
Noname manuscript No.
(will be inserted by the editor)

Surrogate regret bounds for generalized classification
performance metrics

Wojciech Kot lowski · Krzysztof
Dembczyński
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Abstract We consider optimization of generalized performance metrics for
binary classification by means of surrogate losses. We focus on a class of met-
rics, which are linear-fractional functions of the false positive and false negative
rates (examples of which include Fβ-measure, Jaccard similarity coefficient,
AM measure, and many others). Our analysis concerns the following two-step
procedure. First, a real-valued function f is learned by minimizing a surrogate
loss for binary classification on the training sample. It is assumed that the
surrogate loss is a strongly proper composite loss function (examples of which
include logistic loss, squared-error loss, exponential loss, etc.). Then, given f ,

a threshold θ̂ is tuned on a separate validation sample, by direct optimization
of the target performance metric. We show that the regret of the resulting
classifier (obtained from thresholding f on θ̂) measured with respect to the
target metric is upperbounded by the regret of f measured with respect to
the surrogate loss. We also extend our results to cover multilabel classifica-
tion and provide regret bounds for micro- and macro-averaging measures. Our
findings are further analyzed in a computational study on both synthetic and
real data sets.
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1 Introduction

In binary classification, misclassification error is not necessarily an adequate
evaluation metric, and one often resorts to more complex metrics, better suited
for the problem. For instance, when classes are imbalanced, Fβ-measure (Lewis
1995; Jansche 2005; Nan et al 2012) and AM measure (balanced error rate)
(Menon et al 2013) are frequently used. Optimizing such generalized perfor-
mance metrics poses computational and statistical challenges, as they cannot
be decomposed into losses on individual observations.

In this paper, we consider optimization of generalized performance metrics
by means of surrogate losses. We restrict our attention to a family of perfor-
mance metrics which are ratios of linear functions of false positives (FP) and
false negatives (FN). Such functions are called linear-fractional, and include
the aforementioned Fβ and AM measures, as well as Jaccard similarity coeffi-
cient, weighted accuracy, and many others (Koyejo et al 2014, 2015). We focus
on the most popular approach to optimizing generalized performance metrics
in practice, based on the following two-step procedure. First, a real-valued
function f is learned by minimizing a surrogate loss for binary classification
on the training sample. Then, given f , a threshold θ̂ is tuned on a separate
validation sample, by direct optimization of the target performance measure
with respect to a classifier obtained from f by thresholding at θ̂, classifying
all observations with value of f above the threshold as positive class, and all
observations below the threshold as negative class. This approach can be mo-
tivated by the asymptotic analysis: minimization of appropriate surrogate loss
results in estimation of conditional (“posterior”) class probabilities, and many
performance metrics are maximized by a classifier which predicts by thresh-
olding on the scale of conditional probabilities (Nan et al 2012; Zhao et al
2013; Koyejo et al 2014). However, it is unclear what can be said about the
behavior of this procedure on finite samples.

In this work, we are interested in theoretical analysis and justification of
this approach for any sample size, and for any, not necessarily perfect, clas-
sification function. To this end, we use the notion of regret with respect to
some evaluation metric, which is a difference between the performance of a
given classifier and the performance of the optimal classifier with respect to
this metric. We show that the regret of the resulting classifier (obtained from

thresholding f on θ̂) measured with respect to the target metric is upper-
bounded by the regret of f measured with respect to the surrogate loss. Our
result holds for any surrogate loss function, which is strongly proper compos-
ite (Agarwal 2014), examples of which include logistic loss, squared-error loss,
exponential loss, etc. Interestingly, the proof of our result goes by an intermedi-
ate bound of the regret with respect to the target measure by a cost-sensitive
classification regret. As a byproduct, we get a bound on the cost-sensitive
classification regret by a surrogate regret of a real-valued function which holds
simultaneously for all misclassification costs: the misclassification costs only
influence the threshold, but not: the function, the surrogate loss, or the regret
bound.
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We further extend our results to cover multilabel classification, in which the
goal is to simultaneously predict multiple labels for each object. We consider
two methods of generalizing binary classification performance metrics to the
multilabel setting: the macro-averaging and the micro-averaging (Manning
et al 2008; Parambath et al 2014; Koyejo et al 2015). The macro-averaging is
based on first computing the performance metric separately for each label, and
then averaging the metrics over the labels. In the micro-averaging, the false
positives and false negatives for each label are first averaged over the labels,
and then the performance metric is calculated on these averaged quantities.
We show that our regret bounds hold for both macro- and micro-averaging
measures. Interestingly, for micro averaging, only a single threshold needs to
be tuned and is shared among all labels.

Our finding is further analyzed in a computational study on both synthetic
and real data sets. We compare the performance of the algorithm when used
with two types of surrogate losses: the logistic loss (which is strongly proper)
and the hinge loss (which is not a proper loss). On synthetic data sets, we
analyze the behavior of the algorithm for discrete feature distribution (where
nonparametric classifiers are used), and for continuous feature distribution
(where linear classifiers are used). Next, we look at the performance of the
algorithm on the real-life benchmark data sets, both for binary and multilabel
classification.

We note that the goal of this paper is not to propose a new learning algo-
rithm, but rather to provide a deeper statistical understanding of an existing
method. The two-step procedure analyzed here (also known as the plug-in
method in the case when the outcomes of the function have a probabilistic
interpretation), is commonly used in the binary classification with general-
ized performance metrics, but this is exactly the reason why we think it is
important to study this method in more depth from a theoretical point of
view.

1.1 Related work

In machine learning, numerous attempts to optimize generalized performance
metrics have been proposed. They can be divided into two general categories.
The structured loss approaches (Musicant et al 2003; Tsochantaridis et al 2005;
Petterson and Caetano 2011, 2010) rely on incorporating the performance met-
ric into the training process, thus requiring specialized learning algorithms to
optimize non-standard objectives. On the other hand, the plug-in approaches,
which are very closely related to the topic of this work, are based on ob-
taining reliable class conditional probability estimates by employing standard
algorithms minimizing some surrogate loss for binary classification (such as
logistic loss used in logistic regression, exponential loss used in boosting, etc.),
and then plugging these estimates into the functional form of the optimal pre-
diction rule for a given performance metric (Jansche 2007; Nan et al 2012;
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Dembczyński et al 2013; Waegeman et al 2013; Narasimhan et al 2014, 2015;
Koyejo et al 2014, 2015).

Existing theoretical work on generalized performance metrics is mainly con-
cerned with statistical consistency also known as calibration, which determines
whether convergence to the minimizer of a surrogate loss implies convergence
to the minimizer of the task performance measure as the sample size goes to
infinity (Dembczyński et al 2010; Nan et al 2012; Gao and Zhou 2013; Zhao
et al 2013; Narasimhan et al 2014; Koyejo et al 2014, 2015). Here we give a
stronger result which bounds the regret with respect to the performance met-
ric by the regret with respect to the surrogate loss. Our result is valid for all
finite sample sizes and informs about the rates of convergence.

We also note that two distinct frameworks are used to study the statis-
tical consistency of classifiers with respect to performance metrics: Decision
Theoretic Analysis (DTA), which assumes a test set of a fixed size, and Em-
pirical Utility Maximization (EUM), in which the metric is defined by means
of population quantities (Nan et al 2012). In this context, our work falls into
the EUM framework.

