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Abstract: Hybridization of global and local search techniques
has already produced promising results in the fields of optimization
and machine learning. It is commonly presumed that approaches
employing this idea, like memetic algorithms combining evolution-
ary algorithms and local search, benefit from complementarity of
constituent methods and maintain the right balance between explo-
ration and exploitation of the search space. While such extensions
of evolutionary algorithms have been intensively studied, hybrids of
local search with coevolutionary algorithms have not received much
attention. In this paper we attempt to fill this gap by presenting Co-
evolutionary Temporal Difference Learning (CTDL) that works by
interlacing global search provided by competitive coevolution and
local search by means of temporal difference learning. We verify
CTDL by applying it to the board game of Othello, where it learns
board evaluation functions represented by a linear architecture of
weighted piece counter. The results of a computational experiment
show CTDL superiority compared to coevolutionary algorithm and
temporal difference learning alone, both in terms of performance of
elaborated strategies and computational cost. To further exploit
CTDL potential, we extend it by an archive that keeps track of
selected well-performing solutions found so far and uses them to im-
prove search convergence. The overall conclusion is that the fusion
of various forms of coevolution with a gradient-based local search
can be highly beneficial and deserves further study.
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1. Introduction

The past half century of AI research on games demonstrated that handcrafting
well-performing strategies, though feasible, is challenging and expensive in terms
of human and computer effort. There is growing hope for a change due to
methods that learn the strategies automatically with little a priori domain
knowledge. Two intensely studied examples are Temporal Difference Learning
(TDL) and Coevolutionary Learning (CEL).

TDL is a canonical variant of reinforcement learning, where the playing
agent aims at maximizing a delayed reward, and is typically trained by some
form of gradient descent. CEL breeds a population of strategies that compete
with each other and propagate their features using the principles of simulated
evolution. The essential difference between TDL and CEL is that TDL guides
the learning using the whole course of the game while CEL uses only the final
game outcome. As a result, TDL in general learns faster than CEL. However,
for some domains a properly tuned CEL can eventually find strategies that
outperform those generated by TDL (Runarsson and Lucas, 2005; Lucas and
Runarsson, 2006).

From another perspective, evolutionary algorithms (and CEL in particular)
have widely recognized explorative ability, while TDL is a local-search technique
that greedily and quickly makes its way towards a nearby local optimum, thus
having an exploitative potential. Hybridization of explorative and exploitative
techniqueshasalreadyproducedpromising results in thefieldsofoptimization and
machine learning. It is commonlypresumed that approaches employing this idea,
like memetic algorithms that combine evolutionary algorithms with local search,
benefit from complementary characteristics of constituent methods and maintain
the right balance between exploration and exploitation of the search space. While
such extensions of evolutionary algorithms have been intensively studied, hybrids
of local search with coevolution have not received much attention yet.

In this paper, we ask whether it is possible to combine the advantages of TDL
and CEL in a single algorithm that would develop better solutions than any of
these methods on its own. To this aim, we propose a hybrid method referred
to as Coevolutionary Temporal Difference Learning (CTDL) that works by in-
terlacing global search provided by competitive coevolution and local search
by means of temporal difference learning. In our previous research we have
already evaluated this method on the games of Othello (Szubert et al., 2009)
and small-board Go (Krawiec et al., 2011). Here, we perform further investi-
gation on CTDL in the context of Othello, for which both CEL and TDL were
independently tested and compared (Lacas and Runarsson, 2006).

This paper is organized as follows. In Section 2 we describe the rules, strategy
representation, and previous research on learning Othello strategies. Section 3
reviews TDL and CEL and introduces CTDL. After describing the experimental
setup in Section 4, we discuss the results in Sections 5 and 7, to conclude in
Section 8.
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Figure 1. The initial board configuration in Othello

2. The game of Othello

A minute to learn. . . a lifetime to master is the motto of the game of Othello.
Indeed, despite its apparent simplicity, Othello is one of the most challeng-
ing board games with numerous tournaments and regular world championship
matches. The name of the game stems from Shakespeare’s drama “Othello, the
Moor of Venice”, and is meant to illustrate that the game is full of dramatic
reversals caused by rapid changes in dominance on the board.

2.1. Game rules

Othello is played by two players on an 8 × 8 board. Typically, pieces are disks
with a white and black face, each face representing one player. Fig. 1 shows the
initial state of the board; each player starts with two stones in the middle of
the grid. The black player moves first, placing a piece, black face up, on one of
four shaded locations. Players make moves alternately until no legal moves are
possible.

A legal move consists of placing a piece on an empty square and flipping ap-
propriate pieces. To place a new piece, two conditions must be fulfilled. Firstly,
the position of the piece must be adjacent to an opponent’s piece. Secondly,
the new piece and some other piece of the current player must form a verti-
cal, horizontal, or diagonal line with a contiguous sequence of opponent’s pieces
in between. After placing the piece, all such opponent’s pieces are flipped; if
multiple lines exist, flipping affects all of them. This feature makes the game
particularly dramatic: a single move may gain the player a large number of
pieces and swap players’ chances of winning.
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A legal move requires flipping at least one of the opponent’s pieces. Making
a move in each turn is obligatory, unless there are no legal moves. The game
ends when both players have no legal moves. The winner is the player who at
the end has more disks; the game can also end with a draw.

