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Abstract

This thesis focuses on comparison and analysis of methods that learn the Oth-
ello Position function. This test-based problem can be naturally embedded in
the common conceptual framework of coevolution. However, in coevolutionary
learning, a proper navigation through the problem search space requires the
fitness function to assess the utility of an individual objectively, which in the
coevolutionary environment can only be attained by calculating the true gener-
alization performance, i.e., by playing against all possible opponent strategies
and taking average game outcomes. In most cases this is computationally infea-
sible. Recently, Chong et al. proposed an approach to find the required number
of opponents (test cases) for a robust generalization performance estimation
and subsequently use it to guide the coevolutionary search. These principles
were applied to the Improved Coevolutionary Learning (ICL), an evolutionary
algorithm which uses a random sample of opponents to obtain a fitness value
for evolving individuals. The method of estimating true generalization perfor-
mance of any candidate solution in order to use it directly as a fitness measure
has raised questions whether such an approach indeed yields solutions which
are more robust and generalize better. Along with some premises suggesting
that when generalization framework is used, coevolutionary learning leads to
the search of strategies with increasingly higher utility, these issues constitute
the main motivation behind this work.The results of extensive computational
experiments prove that guiding coevolutionary search on the basis of games
against a sample of random opponents employed by ICL has indeed a great po-
tential when applied to the problem of Othello. Nevertheless, we show that it
is possible to design a coevolutionary algorithm, using the Hall of Fame archive
and competitive fitness sharing, of better performance than ICL. Additionally,
we have found that in some situations ICL exhibits less behavioral diversity
and loses its supremacy when compared to modern coevolutionary algorithms.

Final conclusions point to the need of further investigation of the generalization
performance in the coevolutionary environment. We propose a few potential
directions for the future work.
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Chapter 1

Introduction

1.1 Problem Setting and Motivation

Evolutionary computation is an area of research deeply embedded within computing sci-
ence and is a subfield of artificial intelligence or, more specifically computational intel-
ligence [26]. Natural processes have always served as a source of inspiration for human
kind, thus it is not surprising that the scientists pursued the idea of adopting biologi-
cal principles into computation grounds. The use of Darwinian principles for automated
problem solving dates back to the 1950s. A few years later, in early 1960s, three indepen-
dent interpretations of these ideas started to emerge, giving birth to the mainstream of
evolutionary computation [37, 40, 69]. In the last few decades, the continuous advance-
ment of technology encouraged the application of evolutionary computation to virtually
every area of problem solving. As astonishing as it may seem, evolutionary computa-
tion has proven to be an immensely powerful problem-solving strategy, demonstrating the
applicability of evolutionary principles. Evolutionary computation has been successfully
used in a wide variety of fields to evolve solutions to difficult problems such as complex
engineering problems|[69], cancer detection [35, 36], automatic evolution of computer pro-
grams [49], modeling adaptive systems by means of genetic programming [40] or learning
in games [75, 32, 33]. Crucially, as larger problems are considered, the solutions evolution-
ary methods discover are often more efficient and robust than those designed explicitly by
a human.

Computational intelligence addresses a broad range of complex problems adopting for
this purpose various nature-inspired computational methodologies and approaches. These
problems often share the concept of an elementary interaction between a candidate solu-
tion and a test. Depending on the environment and particular properties of an analyzed
problem, a candidate solution might be an abstract design, a machine learning hypothesis
or in case of game-playing agents a strategy. Accordingly, a test may take the form of
an environmental challenge, a training example, or in case of games, a opponent strategy.
Intuitively, the performance of a candidate solution is determined by the outcomes of such
tests. However, the number of tests in a problem is typically large or even infinite in case of
problems with real-valued variables, effectively precluding the possibility of confrontation
between candidate solutions and all tests [41]. Consequently, on the basis of limited in-
teractions and their outcomes, final conclusions about particular underlying phenomenon
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are substantially limited and, in extreme cases, simply misleading. In the literature, such
problems are known as test-based problems [8, 23, 41]. Since determining outcomes of inter-
actions between a candidate solution and all tests is computationally infeasible, accurate
and efficient (in terms of computational effort) evaluation function cannot be computed
for non-trivial problems. Thus, to solve a test-based problem, an efficient algorithm is
expected to determine a particularly interesting set of interactions worth computing from
the point of view of the ultimate goal. Upon outcomes of these interaction, a superior, in
some sense, candidate solution with respect to other candidate solutions can be emerged.
In the light of these concepts, competitive coevolutionary algorithm [4, 39, 73] seems to
constitute an intuitive method for solving test-based problems. Interactions between can-
didate solutions and tests are performed in an adaptive and dynamic manner, allowing
to identify valuable tests by the search process, at the same time driving the evolution
in the assumed direction. Consequently, evolving candidate solutions are challenged with
increasingly harder tests, encouraging the arms race [60] among coevolving individuals.
Thus, coevolution is capable of responding to individual’s performance by constructing
adequate learnable gradient [83].

Coevolution have been successfully used in the fields of optimization and machine
learning for many years, dating back as far as the 1960s [70]. More recently coevolutionary
algorithms have gained favor in creating solutions in the area of interactive domains and
were applied to many test-based problem such as board and strategic games [32, 33, 46,
47, 54]. Another famous work in the area of competitive environments was provided by
Hillis [39], which involved coevolution of sorting networks and number sequences to be
sorted in competing populations. It was followed by evolving closed-loop controllers of
simulated medical activities on patients [76]. Another interesting example of application
of coevolutionary algorithms to a test-based problem is evolution of rules for cellular
automata [45].

However, despite the initial success of coevolutionary learning in solving test-based
problems, it turned out that in some situations they exhibit certain pathologies, ultimately
failing to obtain high-quality solutions. Common variants of those pathological behaviours
include disengagement, cyclic dynamics, overspecialization and forgetting [62, 31, 84]. An-
other difficulties encountered during modeling coevolutionary algorithms are hard to un-
derstand dynamics [45, 66|, which hinder overall progress of the search procedure. Jointly,
those harmful phenomenons constitute a major challenge in coevolutionary algorithms
design.

Although significant effort has been undertaken to overcome these pathologies, apart
from minor remedies slightly reducing their negative impact, no real solution to the prob-
lem has been found so far. Eventually, this has led to devoting much of the research
effort to understand the nature and origin of coevolutionary pathologies. While certain
studies imply that coevolutionary pathologies are deeply associated with the use of a rel-
ative fitness measure in the selection process [67, 27] other go even further, and show
that the generic design of the coevolutionary learning framework negatively influences the
performance by imposing to much dynamics on search operators [12, 16, 15].

The adoption of generalization framework originating from the machine learning to
coevolutionary ground has recently become particularly interesting research area [87, 13,
14, 11, 10]. The role of a generalization framework is to predict a global performance
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of a learning system. Despite many significant differences between machine learning and
evolutionary computation, it is believed that generalization framework can be applied
to cope with test-based problems, providing insight into absolute quality of a solution.
Theoretical framework which addresses the problem of determining the generalization
performance of coevolutionary learning was presented in [11] and then further improved
in [10]. The notion of estimating true generalization performance of any candidate solution
and subsequently using it directly as a fitness measure has raised questions whether such
an approach indeed yields solutions which are more robust and generalize better . Along
with some premises suggesting that when generalization framework is used, coevolutionary
learning leads to the search of strategies with increasingly higher utility, these issues
constitute the main motivation behind this work.

1.2 Scope and Objectives

In the context of the discussion outlined in the previous section, this study fits into the
disciplines of evolutionary computation and machine learning and focuses on analysis and
comparison of different approaches for solving test-based problems: Improved Coevolu-
tionary Learning (ICL) [10] and enhanced coevolutionary learning in particular. Both
methods are considered as attractive approaches for problem solving in cases where an
absolute quality measure to guide the search for solutions with increasingly higher utility
is not available or difficult to acquire. Canonical example of such a problem is learning
game-playing strategies. For the purpose of testing studied learning algorithms, we con-
centrate on the particular test-based problem: acquisition of Othello position evaluation
function.

The main objective of this thesis is to investigate the generalization performance in
a competitive coevolutionary learning setting. We would like to verify experimentally
whether using generalization estimates as the fitness measure during the evolution im-
proves the coevolutionary search and yields solutions which are more robust and gener-
alize better. Furthermore, we aim at inspecting the notion stating that coevolutionary
learning leads to the search of strategies with increasingly higher utility provided the gen-
eralization framework is used. We employ not only various quality measures but also
make extensive use of different experimental settings to thoroughly examine the influence
of generalization framework on coevolution. Moreover, we consider an enhanced version of
coevolutionary learning and compare it to the improved approach which relies directly on
the generalization estimates. Apart from these goals, we have several additional objectives
to fulfill:

e Design an efficient coevolutionary algorithm capable of competing with ICL in terms
of the generalization performance.

e Employ different player architectures and examine performance of the studied algo-
rithms with reference to the generalization performance.

e Compare various coevolutionary algorithms on the generalization performance cri-
terion.

e Develop a software framework to conduct computational experiments.






Chapter 2

Background & Methods

2.1 Test-Based Problems

Development of automated problem solvers is one of central themes of artificial intelli-
gence. However, designing algorithms that are expected to successfully realize this idea,
requires in-depth knowledge about a considered problem’s domain. A number of problems
investigated in the field of computational intelligence can be formulated as an optimization
process. In an optimization problem both model of solution (knowledge about an under-
lying system) and desired output (answer of the system) are known a priori, providing
the ability to describe the task as finding an input leading to the expected output with
respect to the function defined on the domain. Alternatively, this can be seen as maximiz-
ing or minimizing a given objective function which from the problem-solving perspective
represents finding a solution to the task.

However, there exists a broad range of compound problems for which the objective
function does not exist or is so complex that evaluating it becomes computationally in-
tractable. For instance, in the context of learning game-playing strategies an objective
function could be defined as the expected result over games with all possible strategies
from the problem’s search space. Unfortunately, even for simple games the number of
different strategies is so computationally intractable [65].

Problems that are dependent upon interactions with usually a large set of some ab-
stract tests are called test-based problems [8]. The most prevalent goal set before these
interactions is estimation of quality of the candidate solution. Other terms commonly
used for similar types of problems are coevolutionary domain [27], competitive fitness
environment [2] or interactive domain [29].

More formally, we define a test-based problem as a formal object G = (S, T', G) which
consist of:

e a set S of candidate solutions
e aset T of tests
e an interaction function G : S x T' — R.
In this thesis we restrict our attention to the case where the codomain of G consists

of number of points possible to score in the game of Othello, that is a set {0,1,3}. If
G (s,t) = 0, we say that solution s loses the interaction (game in this case) with ¢; if
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G (s,t) = 1, we say that s draws the game with ¢; finally, ifG (s, t) = 3, solution s wins the
interaction. Since in this thesis we focus on symmetrical test-based problems, we assume
that S = T. Importantly, there are still two roles: candidate solutions and tests, but they
are played by the same entities.