Parambath et al (2014) presented an alternative approach to maximizing
linear-fractional metrics by learning a sequence of binary classification prob-
lems with varying misclassification costs. While we were inspired by their
theoretical analysis, their approach is, however, more complicated than the
two-step approach analyzed here, which requires solving an ordinary binary
classification problem only once. Moreover, as part of our proof, we show that
by minimizing a strongly proper composite loss, we are implicitly minimizing
cost-sensitive classification error for any misclassification costs without any
overhead. Hence, the costs need not be known during learning, and can only
be determined later on a separate validation sample by optimizing the thresh-
old. Narasimhan et al (2015) developed a general framework for designing
provably consistent algorithms for complex multiclass performance measures.
They relate the regret with respect to the target metric to the conditional
probability estimation error measured in terms of L1-metric. Their algorithms
rely on using accurate class conditional probability estimates and multiple
solving cost-sensitive multiclass classification problems.

The generalized performance metrics for binary classification are employed
in the multilabel setting by means of one of the three averaging schemes
(Waegeman et al 2013; Parambath et al 2014; Koyejo et al 2015): instance-
averaging (averaging errors over the labels, averaging metric over the exam-
ples), macro-averaging (averaging errors over the examples, averaging metric
over the labels), and micro-averaging (averaging errors over the examples and
the labels). Koyejo et al (2015) characterize the optimal classifiers for mul-
tilabel metrics and prove the consistency of the plug-in method. Our regret
bounds for multilabel classification can be seen as a follow up on their work.
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1.2 Outline

The paper is organized as follows. In Section 2 we introduce basic concepts, def-
initions and notation. The main result is presented in Section 3 and proved in
Section 4. Section 5 extends our results to the multilabel setting. The theoret-
ical contribution of the paper is complemented by computational experiments
in Section 6, prior to concluding with a summary in Section 7.

2 Problem setting

2.1 Binary classification

In binary classification, the goal is, given an input (feature vector) x ∈ X, to
accurately predict the output (label) y ∈ {−1, 1}. We assume input-output
pairs (x, y) are generated i.i.d. according to Pr(x, y). A classifier is a mapping
h : X → {−1, 1}. Given h, we define the following four quantities:

TP(h) = Pr(h(x) = 1 ∧ y = 1),

FP(h) = Pr(h(x) = 1 ∧ y = −1),

TN(h) = Pr(h(x) = −1 ∧ y = −1),

FN(h) = Pr(h(x) = −1 ∧ y = 1),

which are known as true positives, false positives, true negatives and false
negatives, respectively. We also denote Pr(y = 1) by P . Note that for any h,
FP(h) + TN(h) = Pr(y = −1) = 1 − P and TP(h) + FN(h) = P , so out of
the four quantities above, only two are independent. In this paper, we use the
convention to parameterize all metrics by means of FP(h) and FN(h).

We call a two-argument function Ψ = Ψ(FP,FN) a (generalized) classifica-
tion performance metric. Given a classifier h, we define Ψ(h) = Ψ(FP(h),FN(h)).
Throughout the paper we assume that Ψ(FP,FN) is linear-fractional, i.e., is
a ratio of linear functions:

Ψ(FP,FN) =
a0 + a1FP + a2FN

b0 + b1FP + b2FN
, (1)

where we allow coefficients ai, bi to depend on the distribution Pr(x, y). Note,
that our convention to parameterize the metric by means of (FP,FN) does not
affect definition (1), because Ψ can be reparameterized to (FP,TN), (TP,FN),
or (TP,TN), and will remain linear-fractional in all these parameterizations.
We also assume Ψ(FP,FN) is non-increasing in FP and FN, a property that
is inherently possessed by virtually all performance measures used in practice.
Table 1 lists some popular examples of linear-fractional performance metrics.

Let h∗Ψ be the maximizer of Ψ(h) over all classifiers:

h∗Ψ = argmax
h : X→{−1,1}

Ψ(h)



6 Wojciech Kot lowski, Krzysztof Dembczyński

metric expression

Accuracy Acc = 1 − FN − FP

Fβ-measure Fβ =
(1+β2)(P−FN)

(1+β2)P−FN+FP

Jaccard similarity J = P−FN
P+FP

AM measure AM =
2P (1−P )−P FP−(1−P )FN

2P (1−P )

Weighted accuracy WA =
w1(1−P )+w2P−w1FP−w2FN

w1(1−P )+w2P

Table 1 Some popular linear-fractional performance metrics expressed as functions of FN
and FP. See (Koyejo et al 2014) for a more detailed description.

(if argmax is not unique, we take h∗Ψ to be any maximizer of Ψ). Given any
classifier h, we define its Ψ -regret as:

RegΨ (h) = Ψ(h∗Ψ )− Ψ(h).

The Ψ -regret is nonnegative from the definition, and quantifies the subopti-
mality of h, i.e., how much worse is h comparing to the optimal h∗Ψ .

2.2 Strongly proper composite losses

Here we briefly outline the theory of strongly proper composite loss functions.
See (Agarwal 2014) for a more detailed description.

Define a binary class probability estimation (CPE) loss function (Reid and
Williamson 2010, 2011) as a function c : {−1, 1} × [0, 1] → R+, where c(y, η̂)
assigns penalty to prediction η̂, when the observed label is y. Define the con-
ditional c-risk as:1

riskc(η, η̂) = ηc(1, η̂) + (1− η)c(−1, η̂),

the expected loss of prediction η̂ when the label is drawn from a distribu-
tion with Pr(y = 1) = η. We say CPE loss is proper if for any η ∈ [0, 1],
η ∈ argminη̂∈[0,1] riskc(η, η̂). In other words, proper losses are minimized by
taking the true class probability distribution as a prediction; hence η̂ can be
interpreted as probability estimate of η. Define the conditional c-regret as:

regc(η, η̂) = riskc(η, η̂)− inf
η̂′

riskc(η, η̂
′)

= riskc(η, η̂)− riskc(η, η),

1 Throughout the paper, we follow the convention that all conditional quantities are low-
ercase (regret, risk), while all unconditional quantities are uppercase (Regret, Risk).
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the difference between the conditional c-risk of η̂ and the optimal c-risk. We
say a CPE loss c is λ-strongly proper if for any η, η̂:

regc(η, η̂) ≥ λ

2
(η − η̂)2,

i.e. the conditional c-regret is everywhere lowerbounded by a squared difference
of its arguments. It can be shown (Agarwal 2014) that under mild regularity
assumption a proper CPE loss c is λ-strongly proper if and only if the func-
tion Hc(η) := riskc(η, η) is λ-strongly concave. This fact lets us easily verify
whether a given loss function is λ-strongly proper.

It is often more convenient to reparameterize the loss function from η̂ ∈
[0, 1] to a real-valued f ∈ R through a strictly increasing (and therefore in-
vertible) link function ψ : [0, 1]→ R:

`(y, f) = c
(
y, ψ−1(f)

)
.

If c is λ-strongly proper, we call function ` : {−1, 1} × R → R+ λ-strongly
proper composite loss function. The notions of conditional `-risk risk`(η, f)
and conditional `-regret reg`(η, f) extend naturally to the case of composite
losses:

risk`(η, f) = η`(1, f) + (1− η)`(−1, f)

reg`(η, f) = risk`(η, f)− inf
f ′∈R

risk`(η, f
′)

= risk`(η, f)− risk`(η, ψ(η)).

and the strong properness of underlying CPE loss implies:

reg`(η, f) ≥ λ

2

(
η − ψ−1(f)

)2
(2)

As an example, consider a logarithmic scoring rule:

c(y, η̂) = −Jy = 1K log η̂ − Jy = −1K log(1− η̂),

where JQK is the indicator function, equal to 1 if Q holds, and to 0 otherwise.
Its conditional risk is given by:

riskc(η, η̂) = −η log η̂ − (1− η) log(1− η̂),

the cross-entropy between η and η̂. The conditional c-regret is the binary
Kullback-Leibler divergence between η and η̂:

regc(η, η̂) = η log
η

η̂
+ (1− η) log

1− η
1− η̂

.

