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Abstract

N-tuple networks have been successfully used as position evaluation functions for board games such
as Othello or Connect Four. The effectiveness of such networks depends on their architecture, which
is determined by the placement of constituent n-tuples (sequences of board locations) providing input
to the network. The most popular method of placing n-tuples consists in randomly generating a small
number of long, snake-shaped board location sequences. In this paper, we show that learning n-tuple
networks is more effective if it involves, instead, a large number of systematically placed, short,
straight n-tuples. In addition, we demonstrate that a simple variant of coevolutionary learning can
evolve a systematic n-tuple network with tuples of size just 2 of a comparable performance to the best
1-ply Othello players. Our network consists of only 288 parameters, which is an order of magnitude
less than the top published players to date. This indicates a need for more effective learning methods
that would be capable of taking a full advantage of larger networks.
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1. INTRODUCTION

Board games have always attracted attention in Al due to their clear rules, mathematical elegance and simplicity.
Since the early works of Shannon (1950) on Chess and Samuel (1959) on Checkers, a lot of research have
been conducted in the area of board games towards finding either perfect players (e.g., Schaeffer (2007) for
Checkers), or stronger than human players (e.g., Buro, 2000 for Othello). The bottom line is that board games
still constitute valuable test-beds for improving artificial and computational intelligence game playing methods
such as reinforcement learning, Monte Carlo tree search, branch and bound, and (co)evolutionary algorithms.

Most of these techniques employ a position evaluation function to quantify the value of a given game state. In
the context of Othello, one of the most successful position evaluation functions is tabular value function (Buro,
1997) or n-tuple network (Lucas, 2008). It consists of a number of n-tuples, each associated with a look up table,
which maps contents of n board fields into a real value. The effectiveness of n-tuple network highly depends on
the placement of n-tuples (Szubert, Jaskowski, and Krawiec, 2013). Typically, n-tuples architectures consist of
a small number of long, randomly generated, snake-shaped n-tuples (Manning and Othello, 2010; Szubert et al.,
2013; Runarsson and Lucas, 2014).

In this paper, we propose an n-tuple network architecture consisting of a large number of short, straight n-tuples,
generated in a systematic way. In the extensive computational experiments, we investigate the effectiveness of our
architecture in the context of coevolutionary learning of position evaluation functions for Othello. We compare
our architecture with the one involving randomly generated n-tuples. Finally, we evaluate the performance of the
best evolved n-tuple network against the top 1-ply Othello players from the literature.
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Figure 1: An Othello position, where white has 6 legal moves (dashed gray circles). If white places a piece on
e3, the pieces on d3, d4, and e4 are reversed to white.

Despite the importance of the choice of the evaluation function and n-tuple network architecture in particular, to
the best of our knowledge, this is the first study that evaluates different ways of placing n-tuples on the Othello
board. Therefore, to concentrate only on this issue, instead of trying to design a complete state-of-the-art Othello
player that uses advanced game-tree search techniques and opening databases, here we study only position evalu-
ation functions, putting aside other significant elements of a successful computer players (Runarsson and Lucas,
2014).

2. METHODS

2.1 Othello

Othello (a.k.a. Reversi) is a two player, deterministic, perfect information strategic game played on an 8 x 8
board. There are 64 pieces being black on one side and white on the other. The game starts with two white and
two black pieces forming an askew cross in the center on the board. The players take turns putting one piece on
the board with their color facing up. A legal move consists in placing a piece on a field so that it forms a vertical,
horizontal, or diagonal line with another player’s piece, with a continuous, non-empty sequence of opponent’s
pieces in between (see Fig. 1), which are reversed after the piece is placed. Player passes if and only if it cannot
make a legal move. The game ends when both players passed consecutively. Then, the player having more pieces
with their color facing up wins.

Othello has been found to have around 102® legal positions (Allis, 1994) and has not been solved; this is one
of the reasons why it has become such a popular domain for computational intelligence methods (Lucas, 2007;
Osaki et al., 2008; Manning, 2010b; Chong et al., 2012; van den Dries and Wiering, 2012; Manning and Othello,
2010; Samothrakis et al., 2013; Szubert et al., 2013; Jaskowski, Szubert, and Liskowski, 2014).

