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We consider the setting of prediction with expert advice with an additional assumption 
that each expert generates its losses i.i.d. according to some distribution. We first iden-
tify a class of “admissible” strategies, which we call permutation invariant, and show that 
every strategy outside this class will perform not better than some permutation invari-
ant strategy. We then show that when the losses are binary, a simple Follow the Leader 
(FL) algorithm is the minimax strategy for this game, where minimaxity is simultaneously 
achieved for the expected regret, the pseudo-regret, and the excess risk. Furthermore, FL 
has also the smallest regret, pseudo-regret, and excess risk over all permutation invariant 
prediction strategies, simultaneously for all distributions over binary losses. We general-
ize these minimax results to the case in which each expert generates its losses from a 
distribution belonging to a one-dimensional exponential family, as well as to the case of 
loss vectors generated jointly from a multinomial distribution. We also show that when 
the losses are in the interval [0, 1] and the learner competes against all distributions over 
[0, 1], FL remains minimax only when an additional trick called “loss binarization” is ap-
plied.

© 2017 Published by Elsevier B.V.

1. Introduction

In the game of prediction with expert advice [2,3], the learner sequentially decides on one of K experts to follow, and 
suffers loss associated with the chosen expert. The difference between the learner’s cumulative loss and the cumulative loss 
of the best expert is called regret. The goal is to minimize the regret in the worst case over all possible loss sequences. 
A prediction strategy which achieves this goal (i.e., minimizes the worst-case regret) is called minimax. While algorithms 
such as Weighted Majority/Hedge [4–6] or Follow the Perturbed Leader [7] guarantee the optimal worst-case regret in the 
asymptotic sense (i.e., their regrets grow at the optimal rate), there is no known exact solution to the minimax problem 
in the general setting. Still, it is possible to derive minimax algorithms for some special variants of this game: when the 
losses follow from evaluating binary predictions on binary labels [2,3], for binary losses with fixed loss budget [8], and 
when K = 2 [9].

✩ A preliminary version of this paper appeared at 27th International Conference on Algorithmic Learning Theory (ALT 2016) [1]. In this journal version 
we extended the background discussion and added two new sections on exponential family model (Section 4) and dependent experts (Section 6).
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Interestingly, all these minimax algorithms share a similar strategy of playing against a maximin adversary which assigns 
losses uniformly at random. They also have the equalization property: all data sequences lead to the same value of the regret. 
While this property makes them robust against the worst-case sequence, it also makes them over-conservative, preventing 
them from exploiting the case, when the actual data is not adversarially generated.

In this paper, we drop the analysis of worst-case performance entirely, and explore the minimax principle in a more 
constrained setting, in which the adversary is assumed to be stochastic. In particular, we associate with each expert k a 
fixed distribution Pk over loss values, and assume the observed losses of expert k are generated independently from Pk . The 
goal is then to determine the minimax algorithm under these stochastic assumptions. The motivation behind studying such 
a setting is in its practical usefulness: the data encountered in practice are rarely adversarial and can often be modeled as 
generated from a fixed (yet unknown) distribution (for instance, selecting the best classifier from a set of already trained 
candidates based on data gathered in an online manner).

We immediately face two difficulties here. First, due to stochastic nature of the adversary, it is no longer possible to 
follow standard approaches of minimax analysis, such as backward induction [2,3] or sequential minimax duality [10,9], and 
we need to resort to a different technique. We define the notion of permutation invariance of prediction strategies. This let 
us identify a class of “admissible” strategies (which we call permutation invariant), and show that every strategy outside 
this class will perform not better than some permutation invariant strategy. Secondly, while the regret is a single, commonly 
used performance metric in the worst-case setting, the situation is different in the stochastic case. We know at least three 
potentially useful metrics in the stochastic setting: the expected regret, the pseudo-regret, and the excess risk [11], and it is 
not clear, which of them should be used to define the minimax strategy.

Fortunately, it turns out that there exists a single strategy which is minimax with respect to all three metrics simulta-
neously. In the case of binary losses, which take out values from {0, 1}, this strategy turns out to be the Follow the Leader
(FL) algorithm, which chooses an expert with the smallest cumulative loss at a given trial (with ties broken randomly). 
Interestingly, FL is known to perform poorly in the worst-case, as its worst-case regret will grow linearly with T [3]. On 
the contrary, in the stochastic setting with binary losses, FL has the smallest regret, pseudo-regret, and excess risk over 
all permutation invariant prediction strategies, simultaneously for all distributions over binary losses! We later show that all 
these minimax properties of FL strategy generalize to the case, in which each expert generates its losses from a distribu-
tion belonging to a one-dimensional exponential family (e.g., Gaussian, Bernoulli, Poisson, gamma, geometric, etc.), and the 
previously considered case of losses from {0, 1} becomes a special case of the Bernoulli family.

Furthermore, we also show that the optimality of FL strategy breaks down in the case of losses in the range [0, 1], in 
which each expert generates losses from an arbitrary distribution over [0, 1]. Here, FL is provably suboptimal. However, by 
applying binarization trick to the losses [12], i.e. randomly setting them to {0, 1} such that the expectation matches the 
actual loss, and using FL on the binarized sequence (which results in the binarized FL strategy), we obtain the minimax 
strategy in this setup.

We finally consider the case of dependent experts, i.e. when the losses are i.i.d. between trials, but not necessarily be-
tween experts. While the general case turns out to be hard to approach, and our methods based on permutation invariance 
fail, we are able to analyze the simplest variant of dependent experts, where the loss vectors follow multinomial distri-
bution, i.e. only a single expert gets loss in a given trial. We show that the FL strategy retains the minimax properties 
analogous to those given for binary losses and independent experts.

We note that when the excess risk is used as a performance metric, our setup falls into the framework of statistical 
decision theory [13,14], and the question we pose can be reduced to the problem of finding the minimax decision rule for 
a properly constructed loss function, which matches the excess risk on expectation. In principle, one could try to solve our 
problem by using the complete class theorem and search for the minimax rule within the class of (generalized) Bayesian 
decision rules. We initially followed this approach, but it turned out to be futile, as the classes of distributions we are 
considering are large (e.g., all distributions in the range [0, 1]), and exploring prior distributions over such classes becomes 
very difficult. On the other hand, the analysis presented in this paper is relatively simple, and works not only for the excess 
risk, but also for the expected regret and the pseudo-regret. To the best of our knowledge, both the results and the analysis 
presented here are novel.

We also note that there has recently been much work dedicated to combine almost optimal worst-case performance 
with good performance on “easy” (e.g., stochastic) sequences [15,12,16–18]. These methods, however, are motivated from 
different principles than the minimax principle, and their analysis is tangential to the topic of this work.

Follow the Leader strategy in the stochastic setting has already been analyzed extensively in the past. It is known that 
when the losses of experts are generated i.i.d., FL performs very well in terms of the expected regret [15,12,19]. Furthermore, 
the asymptotically optimal Upper-Confidence-Bound (UCB) algorithm used in the stochastic multi-armed bandit setting [3,
20] would reduce to FL in our (“full information”) setup, as confidence intervals maintained by UCB for each expert would all 
be of the same size. If one uses excess risk as a performance metric, the setup considered here reduces to a simple scenario 
of learning in the finite hypothesis class in statistical learning theory, where it is known that Empirical Risk Minimization 
(equivalent to FL strategy) achieves O (

√
log K/T ) excess risk, which can be shown to be tight [21]. This immediately (by 

summing over trials) gives O (
√

T log K ) bound on the pseudo-regret of FL, and the same bound on the regret of FL, by using 
the fact that the difference between the pseudo-regret and the expected regret is independent of prediction strategy and 
lower than the expected regret of any online learning algorithm (which is, again, of order O (

√
T log K )). All these bounds 

hold even for dependent experts. In fact, since the tight lower bound �(
√

T log K ) on the regret in the adversarial expert 
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setup [2,3] is obtained by using stochastic adversary, it also applies in our setup and gives the rate of the minimax expected 
regret. However, what we show here is a stronger result than all of the above: FL (or its binarized version) is exactly the 
minimax strategy and no improvement can be made at any trial in the worst case.