Note that since H(η) = riskc(η, η) is the binary entropy function, and
∣∣d2H
dη2

∣∣ =
1

η(1−η) ≥ 4, c is 4-strongly proper loss. Using the logit link function ψ(η̂) =

log η̂
1−η̂ , we end up with the logistic loss function:

`(y, f) = log
(

1 + e−yf
)
,
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loss function squared-error logistic exponential

`(y, f) (y − f)2 log
(

1 + e−fy
)

e−yf

c(1, η̂) 4(1 − η̂)2 − log η̂
√

1−η̂
η̂

c(−1, η̂) 4η̂2 − log(1 − η̂)
√

η̂
1−η̂

ψ(η̂) 2η̂ − 1 log η̂
1−η̂

1
2

log η̂
1−η̂

λ 8 4 4

Table 2 Three popular strongly proper composite losses: squared-error, logistic and expo-
nential losses. Shown are the formula `(y, f), the underlying CPE loss c(y, η̂) with the link
function ψ(η̂), as well as the strong properness constant λ. See (Agarwal 2014) for more
details and examples.

which is 4-strongly proper composite from the definition.
Table 2 presents some of the commonly used losses which are strongly

proper composite. Note that the hinge loss `(y, f) = (1− yf)+, used, e.g., in
support vector machines (Hastie et al 2009), is not strongly proper composite
(even not proper composite).

3 Main result

Given a real-valued function f : X → R, and a λ-strongly proper composite
loss `(y, f), define the `-risk of f as the expected loss of f(x) with respect to
the data distribution:

Risk`(f) = E(x,y)

[
`(y, f(x))

]
= Ex

[
risk`(η(x), f(x))

]
,

where η(x) = Pr(y = 1|x). Let f∗` be the minimizer Risk`(f) over all functions,
f∗` = argminf Risk`(f). Since ` is proper composite:

f∗` (x) = ψ
(
η(x)

)
.

Define the `-regret of f as:

Reg`(f) = Risk`(f)− Risk`(f
∗
` )

= Ex
[
risk`(η(x), f(x))− risk`(η(x), f∗` (x))

]
.

Any real-valued function f : X → R can be turned into a classifier hf,θ : X →
{−1, 1}, by thresholding at some value θ:

hf,θ(x) = sgn(f(x)− θ).

The purpose of this paper is to address the following problem: given a function
f with `-regret Reg`(f), and a threshold θ, what can we say about Ψ -regret of
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hf,θ? For instance, can we bound RegΨ (hf,θ) in terms of Reg`(f)? We give a
positive answer to this question, which is based on the following regret bound:

Lemma 1 Let Ψ(FP,FN) be a linear-fractional function of the form (1),
which is non-increasing in FP and FN. Assume that there exists γ > 0, such
that for any classifier h : X → {−1, 1}:

b0 + b1FP(h) + b2FN(h) ≥ γ,

i.e. the denominator of Ψ is positive and bounded away from zero. Let ` be a
λ-strongly proper composite loss function. Then, there exists a threshold θ∗,
such that for any real-valued function f : X → R,

RegΨ (hf,θ∗) ≤ C
√

2

λ

√
Reg`(f),

where C = 1
γ

(
Ψ(h∗Ψ )(b1 + b2)− (a1 + a2)

)
> 0.

The proof is quite long and hence is postponed to Section 4. Interestingly,
the proof goes by an intermediate bound of the Ψ -regret by a cost-sensitive
classification regret. We note that the bound in Lemma 1 is in general unim-
provable, in the sense that it is easy to find f , Ψ , `, and distribution Pr(x, y),
for which the bound holds with equality (see proof for details). We split the
constant in front of the bound into C and λ, because C depends only on Ψ ,
while λ depends only on `. Table 3 lists these constants for some popular met-
rics. We note that constant γ (lower bound on the denominator of Ψ) will be
distribution-dependent in general (as it can depend on P = Pr(y = 1)) and
may not have a uniform lower bound which holds for all distributions.

Lemma 1 has the following interpretation. If we are able to find a function
f with small `-regret, we are guaranteed that there exists a threshold θ∗ such
that hf,θ∗ has small Ψ -regret. Note that the same threshold θ∗ will work for
any f , and the right hand side of the bound is independent of θ∗. Hence, to
minimize the right hand side we only need to minimize `-regret, and we can
deal with the threshold afterwards.

Lemma 1 also reveals the form of the optimal classifier h∗Ψ : take f = f∗`
in the lemma and note that Reg`(f

∗
` ) = 0, so that RegΨ (hf∗` ,θ∗) = 0, which

means that hf∗` ,θ∗ is the minimizer of Ψ :

h∗Ψ (x) = sgn(f∗` (x)− θ∗) = sgn(η(x)− ψ−1(θ∗)),

where the second equality is due to f∗` = ψ(η) and strict monotonicity of ψ.
Hence, h∗Ψ is a threshold function on η. The proof of Lemma 1 (see Section 4)
actually specifies the exact value of the threshold θ∗:

ψ−1(θ∗) =
Ψ(h∗Ψ )b1 − a1

Ψ(h∗Ψ )(b1 + b2)− (a1 + a2)
, (3)
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metric γ C

Accuracy 1 2

Fβ-measure β2P 1+β2

β2P

Jaccard similarity P J∗+1
P

AM measure 2P (1 − P ) 1
2P (1−P )

Weighted accuracy w1P + w2(1 − P ) w1+w2
w1P+w2(1−P )

Table 3 Constants which appear in the bound of Lemma 1 for several performance metrics.

which is in agreement with the result obtained by Koyejo et al (2014).2

To make Lemma 1 easier to grasp, consider a special case when the per-
formance metric Ψ(FP,FN) = 1 − FP − FN is the classification accuracy. In
this case, (3) gives Ψ−1(θ∗) = 1/2. Hence, we obtained the well-known result
that the classifier maximizing the accuracy is a threshold function on η at 1/2.
Then, Lemma 1 states that given a real-valued f , we should take a classifier
hf,θ∗ which thresholds f at θ∗ = ψ(1/2). Using Table 2, one can easily verify
that θ∗ = 0 for logistic, squared-error and exponential loss. This agrees with
the common approach of thresholding the real-valued classifiers trained by
minimizing these losses at 0 to obtain the label prediction. The bounds from
the lemma are in this case identical (up to a multiplicative constant) to the
bounds obtained by Bartlett et al (2006).

Unfortunately, for more complicated performance metrics, the optimal
threshold θ∗ is unknown, as (3) contains unknown quantity Ψ(h∗Ψ ), the value
of the metric at optimum. The solution in this case is to, given f , directly
search for a threshold which maximizes Ψ(hf,θ). This is the main result of the
paper:

Theorem 1 Given a real-valued function f , let θ∗f = argmaxθ Ψ(hf,θ). Then,
under the assumptions and notation from Lemma 1:

RegΨ (hf,θ∗f ) ≤ C
√

2

λ

√
Reg`(f).