Commonly used solution concept for the test-based problems is known as maximization
of expected utility [29]. This concept involves seeking a candidate solution maximizing
the expected score against a randomly selected opponent. Adoption of this framing is
equivalent to formulating learning task as an optimization problem in which the objective
function is the expected performance achieved in the course of competition against any
possible opponents from the set of tests T. Even though such definition of the best scoring
strategy is natural and intuitive, it is infeasible to compute the exact performance of an
individual due to the vast number of potential opponent strategies. This issue can be dealt
with by dropping the expensive objective function in favor of approximate quality measures
which limit the number of opponents resulting in computationally feasible function.

2.2 Generalization performance

2.2.1 Origins

Generalization is the ability of a machine learning algorithm to perform well on previously
unseen data after being trained on a training examples. In the literature it is often referred
to in terms of input-output pairs — the core objective is to find a solution that best predicts
the required output for any input that has not been seen during the training process.
Generally, distribution of training examples used to train the algorithm is unknown, thus
forcing the learner to extract and capture core characteristic of the data and subsequently
apply the discovered patterns in new cases to accurately predict the output. Thus, the
ultimate goal set before the learner is to generalize from its experience [5].

Even though the notion of generalization is well documented and understood in the field
of machine learning, it is not clear how to apply generalization paradigms to coevolution-
ary learning ground due to a lack of theoretical framework to justify how the generalization
performance is determined with respect to the particular problem. Nevertheless, first at-
tempts to adopt the generalization framework and investigate the coevolutionary learning
through the prism of generalization performance were carried out in [87, 13]. Those studies
have used a large sample of random test cases obtained from the search space to estimate
the true generalization performance. Since the true generalization performance is calcu-
lated using the entire space, it is impossible to determine how accurate such an estimation
is. This issue was later addressed by the theoretical framework intended for more precise,
quantitative performance analysis of coevolutionary learning proposed in [11]. The gen-
eralization performance of a solution was estimated using a set of random test cases by
aggregating interaction results and taking their average outcome with confidence bounds
provided by Chebyshev’s theorem [43]. Recently, this approach was further improved in
[10] by exploiting the near-Gaussian nature of generalization estimates. Consequently,
tighter bounds based on parametric testing could be provided, eventually allowing to find
the required number of test cases for a robust generalization performance estimation.
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We give two reasons why applying the concept of measuring generalization perfor-
mance to coevolutionary learning is worth venturing. First, it could be used to provide
an absolute quality measure on how well a coevolutionary learning system is performing
in the context of a particular problem. In such case, one could answer the question of
how well the coevolutionary learning generalizes. Second, it can be used as a means to
compare the overall performance of different coevolutionary learning systems with respect
to the particular problem.

2.2.2 Definition

We define true generalization performance of a strategy s € S as its expected performance
over test strategies from set T'. Such a definition naturally defines the outcome of the search
as a strategy which maximizes expected score against a randomly selected opponent, or
more generally, maximizes the average outcome against all opponents when the selection
is based on an uniform distribution. This framing approximates the solution concept of
maximization of expected utility introduced in [29]. For simplicity, we sometimes refer to
the true generalization performance simply as generalization performance without loss of
generality.

Although this definition is simple and intuitive, the generalization performance can be
difficult to determine for at least two reasons. Firstly, the analytical function for game
outcomes can be unknown, thus in such cases we cannot determine the generalization
performance by solving analytically a closed-form formula. Secondly, the strategy space
is often large or even infinite, thus making it computationally intractable. To address this
issue, following [10] we estimate the generalization performance by calculating the average
performance of the evolved strategy against a sample Ty C T of test strategies randomly
drawn from the strategy space.

More formally, the estimated generalization performance of a strategys € S is given as
follows:

Gs(Tn) :% > G(s,t).

teTn

2.2.3 Application of Generalization Performance to
Coevolutionary Learning

In coevolutionary learning, proper navigation through the problem search space requires
the fitness function to assess the utility of an individual objectively which in the coevo-
lutionary environment can only be attained by calculating the true generalization perfor-
mance, i.e., by playing against all possible opponent strategies and taking average game
outcomes. However, in most cases this is computationally infeasible. Previous research
[13, 87] is this field has shown that reducing the computational effort and biasing the search
by limiting the opponents sample may not necessarily lead to strategies with increasingly
higher utility. Approach presented by Chong et al. in [10] allows to find the required
number of opponents (test-cases) for a robust generalization performance estimation and
subsequently use it to guide coevolutionary search. These principles were successfully
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applied to the improved coevolutionary learning algorithm proposed for the first time in
[10].

2.3 Coevolution

2.3.1 Coevolutionary Algorithms

Coevolutionary algorithms are inspired by a biological evolutionary process and focus
on exploiting phenomenon of a arms race observed in natural environments. In nature,
fitness of a coevolving species is almost exclusively dependent on interactions with other
organisms and the environment they are living in. Dynamically changing environment
requires species to adapt and struggle for both survival and reproduction. When combined,
these principles formulate the natural selection law described by Darwin [17]. Since natural
selection rewards the fittest individuals, each species evolution moves towards development
of features which aim at either outperforming the competition or cooperating to achieve the
common goal. In this way, species exert selective pressure on each other, thus influencing
mutual evolutionary development. Ultimately, this allows certain species to evolve traits
which give them an edge over other coevolving organisms. All these principles influenced
development of coevolutionary algorithms and constitute a major source of inspiration for
them.

In computing science, coevolutionary algorithms have been introduced into the field
of artificial intelligence as an extension to evolutionary algorithms. They intend to model
interactions between individuals as observed in nature to accurately imitate fitness eval-
uation function. Specifically, individual’s fitness depends on other individuals, thereby is
subjective [84] in the sense that it is a function of its interactions with other individu-
als. The nature of those interaction might be either cooperative or competitive. In the
former case, individuals work together to achieve a common objective which can be natu-
rally viewed as decomposition of a difficult problem P, into sub-problems {p1,pa,...,pn}.
Thus, such algorithms are well suited for compositional problems [68, 85]. In case of the
competitive form, interactions usually take the form of an encounter between two or more
competing individuals, and consequently, a gain for one means a loss for the others. Thus,
a competitive coevolution is particularly useful when evaluation function is unknown or
difficult to define, perfectly fitting test-based problems. Since in this thesis we focus on
evolving game strategies, in the following, by “coevolutionary algorithm” we will mean its
competitive form.

Coevolutionary learning and evolutionary computing techniques are both search algo-
rithms based on the mechanisms of natural selection and genetics. That is, they apply
Darwinian principle of the survival of the fittest [17] among computational structures with
the stochastic processes of selection and variation that mimic the natural evolution such
as gene mutation and recombination. Since coevolutionary algorithms are derived from
evolutionary ones [34], they share core mechanics and features like for instance maintain-
ing a population of individuals. Central to all evolutionary computing techniques is the
idea of searching a problem space by randomly changing an initially random population of
solutions in such a manner that the better (fitter) solutions have more chances to survive
and pass their genes to subsequent generations.
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Contrary to evolutionary algorithms, the driving force behind coevolution is the con-
tinuous arms race taking place between competing individuals [60]. Differences between
coevolutionary and evolutionary approaches lie primarily in the evaluation phase, and are
related to the fitness assessment. Evolutionary algorithms designed to solve optimization
problems have direct access to the objective function of a problem, thus allowing to easily
compute individual’s objective fitness. In such case, it is possible to objectively assess how
good a particular individual (solution) is. On the other hand, in coevolutionary algorithms,
individual’s fitness is typically calculated by aggregating the outcomes of interactions it
participated in. As mentioned earlier, the fitness assigned to the individual is subject
to the state of constantly changing environment. Thus, in coevolutionary algorithms, the
relative fitness substitutes objective fitness and guides the selection procedure, but the cor-
relation between the subjective and objective fitness of a solution is generally unknown.
Thus, we can only determine how good the particular individual fares in the context of
other individuals of (usually) the same generation. Ensuring objective progress continues
to be a major challenge in coevolutionary ground. This constitutes well-motivated area of
research, however there are several methods which attempt to address this issue. One of
them are coevolutionary archives discussed in Section 2.3.3.

2.3.2 Interaction Patterns

In this study, we rely on a single, homogeneous population of players. In the literature
such a setup is known as one-population coevolution [57] or is also referred to as compet-
itive fitness environment [2, 55]. In coevolutionary algorithms individuals are evaluated
on the basis of interactions with other individuals. However, prior to evaluation oppo-
nents for each individual must be specified. The abstract pattern responsible for pairing
individuals is known as competition topology and has been subject to previous research in
[2, 61, 78]. Among many popular topologies, one commonly used in practice is a Round-
Robin Tournament. In this pattern each member of population interacts with every other
individual. For instance, in one-population coevolution all members of population serve
as opponents, except for the one being evaluated. Such an approach results in the most
accurate evaluation.

2.3.3 Coevolutionary Archives

A method in coevolutionary learning aimed at improving reliability and sustaining overall
progress during search is an coevolutionary archive by counteracting, or at least neutral-
izing, the negative impact of coevolutionary pathologies. Typically, an archive is defined
as a set of top-performing individuals encountered during the evolutionary process. The
most common archives employed in the literature can be described as best-of-generation
models as they consist of the fittest individuals of the m most recent generations. Such an
archive is also known as Hall of Fame [73]. Keeping a sample of individuals in the archive
allows to achieve a sense of historical progress by testing current solutions against those
already present in the archive [28]. Additionally, an archive is a source of genetic material
for future generations, thereby preventing extinction of certain valuable traits.

Apart from classical Hall of Fame, modern examples of archives include Incremental



12 2 Background & Methods

Pareto Coevolution Archive [18], Layered Pareto Coevolution Archive [20], MaxSolve [19],
DECA [22], EPCA [86] and Nash Memory [28].

2.3.4 Diversity Maintenance

A tendency towards reduced population diversity along with the problem of premature
convergence is a major concern of the evolutionary computation. To address this issue,
several attempts to maintain genetic diversity have been proposed. All of these methods
rely on the assumption that the loss of diversity in the population of individuals can be
harmful to the optimization process as it may restrict the search to local optima. On the
other hand, the bigger diversity of the population, the better exploration of the problem’s
search space.

The most popular diversity maintenance techniques include deterministic crowding
[24], fitness sharing [38], competitive fitness sharing [73, 72] and spatial embedding [39].

Among them, competitive fitness sharing proposed by Rosin and Belew is particularly
interesting because it maintains genetic diversity in a population by encouraging niching
— individuals are rewarded for being able to beat opponents that few others can. In co-
evolutionary scenarios opponents are often treated as a resource shared among individuals.
As opposed to the usual way to assign fitness based on the outcomes of interactions across
all competitions [2, 39, 4], in competitive fitness sharing the fitness assigned to a candi-
date solution (individual) s defeating tests (other individuals) from 7" is given as > ,cp N%,
where N, is the total number of candidate solutions in the population defeating test ¢.
Consequently, individuals are rewarded less for how many opponents they overcome and
more for who they outmatch, rewarding genetic novelty and maintaining diversity. Thus,
competitive fitness sharing attempts to secure survival of important individuals through-
out the evolution process.

