Gain MEG now follows from these two upper bounds,
the budget inequality GW ≤ BG and from tuning the learning rate as a function of BG:

RGain EG ≤
k log n

k

η
+ ηBG

η=

√
log n

k
BG

=

√
2BG k log

n

k
.

Appendix B. Proof of Upper Bound (3.6) on the Regret of GD

Proof This proof is also standard (Herbster and Warmuth, 2001). Minor alterations are
needed because we have matrix parameters. Let Wt ∈ Wm be the parameter of the GD
algorithm at trial t andXt be the instance matrix at this trial. Then for the best comparator
W ∈Wm and any learning rate η ≥ 0, the following holds

‖Wt+1 −W ‖2F ≤ ‖Ŵt+1 −W ‖2F = ‖Wt −W ‖2F − 2η tr((Wt −W )X>t ) + η2‖Xt‖2F ,

where the inequality follows from the Pythagorean Theorem (Herbster and Warmuth, 2001)
and the equality follows from the descent step of the GD algorithm (see (2.5)). By rear-
ranging terms, we have

tr(WtX
>
t )− tr(WX>t ) ≤

‖Wt −W ‖2F − ‖Wt+1 −W ‖2F
2η

+
η‖Xt‖2F

2
.

Note that the LHS is the regret in trial t w.r.t. W . By summing all trials, we have that
the (total) regret RGD =

∑T
t=1 tr(WtX

>
t ) is upper bounded by

‖W1 −W ‖2F −(((((
(((‖WT+1 −W ‖2F

2η
+
η
∑T

t=1 ‖Xt‖2F
2

≤ k(n− k)

2nη
+
η
∑T

t=1 ‖Xt‖2F
2

, (B.1)

where we used ‖W1−W ‖2F ≤
k(n−k)

n since W ∈Wm and W1 = n−k
n I. In the L1-bounded

instance matrix case (when ‖X‖2F ≤ 1), (B.1) can be further simplified as

RGD ≤
k(n− k)

2nη
+
ηT

2
.

By setting η = k(n−k)
nT , we obtain the

√
k(n−k)

n T regret bound for the L1-bounded in-

stance case. When the instance matrices are L∞-bounded, then ‖Xt‖2F ≤ n and hence,

RGD ≤
√
k(n− k)T with η = k(n−k)

T .

Appendix C. Proof of Theorem 4.1

Theorem 4.1 gives a lower bound on the regret of the GD algorithm for the m-set problem
with unit bit vectors as loss vectors. At each trial of the m-set problem, the online algorithm
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first predicts with a weight vector wt ∈ [0, 1]n, the coordinates of which sum to m. Then
the algorithm receives a unit bit vector `t and suffers loss wt · `t. The GD algorithm for
online PCA (2.5) specializes to the following updates of the parameter vector for learning
m-sets:

Descent step: ŵt+1 = wt − η`t,
Projection step: wt+1 = argminw∈Sm ‖w − ŵt+1‖2,

(C.1)

where η > 0 is the learning rate and Sm = {w ∈ [0, 1]n :
∑n

i=1wi = m}.
Since our lower bound for GD must hold no matter what the fixed learning rate η is, we

construct two adversarial loss sequences: The first causes the GD algorithm to suffer large
regret when η is small and the second causes large regret when η is large. Specifically, we
will show that the GD algorithm suffers regret at least Ω(k/η) on the first sequence, and at
least Ω(min{BL, kBLη}) on the second sequence. We will then show that the lower bound
of the theorem follows by taking the maximum of these two bounds and by solving for
the learning rate that minimizes this maximum. The first sequence consists of unit losses
assigned to the first k experts. At each trial, the adversary gives a unit of loss to the expert
(out of the first k) with the largest current weight. If the learning rate η is small, then the
weights assigned to the first k experts decrease too slowly (Lemma C.2). This causes the
algorithm to suffer a substantial amount of loss on the first sequence, while the loss of the
remaining m experts remains zero. The second sequence consists of unit losses assigned to
the first k + 1 experts. As before, the adversary always gives the expert with the largest
weight (now out of the first k + 1) a unit of loss. Intuitively, the GD algorithm will give
high weight to the m− 1 = n− (k + 1) loss free experts and the best out of the first k + 1
experts. As the η gets larger, the algorithm puts more and more weight on the current best
out of the k+ 1 experts instead of hedging its bets over all k+ 1 experts. So the algorithm
becomes more and more deterministic and the adversary strategy of hitting the expert with
the largest weight (out of the first k + 1) causes the algorithm to suffer a substantial loss
(Lemma C.3). Formalizing these findings is not simple as the projection step of the GD
algorithm does not have a closed form. Hence, we need to resort to the Karush-Kuhn-Tucker
optimality conditions and prove a sequence of lemmas before assembling all the pieces for
proving Theorem 4.1.

Let αi be a dual variable for the constraint wt+1,i ≥ 0 (i = 1, . . . , n), βi be a dual
variable for the constraint wt+1,i ≤ 1 (i = 1, . . . , n), and γ be a dual variable for the
constraint

∑n
i=1wt+1,i = m. Then the KKT conditions on the projection step of (C.1) have

the following form: For i = 1, . . . , n,

Stationarity: wt+1,i = −wt,i − η`t,i + γ + αi − βi,
Complementary slackness: wt+1,i αi = 0, (wt+1,i − 1)βi = 0,
Primal feasibility:

∑n
i=1wt+1,i = m, 0 ≤ wt+1,i ≤ 1,

Dual feasibility: αi ≥ 0, βi ≥ 0.

(C.2)

Note that since the projection step of (C.1) is a convex optimization problem, these con-
ditions are necessary and sufficient for the optimality of a solution. Hence, for any inter-
mediate weight vector ŵt+1 = wt − η`t, if a set of primal and dual variables wt+1,α =
(α1, . . . , αn),β = (β1, . . . , βn), γ satisfy all the conditions (C.2), then they are the unique
primal and dual solutions of the projection step.
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We start with a special case where the GD update (C.1) actually has a closed form
solution:

Lemma C.1 Consider a trial of the m-set problem with n experts, when only one expert
incurs a unit of loss. If this expert has weight w and all remaining experts have weight at
most 1 −min{ ηn ,

w
n−1}, then the GD algorithm with learning rate η > 0 will decrease w by

min{ (n−1)η
n , w} and increase all the other weights by min{ ηn ,

w
n−1}.

Proof W.l.o.g., the first expert incurs a unit of loss in trial t, i.e. wt,1 = w and `t = e1,
where e1 is the unit bit vector with first coordinate equal to 1 (and all other coordinates
equal to 0). To solve the projection step of the GD update (C.1), we distinguish two cases
based on the value of wt,1. In each case we propose a solution to the projection step and
show that it is a valid solution by verifying the KKT conditions (C.2).

Case wt,1 = w ≥ n−1
n η: The proposed solution is γ = η

n and for 1 ≤ i ≤ n, αi = βi = 0,

wt+1,i =

{
wt,1 − n−1

n η for i = 1
wt,i + η

n for i ≥ 2
.

All KKT conditions are easy to check, except for the primal feasibility condition: wt+1,i ≤ 1,
for i ≥ 2. By the assumption of the lemma, wt,i ≤ 1 − min{ ηn ,

wt,1
n−1}. Since we are in the

case wt,1 ≥ n−1
n η, we have wt,i ≤ 1− η

n and therefore

wt+1,i = wt,i +
η

n
≤ 1− η

n
+
η

n
= 1.

We conclude that in this case, the first weight decreases by n−1
n η and all the other weights

increase by η
n .

Case wt,1 = w < n−1
n η: The proposed solution is γ =

wt,1
n−1 and for 1 ≤ i ≤ n, βi = 0,

αi =

{
η − n

n−1wt,1 for i = 1

0 for i ≥ 2
, wt+1,i =

{
0 for i = 1
wt,i +

wt,1
n−1 for i ≥ 2

.

Again, all KKT conditions are easy to check, except for the primal feasibility condition
wt+1,i ≤ 1 for i ≥ 2. By the assumption of the lemma wt,i ≤ 1−min{ ηn ,

wt,1
n−1}. Since we are

in the case wt,1 <
n−1
n η, we have wt,i ≤ 1− wt,1

n−1 and therefore

wt+1,i = wt,i +
wt,1
n− 1

≤ 1− wt,1
n− 1

+
wt,1
n− 1

= 1.

We conclude that in this case, the first weight decreases by wt,1 and all the other weights
increase by

wt,1
n−1 . Combining the above two cases proves the lemma.

Our next lemma considers the general case when the weight vector before the update
does not necessarily satisfy the assumption in Lemma C.1, i.e. the weights of the experts
not incurring loss may be larger than 1 −min{ ηn ,

w
n−1} (where w is the weight of the only

expert incurring loss).
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Lemma C.2 Consider a trial of the m-set problem with n experts, when only one expert
incurs a unit of loss. If this expert has weight w, then the GD algorithm with learning rate
η > 0 will decrease w by at most η and will not decrease the weights of any other experts.
Furthermore, if any expert not incurring loss has weight at least 1−min{ ηn ,

w
n−1}, then its

weight will be set to 1 by the capping constraint.