Proof The result follows immediately from Lemma 1: Solving maxθ Ψ(hf,θ) is
equivalent to solving minθ RegΨ (hf,θ), and minθ RegΨ (hf,θ) ≤ RegΨ (hf,θ∗),
where θ∗ is the threshold given by Lemma 1. ut

Theorem 1 motivates the following procedure for maximization of Ψ :

2 To prove (3), Koyejo et al (2014) require an absolute continuity assumption on the
marginal distribution over instances with respect to some dominating measure, so as to
guarantee the existence of an appropriate density. Our analysis shows that the existence of
a density is not required.
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1. Find f with small `-regret, e.g. by using a learning algorithm minimizing
`-risk on the training sample.

2. Given f , solve θ∗f = argmaxθ Ψ(hf,θ).

Theorem 1 states that the Ψ -regret of the classifier obtained by this procedure
is upperbounded by the `-regret of the underlying real-valued function.

We now discuss how to approach step 2 of the procedure in practice. In
principle, this step requires maximizing Ψ defined through FP and FN, which
are expectations over an unknown distribution Pr(x, y). However, it is suffi-
cient to optimize θ on the empirical counterpart of Ψ calculated on a separate
validation sample. Let T = {(xi, yi)}ni=1 be the validation set of size n. Define:

F̂P(h) =
1

n

n∑
i=1

Jh(xi) = 1, yi = −1K, F̂N(h) =
1

n

n∑
i=1

Jh(xi) = −1, yi = 1K,

the empirical counterparts of FP and FN, and let Ψ̂(h) = Ψ(F̂P(h), F̂N(h)) be
the empirical counterpart of the performance metric Ψ . We now replace step
2 by:

Given f and validation sample T , solve θ̂f = argmaxθ Ψ̂(hf,θ).

In Theorem 2 below, we show that:

RegΨ (hf,θ̂f )− RegΨ (hf,θ∗f ) = O

(√
log n

n

)
,

so that tuning the threshold on the validation sample of size n (which results

in θ̂f ) instead of on the population level (which results in θ∗f ) will cost at most

O
(√

logn
n

)
additional regret. The main idea of the proof is that finding the

optimal threshold comes down to optimizing within a class of {−1, 1}-valued
threshold functions, which has small Vapnik-Chervonenkis dimension. This,
together with the fact that under assumptions from Lemma 1, Ψ is stable
with respect to its arguments, implies that Ψ(hf,θ̂f ) is close to Ψ(hf,θ∗f ).

Theorem 2 Let the assumptions from Lemma 1 hold, and let:

D1 = sup
(FP,FN)

|b1Ψ(FP,FN)− a1|, D2 = sup
(FP,FN)

|b2Ψ(FP,FN)− a2|,

and D = max{D1, D2}. Given a real-valued function f , and a validation set

T of size n generated i.i.d. from P (x, y), let θ̂f = argmaxθ Ψ̂(hf,θ) be the
threshold maximizing the empirical counterpart of Ψ evaluated on T . Then,
with probability 1− δ (over the random choice of T ):

RegΨ (hf,θ̂f ) ≤ C
√

2

λ

√
Reg`(f) +

16D

γ

√
4(1 + log n) + 2 log 16

δ

n
.
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Proof For any FP and FN, we have:∣∣∣∣∂Ψ(FP,FN)

∂FP

∣∣∣∣ =
|a1(b0 + b1FP + b2FN)− b1(a0 + a1FP + a2FN)|

(b0 + b1FP + b2FN)2

=
|b1Ψ(FP,FN)− a1|
b0 + b1FP + b2FN

≤ |b1Ψ(FP,FN)− a1|
γ

≤ D

γ
,

and similarly, ∣∣∣∣∂Ψ(FP,FN)

∂FN

∣∣∣∣ =
|b2Ψ(FP,FN)− a2|
b0 + b1FP + b2FN

≤ D

γ
.

For any (FP,FN) and (FP′,FN′), Taylor-expanding Ψ(FP,FN) around (FP′,FN′)
up to the first order and using the bounds above gives:

Ψ(FP,FN) ≤ Ψ(FP′,FN′) +
D

γ

(
|FP− FP′|+ |FN− FN′|

)
. (4)

Now, we have:

RegΨ (hf,θ̂f ) = RegΨ (hf,θ∗f ) + Ψ(hf,θ∗f )− Ψ(hf,θ̂f )

≤ C
√

2

λ

√
Reg`(f) + Ψ(hf,θ∗f )− Ψ(hf,θ̂f ),

where we used Theorem 1. Thus, it amounts to bound Ψ(hf,θ∗f ) − Ψ(hf,θ̂f ).

From the definition of θ̂f , Ψ̂(hf,θ̂f ) ≥ Ψ̂(hf,θ∗f ), hence:

Ψ(hf,θ∗f )− Ψ(hf,θ̂f ) ≤ Ψ(hf,θ∗f )− Ψ̂(hf,θ∗f ) + Ψ̂(hf,θ̂f )− Ψ(hf,θ̂f )

≤ 2 sup
θ

∣∣Ψ(hf,θ)− Ψ̂(hf,θ)
∣∣

= 2 sup
θ

∣∣Ψ(FP(hf,θ),FN(hf,θ))− Ψ(F̂P(hf,θ), F̂N(hf,θ))
∣∣,

where we used the definition of Ψ̂ . Using (4),

Ψ(hf,θ∗f )−Ψ(hf,θ̂f ) ≤ 2D

γ

(
sup
θ

∣∣FP(hf,θ)−F̂P(hf,θ)
∣∣+sup

θ

∣∣FN(hf,θ)−F̂N(hf,θ)
∣∣).

Note that the suprema above are on the deviation of empirical mean from the
expectation over the class of threshold functions, which has Vapnik-Chervonenkis
dimension equal to 2. Using standard argument from Vapnik-Chervonenkis
theory (see, e.g., Devroye et al 1996), with probability 1− δ

2 over the random
choice of T :

sup
θ

∣∣FP(hf,θ)− F̂P(hf,θ)
∣∣ ≤ 4

√
4(1 + log n) + 2 log 16

δ

n
,

and similarly for the second supremum. Thus, with probability 1− δ,

Ψ(hf,θ∗f )− Ψ(hf,θ̂f ) ≤ 16D

γ

√
4(1 + log n) + 2 log 16

δ

n
,

which finishes the proof. ut
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We note that, contrary to a similar results by Koyejo et al (2014), Theorem 2
does not require continuity of the cumulative distribution of η(x) around θ∗.

4 Proof of Lemma 1

The proof can be skipped without affecting the flow of later sections. The
proof consists of two steps. First, we bound the Ψ -regret of any classifier h by
its cost-sensitive classification regret (introduced below). Next, we show that
there exists a threshold θ∗, such that for any f , the cost-sensitive classification
regret of hf,θ∗ is upperbounded by the `-regret of f . These two steps will be
formalized as Proposition 1 and Proposition 2.

Given a real number α ∈ [0, 1], define a cost-sensitive classification loss
`α : {−1, 1} × {−1, 1} → R+ as:

`α(y, ŷ) = αJy = −1KJŷ = 1K + (1− α)Jy = 1KJŷ = −1K.