Diversity maintenance was found to counterpart to some extend disengagement, since
it is directly associated with a loss of diversity [7, 9].

2.3.5 Advantages of Coevolution

There are several benefits of applying coevolutionary algorithms to test-based problems.
Firstly, coevolution it is able to autonomously acquire knowledge about the problem do-
main, efficiently imitating the natural human learning process. Consequently, similarly
to other unsupervised learning approaches, coevolution is capable of developing solutions
to the problem without any human expertise. Secondly, contrary to the evolutionary
approach, they do not require an objective fitness function to evaluate individuals — in-
teractions among competing population members are sufficient to guide the search. Conse-
quently, by engaging players in the mutual pressure to outperform each other, coevolution
provides an adaptive gradient that might otherwise be hard to obtain [64]. Interesting
feature of coevolutionary learning is focusing which refers to the ability of adaptation to
those aspects of task which have not yet been optimized. This can be achieved by using
coevolving individuals as opponents [39, 44]. Finally, coevolutionary algorithms constitute
generic framework naturally suited to solve problems that cannot be framed in the context
of optimization.
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Coevolution is also a method capable of solving open-ended problems [31]. This is
possible since it does not require the objective fitness function to exist.

2.4 Othello

2.4.1 Brief History

Othello was originally invented with the name Reversi in England around 1883 by Lewis
Waterman, who in fact may have copied most of the ideas of the game from John W.
Mollett. “The Game of Annexation” published in 1870 by Mollet was a very similar game
with nearly identical rules but used a cross shaped board instead of a standard square
one.

The modern rule set of Othello used during the international tournaments originated in
the 1970s in Japan and was proposed by Goro Hasegawa. The name of the game was chosen
with reference to the play by William Shakespeare “Othello, the Moor of Venice”, most
likely referring to the conflict between the Moor Othello and ITago — the main character of
the play. Nevertheless, as the game was dynamic and full of dramatic reversals, it quickly
gained notable popularity in Japan followed by Europe and North America.

Today, Othello is perceived as a simple classic board game, however it is still one of
the most popular games with numerous tournaments and regular world championships.

2.4.2 Game Rules

The game of Othello is a deterministic, perfect information, zero-sum board game played
by two players on an 8 X 8 board. There are 64 identical pieces typically called disks, which
are white on one side and black on the other. Each of the two sides corresponds to one
player which are referred to as light and dark after the sides of Othello pieces. The game
starts with the center four squares of the board occupied with two black and two white
pieces arranged diagonally. Players make moves alternately by placing their pieces of on
the board until it is completely filled or until neither of them is able to make a subsequent,
legal move. The ultimate objective of the game is to have the majority of own pieces on
the board at the end of the game. The game might end in a draw, provided both players
have placed the same number of disks on the board.

In Othello, the black player starts the game by making a first move. A legal move
consists of placing a new piece on an empty square adjacent horizontally, vertically, or
diagonally to an opponent’s existing piece. However, the move must be made in such
a manner that at least one of opponent’s pieces lies between the player’s new piece and
existing pieces. After placing the piece, all opponent’s pieces lying in the line are flipped
over to become the player’s pieces. If multiple lines exist, flipping affects them all. This
is the main reason why the game is so dynamic — in a single move a player may gain
significant advantage over the other player, effectively turning the tide. If a player has no
valid moves, he forfeits by passing the turn to the opponent who is rewarded by playing
a second turn in a row. The game ends when all the squares of the board are either filled
with pieces or when neither player is able to make a legal move.
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2.4.3 Strategy Representation

Important issue to be considered when learning game-playing strategies is the architecture
of a player which is greatly influenced by the strategy representation. There are many
different strategy representations, however for the purpose of this study, we focus on
weighted piece counters and n-tuple networks.

24.3.1 WPC

The position-weighted piece counter (WPC) is a linear weighted board evaluation function
which implements a state evaluator concept [80, 82]. Therefore, it is explicitly used to
evaluate how beneficial a given state is for the particular player. The WPC evaluation
function of an Othello game strategy takes the form of a vector of 64 weights. It assigns
a weight w; to a board location ¢ and uses scalar product to calculate the utility f of a

board state b:
8x8

f(b) = wb.
=1

The input value b; depends on the occupation of the particular board location. More
specifically, it is equal to 0 in case of an empty location, +1 if a black piece is present or -1 in
case of a white piece. The output of this function reveals how favorable a given board state
b is for a particular player. The players interpret this value in a complementary manner:
the black player prefers moves leading towards states with a higher value, whereas lower
values are favored by the white player.

A strategy represented by WPC can be easily understood by inspecting the weight
values. For instance, Fig. 2.1 shows the weights matrix of a standard heuristic player
(SWH). As it can be easily seen, high values placed in the corners imply that the player
focuses on obtaining those squares at the same time avoiding adjacent locations since they
contain the lowest values from the whole matrix.

Simplicity of WPC is considered to be its primary advantage. Such representation
results in fast board evaluation, thus allowing to conduct many games in a relatively short
time.

Position-weighted piece counter representation has been commonly used in previous
research [54, 47, 74].

1.00 -0.25 0.10 0.05 0.05 0.10 -0.25 1.00
-0.25 -0.25 0.01 0.01 0.01 0.01 -0.25 -0.25
0.10 0.01 0.06 0.02 0.02 0.05 0.01 0.10
0.05 0.01 0.02 0.01 0.01 0.02 0.01 0.05
0.05 0.01 0.02 0.01 001 0.02 0.01 0.05
0.10 0.01 0.056 0.02 0.02 0.05 0.01 0.10
-0.25 -0.25 0.01 0.01 0.01 0.01 -0.25 -0.25
1.00 -0.25 0.10 0.05 0.05 0.10 -0.25 1.00

Figure 2.1: The standard heuristic player's strategy represented by WPC.
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2.4.3.2 n-tuple Network Architecture

An n-tuple network is a specific type of artificial neural network [1] and was originally
developed for use in optical character recognition by Bledsoe and Browning [6]. Is was
also successfully applied to classification [71] and function approximation tasks [48]. In the
context of this thesis, particularly influential articles have been recently published which
employed the n-tuple architecture for game-playing purposes [52, 50].

An n-tuple system operates on some complex entity X, which elements can be retrieved
using some form of coordinates. For the purpose of processing any input object consistent
with assumptions of the considered system, an n-tuple network begins with sampling
it with m n-tuples. Such an n-tuple is defined as a sequence of n variables a;;,j =
0...n—1,=0...m — 1, each corresponding to predetermined coordinates in the input.
Furthermore, it might be viewed as a template for an n-digit number in base-v numeral
system, assuming that each variable takes one of v possible values. The number represented
by the n-tuple ¢; is used internally as an index in the associated look-up table LUT; which
contains parameters equivalent to weights in a typical neural network. Thus, for a given
input X, the output of the n-tuple network can be calculated as follows:

m—1 n—1
F(X)=> LUT; |y x(ai) v’ |,
i=0 j=0

where x (a;;) denotes retrieving from X the element located at position pointed by a;;.

When applied to the problem of Othello, an n-tuple network is used as a state eval-
uation function, taking board state as an input and returning its utility. A set of inputs
is taken from specific board locations each encoded as 0,1, 2 provided it is occupied by a
white piece, black piece, or is empty respectively. Therefore, an single n-tuple represents
a ternary number used as an index for the associated look-up table containing 3" entries.
Additionally, symmetric sampling proposed in [52] is utilized. Consequently, every n-tuple
is employed eight times, once for each of possible board reflection and rotation . To ob-
tain output of the particular n-tuple values from its look-up table indexed by all such
equivalents must be summed together.

A n-tuple network has several advantages making application to the game of Othello
particularly noteworthy. Firstly, it is conceptually simple and built upon well-known
artificial neural networks. Secondly, it is computationally efficient, as the computation
time is linear in the number of n-tuples in the network. Recent studies have shown that
it may be even 15 times faster than the best neural network [59]. Finally, its ability of
realizing non-linear mappings to spaces of higher dimensionality seems to be especially
promising as it allows traversing a search space more accurately.






Chapter 3
Experiments and Results

3.1 Experimental setup

3.1.1 Methods

In this thesis we compare several algorithms for solving test-based problems, which will
be described in the following subsections.

3.1.1.1 Coevolutionary Learning

In this thesis by Coevolutionary Learning (CCL) we denote a (1 + A) evolutionary strat-
egy [34] with competitive fitness. In order to learn game-playing strategy, the algorithm
begins with a population of p randomly generated players, which are then evolving for
m generations. Population members compete by playing games with each other. The
results of these confrontations determine the fitness which is assigned to each player. In
each generation a new population is created from the previous one. To accomplish this
the parents are deterministically selected from the set of both the parents and offspring.
Selection is based on the ranking of the individuals’ fitness taking the p best individuals
(often referred to as truncation selection [34]). Each of the p fittest individuals produce
A/ offspring through a mutation operator. Thus, the next generation consists of the p
parents and the A new offspring. No recombination operator is used. This method will be
used as a baseline for most of the forthcoming experiments. In our experiments we also
consider variation of this algorithm (denoted as CEL-ST1) which the presented setup with
the Hall of Fame archive and the competitive fitness sharing leaving the core of algorithm
intact.
CCL was used by Chong et al. for Iterated Prisoner Dillema and Othello in [10].

3.1.1.2 Coevolutionary Learning with Hall of Fame and Fitness
Sharing

Coevolutionary Learning with Hall of Fame (CEL-ST2) follows the idea of competitive
coevolution [4, 2] and is based upon typical, one population approach where the fitness
of individuals depends on the outcomes of interactions between them. To learn a game-
playing strategy, CEL starts with generating a random initial population of players. Prior
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to forming next generation, the best individuals are selected according to the relative,
internal fitness assessment and are subject to genetic variation operators such as recom-
bination and mutation. In this case, to evaluate the players we rely on the round-robin
tournament (see Section 2.3.2). Next, the evaluated players are selected by means of the
tournament selection, followed by the uniform crossover combined with Gaussian muta-
tion. Obtained in this way offspring replace the former individuals. Here we extend this
method with the Hall of Fame archive (see Section 2.3.3), which serves as a source of the
best-of-generation individuals discovered throughout the course of evolution. According to
Rosin and Belew [73], submission of the genetic material for future generations is essential
for the performance. Continuous evaluation against those individuals might ensure sense
of progression across the evolution. In order to further improve performance of evolved
strategies, simple sum fitness was abandoned in favour of the competitive fitness sharing
proposed by Rosin and Belew [73].

3.1.1.3 Improved Coevolutionary Learning

Improved Coevolutionary Learning (ICL) is an algorithm proposed for the first time by
Chong et al. in [10]. ICL directly relies on the generalization performance estimate as
the fitness measure during the evolution process. The learning procedure is exactly the
same as in the case of CCL (see Section 3.1.1.1) except for the evaluation step; instead
of using the competitive fitness (a round robin tournament) each individual is evaluated
against a set of random opponents. Throughout our experiments, we mostly rely on the
sample size of 50,000. However, to provide more accurate estimation, we sometimes use
the sample size of 1,000,000. Since the nature of coevolution requires that the individual’s
evaluation takes place in the context of at least one other individual (competitive fitness),
such formulating raises the question whether this approach can be called coevolution.
Typically in coevolution individual’s fitness is estimated by aggregating results of multiple
interactions between other members of population. Thus, in our opinion, ICL resembles
more an evolutionary algorithm rather than a coevolutionary one.