2.2 Position Evaluation Function

In this paper, our goal is not to design state-of-the-art Othello players, but to evaluate different position evaluation
functions. This is why our players are simple state evaluators in a 1-ply setup (Szubert ef al., 2013; Samoth-
rakis et al., 2013; Runarsson and Lucas, 2014): given the current state of the board, a player generates all legal
moves and applies the position evaluation function to the resulting states. The state gauged as the most desirable
determines the move to be played. Ties are resolved at random.
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Figure 2: An 4-tuple employed eight times to take advantage of board symmetries (symmetric sampling). The
eight symmetric expansions of the 4-tuple return, in total, 5 x —1.01 + 2 x 5.89 — 9.18 = —2.45 for the given
board state.

2.3 N-tuple Network

The best performing evaluation function in the Othello League is n-tuple network (Samothrakis et al., 2013). N-
tuple networks have been first applied to optical character recognition problem by Bledsoe and Browning (1959).
For games, it have been used first by Buro (1997) under the name of tabular value functions, and later popularized
by Lucas (2008). According to Szubert et al. (2013) main advantages of n-tuple networks “include conceptual
simplicity, speed of operation, and capability of realizing nonlinear mappings to spaces of higher dimensionality”.

N-tuple network consists of m n;-tuples, where n; is tuple’s size. For a given board position b, it returns the
sum of values returned by the individual n-tuples. The ¢th n;-tuple, for ¢ = 1...m, consists of a predetermined
sequence of board locations (Zocij) j=1...n;> and a look up table LUT;. The latter contains values for each board
pattern that can be observed on the sequence of board locations. Thus, n-tuple network is a function

f(b) =" fi(b) = LUT; [index (bioc,y; - - - » biocsn, )] -

i=1 i=1

Among possible ways to map the sequence to an index in the look up table, the following one is arguably conve-

nient and computationally efficient:
M

index(v) = Z v
j=1

where c is a constant denoting the number of possible values on a single board square, and v is the sequence of
board values (the observed pattern) such that 0 < v; < cforj = 1... |v|. In the case of Othello, ¢ = 3, and
white, empty, and black squares are encoded as 0, 1, and 2, respectively.

The effectiveness of n-tuple networks is improved by using symmetric sampling, which exploits the inherent
symmetries of the Othello board (Lucas, 2007). In symmetric sampling, a single n-tuple is employed eight times,
returning one value for each possible board rotation and reflection. See Fig. 2 for an illustration.

2.4 N-tuple Network Architecture

Due to the spatial nature of game boards, n-tuples are usually consecutive snake-shaped sequences of locations,
although this is not a formal requirement. If each n-tuple in a network is of the same size, we denote it as m X n-
tuple network, having m x 3™ weights. Apart from choosing n and m, an important design issue of n-tuples
network architecture is the location of individual n-tuples on the board (Szubert et al., 2013).
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The numbers denote symmetric expansions corresponding weights).
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(c) all-3 network consisting of all 24 straight 3-tuples (648 (d) rand-8 X 4 network consisting of 8 randomly generated
weights). snake-shaped 4-tuples (648 weights).

Figure 3: Rand-* and all-* n-tuple network architectures. “Main” n-tuples have been shown by red, while their
symmetric expansions by light gray.

2.4.1 Random Snake-shaped N-tuple Network

In the light of the importance of a proper features selection, it is surprising that many investigations in game
strategy learning have involved randomly generated snake-shaped n-tuple networks. Lucas (2008) generated
individual n-tuples by starting from a random board location, then taking a random walk of 6 steps in any of the
eight orthogonal or diagonal directions. The repeated locations were ignored, thus the resulting n-tuples were
from 2 to 6 squares long. The same method Krawiec and Szubert (2011) used for generating 7 x 4, 9 x 5 and
12 x 6-tuple networks, and Thill, Koch, and Konen (2012) for generating 70 x 8 tuple networks playing Connect
Four.