The cost-sensitive loss assigns different costs of misclassification for positive
and negative labels. Given classifier h, the cost-sensitive risk of h is:

Riskα(h) = E(x,y)[`α(y, h(x))]

= αFP(h) + (1− α)FN(h),

and the cost-sensitive regret is:

Regα(h) = Riskα(h)− Riskα(h∗α),

where h∗α = argminh Riskα(h). We now show the following two results:

Proposition 1 Let Ψ satisfy the assumptions from Lemma 1. Define:

α =
Ψ∗b1 − a1

Ψ∗(b1 + b2)− (a1 + a2)
. (5)

Then, α ∈ [0, 1] and for any classifier h,

RegΨ (h) ≤ CRegα(h),

where C is defined as in the content of Lemma 1.

Proof The proof generalizes the proof of Proposition 6 from Parambath et al
(2014), which concerned the special case of Fβ-measure. For the sake of clarity,
we use a shorthand notation Ψ = Ψ(h), Ψ∗ = Ψ(h∗Ψ ), FP = FP(h), FN =
FN(h), A = a0 + a1FP + a2FN, B = b0 + b1FP + b2FN for the numerator and
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denominator of Ψ(h), and analogously FP∗, FN∗, A∗ and B∗ for Ψ(h∗Ψ ). In
this notation:

RegΨ (h) = Ψ∗ − Ψ =
Ψ∗B −A

B

=
Ψ∗B −A−

=0︷ ︸︸ ︷
(Ψ∗B∗ −A∗)
B

=
Ψ∗(B −B∗)− (A−A∗)

B

=
(Ψ∗b1 − a1) (FP− FP∗) + (Ψ∗b2 − a2) (FN− FN∗)

B

≤ (Ψ∗b1 − a1) (FP− FP∗) + (Ψ∗b2 − a2) (FN− FN∗)

γ
, (6)

where the last inequality follows from B ≥ γ (assumption) and the fact that
RegΨ (h) ≥ 0 for any h. Since Ψ is non-increasing in FP and FN, we have

∂Ψ∗

∂FP∗
=
a1B

∗ − b1A∗

(B∗)2
=
a1 − b1Ψ∗

B∗
≤ 0,

and similarly ∂Ψ∗

∂FN∗ = a2−b2Ψ∗
B∗ ≤ 0. This and the assumption B∗ ≥ γ implies

that both Ψ∗b1 − a1 and Ψ∗b2 − a2 are non-negative, so can be interpreted as
misclassification costs. If we normalize the costs by defining:

α =
Ψ∗b1 − a1

Ψ∗(b1 + b2)− (a1 + a2)
,

then (6) implies:

RegΨ (h) ≤ C
(
Riskα(h)− Riskα(h∗Ψ )

)
≤ C

(
Riskα(h)− Riskα(h∗α)

)
= CRegα(h).

ut

Proposition 2 For any real-valued function f : X → R any λ-strongly proper
composite loss ` with link function ψ, and any α ∈ [0, 1]:

Regα(hf,θ∗) ≤
√

2

λ

√
Reg`(f), (7)

where θ∗ = ψ(α).

Proof First, we will show that (7) holds conditionally for every x. To this end,
we fix x and deal with h(x) ∈ {−1, 1}, f(x) ∈ R and η(x) ∈ [0, 1], using a
shorthand notation h, f, η.

Given η ∈ [0, 1] and h ∈ {−1, 1}, define the conditional cost-sensitive risk
as:

riskα(η, h) = α(1− η)Jh = 1K + (1− α)ηJh = −1K.



Surrogate regret bounds for generalized classification performance metrics 15

Let h∗α = argminh riskα(η, h). It can be easily verified that:

h∗α = sgn(η − α). (8)

Define the conditional cost-sensitive regret as

regα(η, h) = riskα(η, h)− riskα(η, h∗α).

Note that if h = h∗α, then regα(η, h) = 0. Otherwise, regα(η, h) = |η − α|, so
that:

regα(η, h) = Jh 6= h∗αK|η − α|.

Now assume h = sgn(η̂ − α) for some η̂, i.e., h is of the same form as h∗α in
(8), with η replaced by η̂. We show that for such h,

regα(η, h) ≤ |η − η̂|. (9)

This statement trivially holds when h = h∗α. If h 6= h∗α, then η and η̂ are on
the opposite sides of α (i.e. either η ≥ α and η̂ < α or η < α and η̂ ≥ α),
hence |η − α| ≤ |η − η̂|, which proves (9).

Now, we set the threshold to θ∗ = ψ(α), so that given f ∈ R,

hf,θ∗ = sgn(f − θ∗) = sgn(f − ψ(α)) = sgn(ψ−1(f)− α),

due to strict monotonicity of ψ. Using (9) with h = hf,θ∗ and η̂ = ψ−1(f)
gives:

regα(η, hf,θ∗) ≤ |η − ψ−1(f)| =
√

(η − ψ−1(f))2

≤
√

2

λ

√
reg`(η, f), (10)

and the last inequality follows from strong properness (2).
To prove the unconditional statement (7), we take expectation with respect

to x on both sides of (10):

Regα(hf,θ∗) = Ex
[
regα(η, hf,θ∗(x))

]
(by (10)) ≤

√
2

λ
Ex
[√

reg`(η(x), f(x))
]

≤
√

2

λ

√
Ex
[
reg`(η(x), f(x))

]
=

√
2

λ

√
Reg`(f), (11)

where the second inequality is from Jensen’s inequality applied to the concave
function x 7→

√
x.

We note that derivation of (9) follows the steps of the proof of Lemma 4 in
Menon et al (2013), while (10) and (11) were shown in the proof of Theorem
13 by Agarwal (2014). Hence, the proof is essentially a combination of existing
results, which are rederived here for for the sake of completeness. ut
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Proof (of Lemma 1) . Lemma 1 immediately follows from Proposition 1 and
Proposition 2. ut

Note that the proof actually specifies the exact value of the universal threshold,
θ∗ = ψ(α), where α is given by (5).

The bound in Lemma 1 is unimprovable in a sense that there exist f , Ψ ,
`, and distribution Pr(x, y) for which the bound is tight. To see this, take,
for instance, squared error loss `(y, f) = (y − f)2 and classification accuracy
metric Ψ(FP,FN) = 1 − FP − FN. The constants in Lemma 1 are equal to
γ = 1, C = 2, and λ = 8 (see Table 1), while the optimal threshold is θ∗ = 0.
The bound then simplifies to

Reg0/1(sgn(f)) ≤
√

Regsqr(f),

which is known to be tight (Bartlett et al 2006).

5 Multilabel classification

In multilabel classification (Dembczyński et al 2012; Parambath et al 2014;
Koyejo et al 2015), the goal is, given an input (feature vector) x ∈ X, to si-
multaneously predict the subset L ⊆ L of the set of m labels L = {σ1, . . . , σm}.
The subset L is often called the set of relevant (positive) labels, while the com-
plement L \ L is considered as irrelevant (negative) for x. We identify a set
L of relevant labels with a vector y = (y1, y2, . . . , ym), yi ∈ {−1, 1}, in which
yi = 1 iff σi ∈ L. We assume observations (x,y) are generated i.i.d. accord-
ing to Pr(x,y) (note that the labels are not assumed to be independent). A
multilabel classifier :

h(x) = (h1(x), h2(x), . . . , hm(x)),

is a mapping h : X → {−1, 1}m, which assigns a (predicted) label subset to
each instance x ∈ X. For any i = 1, . . . ,m, the function hi(x) is thus a binary
classifier, which can be evaluated by means of TPi(hi),FPi(hi),TNi(hi) and
FNi(hi), which are true/false positives/negatives defined with respect to label
yi, e.g. FPi(hi) = Pr(hi(x) = 1 ∧ yi = −1).

