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Abstract. Dominance-based Rough Set Approach (DRSA) has been
proposed for multi-criteria classification problems in order to handle in-
consistencies in the input information with respect to the dominance
principle. The end result of DRSA is a decision rule model of Decision
Maker preferences. In this paper, we consider an additive function model
resulting from dominance-based rough approximations. The presented
approach is similar to UTA and UTADIS methods. However, we define a
goal function of the optimization problem in a similar way as it is done
in Support Vector Machines (SVM). The problem may also be defined as
the one of searching for linear value functions in a transformed feature
space obtained by exhaustive binarization of criteria.

1 Introduction

The rough set approach has often proved to be an interesting tool for solving a
classification problem that consists in an assignment of objects from set A, de-
scribed by condition attributes, to pre-defined decision classes Clt, where t ∈ T
and T is a finite set of numerically coded labels. In order to solve the problem
(i.e., to classify all objects from A), a decision rule model is induced from a set of
reference (training) objects U ⊂ A. The rough set analysis starts with computing
lower and upper rough approximations of decision classes. The lower approxi-
mation of a decision class contains objects (from U) certainly belonging to the
decision class without any inconsistency. The upper approximation of a decision
class contains objects possibly belonging to the decision class that may cause
inconsistencies. In the simplest case, the inconsistency is defined as a situation
where two objects described by the same values of condition attributes (it is said
that these objects are indiscernible) are assigned to different classes. In the next
step, decision rules are induced from lower and upper rough approximations.
These rules represent, respectively, certain and possible patterns explaining re-
lationships between conditions and decisions. The model in the form of decision
rules permits to classify all objects from A.
Greco. Matarazzo and Słowiński [5, 6, 13] have introduced a rough set ap-

proach (called Dominance-based Rough Set Approach — DRSA) for solving



the problem of multi-criteria classification. In this problem, it is additionally
assumed that the domains of attributes (scales) are preference-ordered. The de-
cision classes are also preference-ordered according to an increasing order of class
labels, i.e. for all r, s ∈ T , such that r > s, the objects from Clr are strictly pre-
ferred to the objects from Cls. The condition attributes are often referred to
as condition criteria. DRSA extends the classical approach by substituting the
indiscernibility relation by a dominance relation, which permits taking into ac-
count the preference order. The inconsistency is defined in view of a dominance
principle that requires that any object x, having not worse evaluations than any
object y on the considered set of criteria, cannot be assigned to a worse class
than y. Moreover, unlike in the classical rough set approach, there is no need in
DRSA to make discretization of numerical attributes.

The preference model is a necessary component of a decision support system
for multi-criteria classification. Construction of preference model requires some
preference information from the Decision Maker (DM). Classically, these are
substitution rates among criteria, importance weights, comparisons of lotteries,
etc.. Acquisition of this preference information from the DM is not easy. In this
situation, the preference model induced from decision examples provided by the
DM has clear advantages over the classical approaches. DRSA, but also UTA
[8] and UTADIS [9, 15], follows the paradigm of inductive learning (in Multi-
Criteria Decision Analysis referred to as a preference-disaggregation approach).
It is very often underlined by Słowiński, Greco and Matarazzo (see, for example
[13]) that a decision rule model has another advantage over other models, i.e. it
is intelligible and speaks the language of the DM. However, in the case of many
numerical criteria and decision classes, the set of decision rules may be huge and
may loose its intelligibility. In such situations, an additive model composed of
marginal value (utility) functions, like in UTA and UTADIS, may be helpful.
The marginal value functions are usually presented graphically to the DM in
order to support her/his intuition.