An m x n-tuple network generated in this way will be denoted as rand-m x n (see Fig. 3d for an example).
2.4.2 Systematic Straight N-tuple Network

Alternatively, we propose a deterministic method of constructing n-tuple networks. Our systematic straight n-
tuple networks consist of all possible vertical, horizontal or diagonal n-tuples placed on the board. Its smallest
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architecture weights architecture ~ weights
all-2 (32 x 2) 288 rand-10 x 3 270
all-3 (24 x 3) 648 rand-8 x 4 648
all-4 (21 x4) 1701 rand-7 X 5 1701

Table 1: The number of weights for three pairs of systematic straight (all-*) and random snake-shaped (rand-*)
n-tuple networks architectures.

representative is a network of 1-tuples (see Fig. 3a). Thanks to symmetric sampling, only 10 of them is required
for an 8 x 8 Othello board, and such 10 x 1-tuple network, which we denote as all-1, involves 3 x 10 = 30
weights. Fig. 3b and Fig. 3c show all-2 and all-3 networks, respectively. Table 1 contains the number of weights
in selected architectures of rand-* and all-* networks.

2.4.3 Other Approaches

Logistello (Buro, 2000), computer player, which beat the human Othello world champion in 1997, used 11 n-
tuples of n € {3,10}, hand-crafted by an expert. External knowledge has also been used by Manning and
Othello (2010), who generated a diverse 12 x 6-tuple network using random inputs method from Breiman’s
Random Forests basing on a set of 10 000 labeled random games.

2.5 Learning to Play Both Sides

When a single player defined by its evaluation function is meant to play both as black and white, it must interpret
the result of the evaluation function complementary depending on the color it plays. There are three methods
serving this purpose.

The first one is double function (e.g., Thill et al., 2012), which simply employs two separate functions: one for
playing white and the other for playing black. It allows to fully separate the strategy for white and black players.
However, its disadvantage consists in that two times more weights must be learned, and the experience learned
when playing black is not used when playing white and vice versa.

Output negation and board inversion (e.g., Manning, 2010b; Runarsson and Lucas, 2014) are alternatives to
double function. They use only single set of weights, reducing the search space and allowing to transfer the
experience between the white and black player. When using output negation, black selects the move leading to a
position with the maximal value of the evaluation function whereas white selects the move leading to a position
with the minimal value.

Player using board inversion learns only to play black. As the best black move it selects the one leading to the
position of the maximum value. If it has to play white, it temporarily flips all the pieces on the board interpreting
the board as if it played black. Then it selects the best ‘black’ move, flips all the pieces back, and plays the white
piece in the selected location.

3. EXPERIMENTS AND RESULTS

3.1 Common Experimental Settings
3.1.1 Othello Interaction

Othello is a deterministic game and here we study only deterministic players (with an exception of rare situations
when at least two considered positions have the same evaluation value). Therefore, following previous research
(Lucas and Runarsson, 2006; Samothrakis et al., 2013; Szubert et al., 2013), to provide more continuous perfor-
mance measure, we introduce more variability to Othello interactions by forcing both players to make random
moves with the probability e = 0.1. As a consequence the players no longer play (deterministic) Othello, but
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stochastic e-Othello. However, the ability to play e-Othello is highly correlated with the ability to play the original
Othello (Lucas and Runarsson, 2006).

In a single game, we assume that the winner scores 1 point, the loser 0 and, in case of a draw, players score 0.5
points each. Since the game is asymmetrical, an interaction of two players in this study involves a double game,
where both individuals play one game as black and one game as white player.

3.1.2 Coevolutionary Learning

In order to compare different n-tuple network architectures, we performed several computational experiments
involving a simple variant of coevolutionary learning (Axelrod, 1987). The algorithm maintains a single pop-
ulation of n-tuple networks, which are evolved for 10000 generations by (10 + 90) Evolution Strategy (Beyer
and Schwefel, 2002) using Gaussian mutation with o = 1.0. The weights of individuals in the initial population
are drawn from the [—0.1,0.1] interval. Individual’s fitness is calculated as an average score in a round-robin
tournament played by the population members, where each match between two individuals consists of 10 double
games.

