
Solving Regression by Learning an
Ensemble of Decision Rules

Krzysztof Dembczyński1, Wojciech Kotłowski1, and Roman Słowiński1,2

1 Institute of Computing Science, Poznań University of Technology,
60-965 Poznań, Poland

{kdembczynski, wkotlowski, rslowinski}@cs.put.poznan.pl
2 Institute for Systems Research, Polish Academy of Sciences, 01-447 Warsaw, Poland

Abstract. We introduce a novel decision rule induction algorithm for
solving the regression problem. There are only few approaches in which
decision rules are applied to this type of prediction problems. The al-
gorithm uses a single decision rule as a base classifier in the ensemble.
Forward stagewise additive modeling is used in order to obtain the en-
semble of decision rules. We consider two types of loss functions, the
squared- and absolute-error loss, that are commonly used in regression
problems. The minimization of empirical risk based on these loss func-
tions is performed by two optimization techniques, the gradient boosting
and the least angle approach. The main advantage of decision rules is
their simplicity and good interpretability. The prediction model in the
form of an ensemble of decision rules is powerful, which is shown by
results of the experiment presented in the paper.

1 Introduction

A decision rule is a logical expression of the form: if [conditions], then [decision].
If an object satisfies conditions of the rule, then the decision is taken; otherwise
no action is performed. A rule can be treated as a simple classifier that gives
a constant response for the objects matching the conditions, and abstains from
the response for all other objects.
Induction of decision rules has been widely considered in the early machine

learning approaches. The most popular algorithms were based on a sequential
covering procedure (also known as separate-and-conquer approach) [26, 7, 8, 17].
Apart from the sequential covering, some other approaches to rule induction
exist. For instance, the apriori-based algorithms are also used for induction of
predictive rules [24, 33]. There are several rule-based approaches of lazy learning
type, possibly combined with instance-based methods [10, 18]. Other algorithms
based on Boolean reasoning and mathematical programming try to select the
most relevant rules – this is the case of Logical Analysis of Data [3]. Let us
also notice that decision rule models are strongly associated with rough set ap-
proaches to knowledge discovery [27, 31, 20, 32, 19], where also Boolean reasoning
has been applied [30]. Such wide interest in decision rules may be explained by
their simplicity and good interpretability. It seems, however, that decision trees

(e.g. C4.5 [29], CART [6]) are more popular in data mining and machine learning
applications. Nevertheless, recently, a growing interest in decision rule models is
observed. As an example, let us mention such algorithms as RuleFit [15], SLIP-
PER [9], Lightweight Rule Induction (LRI) [35], and ensemble of decision rules [1,
2]. All these algorithms can be explained within the framework of forward stage-
wise additive modeling (FSAM) [21], a greedy procedure for minimizing a loss
function on the dataset.

Let us notice that there are only few rule induction algorithms tailored to
the problem of regression. An example is an extension of LRI [23], in which the
decision attribute is discretized and then the problem is solved via classification
rules. Another example is RuleFit, which uses FSAM framework explicitly, there-
fore can utilize a variety of loss functions, including those adapted to regression
problems, like squared-error loss.

However, in RuleFit the decision rules are not generated directly – trees are
used as base classifiers instead. Rules are produced from each node (interior
or terminal) of each resulting tree. This is set up by conjunction of conditions
associated with all the edges on the path from the root of the tree to the consid-
ered node. Rule ensemble is then fitted by gradient directed regularization [14].
LRI, in turn, uses a specific reweighting schema (cumulative error), similar to
Breiman’s Arc-xf algorithm [5], which can also be explained in the context of
loss function minimization [25]. Single rules are in the form of DNF-formulas.

The algorithm described here, called ENDER (from ENsemble of DEcision
Rules), benefits from the achievements in boosting machines [16, 11, 25, 12]. The
main contribution of this paper is transmission of these achievements to the
ground of a specific weak learner being a decision rule. Similarly to FSAM, our
approach is stated as a greedy minimization of a loss function on the training
set. However, contrary to RuleFit and LRI, the method introduced in this paper
generates simple single rules (conjunctions of elementary conditions) directly,
one rule in each iteration of the algorithm. Our approach is also distinguished
by the fact of using the same single measure (value of the empirical risk) at
all stages of the learning procedure: setting the best cuts (conditions), stopping
the rule’s growth and determining the response (weight) of the rule; no addi-
tional features (e.g. impurity measures, pruning procedures) are considered. Our
research includes detailed analysis of the algorithm, both from the theoretical
and experimental point of view. We report experiments with two types of loss
functions, squared- and absolute-error loss, using two optimization techniques,
the gradient boosting [12] and least angle approach [25].