Proof Let wt be the weight vector at the beginning of the trial and assume w.l.o.g. that
the first expert incurs one unit of loss, i.e. `t = e1. Let wt+1,α,β and γ denote the
variables satisfying the KKT conditions (C.2). The lemma now states that:

wt+1,1 ≥ wt,1 − η and wt+1,i ≥ wt,i, for 2 ≤ i ≤ n, (C.3)

and furthermore

wt+1,i = 1, for any 2 ≤ i ≤ n such that wt,i ≥ 1−min

{
η

n
,
wt,1
n− 1

}
. (C.4)

We first prove (C.3). By the stationarity condition of (C.2) and the assumption `t = e1,
we have that

wt+1,1 − wt,1 = �
��wt,1 − η + α1 − β1 + γ −���wt,1 = −η + α1 − β1 + γ,

and for 2 ≤ i ≤ n: wt+1,i − wt,i = ��
�wt,1 + αi − βi + γ −���wt,1 = αi − βi + γ.

Therefore, to prove (C.3), it suffices to show αi − βi + γ ≥ 0 for 1 ≤ i ≤ n. By the
dual feasibility condition of (C.2), αi ≥ 0 but −βi ≤ 0. However, when −βi < 0, we have
wt+1,i = 1 by the complementary slackness condition, and therefore (C.3) holds trivially in
this case (noting that wt,i ≤ 1). Now we only need to show γ ≥ 0. We do this by summing
wt,i − η`t,i + γ over indices i such that wt+1,i > 0:

∑
i:1≤i≤n,wt+1,i>0

(wt,i − η`t,i + γ)

αi = 0 since
wt+1,i > 0

=
∑

i:1≤i≤n,wt+1,i>0

(wt,i − η`t,i + γ + αi)

≥
∑

i:1≤i≤n,wt+1,i>0

(wt,i − η`t,i + γ + αi − βi)

≥
∑

i:1≤i≤n,wt+1,i>0

(wt,i) = m. (C.5)

Furthermore, since both the learning rate η and the loss vector `t are non-negative, we have
that for all 1 ≤ i ≤ n,∑

i:1≤i≤n,wt+1,i>0

(wt,i − η`t,i) ≤
∑

i:1≤i≤n,wt+1,i>0

(wt,i) ≤ m.

Combining the above inequality with (C.5) implies that γ ≥ 0, which completes our proof
of (C.3).

Next we prove (C.4). By the stationarity condition of (C.2) and the assumption `t = e1,
we have that for 2 ≤ i ≤ n,

wt+1,i = wt,i − η`t,i + αi − βi + γ = wt,i + αi − βi + γ. (C.6)
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Now if we further assume that wt,i ≥ 1−min{ ηn ,
wt,1
n−1}, then (C.6) is lower bounded by

wt+1,i = wt,i + αi − βi + γ ≥ 1−min

{
η

n
,
wt,1
n− 1

}
+ αi − βi + γ.

Thus to prove (C.4), it suffices to show that −min{ ηn ,
wt,1
n−1}+ αi − βi + γ ≥ 0. By the dual

feasibility condition of (C.2), αi ≥ 0 but −βi ≤ 0. However, when −βi < 0, then wt+1,i = 1
follows directly from the complementary slackness condition. Therefore w.l.o.g., we assume
βi = 0. Now all that remains is to show γ ≥ min{ ηn ,

wt,1
n−1}, for which we distinguish the

following 2 cases.
Case wt+1,1 > 0: We will show γ ≥ η

n for this case. First note that

m
(C.5)

≤
∑

i:1≤i≤n,wt+1,i>0

(wt,i − η`t,i + γ)
γ≥0
≤

∑
i:1≤i≤n,wt+1,i>0

(wt,i − η`t,i) + nγ. (C.7)

Now since we assume wt+1,1 > 0 and `t = e1, the first term on RHS of (C.7) is upper
bounded by: ∑

i:1≤i≤n,wt+1,i>0

(wt,i − η`t,i) =
∑

i:1≤i≤n,wt+1,i>0

(wt,i)− η ≤ m− η.

Together, we get m ≤ nγ − η +m, and this gives γ ≥ η
n .

Case wt+1,1 = 0: We will show γ ≥ wt,1
n−1 for this case. Since wt+1,1 = 0, the summation∑

i:1≤i≤n,wt+1,i>0

(wt,i − η`t,i + γ) does not include the case i = 1, i.e.

∑
i:1≤i≤n,wt+1,i>0

(ŵt,i − η`t,i + γ) =
∑

i:2≤i≤n,wt+1,i>0

(ŵt,i − η`t,i + γ) .

Therefore, (C.7) can be tightened as follows:

m
(C.5)

≤
∑

i:2≤i≤n,wt+1,i>0

(wt,i − η`t,i + γ)
γ≥0
≤

∑
i:1≤i≤n,wt+1,i>0

(wt,i − η`t,i) + (n− 1)γ.

Again, by the assumption `t = e1, we have∑
i:2≤i≤n,wt+1,i>0

(wt,i − η`t,i) =
∑

i:2≤i≤n,wt+1,i>0

(wt,i) ≤ m− wt,1.

Together, we get m ≤ (n− 1)γ+m−wt,1, which gives γ ≥ wt,1
n−1 and completes the proof.

Our third lemma lower bounds the loss of the GD algorithm with respect to a particular
adversarial loss sequence of n trials (instead of the above lower bounds for single trials).
We argue this lower bound for the special case of the m-set problem when m = 1, i.e. the
vanilla expert setting. As we shall see shortly in the main proof of Theorem 4.1, the lower
bound of the general m-set problem degenerates into this special case for a certain loss
sequence. Note that the assumptions of Lemma C.1 are always met when m = 1, because
in this case any expert not incurring loss has weight at most 1− w, where w is the weight
of the expert incurring loss.
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Lemma C.3 Consider the m-set problem with n experts, and m = 1. If at each trial, only
the expert with the largest weight incurs a unit of loss, then after n consecutive such trials,
the GD algorithm with learning rate η > 0 suffers loss at least 1 + 1

32 min{nη, 1}.

Proof First notice that when m = 1, the largest of the n expert weights at each trial is at
least 1

n . Therefore, any algorithm suffers total loss at least 1 in n trials. To show the extra
loss of 1

32 min{nη, 1}, we claim that in at least n
4 of these n trials, the largest expert weight

assigned by the GD algorithm is at least 1
n + 1

8 min{η, 1
n}. This claim is proved as follows.

Let η′ = min{η, 1
n} and t0 be the first trial that the largest expert weight of the trial

is less than 1
n + 1

8η
′. If t0 >

n
4 , the claim holds trivially. Hence, we assume t0 ≤ n

4 . Now
call any expert with weight at least 1

n −
1
8η
′ at trial t0 a candidate. We will show that the

number of candidates s is at least n
2 . To show this we first upper bound the expert weights

at trial t0 as follows:

sum of non-candidates’ weights ≤ (n− s)
(

1

n
− 1

8
η′
)
,

sum of candidates’ weights ≤ s

(
1

n
+

1

8
η′
)
.

The first inequality follows from the fact that non-candidates have weight at most 1
n −

1
8η
′

and the second inequality follows from the definition of t0, i.e. the maximum weight at that
trial is less than 1

n + 1
8η
′. Now, since all the expert weights at a trial sum to 1, we have

1 ≤ s
(

1

n
+

1

8
η′
)

+ (n− s)
(

1

n
− 1

8
η′
)

= 1 +
s

4
η′ − n

8
η′,

which gives s ≥ n
2 since η′ ≥ η > 0.

Next, we show that at trial t0 + n
4 , there will be a subset of at least n

4 candidates whose
weight will be at least 1

n + 1
8η
′. First recall that at each trial, only one expert incurs a unit

of loss. Therefore, in the n
4 trials from t0 to t0 + n

4 − 1, there will be at least n
2 −

n
4 = n

4
candidates that do not incur any loss. By Lemma C.1, the weight of an expert not incurring
loss is increased at each trial by min{ ηn ,

w
n−1}, where w is the weight of the expert incurring

loss at that trial. Note that w ≥ 1
n always hold since the expert incurring loss has the

largest weight among the n experts. Therefore, at trial t0 + n
4 , each of the n

4 candidates
that do not incur any loss from trial t0 to trial t0 + n

4 − 1 has weight at least:

1

n
− 1

8
η′︸ ︷︷ ︸

lower bound on the
weight at trial t0

+
n

4
min{η

n
,
wt
n− 1

}︸ ︷︷ ︸
lower bound on the increase

from trial t0 to trial t0 + n
4
− 1

wt
n−1
≥ 1
n2

≥ 1

n
− 1

8
η′ +

n

4
min{η

n
,

1

n2
} =

1

n
+
η′

8
.