3.1.3 Performance Measure

In order to objectively measure the performance of the players obtained in the experiments, we used its average
score obtained in 1000-double-games-match against a pool of 13 state-of-the art 1-ply players. The pool consists
of networks of two different evaluation functions: either weighted piece counter (WPC) or n-tuple networks
(NTN):

e SWH (WPC) hand-crafted by Yoshioka, Ishii, and Ito (1999),

e LR06 (WPC) co-evolved by Lucas and Runarsson (2006),

e SJK09 (WPC, Szubert, Jaskowski, and Krawiec, 2009), SJK11 (WPC, Szubert, Jaskowski, and Kraw-
iec, 2011), SJK13_CTDL (NTN, Szubert et al., 2013) obtained using coevolutionary temporal difference
learning,

o SJK13_ETDL (NTN, Szubert et al., 2013) learned using evolutionary temporal difference learning,

e EM10_GECCO, EM10_Nash70 (Manning, 2010a), EM10_TCIAG1 and EM10_TCIAG2 (Manning, 2010b)
obtained using resource-limited Nash memory, which involved both coevolution and temporal difference
learning (all NTN),

o RL14_iPrefN and RL14_iPrefl (NTN) computed using preference learning by Runarsson and Lucas (2014),
andPB11_ETDL (NTN) obtained by a combination of evolution and temporal difference learning by Bur-
row (2011).

Note that the performance measure was used only externally to monitor the training progress and not exploited
in any way to drive the (coevolutionary) learning.

3.1.4 Statistical Analysis

We repeated each coevolutionary run 10 times. Every 100 generations, we measured the performance of the fittest
individual in the population. The performance of the fittest individual from the last generation is identified with
method’s performance. For statistical analysis in all of the experiments, we used non-parametric Wilcoxon rank
sum test (a.k.a. the Mann-Whitney U test) with the significance level a = 0.05.

3.2 Preliminary: Board Inversion vs. Output Negation

Figure 4 presents the results of learning with board inversion and output negation for representatives of two types
of n-tuple networks architectures: rand-8 x 4 having 8 x 43 = 648, and all-1 with 10 x 3! = 30 weights.
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Figure 4: The comparison of output negation against board inversion for two n-tuples architectures. The perfor-
mance is measured as the average score obtained in 1000 double games against a pool of state-of-the art 1-ply
players € = 0.1. In each violin shape, the white dot marks the median, the black boxes range from the lower
to the upper quartile, while the thin black lines represent 1.5 interquartile range. Outliers beyond this range are
denoted by black dots. The outer shape shows the probability density of the data.

The figure shows that board inversion surpasses output negation regardless of the player architecture, which
confirms the findings of Runarsson and Lucas (2014) in the context of preference learning. The differences
between the methods are statistically significant (see also the detailed results in Table 3 in Appendix).

Therefore, in the following experiments we employ exclusively board inversion.

3.3 All Short Straight vs. Random Long Snake-shaped N-tuples

In the main experiment, we compare n-tuple networks consisting of all possible short straight n-tuples (all-2,
all-3, and all-4) with the long random snake-shaped ones (rand-10 x 3, rand-8 x 4, and rand-7 x 5). We chose the
number of n-tuples and their sizes in such a way as to make the number of weights in corresponding architectures
equal, or, if impossible, similar at least (see Table 1).

The results of the experiment are shown in Fig. 5 as violin plots. A statistical analysis of the three corresponding
pairs of networks reveals that:

e all-2 is better than rand-10 x 3 (p-value = 0.019),
e all-3 is better than rand-8 x 4 (p-value = 0.001), and

e no difference between all-4 and rand-7 x 5 can be claimed.

Although, we found no difference between the networks with the highest number of parameters, for the other
two compared pairs, the networks consisting of a large number of short, systematically placed n-tuples (all-*) are
shown to work better than the ones consisting of a small number of random long snake-shaped ones (rand-*).

