
Ordinal Classification with Decision Rules

Krzysztof Dembczyński1, Wojciech Kotłowski1, and Roman Słowiński1,2

1 Institute of Computing Science, Poznań University of Technology,
60-965 Poznań, Poland

{kdembczynski, wkotlowski, rslowinski}@cs.put.poznan.pl
2 Institute for Systems Research, Polish Academy of Sciences, 01-447 Warsaw, Poland

Abstract. We consider the problem of ordinal classification, in which
a value set of the decision attribute (output, dependent variable) is fi-
nite and ordered. This problem shares some characteristics of multi-class
classification and regression, however, in contrast to the former, the or-
der between class labels cannot be neglected, and, in the contrast to the
latter, the scale of the decision attribute is not cardinal. In the paper, fol-
lowing the theoretical framework for ordinal classification, we introduce
two algorithms based on gradient descent approach for learning ensem-
ble of base classifiers being decision rules. The learning is performed by
greedy minimization of so-called threshold loss, using a forward stage-
wise additive modeling. Experimental results are given that demonstrate
the usefulness of the approach.

1 Introduction

In the prediction problem, the aim is to predict the unknown value of an at-
tribute y (called decision attribute, output or dependent variable) of an object
using known joint values of other attributes (called condition attributes, predic-
tors, or independent variables) x = (x1, x2, . . . , xn). In the ordinal classification,
it is assumed that y = {r1, . . . , rK}, with rk, k ∈ K = {1, . . . ,K}, being K
distinct and ordered class labels rK � rK−1 � . . . � r1, where � denotes the
ordering relation between labels. Let us assume in the following, without loss of
generality, that rk = k. This problem shares some characteristics of multi-class
classification and regression. A value set of y is finite, but in contrast to the
multi-class classification, the order between class labels can not be neglected.
The values of y are ordered, but in contrast to regression, the scale of y is not
cardinal. Such a setting of the prediction problem is very common in real appli-
cations. For example, in recommender systems, users are often asked to evaluate
items on five value scale (see Netflix Prize problem [16]). Another example is
the problem of email classification to ordered groups, like: “very important”,
“important”, “normal”, and “later”.
The problem of ordinal classification is often solved by multi-class classi-

fication or regression methods. In recent years, however, some new approaches
tailored for ordinal classification were introduced [13, 6, 7, 18, 17, 3, 14, 15]. In this
paper, we take first a closer look at the nature of ordinal classification. Later

on, we introduce two novel algorithms based on gradient descent approach for
learning ensemble of base classifiers. The learning is performed by greedy mini-
mization of so-called threshold loss [17] using a forward stagewise additive mod-
eling [12]. As a base classifier, we have chosen single decision rule which is a
logical expression having the form: if [conditions], then [decision]. This choice
is motivated by simplicity and ease in interpretation of decision rule models.
Recently, one can observe a growing interest in decision rule models for classifi-
cation purposes (e.g. such algorithms like SLIPPER [5], LRI [19], RuleFit [11],
ensemble of decision rules [1, 2]).
Finally, we report experimental results that demonstrate the usefulness of

the proposed approach for ordinal classification. In particular our approach is
competitive to traditional regression and multi-class classification methods. It
also shows some advantages over existing ordinal classification methods.

2 Statistical Framework for Ordinal Classification

Similarly to classification and regression, the task is to find a function F (x)
that predicts accurately an ordered label of y. The optimal prediction function
is given by:

F ∗(x) = arg min
F (x)

EyxL(y, F (x)) (1)

where the expected value Eyx is over joint distribution of all variables P (y,x)
for the data to be predicted. L(y, F (x)) is a loss or cost for predicting F (x)
when the actual value is y. EyxL(y, F (x)) is called prediction risk or expected
loss. Since P (y,x) is generally unknown, the learning procedure uses only a
set of training examples {yi,xi}N

1 to construct F (x) to be the best possible
approximation of F ∗(x). Usually, it is performed by minimization of empirical
risk Re = 1

N

∑N
i=1 L(yi, F (xi)).