The paper is organized as follows. In Section 2 we formally define the problem. The binary case is solved in Section 3, 
and extended to the exponential family model in Section 4. Section 5 concerns the case of all loss distributions over the 
interval [0, 1], and Section 6 discusses the setup of dependent experts. Section 7 concludes the paper and presents some 
open problems.

2. Problem setting

2.1. Prediction with expert advice in the stochastic setting

In the game of prediction with expert advice, at each trial t = 1, . . . , T , the learner predicts with a distribution wt =
(wt,1, . . . , wt,K ) over K experts. Then, the loss vector �t = (�t,1, . . . , �t,K ) ∈ X K is revealed (X ⊆ R to be specified later), 
and the learner suffers loss:

wt · �t =
K∑

k=1

wt,k�t,k,

which can be interpreted as the expected loss the learner suffers by following one of the experts chosen randomly according 
to wt . Let Lt,k denote the cumulative loss of expert k at the end of iteration t , Lt,k = ∑

q≤t �q,k . Let �t abbreviate the 
sequence of losses �1, . . . , �t . We will also use ω = (w1, . . . , w T ) to denote the whole prediction strategy of the learner, 
having in mind that each distribution wt is a function of the past t − 1 outcomes �t−1.

In the worst-case (adversarial) formulation of the problem, the performance of prediction strategy ω is measured by 
means of regret:

T∑
t=1

wt · �t − min
k

LT ,k,

which is a difference between the algorithm’s cumulative loss and the cumulative loss of the best expert. No assumption 
is made on the way the sequence of losses is generated, and hence the goal is to find an algorithm which minimizes the 
worst-case regret over all possible sequences �T .

In this paper, we drop the analysis of the worst-case performance and explore the minimax principle in the stochastic
setting, defined as follows. We assume there are K distributions P = (P1, . . . , P K ) over X , such that for each k = 1, . . . , K , 
the losses �t,k , t = 1, . . . , T , are generated i.i.d. from Pk . Note that this implies that �t,k is independent from �t′,k′ whenever 
t′ �= t or k �= k′ . The prediction strategy is then evaluated by means of the expected regret:

Rreg(ω, P ) = E

[
T∑

t=1

wt(�
t−1) · �t − min

k
LT ,k

]
,

where the expectation is over loss sequences �T with respect to distributions P = (P1, . . . , Pk), and we explicitly indicate 
the dependence of wt on �t−1.

One may argue, however, that the expected regret does not properly capture the performance of a prediction strategy in 
the stochastic setting, as even with the full knowledge of distributions P , the best the learner could do is to concentrate all 
mass of wt on the expert which is best on expectation, i.e. wt,k∗ = 1 for any k∗ ∈ argmink E[LT ,k]. Therefore, the expected 
regret cannot be reduced below mink E[LT ,k] −E[mink LT ,k] ≥ 0 (which nonnegativity follows from Jensen’s inequality). Thus, 
instead of comparing the algorithm’s loss to the loss of the best expert on the actual outcomes, one can choose the best 
expected expert as a comparator, which leads to a metric:

Rpse(ω, P ) = E

[
T∑

t=1

wt(�
t−1) · �t

]
− min

k
E

[
LT ,k

]
,

which we call the pseudo-regret to be consistent with the multi-armed bandit literature [20], where a similar quantity is 
used.2 Jensen’s inequality implies Rpse(ω, P ) ≥ Rreg(ω, P ) for any ω and any P , and the difference Rpse(ω, P ) − Rreg(ω, P )

is independent of ω given fixed P . This does not, however, imply that these metrics are equivalent in the minimax analysis, 
as the K -vector of distributions P is chosen by the adversary against strategy ω played by learner, and this choice will 

2 A term expected redundancy is also used in information theory for a corresponding measure used to quantify the excess codelength of a prequential 
code [11].
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Table 1
Performance measures.

Expected regret: Rreg(ω, P ) = E

[
T∑

t=1

wt (�
t−1) · �t − min

k
LT ,k

]

Pseudo-regret: Rpse(ω, P ) = E

[
T∑

t=1

wt (�
t−1) · �t

]
− min

k
E

[
LT ,k

]
Excess risk: Rrsk(ω, P ) = E

[
w T (�T −1) · �T

]
− min

k
E

[
�T ,k

]

in general be different for the expected regret and the pseudo-regret. We also note that these two measures can differ 
drastically. For instance, when all experts generate their losses from the same Bernoulli distribution with parameter 1

2 , any 
algorithm has zero pseudo-regret, while the expected regret grows at the largest possible rate �(

√
T log K ) [3].

Finally, the stochastic setting permits us to evaluate the prediction strategy by means of the individual rather than 
cumulative losses. Thus, it is reasonable to define the excess risk of a prediction strategy at time T :

Rrsk(ω, P ) = E

[
w T (�T −1) · �T

]
− min

k
E

[
�T ,k

]
,

a metric traditionally used in statistics to measure the accuracy of statistical procedures.3 Contrary to the expected regret 
and pseudo-regret defined by means of cumulative losses of the prediction strategy, the excess risk concerns only a single 
prediction at a given trial; hence, without loss of generality, we can choose the last trial T in the definition. For the sake of 
clarity, we summarize the three measures in Table 1.

Given performance measure R , we say that a strategy ω∗ is minimax with respect to R over the set of distributions P , 
if:

sup
P∈PK

R(ω∗, P ) = inf
ω

sup
P∈PK

R(ω, P ),

where the infimum is over all prediction strategies, and the supremum is over all K -vectors of distributions (P1, . . . , P K ), 
with Pk ∈ P for all k = 1, . . . , K . In what follows, whenever P is the set of all distributions with the support on X , and X
is clear from the context, we use a shorthand notation supP for supP∈P K .

2.2. Permutation invariance

In this section, we identify a class of “admissible” prediction strategies, which we call permutation invariant. The name 
comes from the fact that the performance of these strategies remains invariant under any permutation of the distributions 
P = (P1, . . . , P K ). We show that for every prediction strategy, there exists a corresponding permutation invariant strategy 
with not worse expected regret, pseudo-regret and excess risk in the worst-case with respect to all permutations of P .

We say that a strategy ω is permutation invariant if for any t = 1, . . . , T , and any permutation σ ∈ S K , where S K denotes 
the group of permutations over {1, . . . , K }, wt(σ (�t−1)) = σ(wt(�

t−1)), where for any vector v = (v1, . . . , v K ), we denote 
σ(v) = (vσ(1), . . . , vσ(K )) and σ(�t−1) = σ(�1), . . . , σ(�t−1). In words, if we σ -permute the indices of all past loss vectors, 
the resulting weight vector will be the σ -permutation of the original weight vector. Permutation invariant strategies are 
natural, as they only rely on the observed outcomes, not on the expert indices. We will show that lack of permutation 
invariance (e.g., when the strategy favors expert with a smaller index, etc.) can be exploited by the adversary to incur more 
loss to the learner. The performance of permutation invariant strategies remains the same under any permutation of the 
distributions from P :

Lemma 1. Let ω be permutation invariant. Then, for any permutation σ ∈ S K , Eσ(P )

[
wt(�

t−1) · �t

]
= EP

[
wt(�

t−1) · �t

]
, and 

moreover R(ω, σ(P )) = R(ω, P ), where R is the expected regret, pseudo-regret, or excess risk, and σ(P) = (Pσ(1), . . . , Pσ(K )).