Those findings are further confirmed in Fig. 6, which shows the pace of learning for each of the six analyzed
architectures. The figure plots methods’ average performance as a function of number of generations, which
is proportional to the computational effort. We can see that all-2 and all-3 exhibit higher average performance
throughout the learning process than their random counterparts. All-4, on the other hand, learns slower than
rand-7 x 5, but the performance gap between them slowly decreases, which suggests that all-4 could overtake its
random counterpart if it is allowed to learn beyond 10000 generations.

Visual inspection of the violin plots reveals that all-* architectures are also generally slightly more robust (except
all-3 vs. rand-4 x 8) due to lower variances than rand-* architectures (cf. Fig. 5). This is because the variance of
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Figure 5: The comparison of all short straight n-tuple networks (all-*) with random long snake-shaped n-tuple
networks (rand-*). The distribution of performances is presented as violin plots (see Fig. 4 for explanation).
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Figure 6: Pace of learning of six analyzed n-tuple networks architectures. Each point on the plot denotes the
average performance of method’s fittest individual in a given generation.

rand-* architectures is attributed to both its random initialization and non-deterministic learning process, while
the variance of all-* is only due to the latter.

3.4 Coevolutionary Learning Works Best for 2-Tuple Networks

Longer n-tuples should, in principle, lead to higher network’s performance, since they can ‘react’ to patterns
that the shorter ones cannot. However, the results presented in Fig. 5 show it is not the case for coevolutionary
learning. Despite having two times more weights, all-3 does not provide better performance than all-2 (no
statistical difference). Furthermore, all-4 is significantly worse than both all-2 and all-3.

Figure 6 suggests that all-2 is not only the best in the long run, but it is also the method that learns fastest. Note,
however, that all-3 catches up all-2 eventually. Observe also that all-4 learns even slower than all-3 and although
the gap between all-3 and all-4 decreases over time, it is still large after 10000 generations.

Thus, we demonstrated that for Othello, all-2 with just 288 weights, the smallest among the six considered n-
tuple network architectures, is also the best of them, for the employed coevolutionary setup, at least. We must,
however, note that, e.g., temporal difference learning or coevolutionary temporal difference learning scale better
than the purely evolutionary methods (Szubert et al., 2013), thus we are far from claiming that the all-2 network
is better in general than all-n, where n > 2.
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6561 RL14_iPrefN - 548 547 572 549 595 61.8 658 649 634 781 790 770 840 658
288 all-2 45.3 - 602 534 516 622 587 688 679 526 816 839 800 840 654
4698 SJKI13_CTDL 454 398 - 582 517 589 558 589 631 677 868 857 856 832 647
6561 PBI11_ETDL 428 46.6 41.8 - 468 563 56.1 578 585 84.8 832 833 84.0 815 633
8748 EMIO_-GECCO 452 484 483 532 - 61.1 605 62.1 687 618 769 742 715 79.7 629
3240 SJK13_ETDL 40.5 37.8 41.1 437 389 - 489 545 552 841 733 733 715 760 573
8748 EMIO_-TCIAG1 382 413 442 440 39.6 5l1.1 - 510 568 633 777 803 783 783 572
8748 EMI10_Nash70 342 312 411 422 379 455 490 - 538 730 769 771 768 753 549
8748 EMIO.TCIAG2 35.1 322 369 415 31.3 448 433 462 - 677 742 723 735 724 516
64 SWH 36.6 474 323 152 382 160 367 27.0 323 - 461 523 546 716 394
64 LRO6 220 184 132 169 232 267 223 232 258 539 - 492 537 577 312
64 SIK11 210 162 143 167 259 267 198 229 278 477 508 - 490 575 305
64  SJKO09 23.1 200 145 16.1 225 22,6 21.7 232 266 454 463 51.0 - 575 300
192 RL14_iPrefl 16.0 160 16.8 185 203 240 21.7 248 276 224 423 425 425 - 258

Table 2: The results of a round robin tournament between Othello 1-ply players: 13 published ones and the all-2
player introduced in this study. Each value is a percent of maximum score possible to obtain in a 1000-double-
games-match of e-Othello, where € = 0.1. Best scores against each player have been marked bold.