Let us remind that the typical loss function in binary classification (for which
y ∈ {−1, 1}) is 0-1 loss:

L0−1(y, F (x)) =
{

0 if y = F (x),
1 if y 6= F (x), (2)

and in regression (for which y ∈ R), it is squared-error loss:

Lse(y, F (x)) = (y − F (x))2. (3)

One of the important properties of the loss function is a form of prediction
function minimizing the expected risk F ∗(x), so called population minimizer.
In other words, it is an answer to a question: what does a minimization of
expected loss estimate on a population level? Let us remind that the population
minimizers for 0-1 loss and squared-error loss are, respectively:

F ∗(x) = sgn (Pr(y = 1|x)− 0.5) , F ∗(x) = E(y|x).

Table 1. Commonly used loss functions and their population minimizers

Loss function Notation L(y, F (x)) F ∗(x)
Binary classification, y ∈ {−1, 1}:
Exponential loss Lexp exp(−y · F (x)) 1

2 log Pr(y=1|x)
Pr(y=−1|x)

Deviance Ldev log(1 + exp(−2 · y · F (x))) 1
2 log Pr(y=1|x)

Pr(y=−1|x)

Regression, y ∈ R:
Least absolute
deviance

Llad |y − F (x)| median(y|x)

Apart from 0-1 and squared error loss, some other important loss functions are
considered. Their definitions and population minimizers are given in Table 1.
In ordinal classification, one minimizes prediction risk based on the K ×K

loss matrix:
LK×K(y, F (x)) = [lij]K×K (4)

where y, F (x) ∈ K, and i = y, j = F (x). The only constraints that (4) must
satisfy in ordinal classification problem are the following, lii = 0,∀i, lik ≥
lij ,∀ k > j > i, and lik ≤ lij ,∀ k < j < i. Observe that for

lij = 1, if i 6= j, (5)

loss matrix (4) boils down to the 0-1 loss for ordinary multi-class classification
problem. One can also simulate typical regression loss functions, such as least
absolute deviance and squared-error, by taking:

lij = |i− j|, (6)

lij = (i− j)2, (7)

respectively. It is interesting to see, what are the population minimizers of the
loss matrices (5)-(7). Let us observe that we deal here with the multinomial dis-
tribution of y, and let us denote Pr(y = k|x) by pk(x). The population minimizer
is then defined as:

F ∗(x) = arg min
F (x)

K∑
k=1

pk(x) · LK×K(k, F (x)). (8)

For loss matrices (5)-(7) we obtain, respectively:

F ∗(x) = arg max
k∈K

pk(x), (9)

F ∗(x) = medianpk(x)(y) = median(y|x), (10)

F ∗(x) =
K∑

i=1

yipk(x) = E(y|x). (11)

In (11) it is assumed that the range of F (x) is a set of real values.
The interesting corollary from the above is that in order to solve ordinal

classification problem one can use any multi-class classification method that
estimates pk(x), k ∈ K. This can be, for example, logistic regression or gradient
boosting machine [9]. A final decision is then computed according to (8) with
respect to chosen loss matrix. For (5)-(7) this can be done by computing mode,
median or average over y with respect to estimated pk(x), respectively. For loss
matrix entries defined by (7) one can use any regression method that aims at
estimating E(y|x). We refer to such an approach as simple ordinal classifier.
Let us notice that multi-class classification problem is often solved as K

(one class against K − 1 classes) or K × (K − 1) (one class against one class)
binary problems. However, taking into account the order on y, we can solve
the ordinal classification by solving K − 1 binary classification problems. In the
k-th (k = 1, . . . ,K − 1) binary problem, objects for which y ≤ k are labeled as
y′ = −1 and objects for which y > k are labeled as y′ = 1. Such an approach
has been used in [6].
The ordinal classification problem can also be formulated from a value func-

tion perspective. Let us assume that there exists a latent value function that
maps objects to scalar values. The ordered classes correspond to contiguous in-
tervals on a range of this function. In order to define K intervals, one needs
K +1 thresholds: θ0 = −∞ < θ1 < . . . < θK−1 < θK = ∞. Thus k-th class is de-
termined by (θk−1, θk]. The aim is to find a function F (x) that is possibly close
to any monotone transformation of the latent value function and to estimate
thresholds {θk}K−1