Finally, consider the next n
4 trials from t0 + n

4 to t0 + n
2 − 1. (The game must have

more than t0 + n
2 trials, since we assume t0 ≤ n

4 .) The maximum weights at these trials are
always at least 1

n + 1
8η
′, because only one expert incurs loss at a time, and the weights of

the remaining experts are never decreased. This completes the proof of the claim and the
lemma.

Now we are ready to give the lower bound on the regret of the GD algorithm for the
m-set problem. For the sake of readability, we repeat the statement of Theorem 4.1 below:
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Theorem 4.1 Consider the m-set problem with k ≤ n/2 and unit bit vectors as loss vectors.
Then for any fixed learning rate η, the GD algorithm (C.1) can be forced to have regret at
least Ω(max{min{BL, k

√
BL}, k}).

Proof The lower bound Ω(k) directly follows from Lemma G.2 proven later: If we set
the variable i in the statement of the lemma to k, then this results in a lower bound of
Ω(m log n

m) for any algorithm. Now, m log n
m = m log( km + 1) ≥ k. Hence to prove this

theorem, we only need to show a lower bound of Ω({min{BL, k
√
BL}), where BL is the loss

budget (defined in (3.1)). Also, w.l.o.g., assume BL ≥ 4k since when BL ≤ 4k, the claimed
bound is in fact Ω(k), which always holds as we just argued.

The hard part (deferred to later) in proving the Ω({min{BL, k
√
BL}) lower bound for

GD is to show that the algorithm suffers regret at least Ω(k/η) and Ω(min{BL, kBLη})
on two different loss sequences, respectively. Clearly, it follows that the regret of GD is
then at least the maximum of these two bounds. By a case analysis, one can show that
max{a,min{b, c}} ≥ min{b,max{a, c}} for any a, b, c ∈ R. (We prove this as Lemma I.1
in Appendix I.) Therefore we get the lower bound of Ω(min{BL,max{k/η, kBLη}}). The
lower bound for GD with any fixed learning rate now follows from fact that max{k/η, kBLη}
is minimized at η = Θ(1/

√
BL). The value of the lower bound with this choice of η is the

target lower bound of Ω(k
√
BL).

We still need to describe the two loss sequences and prove the claimed lower bounds on

the regret. The first loss sequence forces GD to suffer regret Ω(k/η). It consists of
⌊
km
nη

⌋
+1

trials in which only the first k experts incur losses. More precisely, at each trial, the expert
with the largest weight (within the first k experts) incurs one unit of loss (In the case of
tied weights, only the expert with the smallest index incurs loss). The last m experts have
loss 0. Therefore the regret is simply the total loss of the GD algorithm. The loss of the
algorithm at each trial is equal to the largest weight of the first k experts. Therefore the loss
is lower bounded by the average of the first k weights. With a uniform initial weight vector,
this average is m

n at the beginning of the first trial, and by Lemma C.2, it is decreased by

at most η
k after each of the following

⌊
km
nη

⌋
+ 1 trials. Therefore, at the beginning of trial t,

the average is at least m
n − (t− 1)ηk . Summing up the arithmetic series from trial 1 to trial⌊

km
nη

⌋
+ 1 gives the following lower bound on the total loss of GD:

1

2

(⌊
km

nη

⌋
+ 1

)(
m

n
+
m

n
−
(⌊

km

nη

⌋
+ 1− 1

)
η

k

) m
n
≥ 1

2

≥ 1

4

(⌊
k

2η

⌋
+ 1

)
= Ω

(
k

η

)
.

Now we describe the second loss sequence which forces the GD algorithm to suffer regret
Ω(min{BL, kBLη}). For the sake of clarity, we assume that BL is integer (otherwise replace
BL by bBLc in the proof). The sequence consists of (k+ 1)BL trials, where the expert with
the largest weight among first k + 1 experts incurs a unit of loss. The best comparator of
this sequence consists of the last m − 1 experts that have 0 total loss and the best of the
first k + 1 experts which has total loss at most BL.

Next we lower bound the loss of GD with respect to this loss sequence. First observe,
that the last m − 1 experts do not incur any loss in the (k + 1)BL trials. Therefore their
weight may increase (from their initial value of m

n ), but at any trial the weights of these
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experts always have the same value. The value of this block of equal weights is always
the maximum weight of any expert, since the weight value of the block is never decreased
by the algorithm. More precisely, at each trial the block’s value is increased as given in
Lemma C.1, until it becomes 1 at trial tcap and stay at 1 till the end of the game. If no
such trial tcap exists (i.e. the value of the block remains less than 1 at the end of the game),
then let tcap =∞. In the degenerate case when m = 1 (i.e. the block has size m− 1 = 0),
we simply set tcap = 1 from the beginning.

Depending on the value of tcap, we distinguish two cases in which GD suffers loss at
least BL + Ω(BL) and BL + Ω(min{BL, kBLη}), respectively.

Case tcap > (k + 1)BL/2: We will show that GD suffers loss at least BL + Ω(BL) in
this case. First recall that at the beginning of the proof we assumed BL ≥ 4k. Therefore in
the case tcap > (k + 1)BL/2 we have tcap > 4. From our definition of tcap this means that
m ≥ 2. Next we argue that since tcap > (k + 1)BL/2, we have η ≤ 1

k+1 . Let Wt denote the
sum of the first k + 1 weights at trial t and let wt be their maximum. By Lemma C.1, we
know that in each trial prior to tcap, the weight wt of the expert incurring loss is decreased

by min{ (n−1)η
n , wt} and all other weights are increased by min{ ηn ,

wt
n−1}. Since the expert

incurring loss is always one of the first k+1 experts, we have that in each trial prior to tcap,
the total weight Wt is decreased by at least

min

{
(n− 1)η

n
,wt

}
− kmin

{
η

n
,
wt
n− 1

}
≥ m− 1

n
min{η, wt} ≥

m− 1

n
min

{
η,

1

k + 1

}
.

The second inequality follows from the fact that since wt is the largest of the first k + 1
expert weights, it must be at least 1

k+1 . Together with the fact that W1 = (k+1)m
n , we have

W(k+1)BL/2 ≤
(k + 1)m

n
− (k + 1)BL

2

m− 1

n
min

{
η,

1

k + 1

}
. (C.8)

Now if η ≥ 1
k+1 , the upper bound (C.8) becomes (k+1)m

n − (m−1)BL
2n , which can be further

upper bounded by m
n using the fact m ≥ 2 and the assumption BL ≥ 4k. However, the

upper bound of W(k+1)BL/2 ≤
m
n is less than 1 and all Wt are at least 1 since m−Wt is the

total weight of the last m− 1 experts which is at most m− 1. Therefore we have η < 1
k+1

in this case.

Now we lower bound the loss of GD by lower bounding the average weight Wt/(k + 1).
We have η < 1

k+1 and tcap > (k + 1)BL/2. Also by Lemma C.1, Wt decreases by exactly
(m−1)η

n at each trial for 1 ≤ t ≤ (k + 1)BL/2. Therefore the total average weight in trials 1
through (k + 1)BL/2 is at least

1

2

1

k + 1

(
(k + 1)m

n
+ 1

)
(k + 1)BL

2
=

(
(k + 1)m

n
+ 1

)
BL
4
. (C.9)

Now with m ≥ 2, k ≥ 1 and n = m + k, it is easy to verify that (k+1)m
n is at least

1 + Ω(1), which along with (C.9) results in a BL
2 + Ω(BL) lower bound on the loss of GD

for 1 ≤ t ≤ (k + 1)BL/2. In trials (k + 1)BL/2 < t ≤ (k + 1)BL, GD suffers loss at least
(k+1)BL

2
1

k+1 = BL
2 since the weight of the expert incurring loss is at least 1

k+1 . Thus in trial

30



Online PCA with Optimal Regret

1 through (k + 1)BL the loss of GD is at least BL + Ω(BL) which concludes the proof of
the case tcap ≥ (k + 1)BL/2.

Case tcap ≤ (k + 1)BL/2: We will show that GD suffers total loss at least BL +
Ω(min{BL, kBLη}) in this case. First note that GD suffers loss at least BL/2 in the first
(k+ 1)BL/2 trials. This follows from the fact that in each trial, the expert with the largest
weight among first k + 1 experts incurs a unit of loss. Since the sum of all weights is equal
to m, and none of the remaining m − 1 weights can exceed 1, the sum of weights of the
first k + 1 experts must be at least 1, and hence the largest weight among the first k + 1
experts is at least 1

k+1 . This means that in a sequence of (k+ 1)BL/2 trials, the loss of the
GD algorithm is at least BL/2.

Thus, it suffices to show that GD suffers loss at least BL/2+Ω(min{BL, kBLη}) in trials
(k + 1)BL/2 + 1 through (k + 1)BL. First note that since tcap ≤ (k + 1)BL/2, in each of
these trials the weights of the m − 1 loss free experts have reached the cap 1. This means
that GD updates the weights of the first k + 1 experts as in the vanilla expert setting (i.e.
m = 1). Therefore by Lemma C.3, the loss of GD in the second (k + 1)BL/2 trials is at
least BL

2 (1 + 1
32 min{(k + 1)η, 1}) = BL

2 + Ω(min{BL, kBLη}).
We conclude that for the second loss sequence, the loss of the best comparator is at

most BL and the loss of GD is at least BL + Ω(min{BL, kBLη}). Therefore, the regret of
GD is at least Ω(min{BL, kBLη}) for the second loss sequence and this completes our proof
of the theorem.