Proof. We first show that the expected loss of the algorithm at any iteration t = 1, . . . , T , is the same for both σ(P ) and P :

Eσ (P )

[
wt(�

t−1) · �t

]
= EP

[
wt(σ

−1(�t−1)) · σ−1(�t)
]

= EP

[
σ−1(wt(�

t−1)) · σ−1(�t)
]

= EP

[
wt(�

t−1) · �t

]
,

3 A similar metric is called simple regret in the multi-armed bandit literature [20].
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where the first equality follows from �t ∼ σ(P ) ⇐⇒ σ−1(�t) ∼ P , the second equality exploits the permutation invari-
ance of ω, while the third equality uses a simple fact that the dot product is invariant under permuting both arguments. 
Therefore, the “loss of the algorithm” part of any of the three measures (regret, pseudo-regret, risk) remains the same. 
To show that the “loss of the best expert” part of each measure is the same, note that for any t = 1, . . . , T , k = 1, . . . , K , 
Eσ(P )

[
�t,k

] = EP
[
�t,σ (k)

]
, which implies:

min
k

Eσ (P )

[
�T ,k

] = min
k

EP
[
�T ,σ (k)

] = min
k

EP
[
�T ,k

]
,

min
k

Eσ (P )

[
LT ,k

] = min
k

EP
[
LT ,σ (k)

] = min
k

EP
[
LT ,k

]
,

Eσ (P )

[
min

k
LT ,k

]
= EP

[
min

k
LT ,σ (k)

]
= EP

[
min

k
LT ,k

]
,

so that the “loss of the best expert” parts of all measures are also the same for both σ(P ) and P . �
We now show that permutation invariant strategies are “admissible” in the following sense:

Theorem 2. For any strategy ω, there exists permutation invariant strategy ̃ω, such that for any set of distributions P ,

R(ω̃, P ) = max
σ∈S K

R(ω̃,σ (P )) ≤ max
σ∈S K

R(ω,σ (P )),

where R is either the expected regret, the pseudo-regret or the excess risk. In particular, this implies that: supP∈P K R(ω̃, P ) ≤
supP∈P K R(ω, P ).

Proof. This first equality in the theorem immediately follows from Lemma 1. Define ω̃ = (w̃1, . . . , ̃w T ) as:

w̃t(�
t−1) = 1

K !
∑
τ∈S K

τ−1
(

wt(τ (�t−1))

)
.

Note that ω̃ is a valid prediction strategy, since w̃t is a function of �t−1 and a distribution over K experts (w̃t is a convex 
combination of K ! distributions, so it is a distribution itself). Moreover, ω̃ is permutation invariant:

w̃t(σ (�t−1)) = 1

K !
∑
τ∈S K

τ−1
(

wt(τσ (�t−1))

)

= 1

K !
∑
τ∈S K

(τσ−1)−1
(

wt(τ (�t−1))

)

= 1

K !
∑
τ∈S K

στ−1
(

wt(τ (�t−1))

)
= σ(w̃t(�

t−1)),

where the second equality is from replacing the summation index by τ �→ τσ . Now, note that the expected loss of w̃t is:

EP

[
w̃t(�

t−1) · �t

]
= 1

K !
∑
τ∈S K

EP

[
τ−1

(
wt(τ (�t−1))

)
· �t

]

= 1

K !
∑
τ∈S K

EP

[
wt(τ (�t−1)) · τ (�t)

]
= 1

K !
∑
τ∈S K

Eτ−1(P )

[
wt(�

t−1) · �t

]
= 1

K !
∑
σ∈S K

Eσ (P )

[
wt(�

t−1) · �t

]
.

Since the “loss of the best expert” parts of all three measures are invariant under any permutation of P (see the proof of 
Lemma 1), we have:

R(ω̃, P ) = 1

K !
∑

σ∈S K

R(ω,σ (P )) ≤ max
σ∈S K

R(ω,σ (P )). (1)
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This implies that:

sup
P∈PK

R(ω̃, P ) ≤ sup
P∈PK

max
σ∈S K

R(ω,σ (P )) = sup
P∈PK

R(ω, P ). �
Theorem 2 states that strategies which are not permutation-invariant do not give any advantage over permutation-

invariant strategies even when the set of distributions P is fixed (and even possibly known to the learner), but the adversary 
can permute the distributions to make the learner incur the most loss. We also note that one can easily show a slightly 
stronger version of Theorem 2: if strategy ω is not permutation invariant, and it holds that R(ω, P ) �= R(ω, τ (P )) for some 
set of distributions and some permutation τ , then R(ω̃, P ) < maxσ∈S K R(ω, σ(P )). This follows from the fact that the 
inequality in (1) becomes sharp.

2.3. Follow the Leader strategy

Given loss sequence �t−1, let Nt = | argmin j=1,...,K Lt−1, j | be the size of the leader set at the beginning of trial t . We 
define the Follow the Leader (FL) strategy wfl

t such that wfl
t,k = 1

Nt
if k ∈ argmin j Lt−1, j and wfl

t,k = 0 otherwise. In other 
words, FL predicts with the current leader, breaking ties uniformly at random. It is straightforward to show that such 
defined FL strategy is permutation invariant.

3. Binary losses

In this section, we set X = {0, 1}, so that all losses are binary, and let P be the set of all distributions on {0, 1}. In 
this case, each Pk is a Bernoulli distribution. Take any permutation invariant strategy ω. It follows from Lemma 1 that for 
any P , and any permutation σ ∈ S K , EP

[
wt(�

t−1) · �t

]
= Eσ(P )

[
wt(�

t−1) · �t

]
. Averaging this equality over all permutations 

σ ∈ S K gives:

EP

[
wt(�

t−1) · �t

]
= 1

K !
∑
σ

Eσ (P )

[
wt(�

t−1) · �t

]
︸ ︷︷ ︸

=: losst (wt ,P )

, (2)

where we defined losst(wt , P ) to be permutation-averaged expected loss at trial t . We now show the main result of this 
paper, a surprisingly strong property of FL strategy, which states that FL minimizes losst(wt , P ) simultaneously over all 
K -vectors of distributions. Hence, FL is not only optimal in the worst case, but is actually optimal for permutation-averaged 
expected loss for any P , even if P is known to the learner! The consequence of this fact (by (2)) is that FL has the smallest 
expected loss among all permutation invariant strategies for any P (again, even if P is known to the learner).

Theorem 3. Let ωfl = (wfl
1, . . . , wfl

T ) be the FL strategy. Then, for any K -vector of distributions P = (P1, . . . , P K ) over binary losses, 
for any strategy ω = (w1, . . . , w T ), and any t = 1, . . . , T :

losst(wfl
t , P ) ≤ losst(wt, P ).

In particular, by (2), for any permutation-invariant strategy ω:

EP

[
wfl

t (�t−1) · �t

]
≤ EP

[
wt(�

t−1) · �t

]
.