1 . Then, instead of the loss matrix (4) one can use a con-
tinuous and convex loss function, so-called immediate-threshold or all-threshold
loss [17] defined respectively as:

Limm(y, F (x)) = L(1, F (x)− θy−1) + L(−1, F (x)− θy), (12)

Lall(y, F (x)) =
y−1∑
k=1

L(1, F (x)− θk) +
K−1∑
k=y

L(−1, F (x)− θk). (13)

In the above, L(y, f) is one of the standard binary classification loss functions.
There is, however, a problem with interpretation what does minimization of
expected threshold ordinal loss estimate. Only in the case when 0-1 loss is chosen
as the basis of (12) and (13), the population minimizer has a nice interpretable
form. For (12), we have:

F ∗(x) = arg min
F (x)

K∑
k=1

pk(x) · Limm
0−1 (y, F (x)) = arg max

k∈K
pk(x), (14)

and for (13), we have:

F ∗(x) = arg min
F (x)

K∑
k=1

pk(x) · Lall
0−1(y, F (x)) = median(y|x). (15)

An interesting theoretical result is obtained in [15], where (12) and (13) are used
in derivation of the upper bound of generalization error for any loss matrix (4).
Threshold ordinal loss functions were already considered in building classi-

fiers. In [17] the classifier was learned by conjugate gradient descent. Among
different base loss functions, also deviance was used. In [18, 3, 15], a generaliza-
tion of SVM (support vector machines) was derived. The algorithm based on
AdaBoost [8] was proposed in [15]. In the next section, we present two algo-
rithms based on forward stagewise additive modeling. The first one is an alter-
native boosting formulation for threshold loss functions. The second one is an
extension of the gradient boosting machine [9].
Let us remark at the end of our theoretical considerations that (13) can also

be formulated as a specific case of so-called rank loss [13, 7, 4]:

Lrank

(
y1, y2, F (x1), F (x2)

)
= L

(
sgn(y1 − y2), F (x1)− F (x2)

)
. (16)

This loss function requires that all objects are compared pairwise. Assuming
that thresholds {θk}K−1

1 are values of F (x) for some virtual objects/profiles
and all other objects are compared only with these virtual profiles, one obtains
(13). Rank loss was used in [13] to introduce a generalization of SVM for ordinal
classification problems, and in [7], an extension of AdaBoost for ranking problems
was presented. The drawback of this approach is the complexity of empirical risk
minimization defined by rank loss that grows quadratically with the problem size
(number of training examples). For this reason we do not use this approach in
our study.

3 Ensemble of Decision Rules for Ordinal Classification

The introduced algorithms generating an ensemble of ordinal decision rules are
based on forward stagewise additive modeling [12]. The decision rule being the
base classifier is a logical expression having the form: if [conditions], then
[decision]. If an object satisfies conditions of the rule, then the suggested de-
cision is taken. Otherwise no action is performed. By conditions we mean a
conjunction of expressions of the form xj ∈ S, where S is a value subset of j-th
attribute, j ∈ {1, . . . , n}. Denoting set of conditions by Φ and decision by α, the
decision rule can be equivalently defined as:

r(x, c) =
{

α if x ∈ cov(Φ),
0 if x 6∈ cov(Φ), (17)

where c = (Φ,α) is a set of parameters. Objects that satisfy Φ are denoted by
cov(Φ) and referred to as cover of conditions Φ.
The general scheme of the algorithm is presented as Algorithm 1. In this

procedure, Fm(x) is a real function being a linear combination of decision rules
r(x, c), {θk}K−1

1 are thresholds and M is a number of rules to be generated.
Lall(yi, F (x)) is an all-threshold ordinal loss function. The algorithm starts with
F0(x) = 0 and {θk}K−1

1 = 0. In each iteration of the algorithm, function Fm−1(x)

Algorithm 1: Ensemble of ordinal decision rules

input : set of training examples {yi,xi}N
1 ,

M – number of decision rules to be generated.
output: ensemble of decision rules {rm(x)}M

1

thresholds {θk}K−1
1 .