In the following, we present an extension of DRSA, where after computing
rough approximations, additive value functions are constructed instead of a set
of decision rules. The additive value function is composed of piecewise linear
marginal value functions. Its construction is proceeded by solving a problem
of mathematical programming similar to that formulated in UTA and UTADIS.
The main difference is that we define a goal function of the optimization problem
in a similar way as it is done in Support Vector Machines (SVM) [14]. However,
the obtained additive value functions, for lower and upper rough approximations
of decision classes, may not cover accurately all objects belonging to correspond-
ing rough approximations. It is caused by a limited capacity of an additive model
based on piecewise linear functions to represent preferences as proved in [7, 12].
The problem may be also defined as the one of searching linear value functions
in a transformed feature space obtained by exhaustive binarization of criteria.

The paper is organized as follows. In Section 2, DRSA involving piecewise
linear marginal value functions is presented. Section 3 contains first experimental
results of the methodology. The last section concludes the paper.



Table 1. Decision table: q1 and q2 indicate criteria, d class label. The last two columns
present range of generalized decision function; objects x2 and x3 are inconsistent.

U q1 q2 d(x) l(x) u(x)

x1 0.25 0.3 −1 −1 −1
x2 0.5 0.65 1 −1 1
x3 0.75 0.7 −1 −1 1
x4 1 0.6 1 1 1

2 Piecewise Linear Marginal Value Functions and
Dominance-based Rough Set Approach

Assume, we have a set of objects A described by n criteria. We assign to each
object x a vector x = (q1(x), . . . , qn(x)), where i-th coordinate qi(x) is a value
(evaluation) of object x on criterion qi, i = 1, . . . , n. For simplicity, it is assumed
that domains of criteria are numerically coded with an increasing order of prefer-
ence. The objective of multi-criteria classification problem is to build a preference
model, according to which a class label d(x) from a finite set T is assigned to
every object from A. Here, for simplicity, it is assumed that T = {−1, 1}. It cor-
responds to that the objects from Cl1 are strictly preferred to the objects from
Cl−1. We assume that the DM provides a preference information concerning a
set of reference objects U ⊂ A, assigning to each object x ∈ U a label d(x) ∈ T .
Reference objects described by criteria and class labels are often presented in
the decision table. An example of the decision table is presented in Table 1.
The criteria aggregation model (preference model) is assumed to be additive

value function:

Φ(x) =
n∑

i=1

wiφi(qi(x)) (1)

where φi(qi(x)), i = 1, . . . , n, are non-decreasing marginal value functions, nor-
malized between 0 and 1, wi is a weight of φi(qi(x)). A similar aggregation model
with was used in [8] within UTA method (for ranking problems) and UTADIS
[9, 15] (for multi-criteria classification problems), where marginal value functions
were assumed to be piecewise linear. The use of this aggregation model for clas-
sification requires existence of threshold φ0, such that d(x) = 1 if Φ(x) ≥ φ0 and
d(x) = −1 otherwise (so d(x) = sgn(Φ(x)− φ0)). The error, which is the sum of
differences |Φ(x)− φ0| of misclassified objects is minimized.
Assume however, that objects can be inconsistent. By inconsistency we mean

violation of the dominance principle, requiring that any object x, having not
worse evaluations than any object y on the considered set of criteria, cannot be
assigned to a worse class than y. If such inconsistencies occur, the UTA method
is not able to find any additive value function compatible with this information,
whatever the complexity of the marginal functions (number of breakpoints) is,
since none monotonic function can model this information. Within DRSA, such
inconsistencies can be handled by using concepts of lower and upper approxi-



mations of classes. It was shown [3] that it corresponds to generalized decision
function δ for an object x ∈ U :