Let f1, . . . , fm be a set of real-valued functions fi : X → R, i = 1, . . . ,m,
and let ` be a λ-strongly proper composite loss for binary classification. For
each i = 1, . . . ,m, we let Riski`(fi) and Regi`(fi) denote the `-risk and the
`-regret of function fi with respect to label yi:

Riski`(fi) = E(x,yi)

[
`(yi, fi(x))

]
, Regi`(fi) = Riski`(fi)−min

f
Riski`(f).

Note that the problem has been decomposed into m independent binary prob-
lems and the functions can be obtained by training m independent real-valued
binary classifiers by minimizing loss ` on the training sample, one for each out
of m labels.
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What follows next depends on the way in which the binary classifica-
tion performance metric is applied in the multilabel setting. We consider two
ways of turning binary classification metric into multilabel metric: the macro-
averaging and the micro-averaging (Manning et al 2008; Parambath et al 2014;
Koyejo et al 2015).

5.1 Macro-averaging

Given a binary classification performance metric Ψ(h) = Ψ(FP(h),FN(h), and
a multilabel classifier h, we define the macro-averaged metric Ψmacro(h) as:

Ψmacro(h) =
1

m

m∑
i=1

Ψ(hi) =
1

m

m∑
i=1

Ψ(FPi(hi),FNi(hi)).

The macro-averaging is thus based on first computing the performance metric
separately for each label, and then averaging the metrics over the labels. The
Ψmacro-regret is then defined as:

RegΨmacro
(h) = Ψmacro(h∗Ψ )− Ψmacro(h) =

1

m

m∑
i=1

(
Ψ(h∗Ψ,i)− Ψ(hi)

)
,

where h∗Ψ = (h∗Ψ,1, . . . , h
∗
Ψ,m) is the Ψ -optimal multilabel classifier:

h∗Ψ,i = argmax
h

Ψ(FPi(h),FNi(h)), i = 1, . . . ,m.

Since the regret decomposes into a weighted sum, it is straightforward to
apply previously derived bound to obtain a regret bound for macro-averaged
performance metric.

Theorem 3 Let Ψ(FP,FN) and ` satisfy the assumptions of Lemma 1. For a
set of m real-valued functions {fi : X → R}mi=1, let θ∗fi = argmaxθ Ψ(hfi,θ) for
each i = 1, . . . ,m. Then the classifier h defined as:

h = (hf1,θ∗f1
, hf2,θ∗f2

, . . . , hfm,θ∗fm ),

achieves the following bound on its Ψmacro-regret:

RegΨmacro
(h) ≤

√
2

λ

1

m

m∑
i=1

Ci

√
Regi`(fi),

where Ci = 1
γ

(
Ψ(h∗Ψ,i)(b1 + b2)− (a1 + a2)

)
, i = 1, . . . ,m.

Proof The theorem follows from applying Theorem 1 once for each label, and
then averaging the bounds over the labels. ut
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Theorem 3 suggests a straightforward decomposition into m independent
binary classification problems, one for each label y1, . . . , ym, and running (in-
dependently for each problem) the two-step procedure described in Section 3:
For i = 1, . . . ,m, we learn a function fi with small `-regret with respect to
label yi, and tune the threshold θ∗fi to optimize Ψ(hfi,θ) (similarly as in the
binary classification case, one can show that tuning the threshold on a sepa-
rate validation sample is sufficient). Due to decomposition of Ψmacro into the
sum over the labels, this simple procedure turns out to be sufficient. As we
shall see, the case of micro-averaging becomes more interesting.

5.2 Micro-averaging

Given a binary classification performance metrics Ψ(h) = Ψ(FP(h),FN(h)),
and a multilabel classifier h, we define the micro-averaged metric Ψmicro(h)
as:

Ψmicro(h) = Ψ(FP(h),FN(h)),

where:

FP(h) =
1

m

m∑
i=1

FPi(hi), FN(h) =
1

m

m∑
i=1

FNi(hi).

Thus, in the micro-averaging, the false positives and false negatives are first
averaged over the labels, and then the performance metric is calculated on
these averaged quantities. The Ψmicro-regret:

RegΨmicro
(h) = Ψmicro(h∗Ψ )− Ψmicro(h), where h∗Ψ = argmax

h
Ψmicro(h),

does not decompose into the sum over labels anymore. However, we are still
able to obtain a regret bound, reusing the techniques from Section 4, and,
interestingly, this time only a single threshold needs to be tuned and is shared
among all labels. 3

Theorem 4 Let Ψ(FP,FN) and ` satisfy the assumptions of Lemma 1. For a
set of m real-valued functions {fi : X → R}mi=1, let θ∗f = argmaxθ Ψmicro(hf,θ),
where:

hf,θ = (hf1,θ, hf2,θ, . . . , hfm,θ).

Then, the classifier hf,θ∗f = (hf1,θ∗f , . . . , hfm,θ∗f ) achieves the following bound
on its Ψmicro-regret:

RegΨmicro
(hf,θ∗f ) ≤

√
2

λ

C

m

m∑
i=1

√
Regi`(fi),

where C = 1
γ

(
Ψmicro(h∗Ψ )(b1 + b2)− (a1 + a2)

)
.

3 The fact that a single threshold is sufficient for consistency of micro-averaged perfor-
mance measures was already noticed by Koyejo et al (2015).
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Proof The proof follows closely the proof of Lemma 1. In fact, only Proposition
1 requires modifications, which are given below. Take any real values FP,FN
and FP∗,FN∗ (to be specified later) in the domain of Ψ , such that:

Ψ(FP∗,FN∗)− Ψ(FP,FN) ≥ 0. (12)

Using exactly the same steps as in the derivation (6), we obtain:

Ψ(FP∗,FN∗)− Ψ(FP,FN) ≤ C
(
α(FP− FP∗) + (1− α)(FN− FN∗)

)
,

where:

C =
1

γ

(
Ψ(FP∗,FN∗)(b1 + b2)− (a1 + a2)

)
,

α =
Ψ(FP∗,FN∗)b1 − a1

Ψ(FP∗,FN∗)(b1 + b2)− (a1 + a2)
.

Now, we take: FP∗ = FP(h∗Ψ ),FN∗ = FN(h∗Ψ ), FP = FP(h) and FN = FN(h)
for some h. Hence, (12) is clearly satisfied as its left-hand side is just the
Ψmicro-regret, RegΨmicro

(h). This means that for any multilabel classifier h:

RegΨmicro
(h) ≤ C

(
α(FP(h)− FP(h∗Ψ )) + (1− α)(FN(h)− FN(h∗Ψ ))

)
=
C

m

m∑
i=1

α(FPi(hi)− FPi(h
∗
Ψ,i)) + (1− α)(FNi(hi)− FNi(h

∗
Ψ,i))

=
C

m

m∑
i=1

(
Riskiα(hi)− Riskiα(h∗Ψ,i)

)
≤ C

m

m∑
i=1

Regiα(hi),

where Riskiα(hi) and Regiα(hi) are the cost-sensitive risk and the cost sensitive
regret defined with respect to label yi:

Riskiα(hi) = E(x,yi)[`α(yi, hi(x))], Regiα(hi) = Riskiα(hi)−min
h

Riskiα(h).

