Temporal probability models

Chapter 15, Sections 1-5

Time and uncertainty

The world changes; we need to track and predict it
Diabetes management vs vehicle diagnosis
Basic idea: copy state and evidence variables for each time step
$\mathbf{X}_{t}=$ set of unobservable state variables at time t e.g., BloodSugar ${ }_{t}$, StomachContentst, etc.
$\mathrm{E}_{t}=$ set of observable evidence variables at time t e.g., MeasuredBloodSugar ${ }_{t}$, PulseRate ${ }_{t}$, FoodEaten ${ }_{t}$

This assumes discrete time; step size depends on problem
Notation: $\mathbf{X}_{a: b}=\mathbf{X}_{a}, \mathbf{X}_{a+1}, \ldots, \mathbf{X}_{b-1}, \mathbf{X}_{b}$

Markov processes (Markov chains)

Construct a Bayes net from these variables: parents?
Markov assumption: \mathbf{X}_{t} depends on bounded subset of $\mathbf{X}_{0: t-1}$
First-order Markov process: $\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{X}_{0: t-1}\right)=\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{X}_{t-1}\right)$
Second-order Markov process: $\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{X}_{0: t-1}\right)=\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{X}_{t-2}, \mathbf{X}_{t-1}\right)$

First-order

Second-order

Sensor Markov assumption: $\mathbf{P}\left(\mathbf{E}_{t} \mid \mathbf{X}_{0: t}, \mathbf{E}_{0: t-1}\right)=\mathbf{P}\left(\mathbf{E}_{t} \mid \mathbf{X}_{t}\right)$
Stationary process: transition model $\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{X}_{t-1}\right)$ and sensor model $\mathbf{P}\left(\mathbf{E}_{t} \mid \mathbf{X}_{t}\right)$ fixed for all t

Example

First-order Markov assumption not exactly true in real world!
Possible fixes:

1. Increase order of Markov process
2. Augment state, e.g., add Tempt, Pressure ${ }_{t}$

Example: robot motion.
Augment position and velocity with Battery ${ }_{t}$

Inference tasks

Filtering: $\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{e}_{1: t}\right)$ belief state-input to the decision process of a rational agent

Prediction: $\mathbf{P}\left(\mathbf{X}_{t+k} \mid \mathbf{e}_{1: t}\right)$ for $k>0$ evaluation of possible action sequences; like filtering without the evidence

Smoothing: $\mathbf{P}\left(\mathbf{X}_{k} \mid \mathbf{e}_{1: t}\right)$ for $0 \leq k<t$ better estimate of past states, essential for learning

Most likely explanation: $\arg \max _{\mathbf{x}_{1: t}} P\left(\mathbf{x}_{1: t} \mid \mathbf{e}_{1: t}\right)$ speech recognition, decoding with a noisy channel

Filtering

Aim: devise a recursive state estimation algorithm:

$$
\mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{e}_{1: t+1}\right)=f\left(\mathbf{e}_{t+1}, \mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{e}_{1: t}\right)\right)
$$

$$
\begin{aligned}
& \mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{e}_{1: t+1}\right)=\mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{e}_{1: t}, \mathbf{e}_{t+1}\right) \\
& =\alpha \mathbf{P}\left(\mathbf{e}_{t+1} \mid \mathbf{X}_{t+1}, \mathbf{e}_{1: t}\right) \mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{e}_{1: t}\right) \\
& \quad=\alpha \mathbf{P}\left(\mathbf{e}_{t+1} \mid \mathbf{X}_{t+1}\right) \mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{e}_{1: t}\right)
\end{aligned}
$$

I.e., prediction + estimation. Prediction by summing out \mathbf{X}_{t} :

$$
\begin{aligned}
& \mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{e}_{1: t+1}\right)=\alpha \mathbf{P}\left(\mathbf{e}_{t+1} \mid \mathbf{X}_{t+1}\right) \Sigma_{\mathbf{x}_{t}} \mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{x}_{t}, \mathbf{e}_{1: t}\right) P\left(\mathbf{x}_{t} \mid \mathbf{e}_{1: t}\right) \\
& \quad=\alpha \mathbf{P}\left(\mathbf{e}_{t+1} \mid \mathbf{X}_{t+1}\right) \sum_{\mathbf{x}_{t}} \mathbf{P}\left(\mathbf{X}_{t+1} \mid \mathbf{x}_{t}\right) P\left(\mathbf{x}_{t} \mid \mathbf{e}_{1: t}\right)
\end{aligned}
$$

$\mathbf{f}_{1: t+1}=\operatorname{FORWARD}\left(\mathbf{f}_{1: t}, \mathbf{e}_{t+1}\right)$ where $\mathbf{f}_{1: t}=\mathbf{P}\left(\mathbf{X}_{t} \mid \mathbf{e}_{1: t}\right)$
Time and space constant (independent of t)

Filtering example

Divide evidence $\mathbf{e}_{1: t}$ into $\mathbf{e}_{1: k}, \mathbf{e}_{k+1: t}$:

$$
\begin{aligned}
\mathbf{P}\left(\mathbf{X}_{k} \mid \mathbf{e}_{1: t}\right) & =\mathbf{P}\left(\mathbf{X}_{k} \mid \mathbf{e}_{1: k}, \mathbf{e}_{k+1: t}\right) \\
& =\alpha \mathbf{P}\left(\mathbf{X}_{k} \mid \mathbf{e}_{1: k}\right) \mathbf{P}\left(\mathbf{e}_{k+1: t} \mid \mathbf{X}_{k}, \mathbf{e}_{1: k}\right) \\
& =\alpha \mathbf{P}\left(\mathbf{X}_{k} \mid \mathbf{e}_{1: k}\right) \mathbf{P}\left(\mathbf{e}_{k+1: t} \mid \mathbf{X}_{k}\right) \\
& =\alpha \mathbf{f}_{1: k} \mathbf{b}_{k+1: t}
\end{aligned}
$$

Backward message computed by a backwards recursion:

$$
\begin{aligned}
\mathbf{P}\left(\mathbf{e}_{k+1: t} \mid \mathbf{X}_{k}\right) & =\sum_{\mathbf{x}_{k+1}} \mathbf{P}\left(\mathbf{e}_{k+1: t} \mid \mathbf{X}_{k}, \mathbf{x}_{k+1}\right) \mathbf{P}\left(\mathbf{x}_{k+1} \mid \mathbf{X}_{k}\right) \\
& =\sum_{\mathbf{x}_{k+1}} P\left(\mathbf{e}_{k+1: t} \mid \mathbf{x}_{k+1}\right) \mathbf{P}\left(\mathbf{x}_{k+1} \mid \mathbf{X}_{k}\right) \\
& =\sum_{\mathbf{x}_{k+1}} P\left(\mathbf{e}_{k+1} \mid \mathbf{x}_{k+1}\right) P\left(\mathbf{e}_{k+2: t} \mid \mathbf{x}_{k+1}\right) \mathbf{P}\left(\mathbf{x}_{k+1} \mid \mathbf{X}_{k}\right)
\end{aligned}
$$

Smoothing example

Forward-backward algorithm: cache forward messages along the way Time linear in t (polytree inference), space $O(t|\mathbf{f}|)$