2.2. Strategy representation

One of the main issues to consider when learning a game strategy is the architec-
ture of the learner, which is mainly determined by the representation adopted
to store its strategy. There are two common ways in which strategies can be
represented, namely, as a move selector or as a state evaluator (also known as
position evaluator). A move selector takes the current state of the game as an
input and returns a move to be made. A state evaluator, on the other hand, is
used to estimate how beneficial a given state is for the player. With a help of a
game tree search algorithm, this allows for selecting the move that will lead to
the most favorable future state.

Most recent works on learning Othello strategies have focused on creating
board evaluation functions and we decided to follow that trend in this study.
During the game, in order to select a move, we evaluate all states at 1-ply.
Regarding the choice of the architecture of the state evaluator, we rely on a
heuristic assumption that to judge the utility of a particular board state it is
enough to independently consider the occupancy of all board locations. This
principle is implemented by the weighted piece counter (WPC), which assigns
a weight wi to each board location i and uses scalar product to calculate the
utility f of a board state b:

f(b) =

8×8∑

i=1

wibi, (1)

where bi is +1, −1, or 0 if, respectively, location i is occupied by a black piece,
white piece, or remains empty. The players interpret the values of f in a com-
plementary manner: the black player prefers moves leading to states with larger
values while smaller values are favored by the white player. WPC may be
viewed as an artificial neural network comprising a single linear neuron with
inputs connected to board locations.

The main advantage of WPC is its simplicity leading to very fast board
evaluation. Moreover, a strategy represented by a WPC can be easily interpreted
just by inspecting the weight values. Table 1 presents the weight matrix of an
exemplary player that clearly focuses at the corners because they are given the
highest values.

2.3. Previous research

The game of Othello has been a subject of artificial intelligence research for more
than 20 years. The significant interest in this game may be explained by its large
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Table 1. The heuristic player’s strategy represented by WPC

1.00 -0.25 0.10 0.05 0.05 0.10 -0.25 1.00
-0.25 -0.25 0.01 0.01 0.01 0.01 -0.25 -0.25
0.10 0.01 0.05 0.02 0.02 0.05 0.01 0.10
0.05 0.01 0.02 0.01 0.01 0.02 0.01 0.05
0.05 0.01 0.02 0.01 0.01 0.02 0.01 0.05
0.10 0.01 0.05 0.02 0.02 0.05 0.01 0.10

-0.25 -0.25 0.01 0.01 0.01 0.01 -0.25 -0.25
1.00 -0.25 0.10 0.05 0.05 0.10 -0.25 1.00

state space cardinality (around 1028) and high divergence rate, causing that it
remains unsolved, that is — a perfect Othello player has not been developed
yet.

Conventional programs playing Othello are based on a thorough human anal-
ysis of the game leading to sophisticated handcrafted evaluation functions. They
often incorporate supervised learning techniques that use large expert-labeled
game databases and efficient look-ahead game tree search. One of the first ex-
amples representing such approach was BILL (Lee and Mahajan, 1990). Besides
using pre-computed tables of board patterns, it employed Bayesian learning to
build in so-called features into evaluation function. Today, one of the strongest
Othello programs is Logistello (Buro, 2002), which also makes use of advanced
search techniques and applies several methods to construct evaluation features
and learn from previous games. Nevertheless, it still relies on powerful hard-
ware, which is one of the main factors that allowed Logistello to beat the world
champion Takeshi Murakami in 1997.

Recently, the mainstream research on Othello has moved towards better
understanding of which learning algorithms and player architectures work the
best. The CEC Othello Competitions1 pursued this direction by limiting the ply
depth to one, effectively disqualifying the algorithms employing a brute-force
game tree search. Although WPC is among strategy representations accepted
by the competition rules, all the best players submitted so far to the competi-
tion were based on more complex architectures involving numerous parameters.
Examples of such architectures are: a symmetric n-tuple network, a multi-layer
perceptron (MLP), and a spatial MLP.

The most challenging scenario of elaborating a game strategy is learning
without any support of human knowledge and opponent strategies given a priori.
This formulation is addressed by, among others, Temporal Difference Learning
(TDL) and Coevolutionary Learning (CEL), which were applied to Othello by
Lucas and Runarsson (2006). That study inspired our research and will be also
referred to in the following section.

1http://algoval.essex.ac.uk:8080/othello/html/Othello.html
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3. Methods

3.1. Coevolutionary learning

Coevolutionary algorithms are variants of evolutionary computation where indi-
vidual’s fitness depends on other individuals. Evaluation of an individual takes
place in the context of at least one other individual, and may be of cooperative
or competitive nature. In the former case, individuals share the fitness they have
jointly elaborated, whereas in the latter one, a gain for one individual means a
loss for the other. Past research has shown that this scheme may be beneficial
for some types of tasks, allowing task decomposition (in the cooperative variant)
or solving tasks for which the objective fitness function is not known a priori
or is hard to compute (the best example here are games, Angeline and Pollack,
1993; Azaria and Sipper, 2005).