Appendix D. Proof of Theorem 4.3

Theorem 4.3 gives a lower bound on the regret of the FRL-GD algorithm for the m-set
problem with unit bit vectors as loss vectors. In this case, the FRL-GD algorithm (4.2)
specializes to the following:

Follow the regularized leader: ŵt+1 = −η
t∑

q=1

`q,

Projection step: wt+1 = argmin
w∈Sm

‖w − ŵt+1‖2.
(D.1)

The proof has the same structure as the lower bound for the GD algorithm (Appendix C).
Again we use two adversarial loss sequences (one for low and high learning rates) and give
three technical lemmas that reason with the KKT conditions. The details are different
because the intermediate weight vector ŵt+1 has a different form than for vanilla GD. The
KKT conditions are the same as the KKT condition for GD (C.1) except for a slight change
in the stationarity condition. For i = 1, . . . , n,

Stationarity: wt+1,i = −η`≤t,i + γ + αi − βi,
Complementary slackness: wt+1,iαi = 0, (wt+1,i − 1)βi = 0,
Primal feasibility:

∑n
i=1wt+1,i = m, 0 ≤ wt+1,i ≤ 1,

Dual feasibility: αi ≥ 0, βi ≥ 0,

(D.2)

where `≤t,i =
∑t

q=1 `q,i is the cumulative loss of expert i up to trial t. Again we prove three
technical lemmas before assembling them into the main proof.
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Lemma D.1 Consider the m-set problem with n experts, where at the beginning of trial
t+ 1, each of the first k + 1 experts (where k = n−m) have incurred the same cumulative
loss `, and all the remaining experts are loss free, i.e.

`≤t,i =

{
` for i ≤ k + 1

0 for i > k + 1
.

Now the FRL-GD algorithm predicts at trial t+ 1 with the weight vector wt+1 given by:

wt+1,i =



if η` < k
k+1 then


m−η`(m−1)

n for i ≤ k + 1

m+η`(k+1)
n for i > k + 1

if η` ≥ k
k+1 then

{
1

k+1 for i ≤ k + 1

1 for i > k + 1

.

Proof We prove this lemma by verifying the KKT conditions (D.2). If η` < k
k+1 , we have:

1 >
m− η`(m− 1)

n
> 0, and 0 <

m+ η`(k + 1)

n
< 1.

Therefore 0 < wt+1,i < 1, for all i. By taking α = β = 0, and γ = m+η`(k+1)
n , the

KKT conditions can easily be verified to hold. If η` ≥ k
k+1 , the KKT conditions are satis-

fied by taking αi = 0 for i ≤ k+1 and αi = k
k+1−η` for i > k+1, β = 0 and γ = 1

k+1 +η`.

Lemma D.2 Consider a trial of the m-set problem with n experts, when only one expert
incurs a unit of loss. Then the FRL-GD algorithm with learning rate η > 0 decreases the
weight of this expert by at most η and none of the other weights are decreased in this trial.

Proof Let `≤t−1 be the cumulative loss vector at the beginning of the trial, and let
wt,αt,βt and γt be the corresponding primal and dual variables satisfying KKT conditions
(D.2) with respect to `≤t−1. W.l.o.g., we assume the first expert incurs a unit of loss,
i.e. `≤t = `≤t−1 + e1. Let wt+1,αt+1,βt+1 and γt+1 denote the variables satisfying the
KKT conditions with respect to the updated loss vector `≤t. The lemma now states that
wt+1,1 − wt,1 ≥ −η.

The lemma holds trivially when wt+1 = wt. When wt+1 6= wt, we first show that
γt+1 ≥ γt. Since both wt and wt+1 sum to m, there must be an expert j, such that
wt,j < wt+1,j . By the stationarity condition of (D.2), we have:

0 < wt+1,j−wt,j = (−η`≤t,j+αt+1,j−βt+1,j+γt+1) − (−η`≤t−1,j+αt,j−βt,j+γt),

or, equivalently,

γt+1 − γt > η(`≤t,j − `≤t−1,j) + (αt,j − αt+1,j) + (βt+1,j − βt,j). (D.3)

Since wt+1,j > wt,j , and the weights must be non-negative, we have wt+1,j > 0, and thus
αt+1,j = 0 due to the complementary slackness condition of (D.2). Since αt,j must be
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non-negative due to the dual feasibility condition of (D.2), we have αt,j ≥ αt+1,j . A similar
argument gives βt+1,j ≥ βt,j . Moreover, since `≤t,j − `≤t−1,j ≥ 0 (due to `≤t = `≤t−1 + e1),
the RHS of (D.3) is non-negative, and thus γt+1 ≥ γt.

By the stationary condition of (D.2), we have:

wt+1,1 − wt,1 = (−η`≤t,1 + αt+1,1 − βt+1,1 + γt+1) − (−η`≤t−1,1 + αt,1 − βt,1 + γt)

= −η + (γt+1 − γt) + (αt+1,1 − αt,1) + (βt,1 − βt+1,1), (D.4)

where we used `≤t,1 = `≤t−1,1+1. If αt,1 6= 0, then wt,1 = 0 due to complementary slackness,
and the lemma trivially holds. Similarly if βt+1,1 6= 0, then wt+1,1 = 1, and again the lemma
holds trivially. Thus, we may assume that αt,1 = βt+1,1 = 0. However then (D.4) becomes

wt+1,1 − wt,1 = −η + (γt+1 − γt) + αt+1,1 + βt,1 ≥ −η.

We now show the second statement of the lemma, that wt+1,i ≥ wt,i for all i > 1. First
note that if αt,i > 0, then by the complementary slackness condition of (D.2), wt,i = 0, and
the statement trivially holds. Similarly, if βt+1,i > 0, then by the complementary slackness
condition, wt+1,i = 1, and, again the statement trivially holds. Therefore we prove the
statement assuming that αt,i = 0 and βt+1,i = 0. Since `≤t,i = `≤t−1,i, the complementary
slackness condition of (D.2) implies:

wt+1,i − wt,i = (���
�−η`≤t,i + αt+1,i − βt+1,i + γt+1) − (���

��−η`≤t−1,i + αt,i − βt,i + γt)

= (αt+1,i − αt,i︸︷︷︸
=0

) + (βt,i − βt+1,i︸ ︷︷ ︸
=0

) + (γt+1 − γt︸ ︷︷ ︸
≥0

)

≥ αt+1,i + βt,i ≥ 0,

where the last inequality is by the dual feasibility condition of (D.2). This finishes the
proof.

Lemma D.3 Consider the m-set problem with n experts, and m = 1. Assume at the end
of trial t, the cumulative losses of all experts are the same. Assume further that the loss
sequence in trials t+ 1, . . . , n is `t+1 = e1, `t+2 = e2, . . . , `t+n = en, i.e. each expert subse-
quently incurs a unit of loss. Then the cumulative loss incurred by the FRL-GD algorithm
in iterations t+ 1, . . . , n is at least 1 + 1

4 min{nη, 1}.

Proof The proof goes by providing primal and dual variables satisfying the KKT conditions
(D.2). Since the solution wt+1 to (D.2) does not change if we shift all cumulative losses
`≤t,i by a constant we can assume w.l.o.g. that the cumulative loss of all experts at the end
of trial t is 0.

Take trial t + j + 1 (j ≥ 0), at the beginning of which each of the first j experts have
already incurred a unit of loss and the remaining n − j experts are loss free. If η ≤ 1

n−j ,
then the KKT conditions (D.2) are satisfied by taking αi = βi = 0 for all i = 1, . . . , n,
γ = j

nη + 1
n , and

wt+j+1,i =

{
1
n −

n−j
n η for i ≤ j

1
n + j

nη for i > j
.
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In this trial, expert j + 1 incurs a unit of loss, and hence the algorithm’s loss is 1
n + j

nη.
If η > 1

n−j , then the KKT conditions (D.2) are satisfied by taking γ = 1
n−j and for

1 ≤ i ≤ n, βi = 0,

wt+j+1,i =

{
0 for i ≤ j

1
n−j for i > j

, αi =

{
η − 1

n−j for i ≤ j

0 for i > j
.

The loss of the algorithm in such a case is 1
n−j .

Thus depending on η, the algorithm’s loss at trial t+ j + 1 is equal to{
1
n + j

nη if η ≤ 1
n−j

1
n−j = 1

n + j
n

1
n−k if η > 1

n−j
,

which can be concisely written as: 1
n+ j

n min
{
η, 1

n−j

}
. Summing the above over j = 0, . . . , n

gives the cumulative loss of the algorithm incurred at trials t+ 1, . . . , t+ n:

n−1∑
j=0

1

n
+
j

n
min

{
η,

1

n− j

}
≥

n−1∑
j=0

1

n
+
j

n
min

{
η,

1

n

}

= 1 +
n− 1

2
min

{
η,

1

n

}
≥ 1 +

1

4
min {ηn, 1} ,

where the last inequality is due to n− 1 > n
2 for n ≥ 2.