To prove the theorem, we need the following combinatorial result (proof of which is given in Appendix A), which can be 
interesting on its own right:

Lemma 4. For any real numbers x1, . . . , xK , y1, . . . , yK , and any monotonically increasing function f , the expression:

h(k) =
∑
σ∈S K

e
∑K

j=1 x j f (yσ ( j)) yσ (k)

is minimized by any k∗ ∈ argmin j=1,...,K x j .

Proof of Theorem 3. For any distribution Pk over binary losses, let μk := EPk [�t,k] = Pk(�t,k = 1). We have:

losst(wt, P ) = 1

K !
∑
σ

Eσ (P )

[
wt(�

t−1) · �t

]
(3)

= 1

K !
∑

Eσ (P )

[
wt(�

t−1)
]
·Eσ (P ) [�t]
σ
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= 1

K !
∑
σ

∑
�t−1

⎛⎝ K∏
k=1

μ
Lt−1,k
σ (k)

(1 − μσ(k))
t−1−Lt−1,k

⎞⎠⎛⎝ K∑
k=1

wt,k(�
t−1)μσ(k)

⎞⎠
= 1

K !
∑
�t−1

K∑
k=1

wt,k(�
t−1)

⎛⎝∑
σ

K∏
j=1

μ
Lt−1, j

σ ( j) (1 − μσ( j))
t−1−Lt−1, j μσ(k)

⎞⎠
︸ ︷︷ ︸

=: losst (wt ,P |�t−1)

,

where the sum indexed with �t−1 is over all loss sequences, and in the second equality we used the fact that wt depends 
on �t−1 and does not depend on �t . Fix �t−1 and consider the term losst(wt , P |�t−1). To finish the proof, it suffices to show 
that for any P , and any �t−1, losst(wt , P |�t−1) is minimized by setting wt = ek∗ for any k∗ ∈ argmin j Lt−1, j , where ek is 
the k-th standard basis vector with 1 on the k-th coordinate, and zeros on the remaining coordinates. Indeed, this implies 
that losst(wt , P |�t−1) is also minimized by the FL strategy wfl

t , which distributes its mass uniformly over all leaders. Then, 
by (3), it follows that wfl

t also minimizes losst(wt , P ).
Since losst(wt , P |�t−1) is linear in wt , it suffices to check solutions of the form wt = ek , k = 1, . . . , K , i.e. to show that 

for any k∗ ∈ argmin j Lt−1, j and any k = 1, . . . , K :

losst(ek∗ , P |�t−1) ≤ losst(ek, P |�t−1). (4)

Assume for the moment that μ j /∈ {0, 1} for all j. We rewrite:

losst(ek, P |�t−1) =
∑
σ

K∏
j=1

μ
Lt−1, j

σ ( j) (1 − μσ( j))
t−1−Lt−1, j μσ(k)

=
(

K∏
j=1

(1 − μ j)
t−1

)∑
σ

e
∑K

j=1 Lt−1, j log
μσ( j)

1−μσ( j) μσ(k).

Then, (4) is implied by Lemma 4 with x j = Lt−1, j , y j = μ j , j = 1, . . . , K , and f (y) = log y
1−y , which is monotonically 

increasing. To account for the case μ j ∈ {0, 1} note, that since (4) holds for μ j = ε (or μ j = 1 − ε) with arbitrarily small 
ε > 0, it must also hold for μ j = 0 (or μ j = 1) by taking the limit ε → 0 and using the continuity of losst(wt , P |�t−1) with 
respect to P . �

Note that the proof did not require uniform tie breaking over leaders, as any distribution over leaders would work as 
well. Uniform distribution, however, makes the FL strategy permutation invariant.

The consequence of Theorem 3 is the following corollary which states the minimaxity of FL strategy for binary losses:

Corollary 5. Let ωfl = (wfl
1, . . . , wfl

T ) be the FL strategy. Then, for any P over binary losses, and any permutation invariant strategy ω:

R(ωfl, P ) ≤ R(ω, P ),

where R is the expected regret, pseudo-regret, or excess risk. This implies:

sup
P

R(ωfl, P ) = inf
ω

sup
P

R(ω, P ),

where the supremum is over all distributions on binary losses, and the infimum over all (not necessarily permutation invariant) strate-
gies.

Proof. The first statement follows from the second statement of Theorem 3, and the fact that the “loss of the best expert” 
part is the same of on both sides on inequality.

The second statement immediately follows from the first statement and Theorem 2. �
4. Exponential family model

So far, we discussed a setting in which the losses generated by each expert are in {0, 1}. Here, we extend the minimax 
analysis to the case where each expert is a member of a one-dimensional exponential family of distributions.

Let X ⊆R be a set of outcomes, which can be a finite or countable set, or a general subset of the reals. One-dimensional 
exponential family [22,11] with sufficient statistic φ : X → R and carrier h : X → [0, ∞) is the family of distributions on X
with densities:
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Pθ (x) = h(x)eθφ(x)−ψ(θ), θ ∈ 
.

Here ψ(θ) = log
∫

x∈X eθφ(x)h(x) dx (with the integral replaced by a sum for countable X ) is the cumulant generating 
function, and 
 = {θ ∈ R : ψ(θ) < ∞} is the natural parameter space. Examples of exponential families include Gaussian 
distribution with fixed variance or fixed mean, Bernoulli, Poisson, exponential, gamma (with one of the parameters fixed), 
geometric, Pareto families of distribution, and many others. We will simplify the presentation and assume that φ(x) ≡ x, i.e. 
the exponential family is in the canonical form. All our results are valid for a more general φ (in this case, however, one 
should replace losses �t,k by φ(�t,k) for all t , k).

A standard result for exponential families states [22] that ψ(θ) is differentiable infinitely often, strictly convex on 
, and 
the derivative μ(θ) = ψ ′(θ) is the mean value of the sufficient statistics, μ(θ) = Eθ [x]. Due to strict convexity of ψ , μ(θ) is 
strictly increasing, so that there is one-to-one mapping between 
 and its image M = μ(
), which is called the mean-value 
parameter space. We let θ(μ) denote the inverse of μ(θ), which maps parameters in the mean-value parameterization back 
to the natural parameterization.

Let P = {Pθ : θ ∈ 
} be a one-dimensional exponential family. We associate with each expert k = 1, . . . , K a natural 
parameter θk ∈ 
 (or, equivalently, a mean-value parameter μk = μ(θk) ∈ M), which is unknown to the learner, and the 
losses of expert k, �t,k , t = 1, . . . , T are generated i.i.d. from Pθk . Note that EPθk

[�t,k] = μk from the definition.

Example. Let P be the family of Bernoulli distributions, i.e. the family of all distributions on X = {0, 1}:

Pμ(x) = μx(1 − μ)1−x (mean-value), Pμ(x) = exθ−log(1+eθ ) (natural).

For a given expert k, μk = P (�t,k = 1) is its mean value parameter, while θk = log μk
1−μk

is the corresponding natural param-
eter. Thus, the case of binary losses analyzed in Section 3 is a special case of exponential family model if one chooses the 
exponential family to be the family of Bernoulli distributions.

Example. Let P be the family of one-dimensional Gaussian distributions with fixed variance σ 2:

Pμ(x) = 1√
2πσ 2

e
− (x−μ)2

2σ2 (mean-value), Pθ (x) = e
− x2

2σ2

√
2πσ 2

eθx− θ2σ2
2 (natural).