3.1.2 Players Architecture and Search Operators

Adopted strategy representation explicitly implies the nature of search space and indirectly
affects selection of the search operators. The considered search heuristics operate in a
continuous weight space in case of both WPC and n-tuple representation. The performance
of an evolutionary strategy depends on the design of the search operators such as mutation,
recombination and finally selection which will be further discussed in 3.1.4. Ideally, we
would like to design these operators in such a manner that they guarantee the evolvability,
i.e, searching a problem space in such a manner that the fitter solutions are obtained over
time, of the system throughout the evolution process. It is vital that any point in the
search space is reachable in a finite number of steps through a mutation because otherwise
the search procedure might not be able to escape a local optima. The main goal of
the recombination operator (also referred to as crossover) is to exchange of certain traits
between the individuals and to transfer of valuable components to the next generation.
In the first part of our experiments we follow the previous research in the field of
learning Othello strategies, and rely on the position-weighted piece counter (WPC) rep-
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resentation (see Section 2.4.3.1). Regarding the game of Othello, it is sufficient to learn
only 64 weights. In the following we give more details on employed breeding procedure
and adopted search operators. To begin with breeding, several individuals must be se-
lected. In order to accomplish this, the evaluated candidate solutions participate in the
typical tournament selection with tournament size of 5. Subsequently, chosen individuals
mate using uniform crossover, and the resulting offspring undergoes Gaussian mutation
(o = 0.25) with probability pym,m = 0.05. These operators are used in all of the studied
coevolutionary algorithms.

Promising potential unveiled in the recent studies [52, 59] have inspired us to apply the
n-tuple system (see Section 2.4.3.2) to the problem of Othello. Therefore, in the second
part of our experiments, we transform investigated algorithms to directly rely on on the
n-tuple system. We begin immediately with the largest 12 x 6 architecture (8748 weights)
which has been recently successfully applied to Othello by Manning [59]. Following [52] we
decided to employ the input assignment procedure that results in randomly placed snake-
shaped tuples. Regarding the look-up table weights, their initial values are randomly
scattered in the search space. For instance, in case of our algorithms, we start from
weights initialized randomly from the [-10, 10] range.

Due to differences between WPC and n-tuple strategy representations, different genetic
operators had to be employed in order to properly navigate the algorithm through the
problem search space defined by the n-tuple player’s architecture. The operators work
on lookup table weights and n-tuples positions, which together form individual’s genome.
The following genetic operators are used:

e weight mutation — each weight from the LUT table undergoes a Gaussian muta-
tion (o = 0.25) with probability pym, = 0.05.

e topology crossover — defines reproduction with probability prover = 1 — two
individuals exchange entire tuples along with look-up tables. During recombination
entire tuples are exchanged along with their lookup tables. Thus, each offspring
inherits m/2 randomly selected n-tuples from each parent, where m is the number
of n-tuples.

3.1.3 Measuring Quality of Evolved Strategies

Although in this thesis we concentrate on the maximization of expected utility solution
concept and we employ the generalization performance quality measure of evolved indi-
viduals, we also use two other quality measures, which are spotted in articles concerning
Othello. Used quality measure employed follow:

e Playing against random strategies — this method involves generating a set of
randomized strategies from the test set 7. An individual is evaluated on the basis
of games with previously sampled opponents. This method approximates the true
generalization performance of the particular individual. We note that this method
was previously used in [10, 87, 13] and will be also referred to as random sampling.

e Playing against the random player — this method tests how well candidate
solution performs against a wide variety of opponents. However, contrary to com-
peting against a completely random strategy, the evaluation is based on playing
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with a player who chooses a random move for each board state. We emphasize, that
playing against a random strategy is different from playing against a random player.
This quality measure was used first by Lucas and Runnarson [54] and more recently
in [50, 80, 81].

Playing against the standard heuristic player — the primary goal of this
quality measure is to study how well a player copes with relatively strong hand-
crafted WPC-based strategy, which is shown in Fig. 2.1. In order to make the
measure meaningful in a context of a deterministic game of Othello, we enforce
strategies to make random moves with probability e = 0.1 on both players to directly
affect their behavior diversity. Such formulation results in changed game definition,
however following [54], we assume that the ability to play such a randomized game
is positively correlated with the ability of playing the original deterministic Othello.
This method has been used in previous studies of Othello [80, 81, 59, 53] and it is
used to rank the strategies in the Othello League [53].

3.1.4 Selecting the Best Individual

Any algorithms solving a test-based problem must eventually select an individual which

is its final result. In case of coevolutionary algorithms the final individual is usually an

individual from the last generation, however it is not obvious which one should be returned,

since the true objective function is not known to the algorithm and the correlation between

a subjective fitness and the objective fitness is generally unknown [21].

We would like to emphasize that the selection of the final individual is important,

since it affects the result of comparison of studied algorithms. Here we use two methods

of selecting the final individuals:

e Subjective selection — an individual with the highest fitness is selected. Impor-

tantly, this method does not involve any extra computation, since it directly employs
the fitness measure used during the evaluation of an individual. However, assuming
a correlation between subjective and objective fitness may be misleading. Conse-
quently, finding the best individual in terms of objective fitness is not guaranteed.
Despite this drawback, this approach is extensively used during our experiments
and for a certain generation an individual selected in this way is denoted as sub-
jectively best-of-generation individual, while subjectively best-of-run individual is the
subjectively best-of-generation individual for the last generation.

Objective selection — defining objective measure of the individual’s quality for
the test-based problems is often not a simple task due to inaccurate evaluation of
the candidate solutions. More importantly, fitness value obtained by an individual is
subject to a relative function which outcome depends on the context of individuals in
the same evolutionary process. Therefore, subjective fitness cannot be directly used
to asset the objective quality of an individual. Intuitively, one of the possible ways
to approximate individual’s quality is to simulate interactions and mutual influences
with either random or expert individual, i.e. game player or strategy. Following this
concept and extending Chong’s research, we decided to estimate objective fitness
by testing each candidate against a sample of randomly generated strategies. Such
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measure is capable of closely reflecting strategy’s true performance. The obvious
downside of this method is substantial computational effort required to compute
objective fitness value. We will refer to the individual selected in such a manner as
objectively best-of-generation individual.

3.2 Rerun of Chong’s Experiments

3.2.1 Experiment Setup and Objective

In order to set the baseline for our investigation in the first experiment we repeat some of
the experiments performed by Chong et al. [10] on Othello. More specifically, we focus
on measuring generalization performance of Othello strategies. To achieve this goal, we
estimate the generalization performance of a black player through games against a random
test sample of white players. We considered four algorithms: CCL and three versions of
ICL: ICL-N50000, ICL-N500 and ICL-N125, which was not considered by Chong et al.
All strategies were encoded by WPC and were learning to play black (see Section 2.4.3.1).
Following Chong et al. [10], CCL maintained 50 and ICL 20 individuals in the population.
As the number of generations was set to 200 for all algorithms, the computational effort
expressed in the number of games played during learning, is different for each method (see
Table 3.1). That is why for a direct comparison we included algorithm ICL-N125, which
has the same computational effort as CCL. For statistical significance all experiments were
repeated 30 times.

3.2.2 Results

Results of the experiment are summarized in Table 3.1. Average, Min and Max columns de-
note the results obtained by the subjectively best-of-run individual. As a quality measure
we used an estimate of generalization performance obtained using 50,000 random white
player WPC strategies. Average results are followed by the confidence interval value after
the + sign. The column denoted by t-test presents the ¢ value obtained using a two-tailed
test with 29 degrees of freedom which is statistically significant at level o = 0.05.

The results obtained in our experiment confirm the results reported by Chong et al.
Average results obtained by us differ by at most 0.017 from results reported in [10]. All
versions of ICL produce much better results than CCL and the differences are statistically
significant. The more computational effort, the better results obtained by ICL, but even
when the computational effort is the same, ICL-N125 surpasses CCL by a large margin.

Figures 3.1-3.4 present the generalization performance of 30 individual runs on a single
plot. We can also confirm the observation of Chong et. al that among the considered
methods CCL is characterized by the largest variance. We emphasize that due to the
large sample size used in case of ICL-N50000, estimated generalization performance is
close to the true generalization performance. This can

Figure 3.5 compares subjective average results of four considered methods on a single
axis (computational effort). Notice that CCL is far worse than any ICL.
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Table 3.1: Comparison of CCL and ICL algorithms learning to play Othello with black pieces. Strategies
are represented by WPC. Results for subjective best-of-run individuals.

Algorithm #Gen. Pop.Size Comp. Effort  Average (50k) Min Max t-test

CCL 200 50 500,000 0.7518 £0.0191 0.6406 0.8253 -

ICL-N125 200 20 500,000  0.858 £0.0061 0.8234 0.8891 -10.8877

ICL-N500 200 20 2,000,000 0.8801 +£0.0055 0.8433 0.9089 -13.2823

ICL-N50000 200 20 200,000,000  0.907 £0.003  0.8923 0.9197 -16.5051
1,
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Figure 3.1: Estimated generalization performance of the subjectively best-of-

generation strategy from the population measured during the evolutionary process.
CCL algorithm learning to play black. Based on WPC architecture.
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ICL-N500 algorithm learning to play black. Based on WPC architecture.
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generation strategy from the population measured throughout the evolutionary process.
ICL-N50000 algorithm learning to play black. Based on WPC architecture.
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Figure 3.5: Comparison of estimated generalization performance of the subjectively
best-of-generation strategies measured throughout the evolutionary process for CCL
and ICL algorithms. WPC architecture. Algorithms learning to play black.
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3.2.3 Discussion

The results obtained in this experiment may be surprising for the practitioners using
coevolutionary methods. A straightforward evolutionary strategy with a random sampling
(ICL) can be better than a competitive fitness coevolution (ICL). This raises the question
whether there are any conditions for which coevolution is better. We will investigate this
issue in the following experiments.

3.3 Analysis of CEL Performance

3.3.1 Experiment Setup and Objective

Since the coevolutionary algorithm (CCL) used by Chong et al. [10] is simple (see Section
3.1.1.1), it may not adequately represent what can be achieved using modern coevolution-
ary methods. In this section, we extend the analysis performed in the previous one by
evaluating the coevolutionary learning algorithm enhanced with the Hall of Fame archive
and the competitive fitness sharing method (CEL, see Section 3.1.1.2). We consider two
different setups of CEL: CEL-ST1 and CEL-ST2. The objective of CEL-ST1 is solely to
verify the impact of using an archive and a diversity maintenance method on the general-
ization performance as it only extends the CCL mechanics with i) the Hall of Fame archive
and ii) the competitive fitness sharing. On the other hand, CEL-ST2 is built from scratch
and is expected to answer the question of how well modern coevolutionary algorithm per-
forms when compared to ICL. Both CEL-ST1 and CEL-ST2 maintain 50 individuals in
the population. To allow for a comparison between methods, in case of CEL-ST1 we set
the number of generations to 100 while for CEL-ST2 the number of generations was set
to 400.