We are now ready to give the proof of Theorem 4.3:

Theorem 4.3 Consider the m-set problem with k ≤ n/2 and unit bit vectors as loss vectors.
Then for any fixed learning rate η, the FRL-GD algorithm (D.1) can be forced to have regret
at least Ω(max{min{BL, k

√
BL}, k}).

Proof Theorem 5.6 gives a lower bound of Ω(
√
BLm log n

m +m log n
m) that holds for any

algorithm. This lower bound is at least Ω(k) since m log n
m = m log( km + 1) ≥ k. Hence to

prove this theorem, we only need to show a lower bound of Ω({min{BL, k
√
BL}). Similarly

as in the proof of Theorem 4.1, we show this in two steps: First, we give two loss sequences
that force FRL-GD to have regret at least Ω(k/η) and Ω(min{BL, kBLη}), respectively.
Then, the lower bound follows by taking the maximum between the two lower bounds.

The first loss sequence is exactly the same as in the proof of Theorem 4.1, i.e. the

sequence consists of
⌊
km
nη

⌋
+ 1 trials and in each trial, the expert with the largest weight

(within the first k experts) incurs one unit of loss. With Lemma D.2 in place of Lemma C.2,
one can easily show an Ω(k/η) regret lower bound for FRL-GD by repeating the argument
from the proof of Theorem 4.1.

Now we describe the second loss sequence which forces the FRL-GD algorithm to suffer
regret Ω(min{(BL), kBLη}). For the sake of clarity, we assume that BL is integer (otherwise
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replace BL by bBLc in the proof). The sequence consists of BL “rounds”, and each round
consist of k + 1 trials (so that there are (k + 1)BL trials in total). In each round, one unit
of loss is given alternately to each of the first k + 1 experts, one at a time. In other words,
in trial t, the loss vector `t equals to er where r = t mod (k + 1). The best comparator of
this sequence consists of the last m− 1 loss free experts and any of the first k + 1 experts,
which incurs cumulative loss BL.

To lower bound the loss of the algorithm, first notice that in each round, each of the
first k+1 experts incurs exactly one unit of loss. The sum of weights of these experts at the
beginning of a round lower bounds the algorithm’s loss in this round. This is because the
weight of a given expert cannot decrease if the expert does not incur any loss (Lemma D.2);
hence, the weight of a given expert at a trial, in which that expert receives a unit of loss,
will be at least as large as the weight of that expert at the beginning of a round. Since the
weights are initialized uniformly, this sum is m(k+1)/n before round 1, and by Lemma D.1,
each of the following rounds decreases it by (m − 1)(k + 1)η/n until it is lower capped at
1 (Since the total sum of the weights is m, and none of the remaining m − 1 weights can
exceed 1, the sum of weights of the first k + 1 experts must be at least 1).

We first assume that after BL/2 rounds, this sum is strictly larger than 1 which means
the sum decreases as an arithmetic series for all the first BL/2 rounds and the algorithm’s
loss can be lower bounded by

1

2
(m(k + 1)/n+ 1)

BL
2

Use the same
argument as in (C.9)

= BL/2 + Ω(BL).

Since the sum of the first k+1 weights at the beginning of any trial is at least 1, the algorithm
incurs loss at least BL/2 in the remaining BL/2 rounds. Summing up the algorithm’s loss
on both halves of the sequence, we get a regret lower bound of Ω(BL).

Now consider the case, when after the first BL/2 rounds, the sum of the first k+1 weights
is 1. This implies that the weights of m − 1 remaining experts are all equal to 1, and will
stay at this value, since only the first k+ 1 experts incur any loss (and, by Lemma D.2, the
weight of an expert cannot decrease if that expert does not incur any loss). Thus, we can
disregard the loss free m − 1 experts, and in the remaining BL/2 rounds, the first k + 1
expert weights are updated as in the m-set problem with m = 1. Notice that the algorithm
suffers loss at least BL/2 in the first BL/2 rounds and by Lemma D.3, suffers loss at least
BL/2+BL min{(k+1)η, 1}/8 in the second BL/2 rounds. Summing up the algorithm’s loss
on both halves of the sequence, we get a regret lower bound of Ω(min{BL, kBlη}).

Appendix E. A Discussion on the Final Parameter of FRL-GD

In this appendix, we show that the final parameter matrix of the FRL-GD algorithm essen-
tially contains the solution to the batch PCA problem. First recall that given n dimensional
data points x1, . . . ,xT , the batch version of the k-PCA problem is solved by the eigenvec-
tors of the k largest eigenvalues of the covariance matrix C =

∑T
t=1 xtx

>
t . Let WT+1

be the final parameter matrix of the FRL-GD algorithm when the instance matrices are
X1 = x1x

>
1 , . . . ,XT = xTx

>
T . We will show that the eigenvectors of the m = n− k largest

eigenvalues of WT+1 are the same as the eigenvectors of the m largest eigenvalues of the
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negated covariance matrix −C. Thus, by computing the complementary subspace of rank
k, one finds the solution of the batch PCA problem with respect to data points x1, . . . ,xT .

Recall that the final parameter WT+1 of FRL-GD is the projection of the −C into the
parameter set Wm:

WT+1 = argmin
W∈Wm

‖ −C −W ‖2F .

Let −C have eigendecomposition −C = Udiag(λ)U>, where λ is the vector of the eigen-
values of −C. Arora et al. (2013, Lemma 3.2) shows that the projection of −C is solved
by projecting the eigenvalues λ into Sm while keeping its eigensystem unchanged:

WT+1 = Udiag(λ′)U> and λ′ = argmin
v∈Sm

‖λ− v‖22.

W.l.o.g., assume the elements of λ are in descending order, i.e. λ1 ≥ λ2 ≥ . . . λn. To prove
that the eigenvectors of the m largest eigenvalues are the same in WT+1 and −C, we only
need to show the following: for any integers pair i and j such that 1 ≤ i ≤ m < j ≤ n, if
λi > λj , then λ′i > λ′j . First note that by the KKT analysis of the problem of projecting
into Sm (see (D.2)), it is easy to see that if λi > λj , then exactly one of the following three
cases holds.

λ′i > λ′j or λ′i = λ′j = 0 or λ′i = λ′j = 1.

Now we show that when i and j further satisfy i ≤ m < j, the latter two cases can never
happen. Suppose λ′i = λ′j = 1 for some i ≤ m < j. In this case for any i′ ≤ m, λ′i′ = λ′j = 1
also holds. Therefore, the sum of all the coordinates of λ′ will be at least m + 1 which
contradicts λ′ ∈ Sm. Now assume λ′i = λ′j = 0 for some i ≤ m < j. In this case for any
m < j′, λ′i = λ′j′ = 0 also holds. This implies that the sum of all the coordinates of λ′s will
be at most m− 1 which again contradicts λ′ ∈ Sm.

Appendix F. Regret Lower Bounds When the Number of Trials Is Large

This appendix proves lower bounds on the regret of any online algorithm for the m-set
problem: Theorem 5.1 and Theorem 5.2 prove lower bounds for unit bit vectors as loss
vectors and Theorem 5.4 proves lower bounds for arbitrary bit vectors as loss vectors. In
all of these lower bounds, we assume that the number of the trials T is larger than either
the number of experts n or some function of n, m and k (see details of the assumptions in
individual theorems). The regret lower bounds for small number of trials are given in the
next Appendix G.

All the lower bounds given in this appendix are proved with the probabilistic bounding
technique described in Section 5, i.e. in each case, we first choose a probability distribution
P and then show a lower bound on the expected regret of any algorithm when the loss
vectors are generated i.i.d. from P. Our lower bounds on the expected regret make use of
the following lemma which gives an upper bound on the expected loss of the best comparator
in a two expert game.

Lemma F.1 Consider a two expert game in which the random loss pairs of both experts
are i.i.d. between trials, and at each trial the random pair follows the distribution:

value of the loss pair (0, 1) (1, 0) (1, 1) (0, 0)

probability p p q 1− 2p− q (F.1)
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where non-negative parameters p and q satisfy 2p+ q ≤ 1. Let M be the minimum total loss
of the two experts in T such trials. If T and p satisfy Tp ≥ 1/2, then

E [ M ] ≤ T (p+ q)− c
√
Tp

for some constant c > 0 independent of T , p and q.

Later we will use the case q = 0 of the two expert distribution (F.1) as a submodule for
building distributions over the n unit bit vectors and p = q = 1/4 for building distributions
over {0, 1}n. To prove Lemma F.1, we need the following lemma from (Koolen, 2011,
Theorem 2.5.3):

Lemma F.2 Let at and bt be two binary random variables following the distribution

value of (at, bt) (0, 1) (1, 0)

probability 0.5 0.5
.

For T independent such pairs, we have

T

2
−
√
T − 1

2π
≤ E

[
min

{
T∑
t=1

at,

T∑
t=1

bt

}]
≤ T

2
−
√
T + 1

2π
.