δ(x) = 〈l(x), u(x)〉 (2)

where

l(x) = min{d(x) : yDx, y ∈ U} u(x) = max{d(x) : xDy, y ∈ U} (3)

where D is a dominance relation defined as xDy ⇔ ∀i∈{1,...,n}qi(x) ≥ qi(y). In
other words, given the preference information, for object x there is determined a
range of decision classes to which x may belong. This range results from taking
into account inconsistencies caused by x. Remark that without inconsistencies,
for all x ∈ U , l(x) = u(x). Moreover, if we assign to each x ∈ U a class index l(x)
(instead of d(x)), the decision table becomes consistent (similarly if we assign
a class index u(x) for all x ∈ U). Thus one can deal with inconsistent set U ,
by considering two consistent sets with two different labelings. The values of
generelized decision function are also presented in Table 1. In terms of further
classification, the response of such model is a range of classes, to which an object
may belong.
For the two consistent decision tables it is possible to derive compatible value

functions Φl(x), Φu(x) respectively, and corresponding marginal value functions
φl

i(qi(x)) and φu
i (qi(x))We assume that both φl

i(qi(x)) and φu
i (qi(x)) have piece-

wise linear form:

φi(qi(x)) =
k−1∑
r=1

cr
i +

ck
i

hk
i − hk−1

i

(qi(x)− hk−1
i ), for hk−1

i ≤ qi(x) ≤ hk
i (4)

where hk
i is the location of the k-th brakepoint on the i-th criterion (k = 1, . . . , κi,

where κi is a number of brakepoints on i-th criterion), and ck
i is an increment of

marginal value function between brakepoints hk−1
i and hk

i , i.e. φi(hk
i )−φi(hk+1

i ).
Equation (4) states that function φi evaluated at qi(x) equals to the sum of in-
crements on all intervals on the left of qi(x) and linearly approximated increment
in the interval where qi(x) is located. The example is shown on Figure 1.
In the simplest form, the corresponding optimization problem can be formu-

lated for lower bound of generalized decision (Φl
i(x)) as follows:

min:
m∑

j=1

σl
j (5)

subject to constraints:

Φl(xj) ≤ φl
0 + σl

j ∀xj : l(xj) = −1 (6)

Φl(xj) ≥ φl
0 − σl

j ∀xj : l(xj) = 1 (7)

σl
j ≥ 0 ∀xj (8)

φl
i(z

∗
i ) = 1 ∀i ∈ {1, . . . , n} (9)

φl
i(zi∗) = 0 ∀i ∈ {1, . . . , n} (10)

ck
i ≥ 0 ∀i ∈ {1, . . . , n}, k ∈ {1, . . . , κi} (11)
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Fig. 1. Piecewise linear marginal value function φi defined by Equation 4. The incre-
ments are: c1

i = 0.1, c2
i = 0.5, c3

i = 0.3, c4
i = 0.1.

where m is the number of reference objects, σj are possible errors, z∗i and zi∗ are
the highest and the lowest value on i-th criterion. Constraints (6) and (7) ensure
correct separation, (9) and (10) control scaling and (11) preserves monotonicity.
Analogous problem can be formulated for upper bound of generalized decision
(function Φu(x)). It is worth noting, that the method does not assure all errors
become zero as the complexity of φl

i(qi(x)) and φu
i (qi(x)) grows, however, it

avoids errors caused by inconsistencies. If all σl
i and σu

i become 0, the obtained
model is concordant with DRSA in the sense that all objects belonging to lower
or upper approximations will be reassigned by the obtained functions to these
approximations.
It is worth introducing some measure of complexity of marginal functions

and minimize it, to avoid building complex models. Notice, that as the function
φi(qi(x)) is multiplied in (1) by weight wi, we can introduce new coefficients
wk

i = ck
i wi in order to keep the problem linear. Now control of the complexity

is done by minimizing a regularization term:

||w||2 =
n∑

i=1

κi∑
k=1

(wk
i )2 (12)

instead of controlling the scale of functions in (9) and (10). Minimizing of term
may lead to rescaling the utility function, so that all values of φi(qi(x)) will
decrease down almost to zero. To avoid that, constraints are modified introducing
the unit margin around threshold, in which no object may appear without error.
Thus we rewrite equations (6) and (7) as:

(Φl(xj)− φl
0)l(xj) ≥ 1− σl

i (13)

The objective of the optimization is now:

min: ||wl||2 + C
m∑

j=1

σl
j (14)



where C is the complexity constant. Analogous reasoning may be proceeded for
Φu(x). Such problem resembles maximal margin classifier and Support Vector
Machines [14]. We will try to bring it even more similar.