If we now take hi = hf,θ∗ , where θ∗ = ψ(α), ψ being the link function of the
loss, Proposition 2 (applied for each i = 1, . . . ,m separately) implies:

Regiα(hfi,θ∗) ≤
√

2

λ

√
Regi`(fi).

Together, this gives:

RegΨmicro
(hf,θ∗) ≤

√
2

λ

C

m

m∑
i=1

√
Regi`(fi).

The theorem now follows by noticing that:

θ∗f = argmax
θ

Ψmicro(hf,θ) = argmin
θ

RegΨmicro
(hf,θ),

and thus RegΨmicro
(hf,θ∗f ) ≤ RegΨmicro

(hf,θ∗). ut
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Theorem 4 suggests a decomposition into m independent binary classi-
fication problems, one for each label y1, . . . , ym, and training m real-valued
classifiers f1, . . . , fm with small `-regret on the corresponding label. Then,
however, contrary to macro-averaging, a single threshold, shared among all
labels, is tuned by optimizing Ψmicro on a separate validation sample.

6 Empirical results

We perform experiments on synthetic and benchmark data to empirically
study the two-step procedure analyzed in the previous sections. To this end,
we minimize a surrogate loss in the first step to obtain a real-valued function
f , and in the second step, we tune a threshold θ̂ on a separate validation set
to optimize a given performance metric. We use logistic loss in this procedure
as a surrogate loss. Recall that logistic loss is 4-strongly proper composite (see
Table 2). We compare its performance with hinge loss, which is even not a
proper composite function. As our task performance metrics, we take the F-
measure (Fβ-measure with β = 1) and the AM measure (which is a special case
of Weighted Accuracy with weights w1 = P and w2 = 1 − P ). We could also
use the Jaccard similarity coefficient; it turns out, however, that the thresh-
old optimized for the F-measure coincides with the optimal threshold for the
Jaccard similarity coefficient (this is because the Jaccard similarity coefficient
is strictly monotonic in the F-measure and vice versa), so the latter measure
does not give anything substantially different than the F-measure.

The experiments on benchmark data are split into two parts. The first
part concerns binary classification problems, while the second part multi-label
classification.

The purpose of this study is not about comparing the two-step approach
with alternative methods; this has already been done in the previous work
on the subject, see, e.g., (Nan et al 2012; Parambath et al 2014). We also
note that similar experiments have been performed in the cited papers on the
statistical consistency of generalized performance metrics (Koyejo et al 2014;
Narasimhan et al 2014; Parambath et al 2014; Koyejo et al 2015). Therefore,
we unavoidably repeat some of the results obtained therein, but the main
novelty of the experiments reported here is that we emphasize the difference
between strongly proper composite losses and non-proper losses.

6.1 Synthetic data

We performed two experiments on synthetic data. The first experiment deals
with a discrete domain in which we learn within a class of all possible classifiers.
The second experiment concerns continuous domain in which we learn within
a restricted class of linear functions.
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Fig. 1 Regret (averaged over 100,000 repetitions) on the discrete synthetic model as a
function of the number of training examples. Left panel: logistic loss is used as a surrogate
loss. Right panel: hinge loss is used as surrogate loss.

First experiment. We let the input domain X to be a finite set, consisting
of 25 elements, X = {1, 2, . . . , 25}, and take Pr(x) to be uniform over X,
i.e. Pr(x = i) = 1/25. For each x ∈ X, we randomly draw a value of η(x)
from the uniform distribution on the interval [0, 1]. In the first step, we take
an algorithm which minimizes a given surrogate loss ` within the class of all
function f : X → R. Hence, given the training data of size n, the algorithm
computes the empirical minimizer of surrogate loss ` independently for each
x. As surrogate losses, we use logistic and hinge loss. In the second step, we
tune the threshold θ̂ on a separate validation set, also of size n. For each n, we
repeat the procedure 100,000 times, averaging over samples and over models
(different random choices of η(x)). We start with n = 100 and increase the
number of training examples up to n = 10, 000. The `-regret and Ψ -regret can
be easily computed, as the distribution is known and X is discrete.

The results are given in Fig. 1. The `-regret goes down to zero for both
surrogate losses, which is expected, since this is the objective function mini-
mized by the algorithm. Minimization of logistic loss (left plot) gives vanish-
ing Ψ -regret for both the F-measure and the AM measure, as predicted by
Theorem 1. In contrast, minimization of the hinge loss (right plot) is sub-
optimal for both task metrics and gives non-zero Ψ -regret even in the limit
n → ∞. This behavior can easily be explained by the fact that hinge loss is
not a proper (composite) loss: the risk minimizer for hinge loss is given by
f∗` (x) = sgn(η(x)− 1/2) (Bartlett et al 2006). Hence, the hinge loss minimizer
is already a threshold function on η(x), with the threshold value set to 1/2. If,
for a given performance metric Ψ , the optimal threshold θ∗ is different than
1/2, the hinge loss minimizer will necessarily have suboptimal Ψ -risk. This
is clearly visible for the F-measure. The better result on the AM measure is
explained by the fact that the average optimal threshold over all models is
0.5 for this measure, so the minimizer of hinge loss is not that far from the
minimizer of AM measure.

Second experiment. We take X = R2 and generate x ∈ X from a stan-
dard Gaussian distribution. We use a logistic model of the form η(x) =

1
1+exp(−a0−a>x) . The weights a = (a1, a2) and a0 are also drawn from a stan-
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Fig. 2 Regret (averaged over 20 x 20 = 400 repetitions) on the logistic model as a function
of the number of training examples. Left panel: regret with respect to the F-measure and
surrogate losses. Right panel: regret with respect to the AM measure and surrogate losses.

dard Gaussian. For a given model (set of weights), we take training sets of
increasing size from n = 100 up to n = 3000, using 20 different sets for each
n. We also generate one test set of size 100,000. For each n, we use 2/3 of
the training data to learn a linear model f(x) = w0 + w>x, using either sup-
port vector machines (SVM, with linear kernel) or logistic regression (LR).
We use implementation of these algorithms from the LibLinear package (Fan
et al 2008).4 The remaining 1/3 of the training data is used for tuning the
threshold. We average the results over 20 different models.

The results are given in Fig. 2. As before, we plot the average `-regret for
logistic and hinge loss, and Ψ -regret for the F-measure and the AM measure.
The results obtained for LR (logistic loss minimizer) agree with our theoretical
analysis: the `-regret and Ψ -regret with respect to both F-measure and AM
measure go to zero. This is expected, as the data generating model is a linear
logistic model (so that the risk minimizer for logistic loss is a linear function),
and thus coincides with a class of functions over which we optimize. The
situation is different for SVM (hinge loss minimizer). Firstly, the `-regret for
hinge loss does not converge to zero. This is because the risk minimizer for
hinge loss is a threshold function sgn(η(x) − 1/2), and it is not possible to
approximate such a function with linear model f(x) = w0 +w>x. Hence, even
when n→∞, the empirical hinge loss minimizer (SVM) does not converge to
the risk minimizer. This behavior, however, can be advantageous for SVM in
terms of the task performance measures. This is because the risk minimizer
for hinge loss, a threshold function on η(x) with the threshold value 1/2, will
perform poorly, for example, in terms of the F-measure and AM measure, for
which the optimal threshold θ∗ is usually very different from 1/2. In turn, the
linear model constraint will prevent convergence to the risk minimizer, and the
resulting linear function f(x) = w0+w>x will often be close to some reversible
function of η(x); hence after tuning the threshold, we will often end up close
to the minimizer of a given task performance measure. This is seen for the F-
measure on the left panel in Fig. 2. In this case, the F-regret of SVM gets quite
close to zero, but is still worse than LR. The non-vanishing regret is mainly