Coevolutionary Learning (CEL) follows the competitive scheme and typi-
cally starts with generating a random initial population of player individuals.
Individuals play games with each other, and the outcomes of these confronta-
tions determine their fitness values. The best performing strategies are selected,
undergo genetic modifications such as mutation or crossover, and their offspring
replace some of (or all) former individuals. This scheme, of course, misses many
details that need to be filled in, some of which relate to evolutionary com-
putation (population size, variation operators, selection scheme, etc.), others
pertaining specifically to coevolution (the way the players are confronted, the
method of fitness estimation, etc.). No wonder CEL embraces a broad class of
algorithms, some of which we shortly review in the following.

In their influential study, Pollack and Blair (1998) used one of the simplest
evolutionary algorithms, a random hill-climber to successfully address the prob-
lem of learning backgammon strategy. Lucas and Runarsson (2006) used (1 +
λ) and (1, λ) evolution strategies to learn a strategy for the game of Othello.
An important design choice was the geometrical parent-child recombination:
instead of replacing the parent by the best of the new offspring, the parent
strategy was fused with the child strategy using linear combination. A self-
adapting mutation strength was also considered, but eventually used only for
evolving small-board Go players (Runarsson and Lucas, 2005).

Various forms of CEL have been successfully applied to many two-person
games, including backgammon (Pollack and Blair, 1998), chess (Hauptman and
Siper, 2007), checkers (Fogel, 2001), NERO (Stanley et al., 2005), blackjack
(Caverlee, 2000), Pong (Monroy et al., 2006), ant wars (Jaśkowski et al., 2008),
and a small version of Go (Lubberts and Miikkulainen, 2001).

3.2. Coevolutionary archives

The central characteristic of CEL is that it refrains from the use of objective
fitness of individuals. This feature makes it appealing for applications where
the objective fitness cannot be unarguably defined or is infeasible to compute.
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Games, often involving huge numbers of possible strategies, are canonical repre-
sentatives of such problems. However, inaccessibility of the objective fitness im-
plies a serious impairment: there is no guarantee that an algorithm will progress
at all. Lack of progress can occur when, for instance, player’s opponents are not
challenging enough or much too difficult to beat. These and other undesirable
phenomena, jointly termed coevolutionary pathologies, have been identified and
studied in the past (Ficici, 2004).

In order to deal with coevolutionary pathologies, coevolutionary archives
were introduced. A typical archive is a (usually limited in size, yet diversified)
sample of well-performing strategies found so far. Individuals in a population
are forced to play against the archive members, replaced occasionally, typically
when they prove inferior to some population members. Of course, an archive
does not guarantee that the strategies found by evolution will be the best in
the global, objective sense, but this form of long-term search memory enables
at least some form of historical progress (Miconi, 2009).

In this study we use Hall of Fame (HoF, Rosin and Belew, 1997), one of the
simplest archives. HoF stores all the best-of-generation individuals encountered
so far. The individuals in population, apart from playing against their peers,
are also forced to play against randomly selected players from the archive. In
this way, individual’s fitness is partially determined by confrontation with past
‘champions’.

Most of the work quoted above involves a single homogeneous population of
players, a setup called one-population coevolution (Luke and Wiegand, 2002) or
competitive fitness environment (Angeline and Pollack, 1993; Luke, 1998). It is
worth to point out that the recent work on coevolution indicates that, even if
the game itself is symmetric, it can be useful to maintain in parallel two pop-
ulations, each consisting of individuals encoding strategies of a particular type:
candidate solutions, which are expected to improve as evolution proceeds, and
tests, whose main purpose is to differentiate candidate solutions by defeating
some of them. Recent contributions (Ficici and Pollack, 2003; de Jong, 2005,
2007) demonstrate that such design can improve search convergence, give better
insight into the structure of the search space, and in some settings even guar-
antee monotonic progress towards the selected solution concept (Ficici, 2004).

3.3. Temporal difference learning

Temporal Difference (TD), a method proposed by Sutton (1988), has become a
popular approach for solving reinforcement learning tasks. Some suggest (Sut-
ton and Barto, 1998) that the famous checkers playing program by Samuel
(1959) was in fact taught by a simple version of temporal difference learning
(however others, Bucci, 2007, treat it rather as a first example of coevolutionary
algorithm). One of the most spectacular successes of temporal difference learn-
ing in game playing is undoubtedly Tesauro’s TD-Gammon (Tesauro, 1995).
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This influential work has triggered off a lot of research in reinforcement learning
and TD methods, including their applications to Othello (Manning, 2007).

The TD(λ) learning procedures solve prediction learning problems that con-
sist in estimating the future behavior of an incompletely known system using the
past experience. TD learning occurs whenever a system state changes over time
and is based on the error between the temporally successive predictions. Its goal
is to make the preceding prediction to match more closely the current prediction
(taking into account distinct system states observed in the corresponding time
steps).