Proof of Lemma F.1 Denote the experts’ losses at trials 1 ≤ t ≤ T by ãt and b̃t. In this
notation, the statement of Lemma F.1 is equivalent to:

E

[
min

{∑
t

ãt,
∑
t

b̃t

}]
≤ T (p+ q)− c

√
Tp.

At each trial, the random variable pair (ãt, b̃t) has four possible values: (1, 0), (0, 1),
(1, 1) or (0, 0). If ãt 6= b̃t, then this trial is “covered by” Lemma F.2. If ãt = b̃t, then
this trial affects

∑
t ãt and

∑
t b̃t the same way and therefore can be excluded from the

minimization. We formalize this observation as follows:

E

[
min

{∑
t

ãt,
∑
t

b̃t

}]
= E

min

 ∑
t:ãt 6=b̃t

ãt,
∑
t:ãt 6=b̃t

b̃t


+ E

∑
t:ã=b̃

ãt


Lemma F.2
≤ E

[
R

2
−
√
R− 1

2π

]
+ Tq,

where R is a binomial random variable with T draws and success probability 2p. Clearly
E[R] = 2Tp and therefore E[R2 ] = Tp. Moreover under the assumption that Tp ≥ 1/2, we
will show in Lemma I.2 of Appendix I (using an application of the Chernoff bound) that

E
[ √

R−1
2π

]
≥ c
√
Tp for some constant c that does not depend on T , p and q.

We now use Lemma F.1 to prove the following theorem which addresses the m-set
problem with unit bit vectors for the case k ≤ n

2 .
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Theorem 5.1 Consider the m-set problem with unit bit vectors as loss vectors, where
m = n − k. Then for k ≤ n

2 and T ≥ k, any online algorithm suffers worst case regret at

least Ω(
√
Tk).

Proof In this proof, each loss vector is uniformly sampled from the first 2k unit bit vectors,
i.e. at each trial, one of the first 2k experts is uniformly chosen to incur a unit of loss. To
show an upper bound on the loss of the comparator, we group these 2k experts into k pairs
and note that the loss of each expert pair follows the joint distribution described Lemma F.1
with p = 1

2k and q = 0. Furthermore, the condition Tp ≥ 1/2 of Lemma F.1 is also satisfied
because of the assumption T ≥ k. Hence, by applying Lemma F.1 we know that the ex-
pected loss of the winner in each pair is at most T/2k−c

√
T/2k, and the total expected loss

for k winners from all k pairs is upper bounded by T/2− c
√
kT/2. Now recalling that the

comparator consists of the m = n−k best experts, its total expected loss is upper bounded
by the expected loss of the k winners, which is at most T/2 − c

√
kT/2, plus the expected

loss of the remaining n− 2k experts, which is zero. Therefore, we have an upper bound of
T/2− c

√
kT/2 on the expected loss of the comparator. On the other hand, since losses are

generated independently between trials, any online algorithm suffers loss at least T/2. The
difference between the lower bound on the expected loss of the algorithm and the upper
bound on the expected loss of the best m-set gives the regret lower bound of the theorem.

The case k ≥ n
2 is more complicated. Recall that k = n−1 reproduces the vanilla single

expert case. Therefore additional log n factor must appear in the square root of the lower
bound. We need the following lemma, which is a generalization of Lemma F.1 to n experts.
In the proof, we upper bound the minimum loss of the experts by the loss of the winner of
a tournament among the n experts. The tournament winner does not necessarily have the
lowest loss. However as we shall see, its expected loss is close enough to the expected loss
of the best expert so that this bounding technique is still useful for obtaining lower bounds
on the regret.

Lemma F.3 Choose any n, S and T , such that n = 2S and S divides T . If the loss sequence
of length T is generated from a distribution P, such that:

� at each trial t, the distribution of losses on n experts is exchangeable, i.e. for any
permutation π on a set {1, . . . , n}, and for any t, `t = (`t,1, `t,2, . . . , `t,n) and `πt =
(`t,π(1), `t,π(2), . . . , `t,π(n)) have the same distribution,

� and the distribution of losses is i.i.d. between trials,

then,

E [ minimum loss among n experts in T trials ]

≤ S E [ minimum loss among experts 1 and 2 in T/S trials ] .

Proof The key idea is to upper bound the minimum loss of any expert by the loss of
the expert that wins an S round tournament. In the first round, we start with n experts
and pair each expert with a random partner. The round lasts for T/S trials. For each
pair, the expert with the smaller loss wins in this round (tie always broken randomly). The
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first round second round
t = 1 t = 2 t = 3 t = 4 t = 5 t = 6[ expert 1 1 0 1 0 0 0

expert 4 0 1 0 1 1 1 ][ expert 2 0 0 1 1 1 0
expert 3 1 1 0 1 0 1

Table F.1: A tournament with T = 6 trials, S = 2 rounds, and n = 4 experts. The bits in
the table are the binary losses of the experts in each trial. The brackets show
the pairing in each round. The losses of the winners are in bold

n/2 winners continue to the second round. At round s, the remaining n/2s−1 experts are
randomly paired and the winners are determined based on the losses in another set of T/S
trials. After S rounds and T = ST/S trials we are left with 1 overall winner.

For example for S = 2 rounds, n = 22 = 4 experts and T = 6 trials, consider the
sequence of losses shown in Table F. Each of the two tournament consists of 6/2 = 3
trials. In the first round, expert 1 is paired with expert 4 and expert 2 with expert 3. The
cumulative losses of experts 1, 2, 3, 4 in this round are 2, 1, 2, 1, respective. So expert 4 is
the winner of the first pair and expert 2 is the winner of the second pair. In the second
round, the two winners (experts 2 and 4) are paired, and they incur cumulative loss 2 and 3,
respectively. Hence, expert 2 wins the tournament. The total loss of the tournament winner
in all 6 trials is 3. Note that this is larger than the minimum total loss of the 4 experts
since expert 1 incurred total loss 2. Nevertheless we shall see that for our probabilistic lower
bound proof, the total loss of the tournament winner is close enough to the total loss of the
best expert.

To complete the proof it suffices to show that

E [ total loss of tournament winner in T trials ]

= S E [ minimum loss among experts 1 and 2 in T/S trials ] .

Due to linearity of expectation:

E [ total loss of tournament winner in T trials ]

=

S∑
i=1

E [ total loss of tournament winner in i-th round ] .

The exchangeability of the losses and the symmetry of the tournament guarantees that each
expert is equally likely to be the overall winner. Therefore w.l.o.g., expert 1 is the overall
winner. Consider i-th round of the tournament (1 ≤ i ≤ S), and let (w.l.o.g.) expert 2 be
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the partner of expert 1 in this round. We have:

E [ total loss of tournament winner in i-th round ]

= E

 total loss of exp. 1 in i-th round

∣∣∣∣∣
exp. 1 is the tournament winner,
exp. 2 won all past competitions
at rounds 1, . . . , i− 1.


= E [ total loss of exp. 1 in i-th round | exp. 1 wins over exp. 2 in i-th round ] .

The second equality is due to the fact that the distribution of losses is i.i.d. between trials,
and therefore the future and past rounds are independent of the current round. Since the
last expression is the same for each of the S rounds we have:

E [ total loss of tournament winner in T trials ]

= S E [ expected loss of expert 1 in T/S trials | expert 1 wins over expert 2 ] .

Remains to be shown that the latter expectation is simple the expectation of the minimum
of the two experts losses in a single round. Let L1 and L2 be the total losses of both
experts in the T/S trials and let “L1 > L2” denote the event that 1 wins over 2 (ties broken
uniformly, so that, e.g., Pr(L1 > L2) + Pr(L2 > L1) = 1). Then

E [ L1|L2 > L1 ] =
(

Pr(L2 > L1) + Pr(L1 > L2)
)
E [ L1|L2 > L1 ] ,

= Pr(L2 > L1) E [ L1|L2 > L1 ] + Pr(L1 > L2) E [ L1|L2 > L1 ]

(exchangeability) = Pr(L2 > L1) E [ L1|L2 > L1 ] + Pr(L1 > L2) E [ L2|L1 > L2 ]

= Pr(L2 > L1) E [ min{L1, L2}|L2 > L1 ]

+ Pr(L1 > L2) E [ min{L1, L2}|L1 > L2 ]

= E [ min{L1, L2} ] .

Now, we use this lemma to prove a lower bound for the m-set problem with k ≥ n
2 :

Theorem 5.2 Consider the m-set problem with unit bit vectors as loss vectors, where
m = n− k. Then for k ≥ n

2 and T ≥ n log2(n/m), any online algorithm suffers worst case

regret at least Ω(m
√
T ln(n/m)/n).

Proof Let us first assume that n = 2jm for some integer j > 0, i.e. log2(n/m) is a positive
integer, and that T

log2(n/m) is an integer value as well.