The paper is organized as follows. In section 2, the regression problem is for-
mulated. Section 3 presents a general framework for construction of an ensemble
of decision rules. Section 4 is devoted to the problem of a single rule genera-
tion. Derivation of particular algorithms for different optimization techniques
and loss functions is described in section 5. Section 6 contains experimental re-
sults and comparison with other methods. The last section concludes the paper
and outlines further research directions.

2 Problem Statement

In the regression problem, the aim is to predict the unknown value of an at-
tribute y (called decision attribute, output or dependent variable) of an object
using known joint values of other attributes (called condition attributes, pre-
dictors, or independent variables) x = (x1, x2, . . . , xn). The decision attribute is
quantitative and it is assumed that y ∈ R, where R is a set of real numbers.
The aim is to find a function F (x) that predicts accurately value of y. The ac-

curacy of a single prediction is measured in terms of the loss function L(y, F (x))
which is the penalty for predicting F (x) when the actual value is y. The overall
accuracy of the function F (x) is measured by the expected loss (prediction risk)
over the joint distribution of variables P (y,x) for the data to be predicted:

R(F) = EyxL(y, F (x)) = Ex[Ey|xL(y, F (x)].

Therefore, the optimal (risk-minimizing) decision function (or Bayes optimal
decision) is given by:

F ∗ = arg min
F

EyxL(y, F (x)) = arg min
F

Ex[Ey|xL(y, F (x)]. (1)

Since P (y,x) is generally unknown, the learning procedure uses only a set of
training examples {yi,xi}N

1 to construct F (x) to be the best possible approxi-
mation of F ∗(x). Usually, it is performed by minimization of the empirical risk :

Remp(F) =
1
N

N∑
i=1

L(yi, F (xi)),

where function F is chosen from some restricted family of functions.
The regression problem is solved typically by using the squared-error loss:

Lse(y, F (x)) = (y − F (x))2. (2)

The Bayes optimal decision for the squared-error loss has the following form:

F ∗(x) = arg min
F (x)

Ey|xLse(y, F (x)) = Ey|x(y). (3)

It follows that minimization of expected squared-error loss can be seen as estima-
tion of expected value of y for given x. The absolute-error loss is also considered:

Lae(y, F (x)) = |y − F (x)|. (4)

The Bayes optimal decision in this case is:

F ∗(x) = arg min
F (x)

Ey|xLae(y, F (x)) = mediany|x(y). (5)

Thus, minimization of expected absolute-error loss can be seen as estimation of
median of y for given x. It is often underlined that the absolute-error makes the

fitting procedures less sensitive to outliers, because the error grows linearly, not
quadratically, with the distance between actual and predicted value.
In order to solve the regression problem, other loss functions can also be em-

ployed, for example, Huber loss [22] or ε-insensitive error loss, well-known from
support vector regression [34]. In this paper, however, we restrict our consider-
ations to the squared- and absolute-error loss only.

3 Learning of an Ensemble of Decision Rules

This section describes the general scheme for decision rule induction. Let us
remind that decision rule is a specific classifier having the form of logical expres-
sion: if [conditions], then [decision].
Let Xj be a value set of attribute j, i.e. the set of all possible values for

attribute j. Conditions of the rule consist of elementary expressions of the general
form xj ∈ Sj , where xj is the value of object x on attribute j and Sj is some
subset of Xj , j ∈ {1, . . . , n}. We assume that in the case of ordered value sets,
Sj has the form of the interval [sj ,∞) or (−∞, sj] for some sj ∈ Xj , so that the
elementary expression takes the form xj ≥ sj or xj ≤ sj . For nominal attributes,
we consider elementary expression of the form xj = sj or xj 6= sj . Let φSj

(x) =
I(xj ∈ Sj), where I(a) is an indicator function, i.e. if a is true then I(a) = 1,
otherwise I(a) = 0. Let further Φ denote the set of elementary expressions
constituting the conditions of the rule. Moreover, let Φ(x) =