Technically, the prediction at a certain time step t can be considered as a
function of two arguments: the outcome of system observation P and the vector
of modifiable weights w. A TD algorithm is expressed by the following weight
update rule:

∆wt = α(Pt+1 − Pt)

t∑

k=1

λt−k
∇wPk, (2)

where Pt is the prediction at time t and the gradient ∇wPt is the vector of
partial derivatives of Pt with respect to each weight. The parameter α is the
learning rate, while the trace decay λ ∈ [0, 1] determines the rate of ‘aging’ of
past gradients, i.e., the rate at which their impact on current update decays
when reaching deeper into history. This general formulation of TD takes into
account the entire history of the learning process; in case of TD(0), the weight
update is determined only by its effect on the most recent prediction Pt:

∆wt = α(Pt+1 − Pt)∇wPt. (3)

When applied to the problem of learning Othello strategy represented by a
WPC, Pt estimates the chances of winning given the game state bt at time t.
The WPC function f computes the dot product of the board state vector bt

and the weight vector w (see Eq. (1)), and the obtained value is subsequently
mapped to a closed interval [-1, 1] using hyperbolic tangent, so that Pt has the
form:

Pt = tanh(f(bt)) =
2

exp(−2f(bt)) + 1
− 1. (4)

By applying (4) to the TD(0) update rule (3) and calculating the gradient,
we obtain the desired correction of weight wi at the time step t:

∆wi,t = α(Pt+1 − Pt)(1 − P 2
t )bi. (5)

If the state observed at time t+1 is terminal, the exact outcome of the game
is known and may be used instead of the prediction Pt+1. The outcome value
is +1 if the winner is black, -1 if white, and 0 when the game ends in a draw.
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The process of learning consists of applying the above formula to the WPC
vector after each move. The training data (i.e., collection of games) according to
which the presented algorithm can proceed, may be obtained by self-play. The
major advantage of this is that nothing besides the learning system is required.
During game play, moves are selected on the basis of the most recent evaluation
function.

Othello is a deterministic game, thus the course of the game between a
particular pair of deterministic players is always the same. This feature reduces
the number of game trees to be explored and makes learning ineffective. To
remedy this situation, at each turn, a random move is forced with a certain
probability. After such a random move, no weight update occurs.

3.4. Coevolutionary temporal difference learning

The past results of learning WPC strategies for Othello (Lucas and Runarsson,
2006) and small-board Go (Runarsson and Lucas, 2005) demonstrate that TDL
and CEL exhibit complementary features. TDL learns much faster and con-
verges within several hundreds of games, but then stucks, and, no matter how
many games it plays, eventually fails to produce a well-performing strategy.
CEL progresses slower, but, if properly tuned, eventually outperforms TDL.
So, it sounds reasonable to combine these approaches into a hybrid algorithm
exploiting advantages revealed by each method.

To benefit from the complementary advantages of TDL and CEL we propose
a method termed Coevolutionary Temporal Difference Learning (CTDL). CTDL
maintains a population of players and alternately performs temporal difference
learning and coevolutionary learning. In the TDL phase, each player is subject
to TD(0) self-play. Then, in the CEL phase, individuals are evaluated on the
basis of a round-robin tournament. Finally, a new generation of individuals is
obtained using selection and variation operators and the cycle repeats.

Other hybrids of TDL and CEL have been occasionally considered in the
past. Kim et al. (2007) trained a population of neural networks with TD(0)
and used the resulting strategies as an input for the standard genetic algorithm
with mutation as the only variation operator. Singer (2001) has shown that
reinforcement learning may be superior to a random mutation as an exploration
mechanism. His Othello-playing strategies were 3-layer neural networks trained
by interlacing reinforcement learning phases and evolutionary phases. In the re-
inforcement learning phase, a round robin tournament was played 200 times with
network weights modified after every move using backpropagation algorithm.
The evolutionary phase consisted of a round-robin tournament that determined
each player’s fitness, followed by recombining the strategies using feature-level
crossover and mutating them slightly. The experiment yielded a strategy that
was reported to be competitive with an intermediate-level handcrafted Othello
player; however, no comparison with preexisting methods was presented. Also,
given the proportions of reinforcement and evolutionary learning, it seems that
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Singer’s emphasis was mainly on reinforcement learning, whereas in our CTDL
it is quite the reverse: reinforcement learning serves as a local improvement
operator for evolution.

4. Experiments

We conducted several experiments comparing CTDL, CEL, TDL, and their ex-
tensions with the Hall of Fame (HoF) archive (Rosin and Belew, 1997), all im-
plemented using Evolutionary Computation in Java (ECJ) library (Luke, 2008).
To provide a fair comparison, all runs used the same settings (taken from Lucas
and Runarsson, 2006, when possible) and stopped when the number of games
played reached 10 million. For statistical significance, each run was repeated 50
times with different random number generator seeds.

4.1. Algorithms and setup

4.1.1. TDL

TDL is an implementation of a gradient-descent temporal difference algorithm
TD(0) described in Section 3.3 and parametrized as in Lucas and Runarsson
(2006). The weights are initially set to 0 and the learner is trained solely through
self-play, with random moves occurring with probability p = 0.1. The learning
rate α = 0.01.