3.3.2 Results and Discussion

Results of this experiments and the previous one were merged and summarized in Table
3.2. Figures 3.6 and 3.7 present the generalization performance of the subjectively best-of-
generation strategy for each generation of the evolutionary process for 30 independent runs.
Similarly to the previous experiment, we used an estimate of generalization performance
obtained using 50,000 random white player WPC strategies as the quality measure.

The results obtained in this experiment prove that it is possible to design much better
coevolutionary algorithm than the simple CCL. Notice that while computational efforts
of CEL-ST1 and CCL are even, the increase in performance exceeds 4%. Moreover, the
extremes have also significantly changed in favor of CEL-ST1. Interestingly, in case of
CEL-ST2 we notice further improvement in the generalization performance, however at
the expense of increased computational effort. On the other hand even CEL-ST2 does not
match ICL algorithm of the same computational effort (ICL-N500).

Therefore we conclude that upgrading a simple coevolutionary algorithm with the
Hall of Fame archive and the competitive fitness sharing leads to significant increase in
the generalization performance. Nevertheless, results achieved by both versions of CEL
are still worse than any variant of ICL, unquestionably confirming their supremacy.
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Figure 3.8 compares subjective average results of all considered methods on a single
axis (computational effort). Notice that while CEL-ST2 learns more rapidly than any
other method, in the long run it achieves the same level of performance as ICL-N125.
CEL-ST1 proved to be better than CCL, however the difference is rather small.

Our experiment has shown, that in the field of playing games with a random strategy,

ICL has no worthy opponent. Intrigued by these results, we will analyze the nature of this
success deeper in subsequent experiments.

Table 3.2: Results for different algorithms. Black. WPC. Subjectively best-of-last-generation players.

Method #Gen. PopSize Comp. Effort Avg Min Max t-test
CCL 200 50 500,000 0.7518 £0.0191 0.6406 0.8253 -
ICL-N125 200 20 500,000 0.858 £0.0061 0.8234 0.8891 -10.8877
ICL-N500 200 20 2,000,000 0.8801 +0.0055 0.8433 0.9089 -13.2823
ICL-N50000 200 20 200,000,000  0.907 £0.003  0.8923 0.9197 -16.5051
CEL-ST1 100 50 500,000 0.7923 +£0.0127 0.7046 0.8592  -3.6309
CEL-ST2 400 50 2,000,000 0.8277 £0.013 0.7271 0.8885  -5.778
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Figure 3.6: Estimated generalization performance of the subjectively best-of-
generation strategy from the population measured throughout the evolutionary process.
CEL-ST1 algorithm learning to play black. Based on WPC architecture.
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Figure 3.7: Estimated generalization performance of the subjectively best-of-

generation strategy from the population measured throughout the evolutionary process.
CEL-ST2 algorithm learning to play black. Based on WPC architecture.
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Figure 3.8: Comparison of estimated generalization performance of the subjectively
best-of-generation strategies measured throughout the evolutionary process of CCL,
CEL and ICL. WPC architecture. Algorithms learning to play black.
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3.4 Subjective vs. Objective Selection

3.4.1 Experiment Setup and Objective

Measuring generalization performance involves selecting the best-of-generation individual
at the end of every generation throughout the run. Following Chong et al, in the pre-
vious experiments we used to this aim subjective best-of-generation selection procedure
(see Section 3.1.4). However, simply choosing the individual with the highest fitness may
not necessarily yield the best individual due to the relative nature of fitness evaluation
in the coevolution. The purpose of this experiment is to investigate whether employing
an objective selection improves the overall generalization performance of the studied algo-
rithms. Since any form of objective selection requires additional computational effort, we
would like to determine whether such an approach is profitable in the long term. Objec-
tive selection method employed in this experiment is based on estimating generalization
performance of every candidate solution in the population and subsequently choosing one
with the highest value. Thus, prior to determining the best-of-generation individual, we
estimate the generalization performance of each individual by playing 50,000 games with
strategies randomly drawn from the test set T. We will always refer to the subjective and
objective selection in the context of best-of-generation selection, unless stated otherwise.

3.4.2 Results and Discussion

Results of the experiment are shown in Table 3.3. Notice that the objective selection
leads to noticeable improvements in the generalization performance in case of every stud-
ied method. Objective selection turned out to be especially beneficial for CEL and CCL.
The increase in the generalization performance reaches 0.0435 in case of CEL-ST1. How-
ever, this is not the case when ICL algorithms are considered since they already use the
generalization performance estimates directly as the fitness measure. Consequently, the
observed impact of objective selection is much weaker. This is especially visible in case
of the ICL-N50000 where the difference between average results obtained using subjec-
tive and objective selection is just 0.0009. This can be explained by the fact that both
ICL-N50000 and the objective selection procedure use equal sample sizes to estimate the
generalization performance.

Observe that, comparing the algorithms using objectively best-of-generation individ-
uals, the gap between ICL algorithms and coevolutionary algorithms, although still non
negligible, is further reduced.
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Table 3.3: Impact of objective and subjective selection methods on the generalization performance.

Method Subjective Objective
Avg Min Max Avg Min Max
CCL 0.7518 £ 0.0191 0.6406 0.8253 0.7883 £0.0169 0.6641 0.8448

ICL-N125 0.858 £0.0061 0.8234 0.8891 0.8678 £0.0051 0.8488 0.8927
ICL-N500 0.8801 £0.0055 0.8433 0.9089 0.886 £ 0.0054 0.8467 0.9178
ICL-N50000  0.907 £0.003  0.8923 0.9197 0.9079 £0.0028 0.8946 0.9206
CEL-ST1 0.7923 £0.0127 0.7046 0.8592 0.8358 £0.0079 0.8054 0.8793
CEL-ST2 0.8277£0.013 0.7271 0.8885 0.8588 £0.0077 0.8022 0.9019

3.5 ICL Performance Against a Heuristic Player

3.5.1 Experiment Setup and Objective

The purpose of this experiment is to examine the average performance of ICL on a different
quality measure than generalized performance used by Chong et al. This time, we measure
the quality of 30 subjectively best-of-run players evolved by each of the studied method in
50,000 games against a heuristic player (see Section 3.1.3). Additionally, to complement
the comparison, we decided to study the generalization performance of a heuristic player

3.5.2 Results and Discussion

The results of this experiment are summarized in Table 3.4. For brevity, we note that the
average performance refers to the objective quality achieved by best-of-run players in games
with a heuristic player, averaged over 30 runs. The analysis of the results leads to the
following conclusions. Firstly, it can be observed that the average performance obtained by
CEL-ST?2 surpasses ICL-N125 by a little margin (recall that the methods share the same
computational effort). Notice also that the Hall of Fame archive and the competitive
fitness sharing help both CEL-ST1 and CEL-ST2 to achieve a higher level of player when
compared to the CCL. Secondly, ICL-N500 which has the same computational effort as
CEL-ST2 is still slightly better, although the difference is very small and reaches only
0.0087. Interestingly, despite the fact that ICL-N50000 uses much more computational
effort than any other studied method, we observe that beyond the limit set by ICL-N500
there is no significant increase in the average performance since the difference between
them is only 0.0016. We note that the results achieved by CEL-ST1 and CEL-ST2 are
consistent with those reported in [50].

In terms of the objective quality obtained by best-of-run players, superiority of ICL
over CEL is noticeable, especially when the bigger learning samples are used throughout
the evolution, as it is in the case of ICL-N500 and ICL-N50000. However, this leads to a
significant raise in the computational effort (cf. Table on page 26). We notice that CEL-
ST2 is close to ICL-N500 as difference between them is only 0.0087. The same conclusion
applies to CEL-ST1 and ICL-N125.
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Table 3.4: Average performance of the subjectively best-of-run players against a heuristic player.
Algorithms were learning to play black.

Method Avg Min Max

CCL 0.2228 £0.0186 0.135  0.3344
CEL-ST1 0.2641 £0.0155 0.1839 0.36

CEL-ST2 0.2841 £0.0155 0.1939 0.3725
ICL-N125 0.2728 £0.0185 0.1677 0.3663
ICL-N500 0.2928 £0.0166 0.208  0.3755
ICL-N50000 0.2964 £0.0172 0.2103 0.3917

3.5.3 Generalization Performance of a Heuristic Player

Table 3.5 shows the estimated generalization performance of a heuristic player using both
50,000 and 1,000,000 random white player WPC strategies. It is surprising that heuris-
tic player is so weak compared to best WPC players, because in direct (randomized as
explained in 3.1.3) game with CTDL+HoF it wins in ca. 55% of times [81]. Similarly,
it wins in ca. 55% of times with TDL+CEL+HoF [80]. Thus, we conclude that SWH is
not a good player on average but the question is why it does so well against coevolved
WPC players. Although interesting, we did try to explain this phenomena through other
experiments; it requires further research.

Table 3.5: Estimated generalization performance of a heuristic player. Different sample sizes.

Player Encoding 50k 1mln

SWH WPC 0.74456 0.745776

3.6 ICL Performance Against a Random Player

3.6.1 Experiment Setup and Objective

Similarly to the previous experiment, we would like to assess the average performance of
the improved coevolutionary learning algorithm using another popular objective quality
measure, that is games with a random player. To pursue this goal, we measure the quality
of 30 subjectively best-of-run players evolved by each of the studied method in 50,000
games against a random player (see Section 3.1.3).

3.6.2 Results and Discussion

The results of this experiment are summarized in Table 3.6. For brevity, we note that
the average performance refers to the subjective quality achieved by best-of-run players in
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games with a random player, averaged over 30 runs.

Basing on the results, we draw several conclusions. First, note that the order of
methods is the same as in the previous section (cf. Table 3.4). Furthermore, we observe
that CEL-ST2 is once again close to ICL-N500 as difference between them is only 0.0146.
Significant superiority of the improved coevolutionary learning is manifested only in case of
ICL-N50000. However, we stress that this variant of ICL uses substantially larger learning
sample throughout the evolution, and consequently employs much more computational
effort.

We note that the results achieved by CEL-ST1 and CEL-ST2 are consistent with those
reported in [81, 82]. Nevertheless, we observed that regardless of the quality measure, clas-
sical coevolutionary learning represented by CCL does not yield satisfactory results. Thus,
on the basis of conducted experiments, we agree with Chong et al. that simple coevolu-
tionary learning does not necessarily lead to evolving strategies with increasingly higher
generalization performance when a relative fitness measure is used to guide the search.
Finally, we emphasize that it is possible to design a much better algorithm than CCL
which is comparable to ICL-N125 and ICL-N500 in terms of objective quality obtained by
best-of-run players.

Table 3.6: Average performance of the subjectively best-of-run players against a random player.
Algorithms were learning to play black.