Here the mean-value and natural parameterizations essentially coincide as we have μ = θσ 2. Note that X = R, so that the 
range of losses is unbounded.

Example. Let P be the family of Poisson distributions:

Pμ(x) = μxe−μ

x! (mean-value), Pθ (x) = 1

x!exθ−eθ

(natural).

Here, X = {0, 1, 2, . . .}, and θ = logμ.

We now show that in the exponential family model, the FL strategy admits a property analogous to given in Theo-
rem 3 for binary losses, i.e. that FL strategy minimizes the permutation-averaged loss simultaneously over all K -vectors of 
distributions P . By (2), FL has the smallest expected loss among all permutation invariant strategies for any P .

Theorem 6. Let {Pθ : θ ∈ 
} be a one-dimensional exponential family, and let ωfl = (wfl
1, . . . , wfl

T ) be the FL strategy. Then, for any 
K -vector (θ1, . . . , θK ) ∈ 
K , and associated K -vector of distributions P = (Pθ1 , . . . , PθK ), for any strategy ω = (w1, . . . , w T ), and 
any t = 1, . . . , T :

losst(wfl
t , P ) ≤ losst(wt, P ).

In particular, by (2), for any permutation invariant strategy ω:

EP

[
wfl

t (�t−1) · �t

]
≤ EP

[
wt(�

t−1) · �t

]
.

The proof is similar to the proof of Theorem 3 and is given in Appendix B.
The consequence of Theorem 6 is the minimaxity of FL strategy under exponential family model. However, contrary 

to the case of binary losses in Section 3, the minimax regret, pseudo-regret and risk can be infinite when the losses are 
unbounded. For instance, take K = 2 experts and T = 1 trial, and consider one-dimensional Gaussian family model with unit 
variance given above. Let μ1 and μ2 be the (mean-value) parameters of expert 1 and expert 2. By symmetry, the best any 
algorithm can do in the first trial is to put equal weights on both experts, so that the expected loss of the algorithm in the 
first trial is 1

E[�1,1] + 1
E[�2,1] = 1 (μ1 + μ2). Assuming (without loss of generality) μ1 ≤ μ2, this means that the risk and 
2 2 2
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pseudo-regret are equal to 1
2 (μ1 + μ2) − μ1 = 1

2 (μ2 − μ1), while the regret is at least that amount. Making the difference 
μ2 − μ1 as large as we want, it follows that the minimax risk, pseudo-regret and regret can all be made arbitrarily large in 
just a single trial.

To exclude such cases, we restrict the parameters chosen by the adversary to lie in a subset of parameter space 
0 ⊆ 
, 
for which the minimax value is finite. For instance, in the Gaussian family model, we can choose 
0 = {θ : |θ | ≤ B} for 
some B > 0, which would imply the boundedness of the distribution mean. While in principle we let the algorithm know 

0 in advance, the theorem below shows that the minimax strategy is the FL strategy, which does not make use of such 
knowledge at all.

Corollary 7. Let P = {Pθ : θ ∈ 
0} be a one-dimensional exponential family with its natural parameter space restricted to a non-
empty subset of 
, 
0 ⊆ 
, for which the minimax value is finite:

R∗ := inf
ω

sup
P∈PK

R(ω, P ) < ∞,

where R is the expected regret, pseudo-regret, or excess risk. Let ωfl = (wfl
1, . . . , wfl

T ) be the FL strategy. Then, for any (θ1, . . . , θK ) ∈

K

0 and associated P = (Pθ1 , . . . , PθK ), and any permutation invariant strategy ω:

R(ωfl, P ) ≤ R(ω, P ),

which implies:

sup
P∈PK

R(ωfl, P ) = R∗.

Proof. The first statement follows from the second part of Theorem 6, and the fact that the “loss of the best expert” part 
on each side of inequality is the same.

The second statement immediately follows from the first statement and Theorem 2. �
5. Losses in a bounded interval

In this section, we consider the case X = [0, 1] of bounded loss vectors, and we let P be the set of all distributions 
on [0, 1] (with some straightforward changes, our analysis actually applies to any bounded interval [a, b], but we keep 
[0, 1] range for the sake of simplicity). We give a modification of FL strategy and prove its minimaxity. We later justify the 
modification by arguing that the plain FL strategy is not minimax for this setup.

We remark that Corollary 7 from previous section, which states the minimaxity of FL for exponential family model, 
does not contradict the suboptimality of FL shown below. This is because the exponential family model does not cover the 
setup considered here, as the set of all distributions on [0, 1] does not form an exponential family. Thus, in this section we 
are dealing with a more ambitious goal (although restricted to a bounded domain, as opposed to Section 4) of competing 
against an adversary, whose experts can play with any distribution over X .

In what follows, we sometimes refer to losses in the range [0, 1] as continuous losses, as opposed to binary losses from 
{0, 1}.

5.1. Binarized FL

The modification of FL is based on the procedure we call binarization. A similar trick has already been used in [23] to 
make Thompson Sampling work for non-binary rewards, and in [12] to deal with non-binary losses in a version of Follow the 
Perturbed Leader algorithm. We define a binarization of any loss value �t,k ∈ [0, 1] as a Bernoulli random variable bt,k which 
takes out value 1 with probability �t,k and value 0 with probability 1 − �t,k . In other words, we replace each continuous loss 
�t,k by a random binary outcome bt,k , such that E[bt,k] = �t,k . Note that if �t,k ∈ {0, 1}, then bt,k = �t,k , i.e. binarization has 
no effect on losses which are already binary. Let us also define bt = (bt,1, . . . , bt,K ), where all K Bernoulli random variables 
bt,k are independent. Similarly, bt denotes a binary loss sequence b1, . . . , bt , where the binarization procedure is applied 
independently (with a fresh set of Bernoulli variables) for each trial t . Now, given the loss sequence �t−1, we define the 
binarized FL strategy ωbfl by:

wbfl
t (�t−1) = Ebt−1

[
wfl

t (bt−1)
]
,

where wfl
t (bt−1) is the standard FL strategy applied to binarized losses bt−1, and the expectation is over internal random-

ization of the algorithm (binarization variables).4

4 Instead of computing the expectation over binarization variables, one can simply draw these variables once and play with FL on such binarized losses. 
Due to linearity of the loss with respect to the weight vector, the expected performance of such strategy (with expectation with respect to internal 
randomization of the algorithm) is the same as that of binarized FL.
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Note that if the set of distributions P has support only on {0, 1}, then wbfl
t ≡ wfl

t . On the other hand, these two strategies 
may differ significantly for non-binary losses. However, we will show that for any K -vector of distributions P (with support 
in [0, 1]), wbfl

t will behave in the same way as wfl
t would behave on some particular K -vector of distributions over binary 

losses. To this end, we introduce binarization of a K -vector of distributions P , defined as P bin = (P bin
1 , . . . , P bin

K ), where P bin
k is 

a distribution with support {0, 1} such that:

EP bin
k

[�t,k] = P bin
k (�t,k = 1) = EPk [�t,k].

In other words, P bin
k is a Bernoulli distribution which has the same expectation as the original distribution (over continuous 

losses) Pk .

Lemma 8. For any K -vector of distributions P = (P1, . . . , P K ) with support on X = [0, 1],

E�t∼P

[
wbfl

t (�t−1) · �t

]
= E�t∼P bin

[
wfl

t (�t−1) · �t

]
.

