Knowledge Reuse in Genetic Programming Applied to Visual Learning

Wojciech Jaśkowski Krzysztof Krawiec Bartosz Wieloch

Institute of Computing Science
Poznan University of Technology
Poland

11 July 2007
The Common Knowledge is Out There

Idea
If the tasks are similar then also the solutions should be similar → the Common Knowledge is out there.

Why?
- better solutions,
- in less time.

ML perspective
In terms of Machine Learning, we can expect to:
- obtain better classification accuracy on testing set,
- reduce the risk of overfitting.
Std. Evolutionary Approach for Multiple Tasks

task: 1 2 3 ... k

solutions: ↓ ↓ ↓ ↓

n generations
Knowledge Reuse in GP Applied to Visual Learning
Genetic Programming (Cross-Task) Knowledge Reuse

Wojciech Jaśkowski, Krzysztof Krawiec, Bartosz Wieloch

Knowledge Reuse in GP Applied to Visual Learning
Crossbreeding Operator

Standard crossover:

```
1 \quad 2 \quad 3 \quad k
```

task:

```
P_1 \quad P_3 \quad P_k
```
Crossbreeding Operator

Crossbreeding:
Recognition (Classification) Task

Objective
Classification of hand-drawn letters from six classes: A, E, W, X, Y, Z

Training Data
12 examples from each class

Examples
Wojciech Jaśkowski, Krzysztof Krawiec, Bartosz Wieloch

Knowledge Reuse in GP Applied to Visual Learning
Objective
Classification of hand-drawn letters from six classes: A, E, W, X, Y, Z

Training Data
12 examples from each class

Examples
A
E
W
X
Y
Z
Learning Process

Original Drawing \[\rightarrow\] Set of Primitives \[\rightarrow\] Drawing \[\rightarrow\] Error Rate

transformation reconstruction comparison

0.148
Learning Process

Original Drawing \rightarrow Set of Primitives \rightarrow Drawing \rightarrow Error Rate

transformation \rightarrow reconstruction \rightarrow comparison \rightarrow (minimalized) fitness

0.148
Learning Process

<table>
<thead>
<tr>
<th>Original Drawing</th>
<th>Set of Primitives</th>
<th>Drawing</th>
<th>Error Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.148</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.941</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.097</td>
</tr>
</tbody>
</table>
Genetic Programming (Learning) Task

Input

12 examples from **one class**

Output

A **procedure** that can reconstruct the *Set of Primitives* into the *Input Drawing*. We will call this procedure a **visual learner**.

Input → Output

![Diagram](image-url)
Classification System

Knowledge Reuse in GP Applied to Visual Learning
Rationale

An individual (learner) that was taught to reconstruct the letter A has no clue how to reconstruct other letters. In result, its error on A is lower than its error on other letters.
The list of GP operators

- Most of the operators process the sets of Visual Primitives.
- There are nodes that can **draw** strokes.

<table>
<thead>
<tr>
<th>Type</th>
<th>Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>ℜ</td>
<td>Ephemeral random constant</td>
</tr>
<tr>
<td>Ω</td>
<td>ImageNode – the VP representation (P) of the input image (s)</td>
</tr>
<tr>
<td>(p_x, p_y, p_o) and custom attributes added by AddAttribute</td>
<td></td>
</tr>
<tr>
<td>(R)</td>
<td>Equals, Equals5Percent, Equals10Percent, Equals20Percent, LessThan, GreaterThan</td>
</tr>
<tr>
<td>(G)</td>
<td>Sum, Mean, Product, Median, Min, Max, Range</td>
</tr>
<tr>
<td></td>
<td>(+ (\Re, \Re), -(\Re, \Re), *(\Re, \Re), /(\Re, \Re), \sin(\Re), \cos(\Re), \text{abs}(\Re), \text{sqrt}(\Re), \text{sgn}(\Re), \ln(\Re))</td>
</tr>
<tr>
<td>Ω</td>
<td>SetIntersection(Ω, Ω), SetUnion(Ω, Ω), SetMinus(Ω, Ω), SetMinusSym(Ω, Ω), SelectorMax(Ω, A), SelectorMin(Ω, A), SelectorCompare(Ω, A, R, ℜ), CreatePair(Ω, Ω), CreatePairD(Ω, Ω), ForEach(Ω, Ω), ForEachCreatePair(Ω, Ω, Ω), ForEachCreatePairD(Ω, Ω, Ω), GroupHierarchyCount(Ω, ℜ), GroupHierarchyDistance(Ω, ℜ), GroupProximity(Ω, ℜ), GroupOrientationMulti(Ω, ℜ), Ungroup(Ω), Draw(Ω)</td>
</tr>
</tbody>
</table>
Experiment

Objective

To compare GP (control, no Knowledge Reuse) experiment with GPKR-100, (with Knowledge Reuse) experiment.