3.5 Comparison with State-of-the-art Players

In order to see what is the limit of the performance of a 288-weight player we co-evolved all-2 architecture with
a larger population of size 600. The performance of the best agent obtained in this way is 65.4%. Table 2 shows
the round-robin tournament results between our player and the 13 published players used for the performance
measure. all-2 player placed second in this tournament losing only to RL14_iPrefN obtained by Runarsson and
Lucas (2014). Let us note, however, that the differences between the five best players are small and their ranking
might change if new players are added to the tournament.

Nevertheless, basing on the tournament results, we can claim that all-2 is one of the best players in 1-ply Othello?.

It is important to notice that our player is over a dozen times ‘smaller‘ than the other top players in terms of
the number of parameters used (cf. column ‘weights’ in the table). This suggests that there is a lot of untapped
potential in the larger networks to improve.

4. CONCLUSIONS

In this paper, we analyzed different n-tuple network architectures for Othello position evaluation function. Our
main contribution is showing that a network consisting of all possible, systematically generated, short n-tuples
leads to a better play than long random snake-shaped tuples originally used by Lucas (2007) provided the same
number of weights. Such an important task as feature selection should apparently not be left to a random process.

The results of our experiments also show that tuples longer than 2 give no advantage for (co)evolutionary learning,
causing slower learning rate, at the same time.

Finally, we demonstrated the effectiveness of systematic n-tuple networks by coevolving a small network consist-
ing of all possible straight 2-tuples, which has a comparable performance to the top 1-ply Othello players from
the literature. Importantly, our network involves only 288 weights, while the number of parameters of the other
competitors is in the range of [3240, 8748]. Since larger networks have, in principle, larger potential, our results

2The player is available at http: //www.cs.put .poznan.pl/wjaskowski/othello-league-players
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suggest that the learning algorithms used to learn those networks were unable to take full advantage of it. Thus
there is a need for better self-learning algorithms.

The computationally intensive experiments we performed involved co-evolutionary learning. It remains to be
seen whether our findings hold for different experimental settings. The interesting open questions are: i) whether
our systematic short networks are also advantageous when using other self-learning methods such as temporal
difference learning, and ii) whether such networks are also profitable for other board games, e.g., Connect Four
or Checkers.
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5. APPENDICES

APPENDIX A: DETAILED RESULTS

mean median 0 1 2 3 4 5 6 7 8 9

all-2-inv 0.59888 0.60040 0.5911 0.6005 0.6004 0.6120 0.6039 0.6004 0.5971 0.5867 0.5949 0.6018
all-3-inv 0.58823 0.58945 0.5751 0.5866 0.5909 0.5944 0.5714 0.5620 0.5880 0.6200 0.5995 0.5944
rand-10x3-inv  0.58563 0.59020 0.5870 0.5715 0.6026 0.5990 0.5934 0.5773 0.5989 0.5706 0.5952 0.5608
rand-8x4-inv  0.56300 0.56325 0.5495 0.5813 0.5819 0.5536 0.5629 0.5577 0.5435 0.5636 0.5682 0.5678
rand-7x5-inv  0.53696 0.53020 0.5756 0.5439 0.5625 0.5093 0.5836 0.4874 0.5279 0.5303 0.5301 0.5190
all-4-inv 0.53408 0.53605 0.5337 0.5453 0.5379 0.5401 0.5465 0.5342 0.5253 0.5254 0.4976 0.5548
rand-8x4-neg  0.42811 0.43000 0.4232 0.4200 0.3949 0.4933 0.4368 0.4554 0.3310 0.4724 0.4040 0.4501
all-1-inv 0.41398 0.42205 0.4225 0.4293 0.3877 0.3947 0.3886 0.4321 0.4216 0.4136 0.4253 0.4244
all-1-neg 0.37672 0.37720 0.3727 0.3807 0.3764 0.3783 0.3901 0.3677 0.3806 0.3740 0.3780 0.3687

Table 3: Performances obtained in 10 coevolutionary runs of all n-tuple network architectures considered in
this study. Each value is an average score in 1000 double games against a pool of 13 state-of-the-art players in

e-Othello, where e = 0.1.
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