∏
φ∈Φ φSj

(x) be a
function that indicates (is non-zero) if an object satisfies conditions of the rule.
It is easy to see that conjunction of elementary expressions defines an arbitrary
axis-parallel region in the attribute space. Decision, denoted by α, is a real non-
zero value assigned to this region. Therefore, we define a decision rule as:

r(x) = αΦ(x). (6)

Notice that the decision rule takes only two values, r(x) ∈ {α, 0}.
We assume that the optimal decision function F ∗(x) is approximated by a

linear combinations of M decision rules:

F (x) = α0 +
M∑

m=1

rm(x), (7)

where α0 is a constant value, which can be interpreted as a default rule, covering
the whole attribute space. Construction of optimal combination of rules mini-
mizing the empirical risk is an extremely hard optimization task. That is why we
follow here FSAM [21], i.e. the rules are added one by one, greedily minimizing
the loss function. We start with the default rule defined as:

α0 = arg min
α

N∑
i=1

L(yi, α). (8)

In each next iteration, the new rule is added taking into account previously
generated rules. Let Fm−1(x) be a prediction function after m − 1 iterations,

Algorithm 1: Ensemble of decision rules – ENDER

input : set of training examples {yi,xi}N
1 ,

M – number of decision rules to be generated.
output: default rule α0, ensemble of decision rules {rm(x)}M

1 .

α0 = arg minα

PN
i=1 L(yi, α); //default rule

F0(x) = α0;
for m = 1 to M do

rm(x) = arg minΦ,α

nP
Φ(xi)=1 L(yi, Fm−1(xi) + α)+P

Φ(xi)=0 L(yi, Fm−1(xi))
o
;

Fm(x) = Fm−1(x) + ν · rm(x);
end
ensemble = {rm(x)}M

1 ;

consisting of first m − 1 rules and the default rule. In the m-th iteration, a
decision rule is obtained from:

rm(x) = arg min
Φ,α

 ∑
Φ(xi)=1

L(yi, Fm−1(xi) + α) +
∑

Φ(xi)=0

L(yi, Fm−1(xi))

 (9)
This is the main step of the algorithm. Different approaches to solution of (9)
are described in the next two sections.

It has been shown that in order to improve the accuracy of the ensemble, the
base classifiers should be shrunk towards α0 [21]. That is why we use a shrinkage
parameter ν ∈ (0, 1] when the ensemble is augmented by the newly generated
rule:

Fm(x) = Fm−1(x) + ν · rm(x).

In other words, values of ν determine the degree to which previously generated
rules rk(x), k = 1, . . . ,m − 1, affect the generation of the successive one in the
sequence, i.e., rm(x).
It has also been observed that training base classifiers on a subsample of the

training set leads to improvement of both accuracy and computational complex-
ity [13]. This is due to the fact that classifiers trained on the random subsamples
become diversified and less correlated. We also apply this technique and take
subsample of size η ≤ N randomly drawn with or without replacement from the
original training set, when a single rule is generated.

The whole procedure for constructing an ensemble of decision rules is pre-
sented as Algorithm 1. We called this procedure ENDER (from ENsemble of
DEcision Rules).

4 Generation of a Single Rule

Exact solution of (9) is still computationally hard. That is why, in order to
generate a single rule, we are using a fast approximate algorithm. The general
scheme of this algorithm is the following. At the m-th iteration:

1. Find Φm by minimizing some functional Lm(Φ) in a greedy manner (the par-
ticular form of the functional depends on the loss function and minimization
technique used; see next section):

Φm = arg min
Φ

Lm(Φ). (10)

2. Find αm as a solution of the following line-search problem:

αm = arg min
α

N∑
i=1

L(yi, Fm−1(xi) + αΦm(xi)). (11)

In the case of the squared- and absolute-error loss, computation of αm is
straightforward, because analytical expressions for (11) can be given (see
next section).

The greedy procedure for finding Φm is the following:

– At the beginning, Φm is empty (no elementary expressions are specified),
– In the next step, an elementary expression φSj

is added to Φm that minimizes
Lm(Φ) (if it exists). Such expression is searched by consecutive testing of
elementary expressions, attribute by attribute. For ordered attributes, let
x

(1)
j , x

(2)
j , . . . , x

(N)
j be a sequence of ordered values of attribute j, such that

x
(i−1)
j ≥ x

(i)
j , for i = 2, . . . , N . Then, each elementary expression xj ≥ sj or

xj ≤ sj , for each sj =
x
(i−1)
j +x

(i)
j

2 , is tested. For nominal attributes, we test
each expression xj = sj or xj 6= sj , for each value sj ∈ Xj .
– The above step is repeated until Lm(Φ) cannot be decreased.