4.1.2. CEL

CEL uses a generational coevolutionary algorithm with population of 50 indi-
viduals initialized with all weights set to 02. During mutation, the weights are
limited to the range [−1, 1]. In the evaluation phase, a round-robin tournament
is played between all individuals, with wins, draws, and losses rewarded by 3, 1,
and 0 points, respectively. The evaluated individuals are selected using standard
tournament selection with tournament size 5, and then, with probability 0.03,
their weights undergo a Gaussian mutation (σ = 0.25). Next, they mate using
one-point crossover, and the resulting offspring is the only source of genetic ma-
terial for the subsequent generation (there is no elitism). As each generation
requires 50 × 50 games, each run lasts for 4000 generations to get the total of
10,000,000 games.

4.1.3. CEL + HoF

This setup extends the previous one with the HoF archive. Each individual plays
games with all 50 individuals from the population (including itself) and with 50

2Unintuitively, we have found for Othello that initializing the weights with 0 for all indi-
viduals leads to better solutions than when weights were drawn at random from [−1, 1] — see
also Section 6.3.
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randomly selected individuals from the archive, so that its fitness is determined
by the outcomes of 100 games scored as in CEL. In each generation, the best
performing individual is copied into the archive. The archive serves also as a
source of genetic material, as the first parent for crossover is randomly drawn
from it with probability 0.2. In order to attain 10,000,000 training games, the
number of generations was set to 2000.

4.1.4. CTDL = TDL + CEL

CTDL combines TDL and CEL as described in Section 3.4, with the TDL phase
parameters described in 4.1.1 and CEL phase parameters described in 4.1.2. It
starts with players’ weights initialized to 0 and alternately repeats the TDL
phase and the CEL phase until the total number of games attains 10,000,000.
The exact number of generations depends on the TDL-CEL ratio, which we
define as the number of self-played TDL games per one generation of CEL.
For example, if the TDL-CEL ratio is 1 (default), there are 2,550 games per
generation (including the round-robin tournament of CEL) and the run lasts
for 3,925 generations.

4.1.5. CTDL+HoF = TDL + CEL + HoF

This setup combines 4.1.3 and 4.1.4 and does not involve any extra parameters.

4.2. Measuring strategy quality

In order to monitor progress in an objective way, 100 times per run (approxi-
mately every 100,000 of games) we assess the quality of the best-of-generation
individual. As learning a game strategy is an example of a test-based problem,
an objective evaluation should take into account games with all possible players
and be based on a particular solution concept (Ficici, 2004). This approach
cannot be implemented in practice due to the number of possible strategies for
Othello. Thus, following Lucas and Runarsson (2006), we rely on two approx-
imate yet computationally feasible quality measures described below. Both of
them estimate individual’s quality by playing 1,000 games (500 as black and 500
as white) against certain opponent(s) and calculating the probability of winning.

4.2.1. Playing against the random player

This method tests how well the player fares against a wide variety of opponents.
The opponents always choose moves at random, no matter what the board
state is. Notice that this quality measure estimates the objective quality of an
individual according to the the solution concept of Maximization of Expected
Utility (Ficici, 2004).
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4.2.2. Playing against the standard heuristic player

This method tests how well the player copes with a moderately strong opponent
using WPC shown in Table 1. Since the game of Othello is deterministic, we
force both players to make random moves with probability ǫ = 0.1 to diversify
their behaviors and make the estimated values more continuous. Though this
essentially leads to a different game definition, following Lucas and Runarsson
(2006), we assume that the ability of playing such a randomized game is highly
correlated with the ability of playing the original Othello.

5. Results

5.1. Comparison of algorithms with an external opponent

In the first experiment, we compared five methods described in the previous
section for performance against the random player and the standard heuristic
player. Fig. 2 illustrates how the strategies produced by the algorithms per-
form on average against the random player. Each graph point represents the
probability of winning of a best-of-generation individual, averaged over 50 runs.
For the population-based methods (i.e., all except the pure TDL), the best-of-
generation individual is the one with maximal fitness, while for TDL it is simply
the only strategy maintained by the method. It is interesting to observe that
the algorithms cluster into two groups with respect to the performance they
eventually achieve. The pure methods (CEL and TDL) are significantly worse
in the long run than the others. As expected, in the very beginning, the quality
of individuals produced by the TDL-based algorithms is higher than of those
produced by methods that do not involve TDL. Adding HoF archive improves
both CEL and CTDL. Interestingly, CEL+HoF achieves eventually a higher
level of play than CTDL(+HoF), but learns slightly slower.

Results of the second experiment are illustrated in Fig. 3, which shows the
progress measured as the average performance of best-of-generation individuals
when playing with the standard heuristic player. First, it can be observed that
CTDL is clearly better than TDL, which initially learns rapidly, but stagnates
after several thousands of games. Nevertheless, TDL beats CEL noticeably.
Once again, the HoF archive helps both CEL and CTDL to achieve a higher
level of play.