Let us first modify Φ(x) to be Φ(x) =
∑n

i=1 wiφi(qi(x)) − φ0. Now, we de-
compose each function φi(qi(x)) into κi functions φi,k(qi(x)) in the following
way:

φi(qi(x)) =
κi∑

k=1

ci
kφi,k(qi(x)). (15)

An example of such decomposition is shown on Figure 2. One can treat the
family of functions {φ1,1(q1(x)), . . . , φn,κn(qn(x))} as a transformation of the
space of criteria. Namely, there is a map T : A → Rs where s =

∑n
i=1 κi, such

that T (x) = (φ1,1(q1(x)), . . . , φn,κn
(qn(x))). By substituting wk

i = wic
k
i and

denoting w = (w1
1, . . . , w

κn
n ), the function (1) becomes:

Φ(x) = 〈w, T (x)〉 − φ0 (16)

where 〈·, ·〉 is a canonical dot product in Rs.
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Fig. 2. Functions obtained by decomposing φi(qi(x)). Notice that φi(qi(x) =
0.1φi,1(qi(x)) + 0.5φi,2(qi(x)) + 0.3φi,3(qi(x)) + 0.1φi,4(qi(x)).



Finally, after reformulating the problem we obtain:

min: ||wl||+ C
m∑

j=1

σl
j (17)

subject to constraints:

(〈wl, T l(x)〉 − φl
0)l(x) ≥ 1− σl

i ∀xi ∈ U (18)

σl
i ≥ 0 ∀i ∈ {1, . . . ,m} (19)

wk
i ≥ 0 ∀i ∈ {1, . . . , n}, k ∈ {1, . . . , κi} (20)

Notice that the regularization term is just squared Euclidean norm of the weight
vector in new feature space.
Motivated by the above result, we introduce a kernel function k : A×A → R,

defined as:

k(x, y) =
n∑

i=1

ki(x, y) (21)

where

ki(x, y) =
κi∑

j=1

φi,j(qi(x))φi,j(qi(y)). (22)

Notice, that k(x, y) = 〈T (x), T (y)〉. Assume that we have a brakepoint in
each evaluation point of all objects x ∈ U , the set of brakepoints for i-th crite-
rion is {qi(x1), . . . , qi(xm)}. Then the computing of the marginal kernel function
ki(x, y) boils down to:

ki(x, y) = min{ranki(x), ranki(y)} (23)

where ranki(x) is a position (in ranking) of value qi(x) on i-th criterion.
Thus, the problem may be formulated in a dual form. The most essential

advantage of such approach is reduction in number of variables, irrespective to
the number of brakepoints of marginal functions. As the complexity of marginal
functions increases, the optimization problem remains the same and only the
computation of the kernel function becomes harder. However there is a problem,
how to ensure monotonicity of the resulting utility function. In the dual formu-
lation the information about each criterion is lost, thus not all the weights may
be non-negative.
Let us remark that the transformed criteria space obtained by image of map-

ping T (A) (i.e. (φ1,1(q1(x)), . . . , φn,κn
(qn(x))), x ∈ A) may be also seen as a

result of binarization of criteria. This type of binarization should be called an
exhaustive one by analogy to other approaches well-known in rough set theory
or in logical analysis of data (see for example, [1]).
The exhaustive binarization is proceeded by choosing cut points in each eval-

uation point of all objects x ∈ U . More precisely, the binarization of the i-th
criterion is accomplished in a straightforward way by associating with each value