F0(x) := 0; {θk0}K−1
1 := 0;

for m = 1 to M do
(c, {θk}K−1

1) := arg min
(c,{θk}

K−1
1)

PN
i=1 Lall(yi, Fm−1(xi) + r(xi, c));

rm(x, c) := r(x, c);
{θkm}K−1

1 := {θk}K−1
1 ;

Fm(x) := Fm−1(x) + rm(x, c);
end
ensemble = {rm(x, c)}M

1 ; thresholds = {θkM}K−1
1 ;

is augmented by one additional rule rm(x, c). A single rule is built by sequential
addition of new conditions to Φ and computation of α. This is done in view of
minimizing

Lm =
N∑

i=1

Lall(yi, Fm−1(xi) + r(xi, c)) =

=
∑

xi∈cov(Φ)

(
yi−1∑
k=1

L(1, Fm−1(xi) + α− θk) +
K−1∑
k=yi

L(−1, (F (xi)m−1 + α− θk)

)

+
∑

xi 6∈cov(Φ)

(
yi−1∑
k=1

L(1, Fm−1(xi)− θk) +
K−1∑
k=yi

L(−1, (F (xi)m−1 − θk)

)
(18)

with respect to Φ, α and {θk}K−1
1 . A single rule is built until Lm cannot be

decreased.
Ordinal classification decision is computed according to:

F (x) =
K∑

k=1

k · I

(
M∑

m=1

rm(x, c) ∈ [θk−1, θk)

)
, (19)

where I(a) is an indicator function, i.e. if a is true then I(a) = 1, otherwise
I(a) = 0. Some other schemes of classification are also possible. For example, in
experiments we have used a procedure that assigns intermediate values between
class labels in order to minimize squared error.
In the following two subsections, we give details of two introduced algorithms.

3.1 Ordinal Decision Rules based on Exponential Boosting
(ORDER-E)

The algorithm described in this subsection can be treated as generalization of
AdaBoost [8] with decision rules as base classifiers. In each iteration of the

algorithm, a strictly convex function (18) defined using the exponential loss Lexp

is minimized with respect to parameters Φ, α and {θk}K−1
1 . In iteration m, it

is easy to compute the following auxiliary values that depend only on Fm−1(x)
and Φ:

Akm =
∑

xi∈cov(Φ)

I(yi > k)e−Fm−1(xi) Bkm =
∑

xi∈cov(Φ)

I(yi ≤ k)eFm−1(xi)

Ckm =
∑

xi 6∈cov(Φ)

I(yi > k)e−Fm−1(xi) Dkm =
∑

xi 6∈cov(Φ)

I(yi ≤ k)eFm−1(xi)

These values are then used in computation of the parameters. The optimal values
for thresholds {θk}K−1

1 are obtained by setting the derivative to zero:

∂Lm

∂θk
= 0 ⇔ θk =

1
2

log
Bk · exp(α) + Dk

Ak exp(−α) + Ck
, (20)

where parameter α is still to be determined. Putting (20) into (18), we obtain
the formula for Lm:

Lm = 2
K−1∑
k=1

√
Bk · exp(α) + Dk)(Ak · exp(−α) + Ck). (21)

which now depends only on single parameter α. The optimal value of α can be
obtained by solving

∂Lm

∂α
= 0 ⇔

K−1∑
k=1

Bk · Ck · exp(α)−Ak ·Dk · exp(−α)√
(Bk · exp(α) + Dk)(Ak · exp(−α) + Ck)

= 0 (22)

There is, however, no simple and fast exact solution to (22). That is why we
approximate α by a single Newton-Raphson step:

α := α0 − ν · ∂Lm

∂α
·

(
∂2Lm

∂2α

)−1∣∣∣∣∣
α=α0

(23)

computed around zero, i.e. α0 = 0. Summarizing, a set of conditions Φ is cho-
sen which minimizes (21) with α given by (23). One can notice the absence of
thresholds in the formula for total loss (21). Indeed, thresholds are necessary
only for further classification and can be determined once, at the end of induc-
tion procedure. However, the total loss (21) is not additive anymore, i.e. it is not
the sum of losses of objects due to implicit dependence between objects through
the (hidden) thresholds values.
Another boosting scheme for ordinal classification has been proposed in [14].