At each trial, a randomly chosen expert out of n experts incurs a unit of loss. To show
an upper bound on the loss of the comparator, we partition the n experts into m groups (n
divides m from the assumption), and notice that the losses of the n/m experts in each group
are exchangeable. Applying Lemma F.3 to each group of n/m experts with S = log2(n/m)
rounds and T/S trials per round, we obtain:

E [ Loss of the winner in a given group in T trials ]

≤ log2

( n
m

)
E
[

Loss of the winner of two experts in
T

log2(n/m)
trials

]
. (F.2)

40



Online PCA with Optimal Regret

The expectation on the RHS is the two expert game considered in Lemma F.1 with param-
eters p = 1/n and q = 0. Note that q = 0 because only one expert suffers loss in each trial.
Applying this lemma bounds the expectation on the RHS as

T

log2(n/m)n
− c

√
T

log2(n/m)n
.

Plugging this into (F.2) gives T/n − c
√
T log2(n/m)/n upper bound on the expected loss

of the winner in a given group. We upper bound the expected loss of the comparator by
the total loss of m winners from the m groups, which in expectation is at most Tm/n −
cm
√
T log2(n/m)/n.

Finally the loss of the algorithm is lower bounded as follows: Every expert incurs loss
1/n in expectation at each trial and losses are i.i.d. between trials. Therefore any on-
line algorithm suffers loss at least mT/n. and the expected regret is lower bounded by
cm
√
T log2(n/m)/n. This concludes the proof when n = 2jm and log2(n/m) divides T .

If n is not of this form, we take the largest n0 < n, such that n0 = 2jm for some integer
j, i.e. n0 = maxj∈N{2jm : 2jm ≤ n}. We then apply the reasoning above to n0 experts,
while the remaining n− n0 will incurs loss 1 all the time, which can only increase the loss
of the algorithm, but this will not affect the loss of the comparator (comparator will never
pick these experts). Since n0 ≥ n/2 (otherwise n0 would not be the largest integer of the
form 2jn, smaller than n), this does not change the rate under Ω(·) for the lower bound in
the statement of the theorem. Finally, if T

log2(n/m) is not an integer value, we can choose

the largest T0 < T , such T0
log2(n/m) is integer, and use the proof with T0 rounds, while in the

remaining T − T0 rounds all losses are zero. Since T0 ≥ T/2, this, again, does not change
the rate under Ω(·).

Finally, we consider the m-set problems with L∞-bounded loss vectors. The following
theorem proves lower bounds for such problems when k ≤ n

2 and when k ≥ n
2 .

Theorem 5.4 Consider the m-set problem with loss vectors in {0, 1}n, where m = n− k.
Then for T ≥ log2

n
min{k,m} , any online algorithm suffers worst case regret of at least

Ω(k

√
T ln

n

k
) when k ≤ n

2
or Ω(m

√
T ln

n

m
) when k ≥ n

2
.

Proof The proof is similar to the proof of Theorem 5.2, except that at each trial, the losses
of all n experts are i.i.d. Bernoulli random variable with probability p = 1/2. For such a
distribution over losses, any algorithm suffers expected cumulative loss at least m T/2 for
the m-set problem.

For the sake of simplicity, we make some assumptions about n, k and T that avoid
rounding issues. When k ≤ n/2, we assume that n = 2jk for some integer j ≥ 1 and that

T
log2(n/k) is an integer. When k ≥ n/2, i.e. m = n− k ≤ n/2, we assume that n = 2jm for

some integer j ≥ 1 and that T
log2(n/m) is an integer. As in the proof of Theorem 5.2, it is

easy to generalize the theorem to arbitrary n, k and T satisfying T ≥ log2
n

min{k,m} .
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Now, we prove our regret lower bounds for each of the two cases: When m ≤ n/2, we
group the experts into m groups of size n/m and upper bound the loss of the comparator
using the m group winners. As before, the loss of each winner can be upper bounded by
the lemmas F.1 (with p = q = 1/4) and F.3:

E [ Loss of the winner in a given group in T trials ]

Lemma F.3
≤ log2

n

m
E
[

Loss of the winner of two experts in
T

log2(n/m)
trials

]
Lemma F.1
≤ T

2
− c
√
T

4
log2

n

m
.

Note that since the experts here incur i.i.d. Bernoulli(1
2) losses, the above application of

Lemma F.1 requires p = q = 1/4. Next, summing up m winners, we have the expected loss
of the comparator upper bounded by Tm/2 − cm

√
T log2(n/m)/4. Taking the difference

between this upper bound and the Tm/2 lower bound on loss of any algorithm results in
the claimed Ω(m

√
T ln(n/m)) lower bound on the regret.

When k ≤ n/2, we group the experts into k groups and consider a loser out of each
group which is the expert which incurs the largest loss in each group. One can flip around
the content of Lemma F.1 and F.3 to show that the loser in a group of n/k experts incurs
loss in expectation at least T/2 + c

√
T log2(n/k)/4. Therefore, the expected loss of all k

losers is lower bounded by Tk/2 + ck
√
T log2(n/k)/4. Now note that the expected loss of

the comparator is upper bounded by the expected total loss of all the experts, which is
Tn/2, minus the expected loss of the k losers, and hence upper bounded by

Tn

2
−

(
Tk

2
+ ck

√
T

4
log2

n

k

)
=
Tm

2
− ck

√
T

4
log2

n

k
.

Finally, the claimed regret bounds follows from taking the difference between this upper
bound and the Tm/2 lower bound on the loss of any online algorithm.

Appendix G. Regret Lower Bounds When the Number of Trials Is Small

This appendix gives general regret lower bounds for the m-set problem when the number of
trials T is small: Theorem G.1 and Theorem G.3 show lower bounds when the loss vectors
are unit bit vectors; Theorem G.4 and Theorem G.5 show lower bounds when the loss vectors
are bit vectors. Unlike the lower bounds for large T that are proved with probabilistic
arguments (see previous Appendix F) all of the lower bounds in this appendix are proved
by showing explicit adversary strategies that force large regret to any online algorithm. The
matching upper bounds for small T are trivial and can be found in Section 5.

Theorem G.1 Consider the m-set problem with unit bit vectors as loss vectors, where
m = n − k. Then for k ≤ n

2 and T ≤ k, any online algorithm suffers worst case regret at
least Ω(T ).

Proof Consider an adversary that at each trial gives a unit of loss to the expert with the
largest weight assigned by the algorithm. Recall that m = n − k and k ≤ n

2 . Therefore
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all the weights assigned by the algorithm sum to m ≥ n
2 and the largest weight out of n

experts is at least 1
2 . Hence, after T trials, any algorithm suffers total loss at least T

2 . On
the other hand, since there are at least n − T ≥ m (because T ≤ k) experts that are loss
free, the loss of the best m-set of experts is zero. Therefore, the regret of any algorithm is
at least T

2 .

Now we consider the case when k ≥ n
2 . We start with a lemma which is parameterized by

an integer 1 ≤ i ≤ k instead of the number of the trials T .

Lemma G.2 Consider the m-set problem with unit bit vectors as loss vectors, where m =
n − k. For any integer 1 ≤ i ≤ k, an adversary can force any algorithm to suffer loss
Ω(m log2

n
n−i) in O(n log2

n
n−i) trials, and at the same time, keep a set of m experts with

loss zero.

Proof The adversary’s strategy has i rounds, where the j-th round (1 ≤ j ≤ i) has at most⌈
n

n−j+1

⌉
trials and after it finishes, there will be at least n − j experts that still have loss

zero. The first round has only one trial, in which a unit of loss is given to the expert with
the largest weight. Since all the weights assigned by the algorithm sum to m, the algorithm
suffers loss at least m

n in the first round.
Each of the following rounds may contain multiple trials and at the end of round j − 1

(2 ≤ j ≤ i), there are still at least n − j + 1 loss free experts. In round j, the adversary
uses a strategy with two subcases as follows: The adversary first considers the experts that
are still loss free. If any of the first n − j + 1 of them has weight at least m

2(n−j+1) , then
we are in case 1, where a unit of loss is given to this expert. Otherwise, we are in case 2,
in which the adversary considers the remaining j − 1 experts (which may or may not be
loss free) and gives a unit of loss to the one with the largest weight among them. The j-th
round ends when the algorithm has suffered total loss at least m

2(n−j+1) in that round. Note
that whenever case 1 is reached, a round ends immediately. Our strategy guarantees that
after round j, there are at least n− j experts that are loss free. Next we upper bound the
number of case 2 trials in a round by showing a lower bound on the loss of the algorithm
in case 2 trials. Recall that in case 2, n− j + 1 experts have weight no more than m

2(n−j+1)
each, and the expert that has the largest weight in the remaining j−1 experts incurs a unit
of loss. Using these facts as well as the fact that all the weights sum to m, we can lower
bound the weight of the expert that incurs loss (which is also the loss of the algorithm) as
follows: (

m− m
2(n−j+1)(n− j + 1)

)
j − 1

≥ m

2(j − 1)
≥ m

2n
.

Recalling that the j-th round ends when the algorithm suffers total loss m
2(n−j+1) in that

round, we conclude that the j-th round can have at most
⌈

n
n−j+1

⌉
trials.