Second, while CTDL+HoF and CEL+HoF eventually produce players ex-
hibiting a very similar level, CTDL+HoF does so after approximately 2,500,000
games, while CEL+HoF requires more than 7,500,000 games for this. In terms
of the performance measure based on the standard heuristic player, CTDL+HoF
achieves its peak performance three times faster than CEL+HoF.
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Figure 2. Average performance of the best-of-generation individuals measured
as the probability of winning against the random player, plotted against the
number of training games played
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randomized with probability 0.1), plotted against the number of training games
played
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5.2. Comparison of algorithms in a round-robin tournament

The standard heuristic player used in the previous experiments, even if ran-
domized, cannot be expected to represent fully the richness of strong Othello
players. That is why we recruit a more diverse set of opponents through round-
robin tournaments involving the teams of best-of-generation individuals repre-
senting particular methods. The best-of-generation strategies that were subject
to individual performance assessment in the previous section are now combined
into five teams, each representing one method. Since there are 50 runs of each
method, each of teams consists of 50 members. Next, we play a round-robin
tournament between the teams, each strategy playing against 4 × 50 = 200
strategies from all the opponent teams for a total of 400 games (200 as white
and 200 as black). The final score of a team is the total score of its players in
the total of 20,000 games, using the standard Othello scoring scheme.

This type of performance assessment allows us to track the relative progress
of strategies produced by different algorithms. The results presented in Fig. 4
indicate that the methods combining CEL with TDL take the lead relatively
quickly, and later on yield only a little to CEL+HoF, which is the only method
exhibiting significant progress after 2,000,000 games. In particular, CTDL+HoF
is able to score more than 40,000 out of possible 60,000 points, i.e. more than
twice as much as CEL, which is clearly the worst in the field. Also, the HoF-
based approaches learn slower because of an additional computational effort
caused by the requirement to play games with archival opponents in each gen-
eration.
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Table 2. The results of the round-robin tournament involving best-of-last-
generation individuals

Team Games Wins Draws Defeats Points

CTDL+HoF 20000 13232 538 6230 40234
CEL+HoF 20000 12361 633 7006 37716
CTDL 20000 10958 641 8401 33515
TDL 20000 7627 575 11798 23456
CEL 20000 4331 595 15074 13588

Table 3. Weighted Piece Counter vector of the best evolved player

1.01 -0.43 0.38 0.07 0.00 0.42 -0.20 1.02
-0.27 -0.74 -0.16 -0.14 -0.13 -0.25 -0.65 -0.39
0.56 -0.30 0.12 0.05 -0.04 0.07 -0.15 0.48
0.01 -0.08 0.01 -0.01 -0.04 -0.02 -0.12 0.03
-0.10 -0.08 0.01 -0.01 -0.03 0.02 -0.04 -0.20
0.59 -0.23 0.06 0.01 0.04 0.06 -0.19 0.35
-0.06 -0.55 -0.18 -0.08 -0.15 -0.31 -0.82 -0.58
0.96 -0.42 0.67 -0.02 -0.03 0.81 -0.51 1.01

Although CEL+HoF approaches the performance of CTDL+HoF, even after
10,000,000 games it clearly falls behind CTDL+HoF. Notice that the relative
performance curve for CEL+HoF seems to converge at the point of 9,000,000
games and there are no grounds to claim that it could actually catch up with
CTDL+HoF. This experiment also confirms that CTDL+HoF is much quicker
than CEL+HoF in terms of time to converge. Note, as well that the CTDL+HoF
deterioration observed in the range of about 2,000,000 to 8,000,000 training
games should be attributed not to loss of absolute performance, but to the fact
that the other teams get better.

5.3. Best-of-last-generation individuals in round-robin tournament

For a better insight into the relative performance of individuals produced by
different methods, in Table 2 we present the results of the round-robin tour-
nament involving teams of best-of-last-generation individuals returned by the
algorithms. The results confirm the former observations: the best method in
direct comparison is CTDL+HoF.

The WPC of the globally best scoring player (i.e., over all algorithms and
runs), produced by the winning CTDL+HoF team, is shown in Table 3 and
presented graphically in weight-proportional grayscale in Fig. 5b (darker squares
denote larger weights, i.e., more desirable locations on the board). An important
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(a) The standard heuristic player (b) The best evolved player

Figure 5. Weighted Piece Counter vectors illustrated as Othello boards with
locations shaded according to corresponding weights

observation is that the WPC matrix exhibits many symmetries. Similarly to
the standard heuristic player’s strategy, which is shown graphically in Fig. 5a,
the corners are most desirable, while their immediate neighbors have very low
weights. However, in contrast to the standard heuristic player, the edge locations
at distance 2 from the corners get very high weights, which is consistent with
typical preferences of human players.

5.4. Discussion

The three presented experiments, with the random player, the standard heuristic
player, and the round-robin tournament lead to consistent results, which allow
us to formulate two propositions:

1. CTDL, which consists of interlaced CEL and TDL phases, is significantly
better than both its constituent methods alone.

2. The HoF archive improves the performance of both CEL and CTDL, al-
lowing them to produce better individuals in the long run.