GP (control):
- Crossover probability: 0.8
- Mutation probability: 0.2
- 400 generations

GPKR-100:
- Crossover probability: 0.8
- Mutation probability: 0.17
- Crossbreeding probability: 0.03
- 100 + 300 generations (primary + secondary run)
Reproductions seem to be robust despite various forms of imperfectness of the hand-drawn figures.
Results (fitness on the training set)

(Averaged over 33 evolutionary runs)
Test set = 72 shapes per class (432 shapes in total)

Test set error rates (fitness):

<table>
<thead>
<tr>
<th>Class</th>
<th>GP</th>
<th>GPKR-100</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.415</td>
<td>0.394</td>
</tr>
<tr>
<td>E</td>
<td>0.462</td>
<td>0.328</td>
</tr>
<tr>
<td>W</td>
<td>0.322</td>
<td>0.318</td>
</tr>
<tr>
<td>X</td>
<td>0.444</td>
<td>0.354</td>
</tr>
<tr>
<td>Y</td>
<td>0.381</td>
<td>0.386</td>
</tr>
<tr>
<td>Z</td>
<td>0.283</td>
<td>0.271</td>
</tr>
</tbody>
</table>

(Averaged over 33 evolutionary runs)
Classification accuracy:

<table>
<thead>
<tr>
<th>Recognition System</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>GP</td>
<td>91.96%</td>
</tr>
<tr>
<td>GPKR-50</td>
<td>92.65%</td>
</tr>
<tr>
<td>GPKR-100</td>
<td>93.07%</td>
</tr>
<tr>
<td>GPKR-200</td>
<td>93.82%</td>
</tr>
<tr>
<td>GPKR-300</td>
<td>93.58%</td>
</tr>
</tbody>
</table>
Classification on the test set

Classification accuracy:

<table>
<thead>
<tr>
<th>Recognition System</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>GP</td>
<td>91.96%</td>
</tr>
<tr>
<td>GPKR-50</td>
<td>92.65%</td>
</tr>
<tr>
<td>GPKR-100</td>
<td>93.07%</td>
</tr>
<tr>
<td>GPKR-200</td>
<td>93.82%</td>
</tr>
<tr>
<td>GPKR-300</td>
<td>93.58%</td>
</tr>
</tbody>
</table>

Classification accuracy with voting (33 runs):

<table>
<thead>
<tr>
<th>Recognition System</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>GP</td>
<td>93.87%</td>
</tr>
<tr>
<td>GPKR-100</td>
<td>98.77%</td>
</tr>
<tr>
<td>GPKR-200</td>
<td>98.28%</td>
</tr>
</tbody>
</table>
Summary:

- Elegant Learning Framework that uses GP as a learning vehicle,
- Genetic Programming with Knowledge Reuse (GPKR),
- Knowledge Reuse pays off (GPKR > GP).
Example of an GP Individual

[Diagram of a GPIndividual tree structure]
Results (fitness on the test set)

For different primary-run stop moments (50, 100, 200 and 300):

<table>
<thead>
<tr>
<th>Class</th>
<th>GP</th>
<th>GPKR-50</th>
<th>GPKR-100</th>
<th>GPKR-200</th>
<th>GPKR-300</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.415</td>
<td>0.450</td>
<td>0.394</td>
<td>0.360</td>
<td>0.389</td>
</tr>
<tr>
<td>E</td>
<td>0.462</td>
<td>0.369</td>
<td>0.328</td>
<td>0.325</td>
<td>0.318</td>
</tr>
<tr>
<td>W</td>
<td>0.322</td>
<td>0.297</td>
<td>0.318</td>
<td>0.299</td>
<td>0.304</td>
</tr>
<tr>
<td>X</td>
<td>0.444</td>
<td>0.360</td>
<td>0.354</td>
<td>0.329</td>
<td>0.328</td>
</tr>
<tr>
<td>Y</td>
<td>0.381</td>
<td>0.390</td>
<td>0.386</td>
<td>0.392</td>
<td>0.375</td>
</tr>
<tr>
<td>Z</td>
<td>0.283</td>
<td>0.302</td>
<td>0.271</td>
<td>0.281</td>
<td>0.285</td>
</tr>
</tbody>
</table>
Example

Wojciech Jaśkowski, Krzysztof Krawiec, Bartosz Wieloch

Knowledge Reuse in GP Applied to Visual Learning
CreatePairD

SelectorMin
A: 1

SelectorMax
A: 0

CreatePairD
Example
Results (fitness on the training set)

(Averaged over 33 evolutionary runs)