Proof. Let μk be the expectation of �t,k according to either Pk or P bin
k , μk := EPk [�t,k] = EP bin

k
[�t,k]. Since for any prediction 

strategy ω, wt depends on �t−1 and does not depend on �t , we have:

EP

[
wbfl

t · �t

]
= EP

[
wbfl

t

]
·EP [�t] = EP

[
wbfl

t

]
· μ,

where μ = (p1, . . . , pK ). Similarly,

EP bin

[
wfl

t · �t

]
= EP bin

[
wfl

t

]
· μ.

Hence, we only need to show that EP

[
wbfl

t

]
= EP bin

[
wfl

t

]
. This holds because wbfl

t “sees” only the binary outcomes result-

ing from the joint distribution of P and the distribution of binarization variables:

E�t−1∼P

[
wbfl

t (�t−1)
]

= E�t−1∼P ,bt−1

[
wfl

t (bt−1)
]
,

and for any bt,k , the probability (jointly over Pk and the binarization variables) of bt,k = 1 is the same as probability of 
�t,k = 1 over the distribution P bin

k :

P (bt,k = 1) =
∫

[0,1]
P (bt,k = 1|�t,k)Pk(�t,k)d�t,k

=
∫

[0,1]
�t,k Pk(�t,k)d�t,k = μk = P bin(�t,k = 1). (5)

Hence,

E�t−1∼P ,bt−1

[
wfl

t (bt−1)
]

= E�t−1∼P bin

[
wfl

t (�t−1)
]
. �

Lemma 9. For any K -vector of distributions P = (P1, . . . , P K ) with support on X = [0, 1],

R(ωbfl, P ) ≤ R(ωfl, P bin),

where R is either the expected regret, the pseudo-regret, or the excess risk (for pseudo-regret and excess risk, the lemma holds with 
equality).

Proof. Lemma 8 shows that the expected loss of ωbfl on P is the same as the expected loss of ωfl on P bin. Hence, to prove 
the inequality, we only need to consider the “loss of the best expert” part of each measure. For the pseudo-regret, and the 
expected regret, it directly follows from the definition of P bin that for any t , k, EP [�t,k] = EP bin [�t,k], hence mink EP [�T ,k] =
mink EP bin [�T ,k], and similarly, mink EP [LT ,k] = mink EP bin [LT ,k]. Thus, for the pseudo-regret and the excess risk, the lemma 
actually holds with equality.

For the expected regret, we will show that EP [mink LT ,k] ≥ EP bin [mink LT ,k], which will finish the proof. Denoting B T ,k =∑T
t=1 bt,k , we have:
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E�T ∼P bin [min
k

LT ,k] = E�T ∼P ,bT [min
k

BT ,k]

≤ E�T ∼P

[
min

k
EbT [BT ,k|�T ]

]
= E�T ∼P [min

k
LT ,k],

where the first equality is from the fact that for any bt,k , the probability (jointly over Pk and the binarization variables) of 
bt,k = 1 is the same as probability of �t,k = 1 with respect to distribution P bin

k (see (5) in the proof of Lemma 8), while the 
inequality follows from Jensen’s inequality applied to the concave function min(·). �
Theorem 10. Let ωbfl = (wbfl

1 , . . . , wbfl
T ) be the binarized FL strategy. Then:

sup
P

R(ωbfl, P ) = inf
ω

sup
P

R(ω, P ),

where R is the expected regret, pseudo-regret, or excess risk, the supremum is over all K -vectors of distributions on [0, 1], and the 
infimum is over all prediction strategies.

Proof. Lemma 9 states that for any K -vector of distributions P , R(ωbfl, P ) ≤ R(ωfl, P bin). Furthermore, since ωbfl is the 
same as ωfl when all the losses are binary, R(ωbfl, P bin) = R(ωfl, P bin), and hence R(ωbfl, P ) ≤ R(ωbfl, P bin), i.e. for every 
P over continuous losses, there is a corresponding P bin over binary losses which incurs at least the same regret/pseudo-
regret/risk to ωbfl. Therefore,

sup
P on [0,1]

R(ωbfl, P ) = sup
P on {0,1}

R(ωbfl, P ) = sup
P on {0,1}

R(ωfl, P ).

By the second part of Corollary 5, for any prediction strategy ω:

sup
P on {0,1}

R(ωfl, P ) ≤ sup
P on {0,1}

R(ω, P ) ≤ sup
P on [0,1]

R(ω, P ),

which finishes the proof. �
Theorem 10 states that the binarized FL strategy is the minimax prediction strategy when the losses are continuous on 

[0, 1]. Note that the same arguments would hold for any other loss range [a, b], where the binarization on losses would 
convert continuous losses to the binary losses with values in {a, b}.

5.2. Vanilla FL is not minimax for continuous losses

We introduced the binarization procedure to show that the resulting binarized FL strategy is minimax for continuous 
losses. So far, however, we did not exclude the possibility that the plain FL strategy (without binarization) could also be 
minimax in the continuous setup. In this section, we prove (by giving a counterexample) that this is not the case, so that 
the binarization procedure is justified. We will only consider excess risk for simplicity, but one can use similar arguments 
to show a counterexample for the expected regret and the pseudo-regret as well.

The counterexample proceeds by choosing the simplest non-trivial setup of K = 2 experts and T = 2 trials. We will first 
consider the case of binary losses and determine the minimax excess risk. Take two distributions P1, P2 on binary losses 
and denote μ1 = P1(�t,1 = 1) and μ2 = P2(�t,2 = 1), assuming (without loss of generality) that μ1 ≤ μ2. The excess risk of 
the FL strategy (its expected loss in the second trial minus the expected loss of the first expert) is given by:

P (�1,1 = 0, �1,2 = 1)μ1 + P (�1,2 = 0, �1,1 = 1)μ2 + P (�1,1 = �1,2)
μ1 + μ2

2
− μ1,

which can be rewritten as:

μ2(1 − μ1)μ1 + μ1(1 − μ2)μ2︸ ︷︷ ︸
=2μ1μ2−μ1μ2(μ1+μ2)

+
(
μ1μ2 + (1 − μ1)(1 − μ2)

)μ1 + μ2

2︸ ︷︷ ︸
=μ1μ2(μ1+μ2)−(μ1+μ2)2+ μ1+μ2

2

− μ1 = μ2 − μ1

2
− (μ2 − μ1)

2

2
.

Denoting δ = μ2 − μ1, the excess risk can be concisely written as δ
2 − δ2

2 . Maximizing over δ gives δ∗ = 1
2 and hence the 

maximum risk of FL on binary losses is equal to 1
8 .

Now, the crucial point to note is that this is also the minimax risk on continuous losses. This follows because the binarized 
FL strategy (which is the minimax strategy on continuous losses) achieves the maximum risk on binary losses (for which 
it is equivalent to the FL strategy), as follows from the proof of Theorem 10. What remains to be shown is that there exist 



W. Kotłowski / Theoretical Computer Science 742 (2018) 50–65 61
distributions P1, P2 on continuous losses which force FL to suffer more excess risk than 1
8 . We take P1 with support on two 

points {ε, 1}, where ε is a very small positive number, and p1 = P1(�t,1 = 1). Note that μ1 := E[�t,1] = p1 +ε(1 − p1). P2 has 
support on {0, 1 − ε}, and let p2 = P2(�t,2 = 1 − ε), which means that μ2 := E[�t,2] = p2(1 − ε). We also assume μ1 < μ2

i.e. expert 1 is the “better” expert, which translates to p1 + ε(1 − p1) < p2(1 − ε). The main idea in this counterexample 
is that by using ε values, all “ties” are resolved in favor of expert 2, which makes the FL algorithm suffer more loss. More 
precisely, this risk of FL is now given by:

p2(1 − p1)p1 + p1(1 − p2)p2 +
(

p1 p2 + (1 − p1)(1 − p2)
)

p2︸ ︷︷ ︸
ties

− p1 + O (ε).