However, despite the fact that CTDL performs better than CEL, the direct
comparison of CTDL+HoF and CEL+HoF requires a discussion. We can com-
pare CTDL+HoF and CEL+HoF in terms of two metrics: i) the performance of
players produced by a method in the long run, and ii) the speed of the method
measured as the convergence time. The results of the three experiments show
that CTDL+HoF is better than CEL+HoF with respect to the convergence
time, because of the TDL phase, which quickly improves individuals maintained
by the method to (at least) a moderate level of play.
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Concerning the long-run performance metric, CTDL+HoF and CEL+HoF
obtain a similar level of play against the standard heuristic player, and CTDL+
HoF produces better players than CEL+HoF when compared in a round-robin
tournament. However, CTDL+HoF is beaten by CEL+HoF when the random
player is used as a benchmark. This somewhat surprising result can be explained
by noticing that CEL(+HoF) and CTDL(+HoF) drive the learning process to-
wards different goals3, and the performance measure based on game results with
the random opponent correlates better with the CEL+HoF goal. It seems that
due to strong influence of self-play learning, CTDL(+HoF) produces players bi-
ased towards playing well against strong opponents, while players produced by
CEL+HoF are geared for a wide range of opponents, including the weak ones.
Thus, CTLD(+HoF) trades off its ability to play with weak players, which have
their representatives in the wide spectrum of possible behaviour of the random
player, for ability to play with strong opponents.

This explanation is supported by three facts. First, CTDL+HoF is equally
good in the long run as CEL+HoF when faced with the standard heuristic
player, which, on average, is stronger than the random one. Second, CTDL+HoF
is better than CEL+HoF in the round-robin tournament, which involves only
best-playing individuals at a certain stage of learning. Thus, clearly, the quality
of opponents used to measure the performance of methods correlates with the
relative difference between CTDL+HoF and CEL+HoF. Finally, notice that a
similar correspondence emerges when we compare CEL with TDL on different
performance measures. TDL produces players with the quality similar to that
of CEL when compared with the random opponent. However, TDL is clearly a
better choice, when quality is compared on the basis of performance with the
standard heuristic player or in the round-robin tournament. TDL alone is, thus,
also more biased towards playing with strong players than pure CEL.

6. Impact of parameter settings

6.1. TDL-CEL ratio

Preliminary experiments have shown that the TDL-CEL ratio is an important
parameter of CTDL. We have investigated this issue by running CTDL+HoF for
different TDL-CEL ratios. The probability of the best-of-generation individual
winning against the random player for different TDL-CEL ratios, presented in
Fig. 6, proves that CTDL performance depends on the TDL-CEL ratio and that
the ratio above 1 is detrimental. Fig. 6 demonstrates also the tradeoff between
the learning speed and the ultimate player quality.

In Fig. 7, which illustrates the performance against the standard heuristic
player, different TDL-CEL ratios cause only slight differences in the long run.
This was confirmed by playing another round-robin tournament involving teams

3The notion of such ‘goals’ has been formalized as solution concepts by Ficici (Ficici, 2004).
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of last-generation individuals obtained in setups with different TDL-CEL ratios,
which ended with each team scoring a very similar number of points.

6.2. Negative learning rate

As shown in Section 5, the hybrid approach was able to learn remarkably better
strategies than the non-hybrid methods. An interesting question is whether the
purposeful (meaning: driven towards a greater probability of winning) char-
acter of changes brought in by TDL is essential, or TDL plays the role of a
mere random mutation. To verify this, we compared regular CTDL+HoF to
CTDL+HoF with learning rate α = −0.01, meaning that TDL in the latter
method disproves the strategies found by CEL. The results, shown in Fig. 8,
show that a purposeful TDL is one of the key factors explaining the success of
the hybrid approach.

6.3. Strategy initialization

A few additional experiments were motivated about by observations made dur-
ing the preliminary tests. Particularly, it was noticed that the way strategies
are initialized may have a substantial impact on the learning process. Recall
from 4.1.1 that in case of TDL-based approaches initialization procedure sets all
weights to zero. This setting was adapted from the previous work (Lucas and
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Runarsson, 2006) where it is reported that such initialization leads to the best
results. However, in coevolution, like in traditional evolutionary approaches,
random initialization is most common for generating initial population as it dis-
tributes the initial population over different parts of the search space, helping
to explore it. Evolutionary computation orthodoxy states that placing all initial
individuals in the same point of the search space is a nonsense. Surprisingly,
the following results imply that for this problem and a specific strategy repre-
sentation, even population-based algorithms should start with zeroed candidate
solutions.

Figs. 9 and 10 show the results of CTDL+HoF and CEL+HoF for three
different initialization procedures. Random-init draws each weight uniformly
from the given range ([−1, 1] and [−0.05, 0.05] were tested) while zero-init just
sets all weights to zero for all the individuals. The primary observation is
that proper initialization can largely affect the convergence speed of learning.
Clearly, random-init results in slower convergence of both algorithms. Although
narrowing the range from which the weights are drawn leads to improvement in
learning speed, zero-init remains the best approach.