Summing up over i rounds, the algorithm suffers total loss at least
∑i

j=1
m

2(n−j+1) =

Ω(m log n
n+i) in at most

∑i
j=1

⌈
n

2(n−j−1)

⌉
= O(n log n

n−i) trials. On the other hand, the loss

of the best m-set of experts is zero due to assumption i ≤ k and the fact that after j = i
rounds, there are at least n− i loss free experts. Hence the lemma follows.
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Theorem G.3 Consider the m-set problem with unit bit vectors as loss vectors, where
m = n − k. Then for k ≥ n

2 and T ≤ n log2
n
m , any algorithm suffers worst case regret at

least Ω(mn T ).

Proof Lemma G.2 states that there exist two positive constants c1 and c2, such that
for any integer 1 ≤ i ≤ k, the adversary can force any algorithm to suffer regret at least
c1m log2

n
n−i in at most c2n log2

n
n−i trials. The proof splits into two cases, depending on

the number of the trials T :

� When T < c2n log2
n
n−1 , T is upper bounded by a constant as follows:

T < c2n log2

n

n− 1
=

c2n

log 2
log

(
1 +

1

n− 1

)
≤ c2n

(n− 1) log 2

n≥2
≤ 2c2

log 2
.

Since the adversary can always force any algorithm to suffer constant regret, the
theorem holds trivially.

� When T ≥ c2n log2
n
n−1 , we set i = min{bi′c , k}, where i′ = n(1 − 2−T/c2n) is the

solution of c2n log2
n

n−i′ = T . We note that the function c2n log2
n
n−i is monoton-

ically increasing in i, which results in two facts: first, i ≥ 1, since we assumed
T ≥ c2n log2

n
n−1 ; second, c2n log2

n
n−i ≤ T , since i ≤ bi′c. We further show that

c2n log2
n
n−i ≥ min{c2,

1
3}T as follows:

– When i = bi′c, first note that
(

n
n−i

)3
≥ n

n−i′ , since:

(n− i′)n2 − (n− i)3 ≥ (n− i− 1)n2 − (n− i)3 = 2n2i+ 3ni2 − i3 − n2
1≤i<n
≥ 0.

Plugging c2n log2
n

n−i′ = T , we have c2n log2
n
n−i ≥

1
3T .

– When i = k, c2n log2
n
n−i = c2n log2

n
m ≥ c2T , since T ≤ n log2

n
m is assumed in

the theorem.

Now, using Lemma G.2 with i set as i = min{bi′c , k}, results in an adversary that
forces the algorithm to suffer regret at least c1m log n

n−i ≥
mc1
nc2

min{c2,
1
3}T = Ω

(
m
n T
)

in at most T trials. When the adversary uses less than T trials, then the game can be
extended to last exactly T trials by playing zero loss vectors for the remaining trials.

Theorem G.4 Consider the m-set problem with loss vectors in {0, 1}n, where m = n− k.
Then for k ≥ n

2 and T ≤ log2
n
m , the worst case regret of any algorithm is at least Ω(Tm).

Proof The proof uses an adversary which forces any algorithm to suffer loss Ω(Tm), and
still keeps the best m-set of experts to be loss free. Note that at each trial, the adversary
decides on the loss vector after the algorithm makes its prediction wt, where wt ∈ [0, 1]n

with
∑

iwt,i = m.
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At trial one, the adversary first sorts the n experts by their weights assigned by the
algorithm, and then gives a unit of loss to each of the experts in the first half, i.e. the
experts with larger weights. Since the weights sum to m, the total weight assigned to the
experts in the first half is at least m

2 . Hence in the first trial, the algorithm suffers loss at
least m

2 .
At each of the following trials, the adversary only sorts those experts that have not incur

any loss so far and gives unit losses to the first half (the half with larger weights) of these
experts, as well as all the experts that have already incurred losses before this trial. It is
easy to see that in this way the algorithm suffers loss at least m

2 at each trial.
Since the number of the experts that are loss free halves at each trial, after T ≤ log2

n
m

trials, there will still be at least m loss free experts. Now since the algorithm suffers loss at
least mT

2 in T trials, the theorem follows.

Theorem G.5 Consider the m-set problem with loss vectors in {0, 1}n, where m = n− k.
Then for k ≤ n

2 and T ≤ log2
n
k , any algorithm suffers worst case regret at least Ω(Tk).

Proof The proof becomes conceptually simpler if we use the notion of gain defined as the
follows: if wt is the parameter of the algorithm, we define its complement w̄t as w̄t,i =
1−wt,i. The gain of the algorithm at trial t is the inner product between the “gain” vector
`t and the complement w̄t, i.e. w̄t · `t. Similarly, for any comparator w ∈ Sm, we define its
gain as w̄ · `t =

∑n
i=1(1−wi)lt,i. It is easy to verify that the regret of the algorithm can be

written as the difference between the largest gain of any subset of k experts and the gain
of the algorithm:

R = max
w̄∈Sk

T∑
t=1

w̄ · `t −
T∑
t=1

w̄t · `t,

where Sk = {w ∈ [0, 1]n :
∑

iwi = k}. At trial one, the adversary first sorts the n experts
by their complementary weights and then gives a unit of gain to each of the experts in the
second half, i.e. the experts with smaller complementary weights. Since the complementary
weights sum to k, the gain of the algorithm is at most k

2 in the first trial.
At each of the following trials, the adversary only sorts the experts that received gains

in all of the previous trials by their complementary weights. It then gives unit gains to the
second half (the half with smaller complementary weights) of these experts. It is easy to
see that in this way the gain of the algorithm is at most k

2 at each trial.
Note that half of the experts that always receive gain prior to a trial t will receive gain

again in trial t. Hence, after T ≤ log2
n
k trials, there will be at least k experts that received

gains in all of the T trials, which means that the total gain of the best k experts is Tk.
Now, since the algorithm receives total gain at most kT

2 in T trials, the theorem follows.

Appendix H. Proof of Theorem 5.6

The following theorem gives a regret lower bound that is expressed as a function of the loss
budget BL. This lower bound holds for any online algorithm that solves the m-set problem
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with either unit bit vectors or arbitrary bit vectors as loss vectors. The proof is based on
the time dependent regret lower bounds proven in the previous appendices.

Theorem 5.6 For the m set problem with either unit bit vectors or arbitrary bit vectors, any
online algorithm suffers worst case regret of at least Ω(max{

√
BLm ln(n/m),m ln(n/m)}).

Proof It suffices to prove the lemma for unit bit vectors. The lower bound Ω(m ln(n/m))
follows directly from Lemma G.2 by setting the variable i of the lemma to k.

What is left to show is the lower bound Ω(
√
BLm ln(n/m)) when it dominates the bound

Ω(m ln(n/m)), i.e. when BL = Ω(m ln n
m). Thus, we assume BL ≥ m log2

n
m+1 and we con-

struct an instance sequence of loss budget BL incurring regret at least Ω(
√
BLm ln(n/m))

to any algorithm. This instance sequence is constructed via Theorem 5.1 and Theorem
5.2: For any algorithm, these theorems provide a sequence of T unit bit vectors that incurs

regret at least Ω(m

√
T ln(n/m)

n ). We apply these theorems with T = b nmBLc ≥ n log2
n
m .

Since the produced sequence consists of unit bit vectors and has length b nmBLc, the total
loss of the m best experts is at most BL. Finally plugging T = b nmBLc into the regret

bounds guaranteed by the theorems results in the regret Ω(
√
BLm ln(n/m)).

Appendix I. Auxiliary Lemmas

Lemma I.1 Inequality max{min{a, b}, c} ≥ min{max{a, c}, b} holds for any real number
a, b and c.

Proof If c ≥ max{a, b}, LHS is c and RHS is b. Hence, the inequality holds. If a ≥ c ≥ b
or b ≥ c ≥ a, LHS is c while RHS is at most c. If c ≤ a and c ≤ b, both sides are min{a, b}.

Lemma I.2 Let X ∼ Binomial(T, p). If Tp ≥ 8c for any positive constant c, then E[
√
X] ≥

c√
2(1+c)

√
Tp.

Proof We use the following form of the Chernoff bound (DeGroot and Schervish, 2002):

Pr(X ≤ Tp− δ) ≤ e−
δ2

2Tp .

Setting δ = 1
2Tp, we have Pr(X ≤ 1

2Tp) ≤ e−Tp/8 ≤ e−c. Since for c > 0, log(c) ≤ c − 1,
this implies e−c ≤ 1

1+c , so that we further have Pr(X ≤ 1
2Tp) ≤

1
1+c = 1 − c

1+c . Now we
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calculate E[
√
X] from its definition,

E[
√
X] =

T∑
x=0

Pr(X = x)
√
x ≥

T∑
x=bTp2 c+1

Pr(X = x)
√
x

≥
T∑

x=bTp2 c+1

Pr(X = x)

√⌊
Tp

2

⌋
+ 1

= Pr(X > 1
2Tp)

√⌊
Tp

2

⌋
+ 1

≥ c√
2(1 + c)

√
TP .
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