The output of the whole procedure is the decision rule rm(x) = αmΦm(x). The
details of the algorithm for two loss functions and two optimization techniques
are given in the next section.
Let us underline that this procedure is very fast and proved to be efficient

in computational experiments. The ordered attributes can be sorted once before
generating any rule. The procedure for finding optimal Φ resembles the way the
decision trees are generated. Here, we look for only one branch instead of the
whole decision tree. Moreover, let us notice that minimal value of Lm(Φ) is a
natural stop criterion in building a single rule and we do not use any other
measure (e.g. impurity measures) for choosing the optimal cuts.

5 ENDER Algorithms with Different Optimization
Techniques and Loss Functions

We use two minimization techniques that determine the form of Lm(Φ).

Gradient boosting [12]. In this method, the rule is fitted to the negative gradient
of loss function for each training object:

ỹi = −∂L(yi, F (x))
∂F (x)

∣∣∣∣
F (x)=Fm−1(xi)

, i = 1, . . . , N. (12)

The fitting procedure is defined by minimization of the squared-error between
rule response and negative gradient:

r(x) = arg min
Φ,α

(∑
Φ(xi)=1

(ỹi − α)2 +
∑

Φ(xi)=0

ỹ2
i

)
. (13)

The term in brackets can be solved for:

α =

∑
Φ(xi)=1 ỹi∑N
i=1 Φ(xi)

, (14)

where
∑N

i=1 Φ(xi) is the number of objects satisfying Φ(xi) = 1. Thus, α is an
average of the negative gradient in the region covered by the rule. Putting (14)
into (13), expanding the term in the sum for Φ(xi) = 1, and performing some
simple calculations, we obtain:

r(x) = arg min
Φ

 N∑
i=1

ỹ2
i −

1∑N
i=1 Φ(xi)

(∑
Φ(xi)=1

ỹi

)2
 .

After removing the first term, which is constant, and taking the square root of
the second term (which does not affect the minimization) we get:

−

∣∣∣∑Φ(xi)=1 ỹi

∣∣∣√∑N
i=1 Φ(xi)

(15)

which plays the role of Lm(Φ), to be minimized with respect to Φ.

Least angle approach [25]. In this method, the rule is also fitted to the negative
gradients of loss functions. However, contrary to gradient boosting, the angle
between negative gradient vector (12) and rule response vector is minimized.
This can be formulated as minimization of the dot product with fixed value
(norm) of the rule response:

r(x) = arg min
Φ

(∑
Φ(xi)=1

αỹi

)
= |α| arg min

Φ

(
±

∑
Φ(xi)=1

ỹi

)
(16)

which can be expressed in the following form, independent of α:

r(x) = arg min
Φ

−
∣∣∣∣ ∑

Φ(xi)=1

ỹi

∣∣∣∣. (17)

The term −
∣∣∣∑Φ(xi)=1 ỹi

∣∣∣ in (17) plays the role of Lm(Φ). Notice the similarity
between this term and (15). The latter is divided by the square root of the rule
size, which results in more specific rules covering smaller regions in the attribute
space. Thus, minimizing the angle results in more general rules.
Below, we present how the above techniques apply to the squared- and

absolute-error loss functions.

Squared-error loss. The negative gradient is in this case:

ỹi = −∂Lse(yi, F (xi))
∂F (xi)

∣∣∣∣
F (xi)=Fm−1(xi)

=
yi − Fm−1(xi)

2
, i = 1, . . . , N. (18)

Putting (18) to (15) or (17), one obtains Φm by the gradient boosting or the
least angle approach, respectively.
Finally, we find αm as a solution of the line-search (11). The optimal value

is obtained by:

αm = arg min
α

N∑
i=1

Lse(yi, Fm−1(xi) + αΦm(xi)) =

∑
Φ(xi)=1(yi − Fm−1(xi))∑N

i=1 Φ(xi)
.