Choosing, e.g. p1 = 0 and p2 = 0.5, gives 1
4 + O (ε) excess risk, which is more than 1

8 , given that we take ε sufficiently 
small.

6. Dependent experts

All setups discussed so far concern distributions over loss vectors which are i.i.d. between trials, but also i.i.d. between 
experts. From the practical point of view, it is clearly interesting to look at the case in which the adversary can choose any 
joint distribution over loss vectors (still i.i.d. between trials, but not necessarily i.i.d. between experts). Unfortunately, this 
case seems to be notoriously hard to approach, even in the binary loss case, and all our methods based on permutation 
invariance fail. Furthermore, we managed to find a numerical counterexample which shows that for binary losses �t ∈
{0, 1}K , K = 3 experts and T = 3 trials, the FL strategy is not minimax in terms of the expected regret.5 This suggests that, 
similarly to the case of Section 5, at least some modification to FL is required.

In this section we present the simplest variant of dependent expert case, where all loss vectors are unit in the sense 
that �t = ek for some k = 1, . . . , K (only a single expert gets loss at a time). In other words, losses follow a multinomial 
distribution over K outcomes, which is clearly not i.i.d. between experts. Since now we consider a single joint (multinomial) 
distributions over loss vectors, we let P denote such distribution, with pk := P (�t = ek). The set of all multinomial distribu-
tions over K outcomes is denoted by P . As P is closed under taking permutations over experts, one can easily show that 
all properties of permutation-invariant strategies proved in Section 2.2 also hold in this setup.

We now show that in the multinomial setting, the FL strategy retains the minimax properties analogous to those given 
in Theorem 3 and Theorem 6.

Theorem 11. Let P be the family of multinomial distributions, and let ωfl be the FL strategy. Then, for any P ∈P , any strategy ω, and 
any t = 1, . . . , T :

losst(wfl
t , P ) ≤ losst(wt, P ).

In particular, by (2), for any permutation invariant strategy ω:

EP

[
wfl

t (�t−1) · �t

]
≤ EP

[
wt(�

t−1) · �t

]
.

The proof is given in Appendix C. As in the case of binary and exponential family models, the consequence is:

Corollary 12. Let P be the family of multinomial distributions over K , and let ωfl be the FL strategy. Then, for any P ∈ P , and any 
permutation invariant strategy ω:

R(ωfl, P ) ≤ R(ω, P ),

where R is the expected regret, pseudo-regret, or excess risk. This implies:

sup
P∈P

R(ωfl, P ) = inf
ω

sup
P∈P

R(ω, P ).

5 The counterexample is based on numerical maximization of the expected regret over all distributions on 8 loss vectors (0, 0, 0), (0, 0, 1), (0, 1, 0), . . . , 
where we found out that a slight modification of FL strategy gives a better worst-case expected regret: in trial t = 3, after seeing two loss vectors (0, 0, 1)

and (1, 1, 0) (or any expert-permutation thereof), put 2/3 weight on expert 3 and 1/6 weight on experts 1 and 2 (FL would put equal weight 1/3 on all 
experts). This decreases worst-case expected regret from 0.91956 (FL regret) to 0.91667.
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7. Conclusions and open problem

In this paper, we determined the minimax strategy for the stochastic setting of prediction with expert advice in which 
each expert generates its losses i.i.d. according to some distribution. Interestingly, the minimaxity is achieved by a single 
strategy, simultaneously for three considered performance measures: the expected regret, the pseudo-regret, and the excess 
risk. We showed that when the losses are binary, the Follow the Leader algorithm is the minimax strategy for this game, 
and furthermore, it also has the smallest expected regret, pseudo-regret, and excess risk among all permutation invariant 
prediction strategies for every distribution over the binary losses simultaneously, even among (permutation invariant) strate-
gies which know the distributions of the losses. These minimax properties of FL also generalize to the case in which each 
expert generates its losses from a distribution belonging to a one-dimensional exponential family (of which the case of 
binary losses is a special case), as well as in a simple setup of dependent experts, where the loss vectors follow multinomial 
distribution, i.e. only a single expert gets loss in a given trial.

We also showed that the FL strategy becomes suboptimal in the case of losses in the range [0, 1], in which each expert 
generates losses from an arbitrary distribution over [0, 1]. However, by applying “binarization trick” to the losses, and using 
FL on the binarized sequence (which results in the binarized FL strategy), we obtain the minimax strategy in this setup.

Open problems. Using the notion of permutation invariance, we proved the optimality of the FL strategy for losses generated 
from an exponential family (which includes binary losses) independently over experts, and for loss vectors generated jointly 
from a multinomial distribution. The common property in all these cases is that the past cumulative losses of experts form 
a sufficient statistic [13,14], i.e. the cumulative losses capture all the information about the expert distributions. We would 
like to know whether the minimaxity of FL ever holds beyond this setup.

This paper concerns distributions over loss vectors which are i.i.d. between trials and i.i.d. between experts (except for 
a simple multinomial model where only one expert gets loss at a time). It would be interesting to determine the minimax 
strategy in a more general setting, when the adversary can choose any joint distribution over loss vectors in [0, 1]K , or at 
least in {0, 1}K (still i.i.d. between trials, but not necessarily i.i.d. between experts). While our computational experiment 
mentioned in Section 6 suggests that vanilla FL is not optimal in this setting, it remains open whether an appropriate 
modification of FL (analogous to the binarized FL strategy) could reduce the problem to a simpler problem of independent 
binary losses or multinomial loss vectors, and thus give the minimax strategy. Finally, even more ambitious open problem 
would be to find a generic minimax strategy (if exists) for the case of joint distributions over loss vectors from a general 
compact set X ⊂ R

K .

Appendix A. Proof of Lemma 4

Lemma 4. For any real numbers x1, . . . , xK , y1, . . . , yK , and any monotonically increasing function f , the expression:

h(k) =
∑
σ∈S K

e
∑K

j=1 x j f (yσ ( j)) yσ (k)

is minimized by any k∗ ∈ argmin j=1,...,K x j .

Proof. We proceed by induction on K . Take K = 2 and choose any k∗ ∈ argmin j=1,2 x j . Without loss of generality assume 
k∗ = 1, so that x1 ≤ x2. We need to show that h(1) ≤ h(2), which for K = 2 amounts to show that:

ex1 f (y1)+x2 f (x2) y1 + ex1 f (y2)+x2 f (y1) y2 ≤ ex1 f (y1)+x2 f (y2) y2 + ex1 f (y2)+x2 f (y1) y1,

or, after rearranging the terms, that:(
ex1 f (y1)+x2 f (y2) − ex1 f (y2)+x2 f (y1)

)
(y1 − y2) ≤ 0. (A.1)

If y1 = y2, (A.1) holds trivially. For y1 > y2, we have f (y1) ≥ f (y2) (due to monotonicity of f ), and hence:(
x1 f (y1) + x2 f (y2)

)
−

(
x1 f (y2) + x2 f (y1)

)
= (x1 − x2)( f (y1) − f (y2)) ≤ 0,

because x1 ≤ x2. This implies ex1 f (y1)+x2 f (y2) ≤ ex1 f (y2)+x2 f (y1) , and (A.1) follows. Finally, when y1 < y2, we have f (y1) ≤
f (y2), and by similar arguments ex1 f (y1)+x2 f (y2) ≥ ex1 f (y2)+x2 f (y1) , which gives (A.1). This finishes the proof of the base case 
K = 2.