Similar loss function has been used, although expressed in terms of margins
(therefore called “left-right margins” and “all-margins” instead of “immediate-
thresholds” and “all-thresholds”). However, in [14] optimization over parameters
is performed sequentially. First, a base learner is fitted with α = 1. Then, the

optimal value of α is obtained, using thresholds values from previous iterations.
Finally, the thresholds are updated. In section 4, we compared this boosting
strategy with our methods, showing that such a sequential optimizations does
not work well with decision rule as a base learner.

3.2 Ordinal Decision Rules based on Gradient Boosting
(ORDER-G)

The second algorithm is an extension of the gradient boosting machine [9]. Here,
the goal is to minimize the all-threshold loss function (18) defined by deviance
loss Ldev (thus, denoted as Lall

dev). Φ is determined by searching for regression
rule that fits pseudoresponses ỹi being negative gradients:

ỹi = −∂Lall
dev(yi, F (xi))

∂F (xi)

∣∣∣∣
F (xi)=Fm−1(xi)

(24)

with {θkm−1}K−1
1 determined in iteration m − 1. The regression rule is fit by

minimization of the squared-error loss:∑
xi∈cov(Φ)

(ỹi − Fm−1(xi)− α̃)2 +
∑

xi 6∈cov(Φ)

(ỹi − Fm−1(xi))2. (25)

The minimum of (25) is reached for

α̃ =
∑

xi∈cov(Φ)

(ỹi − Fm−1(xi))/
∑

xi∈cov(Φ)

1. (26)

The optimal value for α is obtained by setting ∂Lm

∂α = 0 with Φ already deter-
mined in previous step. However, since this equation has no closed-form solution,
the value of α is then approximated by a single Newton-Raphson step, as in
(23). Finally, {θkm}K−1

1 are determined by ∂Lm

∂θkm
= 0. Once again, since there is

no closed-form solution, θkm is approximated by a single Newton-Raphson step,
θkm = θkm−1− ∂Lm

∂θkm
·(∂2Lm

∂2θkm
)−1
∣∣
θkm=θkm−1

, with Φ and α previously determined.
Notice that the scheme presented here is valid not only for Ldev, but for any

other convex, differentiable loss function used as a base loss function in (18).

4 Experimental Results

We performed two experiments. Our aim was to compare simple ordinal classi-
fiers, ordinal decision rules and approaches introduced in [3, 14]. We also wanted
to check, how the introduced approaches works on Netflix Prize dataset [16].
As a comparison criteria we chose zero-one error (ZOE), mean absolute error
(MEA) and root mean squared error (RMSE). The former two were used in
referred papers. RMSE was chosen because of Netflix Prize rules.
The simple ordinal classifiers were based on logistic regression, LogitBoost [10,

9] with decision stumps, linear regression and additive regression [9]. Implemen-
tations of these methods were taken from Weka package [20]. In the case of

logistic regression and LogitBoost, decisions were computed according to the
analysis given in section 2. In order to minimize, ZOE, MAE and RMSE a fi-
nal decision was computed as a mode, median or average over the distribution
given by these methods, respectively. We used three ordinal rule ensembles. The
first one is based on ORBoost-All scheme introduced in [14]. The other two are
ORDER-E and ORDER-G introduced in this paper. In this case, a final decision
was computed according to (19) in order to minimize ZOE and MAE. For mini-
mization of RMSE, we have assumed that the ensemble constructs FM (x) which
is monotone transformation of a value function defined on an interval [1, 5] ⊆ R.
In classification procedure, values of FM (x) are mapped to [1, 5] ⊆ R by:

F (x) = max
k∈K

(
I(FM (x) ∈ [θk−1, θk)) ·

(
k +

FM (x)− (θk + θk−1)/2
θk − θk−1

))
,

where θ0 = θ1−2·(θ2−θ1) and θK = θK−1+2·(θK−1−θK−2). These methods were
compared with SVM with explicit constraints and SVM with implicit constraints
introduced in [3] and with ORBoost-LR and ORBoost-All with perceptron and
sigmoid base classifiers introduced [14].
In the first experiment we used the same datasets and settings as in [3, 14]

in order to compare the algorithms. These datasets were discretized by equal-
frequency bins from some metric regression datasets. We used the same K = 10,
the same “training/test” partition ratio, and also averaged the results over 20
trials. We report in Table 2 the mean and standard errors of all test results
for zero-one error (ZOE) and mean absolute error (MEA) as it was done in the
referred papers. In the last column of the table we put the best result found in
[3, 14] for a given dataset. The optimal parameters for simple ordinal classifiers
and ordinal rule ensembles were obtained in 5 trials without changing all other
settings.
Second experiment was performed on Netflix Prize dataset [16]. We chose

10 first movies from the list of Netflix movies, which have been evaluated by at
least 10 000 and at most 30 000 users. Three types of error (ZOE, MEA and
RMSE) were calculated. We compared here only simple ordinal classifiers with
ordinal rule ensembles. Classifiers were learned on Netflix-training dataset and
tested on Netflix-probe dataset (all evaluations from probe dataset were removed
from training dataset). Ratings on 100 movies, selected in the same way for
each movie, were used as condition attributes. For each method, we tuned its
parameters to optimize its performance, using 10% of training set as a validation
set for the parameters; to avoid favouring methods with more parameters, for
each algorithm we performed the same number of tuning trials. The results are
shown in Table 3.
The results from both experiments indicate that ensembles of ordinal decision

rules are competitive to other methods used in the experiment:

– From the first experiment, one can conclude that ORBoost strategy does
not work well with decision rule as a base learner, and that simple ordi-
nal classifiers and ordinal decision rules perform comparably to approaches
introduced in [3, 14].

Table 2. Experimental results on datasets used in [3, 14]. The same data preprocess-
ing is used that enables comparison of the results. In the last column, the best results
obtained by 1)SVM with explicit constraints [3], 2)SVM with implicit constraints [3],
3)ORBoost-LR [14], and 4)ORBoost-All [14] are reported. Two types of error are con-
sidered (zero-one and mean-absolute). Best results are marked with bold among all
compared methods and among methods introduced in this paper.

Zero-one error (ZOE)
Dataset Logistic

Regression
LogitBoost
with DS

ORBoost-All
with Rules

ORDER-E ORDER-G Best result
from [3, 14]

Pyrim. 0.754±0.017 0.773±0.018 0.852±0.011 0.754±0.019 0.779±0.018 0.719±0.0662

CPU 0.648±0.009 0.587±0.012 0.722±0.011 0.594±0.014 0.562±0.009 0.605±0.0104

Boston 0.615±0.007 0.581±0.007 0.653±0.008 0.560±0.006 0.581±0.007 0.549±0.0073

Abal. 0.678±0.002 0.694±0.002 0.761±0.003 0.710±0.002 0.712±0.002 0.716±0.0023

Bank 0.679±0.001 0.693±0.001 0.852±0.002 0.754±0.001 0.759±0.001 0.744±0.0051

Comp. 0.489±0.001 0.494±0.001 0.593±0.002 0.476±0.002 0.479±0.001 0.462±0.0011

Calif. 0.665±0.001 0.606±0.001 0.773±0.002 0.631±0.001 0.609±0.001 0.605±0.0013

Census 0.707±0.001 0.665±0.001 0.793±0.001 0.691±0.001 0.687±0.001 0.694±0.0013

Mean absolute error (MAE)
Dataset Logistic

Regression
LogitBoost
with DS

ORBoost-All
with Rules

ORDER-E ORDER-G Best result
from [3, 14]