Method Avg Min Max

CCL 0.7088 £0.0153 0.6254 0.7847
CEL-ST1 0.7935 £ 0.0102 0.7335 0.8423
CEL-ST2 0.8216 £0.092  0.7524 0.8679
ICL-N125 0.8171 £0.0075 0.7745 0.853

ICL-N500 0.8362 & 0.0066 0.8094 0.8759
ICL-N50000 0.8641 £0.0045 0.8442 0.8883

3.7 ICL Performance Against Random n-tuple
Strategies

3.7.1 Experiment Setup and Objective

The objective of this experiment is to compare the studied algorithms using another cri-
terion. In this experiment as a quality measure we used an estimate of generalization
performance obtained using 50,000 random white player n-tuple strategies. Prior to the
forthcoming experiments which employ the n-tuple system in the role of player’s architec-
ture, we would to see how the WPC-based and n-tuple-based quality measures correlate.
More details on measuring objective quality of a player by means of random sampling can
be found in Section 3.1.3.
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3.7.2 Results and Discussion

The objective quality achieved by best-of-run players in games with a random n-tuple
player, averaged over 30 runs, is presented in Table 3.7. Not surprisingly, the results of
this experiment repeat the pattern observed in the previous experiments. We observe
that the more computational effort, the better results obtained by ICL, but even when
the computational efforts are the same, ICL still beats CEL, as in the case of CEL-ST2
and ICL-N500. More interestingly, our results imply that it is fairly easier to win with a
random n-tuple strategy than with a random WPC strategy (cf. Table 3.2). The key to
properly understand these results lies in the probabilistic nature of the adopted measure.
We hypothesize that the probability of sampling a well performing strategy is smaller
in case of the n-tuple architecture due to its increased complexity when compared to
the WPC. Consequently, when sampling n-tuple strategies, their average performance is
accordingly lower. Upon this experiment, we hypothesize that random WPC strategies
pose a greater challenge, thus guiding coevolutionary search on the basis of games against
them might yield better results. We will use these premises in the subsequent experiment.

Table 3.7: Average performance of the subjectively best-of-generation individuals against a set of
randomly generated n-tuple strategy. Algorithms were learning to play black.

Method Avg Min Max

CCL 0.75+£0.0172 0.6545 0.8197
CEL-ST1 0.8148 £0.013  0.7219 0.8638
CEL-ST2 0.8589 £0.041  0.8336 0.8918
ICL-N125 0.8514 £0.0063 0.8224 0.8839
ICL-N500 0.8697 £0.0054 0.8455 0.9063
ICL-N50000 0.8955+0.0036 0.8759 0.9133

3.8 ICL vs. CEL on the n-tuple Architecture

3.8.1 Experiment Setup and Objective

In Section 3.2.1 we confirmed the results obtained by Chong et al. and we admitted
that guiding the coevolutionary search on the basis of games against a sample of random
opponents employed by ICL has a great potential when applied to the problem of Oth-
ello. Nevertheless, we would like to point out that the previous research in this field is
limited to the study based on the WPC representation [10]. To further investigate the
performance of ICL, we use considerably more complex, non-linear architecture to encode
player’s strategy — a symmetric n-tuple network discussed in Section 2.4.3.2. To pro-
vide a fair comparison, we decided to assume the same settings which were used in our
previous experiment described in Section 3.2.1. We consider three algorithms: CEL-ST2
and two versions of ICL: ICL-N500 and ICL-N125. ICL-N50000 was not included in our
comparison since with n-tuple architecture it demands too much computational power. As
one generation requires over 1 hour of computation, the whole experiment consisting of
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30 runs of 200 generations would eventually take at around 250 days. Provided we could
use computational laboratory equipped with 15 4-core 3.09GHz computers, we would still
need over 16 days to finish the computation. Unfortunately, for the purpose of this study,
we could not afford such expenses. Thus, we will focus on the ICL with smaller samples.

Our ultimate goal is to find a coevolutionary algorithm of better performance than
ICL, thus in this experiment we do not consider CEL-ST1, which has been found worse
than CEL-ST2 in the previous experiments (see Fig. 3.8). Instead, we consider a version
of CEL-ST2 using the population size of 50 and 100.

ICL maintains 50 individuals in the population. Additionally, each experiment was
held twice to test the performance when learning to play black only and black and white
at the same time. In case of learning to play as a black player, as a quality measure we
used an estimate of generalization performance obtained using 50,000 random white player
WPC strategies. Conversely, when learning to play both black and white, we estimate the
generalization performance on the basis of 25,000 games with random black and 25,000
games with random white players. We present obtained results for both subjective and
objective selection of the best-of-generation individual.

To provide a fair comparison we decided to stop all runs when the number of games
played reaches 2,000,000. In the following, we present the obtained results.

3.8.2 Results When Learning to Play Black

Figures 3.10, 3.11 and 3.12 present the generalization performance of the subjectively
best-of-generation strategy for all generations of the evolutionary process. The results

were averaged over 30 independent runs obtained by CEL-ST-2, ICL-N125 and ICL-N500
respectively.

The results of the experiment are summarized in Tables 3.8 and 3.9. Both CEL and
ICL gained on the generalization performance after we applied the n-tuple system to the
algorithms. Comparing these results to the ones obtained in previous experiments and
presented in Table 3.2 implies that the gain reaches over 12% in case of ICL-N500 and
almost 18% in case of CEL-ST2 maintaining 100 individuals in the population.

Based on the experiment, we draw several conclusions. First, we observe that after
leveling computational efforts CEL-ST2 takes the lead and is slightly better than any other
algorithm. Second, note that reducing number of generations for ICL-N500 adversely
affected the generalization performance which is slightly worse than in case of ICL-N125.
Figure 3.9 compares subjective average generalization performance of three considered
methods on a single axis. Notice that in the beginning, the generalization performance
of CEL-ST2 is slightly higher than the performance of ICL. However, in the long run
ICL-N500 catches up and performs similarly to the CEL-ST2. Another important remark
is that CEL-ST2 learns more rapidly than ICL which can be observed on the plot. This
is especially visible when comparing CEL-ST2 to ICL-N125.
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Table 3.8: Summary of results for ICL and CEL based upon n-tuple architecture. Equal computational
efforts. Learning to play as a black player. Subjectively best-of-last-generation players.

Method #Gen. PopSize Comp. Effort Avg Max Min
CEL-ST2 400 50 2,000,000 0.9117 £0.0115 0.9633 0.8712
CEL-ST2 133 100 ~2,000,000 0.9653 +0.0094 0.9884 0.9442
ICL-N125 320 50 2,000,000 0.9252 4+0.0054 0.9754 0.881
ICL-N500 80 50 2,000,000 0.9651 4+0.0053 0.9875 0.9309

Table 3.9: Summary of results for ICL and CEL based on n-tuple architecture. Equal computational
efforts. Learning to play as a black player. Objectively best-of-last-generation players.

Method #Gen. PopSize Comp. Effort Avg Max Min

CEL-ST2 400 50 2,000,000 0.9316 £0.099 0.9776 0.8934

CEL-ST2 133 100 ~2,000,000 0.9813 +0.0075 0.9927 0.9537

ICL-N125 320 50 2,000,000 0.9294 +0.0052 0.9769 0.9091

ICL-N500 80 50 2,000,000  0.969 £ 0.0049  0.9917 0.9422
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Figure 3.9: Comparison of estimated generalization performance of the subjectively
best-of-generation strategies measured throughout the evolutionary process for different
n-tuple methods. Algorithms learning to play black.
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Figure 3.12: Estimated generalization performance of the best-of-generation strat-
egy from the population measured throughout the evolutionary process. 1CL-N500
algorithm learning to play black. Based on n-tuple architecture.

3.8.3 Results When Learning to Play Black and White

Figures 3.14, 3.15 and 3.16 present the generalization performance of the top performing
strategy of the population across the evolutionary process for 30 independent runs obtained
by CEL-ST-2, ICL-N125 and ICL-N500 respectively.

The results of the experiment are summarized in Tables 3.10 and 3.11. The obtained
results confirm that leveling computational efforts works in favor of CEL-ST2. FEven
though it still outperforms both ICL-N125 and ICL-N500, it does so by a little margin.
Interestingly, we observe even bigger gap in the average generalization performance be-
tween ICL-N125 and ICL-N500 in favor of the former. However, Fig. 3.13 suggests that
ICL-N500 learns the fastest of all. CEL-ST?2 is right behind ICL-N500 and well ahead of
ICL-N125.

Moreover, the experimental results clearly indicate that learning to play as both black
and white player is is significantly more difficult than learning to play only as black. As a
result, the generalization performance has dropped for each of the studied algorithms by
approximately 10% when compared to the results from Table 3.8. ICL is also characterized
by noticeably increased variance as observed on Figs. 3.15-3.16 when compared to Figs.
3.11 and 3.12.



3.8 ICL vs. CEL on the n-tuple Architecture 37

Table 3.10: Summary of results for ICL and CEL based on n-tuple architecture. Equal computational
efforts. Learning to play as a black and white player. Subjectively best-of-last-generation players.

Method #Gen. PopSize Comp. Effort Avg Max Min

CEL-ST2 400 50 2,000,000 0.7446 +0.0132 0.8298 0.7089
CEL-ST2 133 100 ~2,000,000 0.8406 + 0.0107 0.9013 0.8018
ICL-N125 320 50 2,000,000 0.815240.0126 0.9371 0.8241
ICL-N500 80 50 2,000,000 0.8643 +0.0151 0.9055 0.7924

Table 3.11: Summary of results for ICL and CEL based on n-tuple architecture. Equal computational
efforts. Learning to play as a black and white player. Objectively best-of-last-generation players.

Method #Gen. PopSize Comp. Effort Avg Max Min

CEL-ST2 400 50 2,000,000 0.7648 +0.0101 0.8332 0.7116
CEL-ST2 133 100 ~2,000,000 0.8655+0.0096 0.9175 0.8237
ICL-N125 320 50 2,000,000 0.8189+0.0119 0.9406 0.8318
ICL-N500 80 50 2,000,000 0.8729 +0.0153 0.9136 0.8039
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Figure 3.13: Comparison of estimated generalization performance of the subjectively
best-of-generation strategies measured throughout the evolutionary process for different
n-tuple methods. Algorithms learning to play black and white.



3 Experiments and Results

38

8oUBWIOUSd UONEZI[BIaUSD)

130

117

26 39 52 65 78 91 104
Generation

13

Figure 3.14: Estimated generalization performance of the best-of-generation strategy
from the population measured throughout the evolutionary process. CEL-ST2 algo-

rithm with population size 100 learning to play black and white. Based on n-tuple

architecture.

90UBWIOUSd UONEZ|[BIousD)

180 200

60

40 60 80 100 120 140 1
Generation

20

Figure 3.15: Estimated generalization performance of the best-of-generation strat-

ICL-N125

egy from the population measured throughout the evolutionary process.
algorithm learning to play black and white. Based on n-tuple architecture.



3.8 ICL vs. CEL on the n-tuple Architecture 39

Generalization Performance

0 20 40 60 80 100 120 140 160 180 200
Generation

Figure 3.16: Estimated generalization performance of the best-of-generation strat-
egy from the population measured throughout the evolutionary process. 1CL-N500
algorithm learning to play black and white. Based on n-tuple architecture.