(19)
It is interesting that gradient boosting gives in this case an exact solution

to (9) (but still we have to use the greedy procedure for finding Φm). This is due
to the fact that putting (19) into (9), after some simple calculations, we get the
following expression to be minimized

−

∣∣∣∣ ∑
Φ(xi)=1(yi − Fm−1(xi))

∣∣∣∣√∑N
i=1 Φ(xi)

. (20)

(20) is equivalent to (15) with negative gradient (18) up to the constant 1
2 that

does not affect the solution.

Absolute error loss. In this case, the negative gradient is:

ỹi = −∂Lae(yi, F (xi))
∂F (xi)

∣∣∣∣
F (xi)=Fm−1(xi)

= sgn(yi−Fm−1(xi)), i = 1, . . . , N, (21)

and the optimal αm is obtained by:

αm = arg min
α

N∑
i=1

Lae(yi, Fm−1(xi) + αΦm(xi)) = medianΦ(xi=1)(yi − Fm(xi)).

(22)
For this loss function, there is no simple and exact solutions to (9) and Lm(Φ)
has to be determined by gradient boosting or least angle techniques.

6 Experimental Results

We designed an experiment to compare performance of ENDER algorithm with
other regression methods. We collected eight benchmark datasets taken from
http://www.liacc.up.pt/~ltorgo/Regression/DataSets.html.
We tested four types of ENDER algorithm: least angle with absolute- (LA)

and squared-error (LS), and gradient boosting with absolute- (GA) and squared-
error (GS). We used 200 rules, shrinkage parameter ν set to 0.5, and resampling
in which 50% of training examples were drawn without replacement. These pa-
rameters were found to work well in a few previous experimental runs on several
datasets. In order to perform the comparison, we chose five methods implemented
in Weka [36]. These are: linear regression (LR), M5P trees [28] (M5P), additive
regression [13] (AR) with decision stumps (DS) and with reduced-error pruning
trees (RT), and also bagging [4] (BA) with RT. To perform the experiment in
a fair manner, we ran several times these algorithms with different parameters,
and the best result of each method for each dataset was reported. This is in fact
a real challenge for ENDER algorithms that used one set of parameters for all
datasets.
We performed 10-fold cross validation that was repeated 10 times. The mea-

sured error rate was root mean squared-error (RMSE). The results are shown in
Table 1. For each dataset the best result among ENDER algorithms and among
the competitive ones is marked in bold, separately. We compared the best results
with each other and tested if the difference is significant. We used paired t-test
with confidence level 0.05. If the difference is significant then the better result
is marked by ’∗’, otherwise by ’+’.
In Table 2 we present the won-loss-tied analysis. For results given in Table 1,

we tested ENDER algorithms against the competitive ones in order to get how
many times there is significant difference (obtained by paired t-test with con-
fidence level 0.05) in favor or against a given method. A “win” indicates that
a method was significantly better, a “loss” – significantly worse, and a “tie”
indicates the situation when the difference was not significant.
The results show that the best variant of ENDER algorithm is gradient

boosting with squared-error loss. Let us remind that this approach gives an

Table 1. Experimental results on eight benchmark datasets.

Classifier Pyrim CPU Boston Abalone Bank Comp. Calif. Census
ENDER LS 0.0979 55.092 3.6209 2.2031 0.0341 3.5584 59087.7 31442.2
ENDER LA 0.0892 102.277 4.4022 2.399 0.0399 4.2805 62636.9 36569.7
ENDER GS 0.1024 53.399+ 3.6036 2.1994 0.033 3.105 54565.5 30851.4
ENDER GA 0.0904 70.053 3.8305 2.2343 0.034 3.3936 56913.7 32337.3
LR 0.1197 68.404 4.8750 2.2176 0.039 9.8972 69631.5 41605.9
M5P 0.1065 53.512 3.5933+ 2.1376∗ 0.0302∗ 3.166 55705.2 31396.1
AR w/ DS 0.0880+ 56.297 3.8560 2.2318 0.036 3.1943 64697.8 32899.9
AR w/ RT 0.1299 93.343 3.8070 2.1943 0.031 2.8427∗ 48393.2∗ 30142.6
BA w/ RT 0.1162 71.326 3.7311 2.1483 0.032 3.0756 50420.6 30027.9∗

Table 2. Won-loss-tied analysis of the results obtained in the experiment.