Pyrim. 1.665±0.056 1.754±0.050 1.858±0.074 1.306±0.041 1.356±0.063 1.294±0.0462

CPU 0.934±0.021 0.905±0.025 1.164±0.026 0.878±0.027 0.843±0.022 0.889±0.0194

Boston 0.903±0.013 0.908±0.017 1.068±0.017 0.813±0.010 0.828±0.014 0.747±0.0112

Abal. 1.202±0.003 1.272±0.003 1.520±0.008 1.257±0.002 1.281±0.004 1.361±0.0032

Bank 1.445±0.003 1.568±0.003 2.183±0.005 1.605±0.005 1.611±0.004 1.393±0.0022

Comp. 0.628±0.002 0.619±0.002 0.930±0.005 0.583±0.002 0.588±0.002 0.596±0.0022

Calif. 1.130±0.004 0.957±0.001 1.646±0.007 0.955±0.003 0.897±0.002 0.942±0.0024

Census 1.432±0.003 1.172±0.002 1.669±0.006 1.152±0.002 1.166±0.002 1.198±0.0024

– The second experiment shows that especially ORDER-E outperforms other
methods in RMSE for most of the movies and in MAE for half of the
movies. However, this method was the slowest between all tested algorithms.
ORDER-G is much more faster than ORDER-E, but it obtained moderate
results.
– In both experiments logistic regression and LogitBoost perform well. It is
clear that these algorithms achieved the best results with respect to ZOE.
The reason is that they can be tailored to multi-classification problem with
zero-one loss, while ordinal decision rules can not.
– It is worth noticing, that regression algorithms resulted in poor accuracy in
many cases.
– We have observed during the experiment that ORDER-E and ORDER-G
are sensitive to parameters setting. We plan to work on some simple method
for parameters selection.

5 Conclusions

From the theoretical analysis, it follows that different formulations are possible
for the ordinal classification problem. In our opinion, there is still a lot to do in
order to establish a theoretic framework for ordinal classification. In this paper,
we introduced a decision rule induction algorithm based on forward stagewise

Table 3. Experimental results on 10 movies from Netflix Prize data set. Three types of
error are considered (zero-one, mean-absolute and root mean squared). For each movie,
best results are marked with bold.

Zero-one error (ZOE)
Movie # Linear

Regression
Additive
Regression

Logistic
Regression

LogitBoost
with DS

ORDER-E ORDER-G

8 0.761 0.753 0.753 0.714 0.740 0.752
18 0.547 0.540 0.517 0.493 0.557 0.577
58 0.519 0.496 0.490 0.487 0.513 0.496
77 0.596 0.602 0.583 0.580 0.599 0.605
83 0.486 0.486 0.483 0.398 0.462 0.450
97 0.607 0.607 0.591 0.389 0.436 0.544
108 0.610 0.602 0.599 0.593 0.613 0.596
111 0.563 0.561 0.567 0.555 0.572 0.563
118 0.594 0.596 0.532 0.524 0.511 0.551
148 0.602 0.610 0.593 0.536 0.522 0.573

Mean absolute error (MAE)
Movie # Linear

Regression
Additive
Regression

Logistic
Regression

LogitBoost
with DS

ORDER-E ORDER-G

8 1.133 1.135 1.115 1.087 1.013 1.018
18 0.645 0.651 0.583 0.587 0.603 0.613
58 0.679 0.663 0.566 0.543 0.558 0.560
77 0.831 0.839 0.803 0.781 0.737 0.755
83 0.608 0.614 0.519 0.448 0.500 0.502
97 0.754 0.752 0.701 0.530 0.537 0.654
108 0.777 0.776 0.739 0.739 0.768 0.739
111 0.749 0.766 0.720 0.715 0.693 0.705
118 0.720 0.734 0.626 0.630 0.596 0.658
148 0.747 0.735 0.688 0.626 0.604 0.659