3.8.4 Discussion

On the basis of performed experiments we conclude that combining the studied algorithms
with the n-tuple system was indeed a wise step. The overall performance of evolved players
scales very well and comparing to previous experiments, the obtained results are signifi-
cantly better. We hypothesize that limited dimensionality of the search space offered by
the WPC might in certain cases contribute to some of well-known coevolutionary patholo-
gies, namely forgetting [30] and over-specialization [84]. Since coevolution is extremely
prone to any of these undesired phenomenons, overall performance deteriorates whenever
any of them occur. On the other hand, based on this experiment we observe that the
studied algorithms effectively utilize the possibilities offered by non-linear n-tuple net-
works. The objective selection yields improved candidate solutions, especially in case of
the coevolutionary learning. This phenomenon was previously observed in Section 3.4.2
and is explained therein. Interestingly, we observe substantially better performance when
a bigger population is used. The exact reason why this happens remains so far unknown,
however we hypothesize that due to the enhanced player’s architecture, the number of cer-
tain niches and traits among individuals grows proportionally to the search space. In such
case, bigger genetic diversity delivered by the considerably greater population would cer-
tainly be favorable and could result in the performance improvement. On the other hand,
we suspect that the increased number of games played between the individuals could also
positively influence the final results. Further investigation of this issue is beyond the scope
of this work, however explaining this phenomenon might be crucial to further improve the
proposed algorithms.
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Our results show that it is possible to achieve performance superior to ICL using
a coevolutionary algorithm. Especially in the early stage of evolution, we observe that
CEL is superior to ICL. We suspect, that due to the increased dimensionality of the n-
tuple search space, random sampling may not work as intended, ultimately leading to
higher requirements in terms of learning time. Conversely, as observed in our previous
experiments, in case of the simpler WPC architecture, the coevolutionary search converges
to the final solution much faster. Our research has also shown that regardless of the
architecture, it is easier to learn playing only one color. Learning to play both black and
white is indeed significantly more demanding which is reflected in the inferior results. Note
that when the objective selection is used, coevolutionary algorithms are capable of finding
not only better solutions but also reduce their overall variance.

Through our experiments we definitely learned that there is no explicit answer to the
question of which approach is better. In reality, crucial factor which must be considered
before employing any of these procedures is a tradeoff between available time for learning
and the performance one is aiming for. We realize that in the long term, particularly when
the greater computational effort is admissible, ICL might provide better solutions. On the
other hand, when shorter computation time is vital, the classical coevolutionary learning
with an archive and a diversity maintenance method seems to be a better choice.

3.9 Generalization Performance of External
Methods

3.9.1 Experiment Setup and Objective

In this experiment we analyze and compare our results with results obtained in other
studies on the generalization performance criterion. Discussed methods originate from
[50, 81, 10] and can be divided into two groups with respect to the player’s architecture.
Thus, to provide a fair comparison, we consider WPC and n-tuple based methods inde-
pendently. For the purpose of this experiment, we obtained 30 individuals evolved by
each of the examined methods. However, due to the high computational cost associated
with processing n-tuples, the number of individuals was reduced to 24 for the methods
based on the n-tuples architecture. To obtain the average performance we estimated the
generalization performance of each individual and then aggregated the results into a single
value. We decided to execute the experiment twice, each time engaging different sample
size to estimate the generalization performance. Therefore, following our previous experi-
ments, we begin with a sample size of 50,000, while in the second run we set the sample
size to 1,000,000 which is expected to provide even better estimation accuracy. Such a
comparison allows us to review recently developed algorithms in the context of our study
and draw conclusions about the improved coevolutionary learning in a broader sense.

3.9.2 Results and Discussion

Clearly, most of the methods cannot be directly compared due to the different computa-
tional efforts. However, we observe that CEL+HoF from [81] is quite near ICL-N500 as the
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difference between them is only 0,0265. Furthermore, we noticed the order of CEL+HoF,
CTDL+HoF, CTDL and CEL imposed by the generalization performance is consistent
with the order obtained in [81] (Fig. 2), where methods were compared on the basis
of games with a random player. These results suggest, that both random player and a
random strategy are similarly challenging. We observed that when the generalization per-
formance criterion is used to compare various methods based on the WPC architecture,
hardly any algorithm is able to compete with ICL. Interestingly, obtained results show
that 50,000 games is enough to accurately approximate the generalization performance as
we observe almost no difference in estimation when sample size is 1,000,000.

As discussed in Section 3.8, using the n-tuple network to represent a player’s strategy
allows to significantly improve learning algorithms and evolve considerably better players.
The positive influence of such a setup is also reflected in this experiment, as we study
methods originating from [50]. All of the examined algorithms perform extremely well
and are almost unbeatable by any of the randomly sampled strategies. Having said that,
we note that even 1,000,000 games does not allow to clearly differentiate those methods.
We suspect, that in a direct comparison odds of a WPC player winning to a n-tuple player
are very low. We will further investigate this issue in Section 3.12.2.

Table 3.12: Comparison of various methods from different experiments on the generalization perfor-

mance criterion. Subjective selection. Sample size N = 50, 000.

Player Source Encoding Effort Avg Max Min

CCL Chong[10] WPC 500,000 0.7518 £0.0191 0.8253 0.6406
ICL-N125 Chong WPC 500,000 0.858 £0.0061 0.8891 0.8234
ICL-N500 Chong WPC 2,000,000 0.8801 +0.0055 0.9089 0.8433
ICL-N500 Chong WPC 10,000,000  0.897 +£0.0038  0.9093 0.8747
ICL-N50000 Chong WPC 200,000,000  0.907 £0.003  0.9197 0.8923
CEL-ST1 PL WPC 500,000 0.7923 +£0.0127 0.8592 0.7046
CEL-ST2 PL WPC 2,000,000 0.8283 +0.0112 0.8744 0.7457
CEL+HoF CCI81] WPC 10,000,000 0.8705 4+ 0.0022 0.8874 0.848

CTDL CcC WPC 10,000,000 0.8503 +0.0034 0.8751 0.8184
CTDL+HoF CcC WPC 10,000,000  0.866 £+ 0.0026  0.8909 0.8404
CEL cC WPC 10,000,000 0.7799 +0.0079 0.8484 0.6637
CTDLpx TCIAG[50] NTuples 2,000,000 0.9906 + 0.0015 0.9957 0.9814
ETDLsxmt TCIAG NTuples 2,000,000 0.9895 4+ 0.0027 0.9959 0.9724
CTDLpxmt TCIAG NTuples 2,000,000 0.9868 +0.0034 0.9971 0.9633
CTDLsxmt+HoF TCIAG NTuples 2,000,000 0.9888 +0.0018 0.9965 0.9813
CTDLsxmt TCIAG NTuples 2,000,000 0.988 £0.0032 0.9957 0.9569
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Table 3.13: Comparison of various methods from different experiments on the generalization perfor-
mance criterion. Subjective selection. Sample size N = 1,000, 000.

Player Source  Encoding Effort Avg Max Min

CCL Chong WPC 500,000 0.7533 +0.0186 0.831  0.6394
ICL-N125 Chong WPC 500,000 0.8573 +0.0059 0.8904 0.8215
ICL-N500 Chong WPC 2,000,000  0.884+0.0051  0.9079 0.8425
ICL-N50000 Chong WPC 200,000,000 0.9068 £+ 0.0027 0.9192 0.8939
CEL-ST1 PL WPC 500,000 0.8006 +0.0119 0.8511 0.7197
CEL+HoF CC WPC 10,000,000 0.8717 +0.0029 0.8847 0.8566
CTDL CC WPC 10,000,000 0.8519 +0.0044 0.8757 0.824

CTDL+HoF CC WPC 10,000,000 0.8668 +0.0044 0.8924 0.839

CEL CC WPC 10,000,000 0.7827 +0.0088 0.8173 0.7226
CTDLpx TCIAG NTuples 2,000,000 0.9906 + 0.0015 0.9956 0.9816
ETDLsxmt TCIAG NTuples 2,000,000 0.9894 +0.0026 0.9957 0.9729
CTDLpxmt TCIAG NTuples 2,000,000 0.9867 +0.0034 0.997  0.9637
CTDLsxmt+HoF TCIAG NTuples 2,000,000 0.989 £0.0018  0.9967 0.9817
CTDLsxmt TCIAG NTuples 2,000,000  0.988 £0.0031  0.9958 0.9582

3.10 Generalization Performance of Othello
League Players

3.10.1 Experiment Setup and Objective

An overview of different Othello players and their estimated performance is provided
by the Othello Position Evaluation Function League [53]. The biggest advantage of the
league is diversity of the participating players. They have been submitted to the league by
different researches from around the world and often implement various approaches and
represent a wide range of behaviors. The on-line trial league shows the performance over
100 randomized games against the SWH player with probability of a random move € = 0.1.
The primary objective of this experiment is to investigate the generalization performance
of the best league players. Among several hundreds strategies submitted to the league by
anonymous contestants we selected the top ten strategies. To achieve this, players were
initially divided into two groups with regard to the architecture. Subsequently, the best
players from each group were selected according to the league score, allowing to check
whether league score would be confirmed by the generalization performance. Following
our previous experiments, we estimated the generalization performance using 50,000 and
1,000,000 random white player WPC strategies.
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3.10.2 Results and Discussion

Based on results in Table 3.14 we conclude that the n-tuple players are indeed excellently
performing players. Note that the generalization performance of the league players is
almost exactly the same as the performance obtained by the best evolved n-tuple play-
ers in [50, 80]. Interestingly, we observed that the current league champion denoted by
epTDLmpx_12x6 who is a ETDL-evolved player proposed in [50] copes with randomly gen-
erated strategies a bit worse when compared to other league players. This phenomenon
can be easily explained since ETDL uses the static evaluation function based on the SWH
player, consequently optimizing the player’s behaviour against this specific opponent [50].

Regarding the best WPC league players shown in Table 3.15, we conclude that they are
still no match for ICL-N50000 since their average generalization performance is noticeably
worse. Note that certain league players achieved result similar to ICL-N500.

Table 3.14: Estimated generalization performance of top ten Othello League n-tuple players.

Player Name Network Size 50k 1mln

epTDLmpx_12x6 12 x 6 0.9881  0.988291

prb_nt30_001 30 x 6 0.9967  0.996792
prb_nt15_001 15 % 6 0.99464 0.994885
epTDLxover 12x 6 0.99526  0.994939
t15x6x8 15 %6 0.9699  0.969055
SelfPlay15 12 x6 0.98224 0.982423
122782 278 x 2 0.97536  0.975436
Nash70 12x 6 0.98348 0.983696
x30x6x8 30 x 6 0.9457  0.946923
pruned-pairs-56t 56 x 2 0.96718 0.967368

Table 3.15: Estimated generalization performance of top ten Othello League WPC players.