Table 2. Decision table from Table 1 with binarized criteria

U q10.25 q10.5 q10.75 q11 q20.3 q20.6 q20.65 q20.7 d

x1 1 0 0 0 1 0 0 0 −1
x2 1 1 0 0 1 1 1 0 1
x3 1 1 1 0 1 1 1 1 −1
x4 1 1 1 1 1 1 0 0 1

v on this criterion, for which there exists an object x, such that qi(x) = v, a
boolean attribute qiv

such that:

qiv (x) =
{

1 if qi(x) ≥ v
0 if qi(x) < v

. (24)

Table 2 shows the exhaustive binarization of criteria from Table 1.
Moreover, let us remark that the binarized decision table contains almost the

same information as dominance matrix introduced in [2]. The dominance matrix
DM is defined as follows:

DM = {dm(x, y) : x, y ∈ U}, where dm(x, y) = {qi ∈ Q : qi(x) ≥ qi(y)}. (25)

where Q = {qi, i = 1, . . . , n}. Dominance Matrix DM is usually implemented
as 3-dimensional binary cube C defined as cjki = 1, if qi ∈ dm(xj , xk), and
cjki = 0 otherwise, where j, k = 1, ...,m and i = 1, . . . , n. Such a structure
is very useful in a procedure of generating exhaustive set of decision rules [2],
because all computations may be quickly proceeded as bitwise operations. It is
a counterpart of a discernibility matrix [11] well-known in classical rough set
approach. It is easy to see that the following occurs:

cjki = 1 ⇔ qiqi(xk)(xj) = 1, xj , xk ∈ U.

3 Experimental results

We performed a computational experiment on Wisconsin breast cancer (BCW)
data obtained from the UCI Machine Learning Repository [10]. This problem
was chosen since it is known to have monotonic relationship between values on
condition attributes and decision labels. Thus, all attributes can be interpreted
as criteria, enabling DRSA. BCW consist of 699 instances described by 9 integer-
valued attributes, from which 16 instances have missing values. Each instance is
assigned to one of two classes (malignant and benign).
Several approaches have been compared with the methodology presented in

the previous section that will be referred to as Piecewise Linear DRSA (PL-
DRSA). These are k-Nearest Neighbours, linear Support Vector Machines, Lo-
gistic Regression, J48 Decision Trees and Naive Bayes. WEKA [4] software was
used for the experiment. For all algorithms a criteria selection was performed, by



Table 3. Experimental results for Wisconsin breast cancer data.

Algorithm Number of criteria loo estimate
k-NN (k = 1) 6 96.8%
linear SVM 6 97.2%
J48 4 97.7%
Logistic Regr. 6 97.2%
Naive Bayes 6 97.1%
PL-DRSA 6 97.4%

using backward elimination. The number of criteria left and the leaving-one-out
(loo) accuracy estimate are shown in Table 3.
Apparently, all the accuracy estimates are similar. PL-DRSA was conducted

with setting breakpoints on each evaluation point of all objects on each criterion.
Two models were created, one for lower bound of the decision range, second for
the upper bound. The classification rule was the following: if Φl(x)− Φu(x) ≥ 0
then assign x to class Cl1 otherwise assign x to Cl−1. The achieved accuracy
was one of the best, competitive to other methods. However, marginal value
functions constructed in PL-DRSA may be presented graphically and easily in-
terpreted. Moreover, PL-DRSA shows the inconsistent data both in learning and
classification stage.

4 Conclusions

Within DRSA framework, the decision rule model were always considered for
multicriteria decision analysis. We presented an alternative method, related to
additive aggregation model, similar to the one used in the UTA method. The
described approach has several advantages. First, it is flexible and allows various
shapes of separating function to be obtained. Marginal value functions may also
be presented graphically and interpreted by DM. Finally, PL-DRSA can control
the complexity of the additive function by fixing the number of breakpoints and
minimizing the slopes in each breakpoint. DRSA plays important role in han-
dling inconsistencies, which affect the data. Ignoring them may cause errors and,
therefore generate wrong decision model. The method can be also interpreted in
terms of criteria transformation (in a specific case, also in terms of binarization)
and Support Vector Machines.
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