4 Software available at http://www.csie.ntu.edu.tw/~cjlin/liblinear



Surrogate regret bounds for generalized classification performance metrics 23

covtype.binary gisette

0 50000 100000 150000 200000

0.
5

0.
6

0.
7

0.
8

0.
9

# of training examples

Lo
gi

st
ic

 a
nd

 h
in

ge
 lo

ss

Logistic loss of LR
Hinge loss of SVM

0 1000 2000 3000 4000

0.
00

0.
10

0.
20

0.
30

# of training examples

Lo
gi

st
ic

 a
nd

 h
in

ge
 lo

ss

Logistic loss of LR
Hinge loss of SVM

0 50000 100000 150000 200000

0.
65

0.
70

0.
75

0.
80

# of training examples

F
−

m
ea

su
re

F−measure (LR)
F−measure (SVM)

0 1000 2000 3000 4000

0.
88

0.
92

0.
96

1.
00

# of training examples

F
−

m
ea

su
re

F−measure (LR)
F−measure (SVM)

0 50000 100000 150000 200000

0.
60

0.
65

0.
70

0.
75

0.
80

# of training examples

A
M

AM (LR)
AM (SVM)

0 1000 2000 3000 4000

0.
85

0.
90

0.
95

1.
00

# of training examples

A
M

AM (LR)
AM (SVM)

Fig. 3 Average test set performance on benchmark data sets as a function of the number of
training examples. Left panel: covtype dataset. Right panel: the gisette dataset. The top
plots show logistic and hinge loss, the center plots show the F-measure, the bottom plots
show the AM measure.

caused by the fact that for some models with imbalanced class priors, SVM
reduce weights w to zero and sets the intercept w0 to 1 or −1, predicting the
same value for all x ∈ X (this is not caused by a software problem, it is how the
empirical loss minimizer behaves). Interestingly, the F-measure is only slightly
affected by this pathological behavior of empirical hinge loss minimizer. In
turn, the AM measure, for which the plots are drawn in the right panel in
Fig. 2, is not robust against this behavior of SVM: predicting the majority
class actually results in the value of AM measure equal to 1/2, a very poor
performance, which is on the same level as random classifier.

6.2 Benchmark data for binary classification

The next experiment is performed on two binary benchmark datasets,5 de-
scribed in Table 4. We randomly take out a test set of size 181,012 for covtype,

5 Datasets are taken from LibSVM repository: http://www.csie.ntu.edu.tw/~cjlin/

libsvmtools/datasets
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dataset #examples #features

covtype 581,012 54
gisette 7,000 5,000

Table 4 Basic statistics for binary classification benchmark datasets

data set # labels # training examples # test examples #features

scene 6 1211 1169 294
yeast 14 1500 917 103
mediamill 101 30993 12914 120

Table 5 Basic statistics for multi-label benchmark data sets

and of size 3,000 for gisette. We use the remaining examples for training. As
before, we incrementally increase the size of the training set. We use 2/3 of
training examples for learning linear model with SVM or LR, and the rest for
tuning the threshold. We repeat the experiment (random train/validation/test
split) 20 times. The results are plotted in Fig 3. Since the data distribution
is unknown, we are unable to compute the risk minimizers, hence we plot the
average loss/metric on the test set rather than the regret. The results show
that SVM perform better on the covtype dataset, while LR performs better
on the gisette dataset. However, there is very little difference in performance
of SVM and LR in terms of the F-measure and the AM measure on these data
sets. We suspect this is due to the fact that η(x) function is very different from
linear for these problems, so that neither LR nor SVM converge to the `-risk
minimizer, and Theorem 1 does not apply. Further studies would be required
to understand the behavior of surrogate losses in this case.

6.3 Benchmark data for multi-label classification

In the last experiment we use three multi-label benchmark data sets.6 Ta-
ble 5 provides a summary of basic statistics of these datasets. The aim of
the experiment is to verify the theoretical results in Section 5 on learning the
micro- and macro-averaged performance metrics. We use the F-measure and
the AM-measure as in previous experiments.

The data sets are already split into the training and testing parts. As be-
fore we train a linear model using either SVM or LR on 2/3 of training exam-
ples. The rest of training data is used for tuning the threshold. For optimizing
macro-averaged measures, we tune the threshold separately for each label. This
approach agrees with our analysis given in Section 5.1. For micro-averaging,
we tune a common threshold for all labels: we simply collect predictions for

6 Datasets are taken from LibSVM repository: http://www.csie.ntu.edu.tw/~cjlin/

libsvmtools/datasets
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all labels and find the best threshold using these values. This approach is
justified by the theoretical analysis in Section 5.2. Hence, the only difference
between micro- and macro-versions of the algorithms is whether a single or
multiple thresholds are tuned. In total we use 8 algorithms: two learning al-
gorithms (LR/SVM), two performance measures (F/AM), and two types of
averaging (Macro/Micro). Note that our experiments include evaluating algo-
rithms tuned for macro-averaging in terms of micro-averaged metrics, and vice
versa. The goal of such cross-analysis is to determine the impact of threshold
sharing for both averaging schemes. As before, we incrementally increase the
size of the training set and repeat training and threshold tuning 20 times (we
use random draws of training instances into the proper training and the val-
idation parts; the test set is always the same, as originally specified for each
data set). The results are given in Fig 4.

The plots generally agree with the conclusions coming from the theoretical
analysis, with some intriguing exceptions, however. As expected, LR tuned for
a given performance metric gets the best result with respect to that metric in
most of the cases. For the scene data set, however, the methods tuned for the
micro-averaged metrics (single threshold shared among labels) outperform the
ones tuned for macro-averaged metrics (separate thresholds tuned for each
label), even when evaluated in terms of macro-averaged metrics. A similar
result has been obtained by Koyejo et al (2015). It seems that tuning a single
threshold shared among all labels can lead to a more stable solution that is less
prone to overfitting, even though it is not the optimal thing to do for macro-
averaged measures. We further report that, interestingly, SVM outperform LR
in terms of Macro-F on mediamill and this is the only case in which SVM get
a better result than LR.

7 Summary

We present a theoretical analysis of a two-step approach to optimize classifi-
cation performance metrics, which first learns a real-valued function f on a
training sample by minimizing a surrogate loss, and then tunes the threshold
on f by optimizing the target performance metric on a separate validation
sample. We show that if the metric is a linear-fractional function, and the
surrogate loss is strongly proper composite, then the regret of the resulting
classifier (obtained from thresholding real-valued f) measured with respect to
the target metric is upperbounded by the regret of f measured with respect to
the surrogate loss. The proof of our result goes by an intermediate bound of
the regret with respect to the target measure by a cost-sensitive classification
regret. As a byproduct, we get a bound on the cost-sensitive classification re-
gret by a surrogate regret of a real-valued function which holds simultaneously
for all misclassification costs. We also extend our results to cover multilabel
classification and provide regret bounds for micro- and macro-averaging mea-
sures. Our findings are backed up in a computational study on both synthetic
and real data sets.
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Fig. 4 Average test set performance on benchmark data sets for multi-label classification
as a function of the number of training examples. Macro- and micro-averaged F-measure
and AM are plotted for LR and SVM tuned for all the measures.