Finding the superiority of single point initialization quite unexpected, we
tried to explain it by examining in detail the evolution of Othello strategies.
Figs. 11 and 12 show how the board evaluation function of the best-of-generation
individual changes throughout the learning by CTDL+HoF, for different initial-
ization types. Although the final results in both figures are almost identical,
zero-init finds a good approximation of the final solution to the last one much
faster than random-init. This corresponds to differences in the convergence
speed of these methods. Our analysis suggests also that another key charac-
teristic of a well-playing WPC strategy is small magnitude of weights. The
zero-initialized strategy naturally meets this requirement, in contrast to the
random one which has larger weight variation. Fig. 12 illustrates that the evo-
lutionary effort during the learning process is focused mostly on reducing weight
values for the middle locations.

7. The interplay between TDL and CEL

In CTDL, the working set of solutions (population) is shared between two funda-
mentally different search algorithms. As the experimental results demonstrate,
the interplay between them is beneficial. However, a deeper analysis that is be-
yond the scope of this paper leads to conclusion that both constituent methods,
TDL and CEL, optimize towards substantially different goals. Thus, reaching
a deeper understanding of this interplay is far from trivial and requires fur-
ther studies. This section shortly discusses another observations that make it
intriguing.

CTDL can be considered as a form of Coevolutionary Memetic Algorithm.
Memetic Algorithms are hybrid approaches coupling a population-based global
search method with some form of local improvement. Since these algorithms
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Figure 11. Evolution of zero-initialized population illustrated as a sequence
of Othello boards (one drawing per 30 generations) colored accordingly to cor-
responding WPC weights (darker squares denote larger weights) of the best-of-
generation individual. Read left to right, top to bottom
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Figure 12. Evolution of randomly initialized population illustrated as a se-
quence of Othello boards (one drawing per 30 generations) colored accordingly
to corresponding WPC weights (darker squares denote larger weights) of the
best-of-generation individual. Read left to right, top to bottom
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usually employ evolutionary search, they are often referred to as Lamarckian
Evolution, to commemorate Jean-Baptiste Lamarck who hypothesized, incor-
rectly in view of today’s neo-Darwinism, that the traits acquired by an individ-
ual during its lifetime can be passed on to its offspring. Technically, memetic
algorithms typically alternate genetic search for the population and local search
for individual solutions.

In this context, our Coevolutionary Temporal Difference Learning is an ex-
ample of what might be termed Lamarckian Coevolution or Lamarckian Co-
evolutionary Algorithm. The reinforcement learning phase can be treated as a
form of local search technique, especially as TD(0) we use is a gradient descent
method. In other words, TD(0) combined with a randomly perturbed self-play
serves as a substitute for a local search guided by the objective fitness function.
Thus, it interestingly turns out that we can do a kind of local search without ob-
jective information about the solution performance. This sounds both puzzling
and appealing, as normally an objective quality measure is an indispensable
prerequisite for local search. We plan to elaborate on this observation in fur-
ther research and hypothesize that some findings from the Memetic Algorithms
literature are potentially applicable to our approach.

Another observation that supports the analogy between Lamarckian Evolu-
tionary Algorithms and Lamarckian Coevolution is that, in both approaches,
the parameters controlling the relative intensity of local and population learn-
ing (called here TDL-CEL ratio) are essential for effective learning. They define
the tradeoff between exploration and exploitation. Too intensive reinforcement
learning (exploitation) can lead to a premature convergence to a local optimum,
making it difficult for the coevolutionary stage (exploration) to move towards
better solutions. Too intense coevolution, on the other hand, does not give
the reinforcement learning enough time to tune the strategies. The issue of an
optimum exploration-exploitation balance requires more research.

8. Summary

CTDL and the results it attains for the nontrivial domain of the game of Othello
constitute yet another argument in favour of the proposition that a smart hybrid
of appropriately assorted global search and local search methods can result in
a beneficial tradeoff between exploration and exploitation of the search space.
Thanks to the coevolutionary component, CTDL is able to perform an effec-
tive search in absence of an objective performance measure (fitness function),
which makes it significantly different from analogous non-coevolutionary hybrid
methods such as memetic algorithms.

CTDL clearly benefits from the mutually complementary characteristics of
both constituent approaches, CEL and TDL. The experimental results demon-
strate that the fusion of these methods is indeed synergistic, leading to better
performance of the co-evolved players for the game of Othello. The evolved
learners reveal also basic ‘understanding’ of the game, such as the importance
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of the board corners. Although in this paper we tested CTDL on Othello only,
similar results obtained on small-board Go (Krawiec at al., 2011) makes us be-
lieve that CTDL could be beneficial for a wide spectrum of games where both
TDL and CEL can be applied separately.

Apart from the tradeoff between exploration and exploitation discussed in
Section 7, there are other aspects of this approach that are worth further investi-
gation. In particular, using CTDL together with a two-population coevolution,
with solutions and tests bred separately, would allow us to employ more ad-
vanced coevolutionary archive methods such as LAPCA and IPCA (de Jong,
2007) and potentially obtain better results.
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