LR M5P AD w/ DS AR w/ RT BA w/ RT
ENDER LS 8-0-0 1-6-1 6-2-1 3-5-0 3-5-0
ENDER LA 5-3-0 1-7-0 1-6-1 1-7-0 1-7-0
ENDER GS 8-0-0 4-2-2 7-1-0 3-4-1 3-5-0
ENDER GA 6-1-1 1-7-0 3-1-4 2-5-1 1-6-1

exact solution to (9). The second best is least angle variant with the same loss
function. The superiority of the squared-error loss is due to the fact that the cho-
sen measured error rate was RMSE in this experiment. The approaches based
on the absolute-error loss obtained rather low results. The best variant of EN-
DER algorithm can be seen as competitive to the other methods. ENDER GS
is distinctly better than linear regression and additive regression with decision
stumps, slightly better than M5P and rather comparable to additive regression
or bagging with reduced-error pruning trees.
There is, however, still a place for improvements for the ensemble of decision

rules. In Figure 1 the RMSE on training and testing set for Abalone and Boston
datasets is given for up to 1000 rules. The results are obtained by 30 runs.
Datasets were split into training and testing set in the proportion 60% to 40%.
One can observe that ENDER is quite stable and results given in Table 1 can be
better for higher number of rules. One can also see that in the case of Abalone
dataset, ENDER GS has small ability to overfit. The other methods are rather
insensitive to overfitting.

7 Conclusions and Future Plans

We introduced a novel algorithm for solving the regression problems that gen-
erates an ensemble of decision rules. We derived four different variants of the
algorithm incorporating two optimization techniques with two loss functions.
Let us underline that there are only few approaches in which decision rules are
used for solving this type of prediction problems. Examples of such methods are
LRI and RuleFit. Unfortunately, we still did not compare our algorithm to these
methods. This is included in our future research plans. Experiment performed
in this paper shows that the algorithm is competitive to other methods com-
monly used in regression problems. Moreover, the algorithm has an additional
advantage. Its output is a set of decision rules that are simple and interpretable.
However, the ensemble of 1000 rules could lose this advantage. That is why, an
additional tool for post-processing of rules is desirable.

References

1. Błaszczyński, J., Dembczyński, K., Kotłowski, W., Słowiński, R., Szeląg, M.: En-
semble of decision rules. Foundations of Computing and Decision Sciences 31, 1
(2006).

0 200 400 600 800 1000

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Number of rules

R
M

S
E

Abalone − training error

Least angle with squared−error
Least angle with absolute−error
Gradient boosting with squared−error
Gradient boosting with absolute−error

0 200 400 600 800 1000

2.
0

2.
5

3.
0

3.
5

Number of rules

R
M

S
E

Abalone − testing error

Least angle with squared−error
Least angle with absolute−error
Gradient boosting with squared−error
Gradient boosting with absolute−error

0 200 400 600 800 1000

2
4

6
8

Number of rules

R
M

S
E

Boston − training error

Least angle with squared−error
Least angle with absolute−error
Gradient boosting with squared−error
Gradient boosting with absolute−error

0 200 400 600 800 1000

4
5

6
7

8
9

Number of rules

R
M

S
E

Boston − testing error

Least angle with squared−error
Least angle with absolute−error
Gradient boosting with squared−error
Gradient boosting with absolute−error

Fig. 1. Errors on Abalone and Boston datasets over 30 runs.

2. Błaszczyński, J., Dembczyński, K., Kotłowski, W., Słowiński, R., Szeląg, M.: En-
sembles of Decision Rules for Solving Binary Classification Problems with Presence
of Missing Values. LNAI, Springer 4259 (2006) 224–234

3. Boros, E., Hammer, P. L., Ibaraki, T., Kogan, A., Mayoraz, E., Muchnik, I.: An
Implementation of Logical Analysis of Data. IEEE Trans. on Knowledge and Data
Engineering 12 (2000) 292–306

4. Breiman, L.: Bagging Predictors. Machine Learning 24 2 (1996) 123–140
5. Breiman, L.: Arcing classifiers. The Annals of Statistics 26 3 (1998) 801–824.
6. Breiman, L., Friedman, J. H., Olshen, R. A., Stone, C. J.: Classification and Re-
gression Trees. Wadsworth (1984)

7. Clark, P., Nibbet, T.: The CN2 induction algorithm. Machine Learning 3 (1989)
261–283

8. Cohen, W. W.: Fast effective rule induction. Proc. of ICML (1995) 115–123
9. Cohen, W. W., Singer, Y.: A simple, fast, and effective rule learner. Proc. of AAAI
(1999) 335–342