Now, choose any K ≥ 3. Take any k∗ ∈ argmin j=1,...,K x j , and any other k �= k∗ . We will show that h(k∗) ≤ h(k) which 
suffices to prove the lemma. Without loss of generality assume that k∗ �= K and k �= K (it is always possible to rearrange 
indices this way, as K ≥ 3). We expand the sum over permutations in the definition of h(k∗) with respect to the value of 
σ(K ):
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h(k∗) =
K∑

s=1

∑
σ : σ (K )=s

e
∑K

j=1 x j f (yσ ( j)) yσ (k∗)

=
K∑

s=1

exK f (ys)
∑

σ : σ (K )=s

e
∑K−1

j=1 x j f (yσ ( j)) yσ (k∗). (A.2)

Fix s and define K − 1 real numbers y′
1, . . . , y

′
K−1 by:

y′
1 = y1, . . . , y′

s−1 = ys−1, y′
s = ys+1, . . . , y′

K−1 = yK .

Note that:∑
σ : σ (K )=s

e
∑K−1

j=1 x j f (yσ ( j)) yσ (k∗) =
∑

σ∈S K−1

e
∑K−1

j=1 x j f (y′
σ ( j)) y′

σ (k∗). (A.3)

Now, by inductive assumption we invoke the lemma for 2(K − 1) real numbers x1, . . . , xK−1, y′
1, . . . , y

′
K−1 to conclude that:∑

σ∈S K−1

e
∑K−1

j=1 x j f (y′
σ ( j)) y′

σ (k∗) ≤
∑

σ∈S K−1

e
∑K−1

j=1 x j f (y′
σ ( j)) y′

σ (k),

where we used the fact that k, k∗ ≤ K − 1, and that k∗ = argmin j=1,...,K−1 x j . By (A.3), it implies that:∑
σ : σ (K )=s

e
∑K−1

j=1 x j f (yσ ( j)) yσ (k∗) ≤
∑

σ : σ (K )=s

e
∑K−1

j=1 x j f (yσ ( j)) yσ (k).

Since s was arbitrary, we bounded each term in the sum over s in (A.2), and thus h(k∗) ≤ h(k), which finishes the proof. �
Appendix B. Proof of Theorem 6

Theorem 6. Let {Pθ : θ ∈ 
} be a one-dimensional exponential family, and let ωfl = (wfl
1, . . . , wfl

T ) be the FL strategy. Then, for any 
K -vector (θ1, . . . , θK ) ∈ 
K , and associated K -vector of distributions P = (Pθ1 , . . . , PθK ), for any strategy ω = (w1, . . . , w T ), and 
any t = 1, . . . , T :

losst(wfl
t , P ) ≤ losst(wt, P ).

In particular, by (2), for any permutation invariant strategy ω:

EP

[
wfl

t (�t−1) · �t

]
≤ EP

[
wt(�

t−1) · �t

]
.

Proof. First note that the joint probability of observing loss sequence �t is given by,

P (�t) =
K∏

k=1

t∏
q=1

h(�k,q)eθk�k,q−ψ(θk) = h(�t)e
∑K

k=1 θk Lt,k−tψ(θk),

where we abbreviate h(�t) = ∏K
k=1

∏t
q=1 h(�k,q). We have:

losst(wt, P ) = 1

K !
∑
σ

Eσ (P )

[
wt(�

t−1) · �t

]
= 1

K !
∑
σ

Eσ (P )

[
wt(�

t−1)
]
·Eσ (P ) [�t]

= 1

K !
∑
σ

∫
h(�t−1)e

∑
k θσ (k)Lt−1,k−(t−1)ψ(θσ (k))

( K∑
k=1

wt,k(�
t−1)μσ(k)

)
d�t−1

= 1

K !
∫

h(�t−1)e−(t−1)
∑

k ψ(θk)

K∑
k=1

wt,k(�
t−1)

(∑
σ

e
∑

k θσ (k)Lt−1,kμσ(k)

)
︸ ︷︷ ︸

=: losst (wt ,P |�t−1)

d�t−1.
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We now fix �t−1 and consider the term losst(wt , P |�t−1). To finish the proof, it suffices to show that for any P , and any �t−1, 
losst(wt , P |�t−1) is minimized by setting wt = ek∗ for any k∗ ∈ argmin j Lt−1, j . Indeed, this implies that losst(wt , P |�t−1)

is also minimized by the FL strategy wfl
t , which distributes its mass uniformly over all leaders, and since wfl

t minimizes 
losst(wt , P |�t−1) for all �t−1, it also minimizes losst(wt , P ). As losst(wt , P |�t−1) is linear in wt , it suffices to only check 
wt = ek , k = 1, . . . , K , i.e. to show that for any k∗ ∈ argmin j Lt−1, j and any k = 1, . . . , K , losst(ek∗ , P |�t−1) ≤ losst(ek, P |�t−1). 
But since:

losst(ek, P |�t−1) =
∑
σ

e
∑K

j=1 θσ ( j)Lt−1, j μσ(k),

this immediately follows from Lemma 4 with x j = Lt−1, j , y j = μ j and f (μ) = θ(μ), which is monotonically increasing. This 
finishes the proof. �
Appendix C. Proof of Theorem 11

Theorem 11. Let P be the family of multinomial distributions, and let ωfl be the FL strategy. Then, for any P ∈P , any strategy ω, and 
any t = 1, . . . , T :

losst(wfl
t , P ) ≤ losst(wt, P ).

In particular, by (2), for any permutation invariant strategy ω:

EP

[
wfl

t (�t−1) · �t

]
≤ EP

[
wt(�

t−1) · �t

]
.

Proof. Denote pk := P (�t = ek), so that EP [�t,k] = pk . We have:

losst(wt, P ) = 1

K !
∑
σ

Eσ (P )

[
wt(�

t−1) · �t

]
= 1

K !
∑
σ

Eσ (P )

[
wt(�

t−1)
]
·Eσ (P ) [�t]

= 1

K !
∑
σ

∑
�t−1

⎛⎝ K∏
k=1

p
Lt−1,k
σ (k)

⎞⎠⎛⎝ K∑
k=1

wt,k(�
t−1)pσ (k)

⎞⎠
= 1

K !
∑
�t−1

K∑
k=1

wt,k(�
t−1)

⎛⎝∑
σ

K∏
j=1

p
Lt−1, j

σ ( j) pσ (k)

⎞⎠
︸ ︷︷ ︸

=: losst (wt ,P |�t−1)

.

As in the proof of Theorem 3 and Theorem 6, it suffices to show that losst(ek, P |�t−1) = ∑
σ

∏K
j=1 p

Lt−1, j

σ( j) pσ(k) is minimized 
for k∗ = argmin j Lt−1, j . If p j �= 0 for all j, this can be done by transforming:

losst(ek, P |�t−1) =
∑
σ

e
∑K

j=1 Lt−1, j log pσ ( j) pσ (k),

and invoking Lemma 4 with x j = Lt−1, j , y j = p j and f (x) = log x, which is monotonically increasing. Since the theorem 
holds for p j = ε with arbitrarily small ε , it must also hold for p j = 0 by taking the limit ε → 0 and using the continuity of 
losst(wt , P |�t−1). �
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