Root mean squared error (RMSE)
Movie # Linear

Regression
Additive
Regression

Logistic
Regression

LogitBoost
with DS

ORDER-E ORDER-G

8 1.332 1.328 1.317 1.314 1.268 1.299
18 0.828 0.836 0.809 0.856 0.832 0.826
58 0.852 0.847 0.839 0.805 0.808 0.817
77 1.067 1.056 1.056 1.015 0.999 1.043
83 0.775 0.772 0.737 0.740 0.729 0.735
97 0.968 0.970 0.874 0.865 0.835 0.857
108 0.984 0.993 0.969 0.979 0.970 0.989
111 0.985 0.992 0.970 0.971 0.967 0.986
118 0.895 0.928 0.862 0.860 0.836 0.873
148 0.924 0.910 0.900 0.863 0.838 0.893

additive modeling that utilizes the notion of threshold ordinal loss function. The
experiment indicates that ordinal decision rules are quite promising. They are
competitive to traditional regression and multi-class classification methods and
also show some advantages over existing ordinal classification methods. Let us
remark that the algorithm can also be used for other base classifiers like decision
trees instead of decision rules. In this paper, we remained with rules because of
their simplicity in interpretation. It is also interesting that such a simple classifier
works so well as a part of the ensemble.

References

1. Błaszczyński, J., Dembczyński, K., Kotłowski, W., Słowiński, R., and Szeląg, M.:
Ensembles of Decision Rules. Foundations of Computing and Decision Sciences,

31 (2006) 21–232
2. Błaszczyński, J., Dembczyński, K., Kotłowski, W., Słowiński, R., and Szeląg, M.:
Ensembles of Decision Rules for Solving Binary Classification Problems in the
Presence of Missing Values. Lecture Notes in Artificial Intelligence, 4259 (2006)
224–234

3. Chu, W., Keerthi, S.S.: New approaches to support vector ordinal regression. In:
Proceedings of International Conference on Machine Learning (2005) 321–328

4. Clémençon, S., Lugosi, G., and Vayatis, N.: Ranking and empirical minimization
of U-statistics. (to appear)

5. Cohen, W., Singer, Y.: A simple, fast, and effective rule learner. In Proc. of 16th
National Conference on Artificial Intelligence, (1999) 335–342

6. Frank, E., Hall, M.: A simple approach to ordinal classification. Lecture Notes in
Computer Science, 2167 (2001) 145–157

7. Freund, Y., Iyer, R. , Schapire, R., and Singer, Y.: An efficient boosting algorithm
for combining preferences. J. of Machine Learning Research, 4 (2003) 933–969.

8. Freund, Y., Schapire, R.: A decision-theoretic generalization of on-line learning
and an application to boosting. J. of Computer and System Sciences, 55 1 (1997)
119–139

9. Friedman, J.: Greedy function approximation: A gradient boosting machine. The
Annals of Statistics, 29 5 (2001) 1189–1232

10. Friedman, J., Hastie, T., and Tibshirani, R.: Additive logistic regression: a statis-
tical view of boosting. Annals of Statistics (2000) 337–407

11. Friedman, J., Popescu, B.: Predictive learning via rule ensembles. Research report,
Dept. of Statistics, Stanford University (2005)

12. Hastie, T., Tibshirani, R., and Friedman, J. H.: Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Springer (2003)

13. Herbrich, R., Graepel, T., and Obermayer, K.: Regression models for ordinal data:
A machine learning approach. Technical report TR-99/03, TU Berlin (1999)

14. Lin, H.-T., Li L.: Large-margin thresholded ensembles for ordinal regression: The-
ory and practice. Lecture Notes in Artificial Intelligence 4264 (2006) 319–333

15. Lin, H.-T., Li L.: Ordinal regression by extended binary classifications. Advances
in Neural Information Processing Systems 19 (2007) 865–872

16. Netflix prize, http://www.netflixprize.com.
17. Rennie, J., Srebro, N.: Loss functions for preference levels: Regression with discrete
ordered labels. In Proc. of the IJCAI Multidisciplinary Workshop on Advances in
Preference Handling (2005)

18. Shashua, A., Levin A.: Ranking with large margin principle: Two approaches.
Advances in Neural Information Processing Systems 15 (2003)

19. Weiss, S., Indurkhya, N.: Lightweight rule induction. In Proc. of 17th International
Conference on Machine Learning, (2000) 1135–1142

20. Witten, I., Frank, E.: Data Mining: Practical machine learning tools and tech-
niques, 2nd Edition. Morgan Kaufmann, San Francisco (2005)