10. Domingos, P.: Unifying instance-based and rule-based induction. Machine Learn-
ing, 24 (1996) 141–168

11. Friedman, J. H., Hastie, T. and Tibshirani, R.: Additive logistic regression: a sta-
tistical view of boosting. The Annals of Statistics 2 28 (2000) 337–407

12. Friedman, J. H.: Greedy Function Approximation: A Gradient Boosting Machine,
The Annals of Statistics, 5 29 (2001) 1189-1232

13. Friedman, J. H.: Stochastic Gradient Boosting. Computational Statistics & Data
Analysis 38 4 (2002), 367–378.

14. Friedman, J. H., Popescu, B. E.: Gradient directed regularization. Stanford Uni-
versity Technical Report, http://www-stat.stanford.edu/~jhf/ (2004)

15. Friedman, J. H., Popescu, B. E.: Predictive Learning via Rule Ensembles. Stanford
University Technical Report, http://www-stat.stanford.edu/~jhf/ (2005)

16. Freund, Y., Schapire, R.: A decision-theoretic generalization of on-line learning
and an application to boosting. J. of Comp. and System Sc., 55 1 (1997) 119–139

17. Fürnkranz, J.: Separate-and-conquer rule learning. AI Review, 13 1 (1996) 3–54
18. Góra, G., Wojna. A.: RIONA: A New Classification System Combining Rule Induc-
tion and Instance-Based Learning. Fundamenta Informaticae 54 (2002) 369–390

19. Greco, S., Matarazzo, B., Słowiński, R., Stefanowski, J.: An Algorithm for Induc-
tion of Decision Rules Consistent with the Dominance Principle. LNAI, Springer
2005 (2000) 304–313

20. Grzymala-Busse, J. W.: LERS — A system for learning from examples based on
rough sets. In [31], Kluwer Academic Publishers (1992) 3–18

21. Hastie, T., Tibshirani, R., and Friedman, J. H.: Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Springer (2003)

22. Huber, P. J.: Robust Estimation of a Location Parameter. Annals of Mathematical
Statistics 35 (1964) 73–101

23. Indurkhya, N., Weiss, S.,: Solving Regression Problems with Rule-based Ensemble
Classifiers. Proc. of the ACM SIGKDD (2001) 287–292

24. Jovanoski, V., Lavrac, N.: Classification Rule Learning with APRIORI-C. LNAI,
Springer 2258 (2001) 44–51

25. Mason, L., Baxter, J., Bartlett, P., Frean, M.: Functional gradient techniques for
combining hypotheses. In: Advances in Large Margin Classifiers, MIT Press (1999)
33–58

26. Michalski, R.S.: A Theory and Methodology of Inductive Learning. In Michalski,
R.S., Carbonell, J.G., Mitchell, T.M. (eds.): Machine Learning: An Artificial In-
telligence Approach. Palo Alto, Tioga Publishing (1983) 83–129

27. Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about Data. Kluwer Aca-
demic Publishers (1991)

28. Quinlan, J. R.: Learning with continuous classes. Proc. of the Australian Joint
Conference on Artificial Intelligence, Singapore (1992) 343–348.

29. Quinlan, J. R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)
30. Skowron, A.: Extracting laws from decision tables - a rough set approach. Compu-
tational Intelligence 11 371–388

31. Słowiński R. (ed.): Intelligent Decision Support. Handbook of Applications and
Advances of the Rough Set Theory, Kluwer Academic Publishers (1992)

32. Stefanowski, J.: On rough set based approach to induction of decision rules. In
Skowron, A., Polkowski, L. (eds.): Rough Set in Knowledge Discovering, Physica
Verlag (1998) 500–529

33. Stefanowski, J., Vanderpooten, D.: Induction of decision rules in classification and
discovery-oriented perspectives. Int. J. on Intelligent Systems 16 (2001) 13–27

34. Vapnik, V.: The Nature of Statistical Learning Theory (Second Edition). Springer
(1998)

35. Lightweight rule induction. Proc. of ICML (2000) 1135–1142
36. Witten, I. H., Frank, E.: Data Mining: Practical machine learning tools and tech-
niques, 2nd Edition. Morgan Kaufmann, San Francisco (2005)