Player Name 50k 1mln
rOnan-1227736739614 0.82046 0.818697
bssWPC_es9e-1240573442753  0.88818 0.887152
rOnan-1227736742208 0.8184 0.819345
rOnan-1227737008988 0.85288 0.855098
tog1-1237736078509 0.88272 0.883625
rOnan-1227736322289 0.79866 0.798103
rOnan-1227737932122 0.84206 0.842713
srs8-1237733668414 0.88768 0.885233
asd-1227195030580 0.74394  0.74642

rOnan-1227738106121 0.83238 0.833234
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3.11 Tournament Between ICL and Other
Methods

3.11.0.1 Experiment Setup and Objective

In order to measure the relative performance between methods originating from [81] and
[10], we employ a round-robin tournament involving diverse set of best-of-generation indi-
viduals obtained from the studied learning algorithms. The best-of-generation strategies
which were subject to the generalization performance assessment in the previous experi-
ments are now gathered into teams, each representing method they originate from. Such
an approach provides a better insight into the overall performance of a particular method
as none of the quality measures exploited before can be anticipated to represent diversifi-
cation and a rich repertoire of behaviours typical for moderately strong Othello players.
Regarding the tournament organization, we rely on a common formula, where each team
member plays against all members from the other team and the final score is the overall
sum of points obtained by all members of the team. Finally, to clarify the presentation we
apply the tournament to two groups of methods, starting with the WPC-based and ICL
and ending with the encounter of the n-tuple and ICL methods. The former approach
results in 30 x 30 games, while the latter limits the number of games to 24 x 24 due to the
heavy computational effort associated with processing n-tuples.

3.11.1 Results and Discussion

The results of the experiment are show in Table 3.16. Methods in rows originate from
[81]. In each cell of the table we can find the number of games won by the team in the
row and the and computed probability of winning in percents. Surprisingly, ICL methods
proposed in [10] are outperformed by most of the algorithms in the rows. Explaining this
phenomenon is not a trivial task, however we may hypothesize that due to the fact that
in this tournament an individual faces exclusively well-performing strategies, what truly
matters is the ability to play against a strong opponent and not against a random one.
The individuals trained by ICL do not have a chance to compete with other individuals
from the same population and learn from such an experience. Ultimately, this leads to
optimization towards playing with a specific group of random opponents which could have
contributed to such results of the experiment. Clearly, guiding optimization process on
the basis of games played against a sample of random opponents, although raises overall
performance, it may not necessarily imply increased behavioral diversity of the individual.

On the basis of these experiments, we conclude that the improved coevolutionary
learning may not be necessarily as robust as claimed in [10]. Additionally, these results
give us some premises, that coevolved players are capable of beating moderately strong
Othello players, as opposed to players who have been obtained differently.
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Table 3.16: Round-robin tournament between WPC-based and ICL methods.
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CCL

CEL-ST1

ICL-N125

ICL-N500

ICL-N50000

CEL
CEL+HoF
CTDL
CTDL+HoF

625 / 900 = 69%
741 / 900 = 82%
772 / 900 = 85%
775 / 900 = 86%

404 / 900 = 44%
700 / 900 = 77%
676 / 900 = 75%
714 / 900 = 79%

557 / 900 = 61%
753 / 900 = 83%
700 / 900 = 77%
763 / 900 = 84%

516 / 900 = 57%
713 / 900 = 79%
699 / 900 = 77%
745 / 900 = 82%

509 / 900 = 56%
721 / 900 = 80%
716 / 900 = 79%
739 / 900 = 82%

Table 3.17: Round-robin tournament between n-tuple-based and ICL methods.

CCL

CEL-ST1

ICL-N125

ICL-N500

ICL-N50000

CTDLpx
CTDLpxmt
CTDLsxmt

CTDLsxmt+HoF
ETDLsxmt

570 / 576 = 98%
569 / 576 = 98%
569 / 576 = 98%
568 / 576 = 98%
571 / 576 = 99%

563 / 576 = 97%
559 / 576 = 97%
557 / 576 = 96%
557 / 576 = 96%
556 / 576 = 96%

573 / 576 = 99%
568 / 576 = 98%
558 / 576 = 96%
569 / 576 = 98%
566 / 576 = 98%

571 / 576 = 99%
564 / 576 = 97%
565 / 576 = 98%
571 / 576 = 99%
565 / 576 = 98%

565 / 576 = 98%
565 / 576 = 98%
569 / 576 = 98%
565 / 576 = 98%
567 / 576 = 98%

3.12

Two-individual test

3.12.1 Experiment Setup and Objective

In our final experiment, we employ the statistical framework proposed in [10] to compare
relative performance of the best strategies obtained by each of the studied methods. For
the purpose of this experiment we assume, that both strategies to be compared compete
against the same set of N randomly generated strategies Ty = {t1,t2,...t,}. Statisti-
cal test regarding the relation between the Generalization Performances of the analysed
strategies can be performed using paired t-test.

Let us denote the game outcome of strategy s € S playing against strategy ¢t € T by
G(s,1t).

We begin with computing a series of performance differences on T:

D (n) =G (s1,tn) — G (s2,tn) n=12,... N,

where 51,59 € S.

Let us denote the average performance differences by

. 1 X
D(TN):NZD(n).
n=1

In order to test whether strategy si outperforms strategy ss at significance level o we
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need to check if Z; (Ty) > z4, where

In order to select a representative strategy for each method, we analyzed the best-
of-generation players from all 30 runs. To avoid extensive complication, we decided to
compare their relative fitness values, obtained throughout the course of evolution, and
choose the player with the highest one. Furthermore, we assume the size of sample N =
50,000 and significance level a = 0.05.

3.12.2 Results and Discussion

The results of the experiment are presented in table 3.18. Methods in rows originate
from [81]. Each cell of the table contains a t-value obtained by testing the hypothesis
that a strategy obtained by method in the column is better than the strategy obtained
by the method in the row. Bolded values mean statistical significance at level a. Not
surprisingly, ICL-N50000 has proved to evolve the best strategy among WPC methods.
Nevertheless, although the average results of ICL-N500 and ICL-N125 are higher than
those of CEL+HoF methods this difference is too low to be statistically important.

Table 3.18: t-test values for a relative performance between best individuals of each method. Bolded
values mean statistical significance at level a = 0.05.

ICL-N125 ICL-N500 ICL-N50000

CEL 54.77 56.49 76.61
CEL+HoF 1.87 1.48 23.11
CTDL 5.24 6.56 27.34

CTDL+HoF  3.27 2.64 21.95




Chapter 4
Discussion, Conclusions and
Future Work

4.1 Conclusions and Discussion

In this paper we extended the work of Chong et al. [10] and focused on the particular
test-based problem: acquisition of Othello position evaluation function.

On the basis of conducted experiments, we admit that guiding coevolutionary search
on the basis of games against a sample of random opponents employed by Chong’s ICL
has a great potential when applied to the problem of Othello. Nevertheless, we were
able to point some areas in which ICL superiority over coevolutionary-based methods no
longer holds. These areas include games with both heuristic player (Section 3.5.2) and a
random player (Section 3.6.2). We showed that in some cases the modern approach to the
coevolutionary learning is capable of obtaining slightly better candidate solutions than the
ICL (Section 3.1.1.3).

The experimental results (Section 3.3) also demonstrate the positive effect of enhanc-
ing a coevolutionary algorithm with the Hall of Fame archive and the competitive fitness
sharing on the generalization performance. Players evolved in such a manner achieve a
higher level of play when compared to those obtained using simpler coevolutionary meth-
ods (Section 3.2). Additionally, we have also demonstrated that employing an objective
best-of-generation selection of individuals leads to noticeable improvements in the gener-
alization performance in case of every studied method (Section 3.4). This stays in contrast
with subjective best-of-generation selection which may not necessarily yield the best indi-
vidual due to the relative nature of fitness evaluation in the coevolution. Moreover, using
the objective selection of best-of-run individual helps more coevolutionary methods than
ICL methods. This should be kept in mind when comparing ICL with coevolutionary
methods.

In this study we also investigated in detail the impact of two different player archi-
tectures, namely WPC and n-tuple network, on the generalization performance. While
experimental results proved that using more complex, non-linear architecture in a form of
n-tuple network is beneficial in terms of the generalization performance, they also showed
that random sampling employed by ICL is not as efficient as in case of a simpler WPC ar-
chitecture compared to coevolutionary methods. As a result, the coevolutionary algorithm
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enhanced with the Hall of Fame archive and the competitive fitness sharing (CEL-ST?2)
turned out to perform better that ICL when using the same computational effort (Section
3.8). Especially in the early stage of evolution, we observed that CEL is more robust when
compared to ICL.

Moreover, we investigated the relative performance between all best-of-run individu-
als obtained by ICL and different coevolutionary methods by performing a round-robin
tournament (Section 3.11). The experimental results showed that ICL methods are out-
performed by those based on coevolutionary learning which implies that in some situations
ICL exhibits less behavioral diversity comparing to CEL.

We considered more algorithms and settings than the previous work on the subject
[10], but more analysis is still required. Although, we have finally found a coevolutionary
algorithm of better performance than ICL, we never tried to play with parameters of ICL,
which could also improve its performance. Thus, despite some results in favor of coevolu-
tion, we are far to state that coevolutionary algorithms are generally more promising that
random sampling-based methods.

For the purpose of this thesis we developed a software framework built upon cECJ
[79] and ECJ [56]. It was designed to allow flexible experiment definition as well as easy
deployment and collection of results. As the software integrates with both cECJ and ECJ,
it may prove to be especially useful for users who are already familiar with those systems.

4.2 Future work

During our research, many interesting hypotheses arose, some of which have been already
presented and shortly discussed earlier in this work. Let us point out a few possible
directions of future work:

e As discussed in Section 3.4.2 selection of the appropriate individual which becomes
the outcome of either specific generation or, more generally, of the evolutionary run
is not a trivial task. This issue has been previously addressed in [42] and we would
like to continue this research and propose some novel methods solving this problem.

e Adaptation of classical local search metaheuristics such as Simulated Annealing,
Tabu Search or Iterated Local Search to solve test-based problems seems to con-
stitute well-motivated area of research since it has been shown that (1 + 1) coevo-
lutionary algorithm is not worse than coevolutionary learning for certain problems
[63].

e Using coevolutionary learning with two-population coevolution in which candidate
solutions and tests are bred separately would allow us to not only use more advanced
archives such as LAPCA or IPCA (see Section 2.3.3), but also to verify the impact of
using more evaluations to assess subjective fitness of an individual. This idea seems
particularly appealing since it would allow to separately tune the population sizes
of candidate solutions and tests.

e During our research an interesting hypothesis has emerged according to which co-
evolved players compete on the satisfactory level with moderately strong Othello
players whereas they sometimes lose to much worse players. A premise supporting
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this claim could be find in Section 3.11. To verify this, more analysis is required.

e Asnoted in Section 2.4.3.1, a strategy represented by WPC can be easily understood
by inspecting the weight values. Therefore, we analyzed strategies evolved by ICL
and noticed that, contrary to our expectations, they were asymmetric. We were not
able to determine why such an asymmetry occurred, nor what are implications of
such representation. This issue requires further research.
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