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Abstract. We describe a novel method of evolutionary visual learning
that uses generative approach for assessing learner’s ability to recognize
image contents. Each learner, implemented as a genetic programming
individual, processes visual primitives that represent local salient features
derived from a raw input raster image. In response to that input, the
learner produces partial reproduction of the input image, and is evaluated
according to the quality of that reproduction. We present the method in
detail and verify it experimentally on the real-world task of recognition
of hand-drawn shapes.

1 Introduction

In supervised learning applied to object recognition, the search in the space of
hypotheses (learners) is usually guided by some measure of quality of discrimi-
nation of training examples from different object classes. This requires defining,
somehow arbitrarily, learner’s desired response for objects from particular classes
(e.g., defining desired combinations of output layer excitations in case of an ar-
tificial neural network). Though proven effective in several applications, such
an approach suffers from relatively high risk of overfitting, especially when the
number of image features is large. For instance, in our past experience with
evolutionary synthesis of object recognition systems [1,2], many evolved learn-
ers tended to use irrelevant image features, coincidentally correlated with the
partitioning of training examples into concepts. This happens because learners
are rewarded exclusively for decisions they make, and not for the actual ‘under-
standing’ of the recognized objects.

Moreover, applicability of supervised feature-based learning methods is re-
stricted to simple recognition tasks with a limited number of object classes. For
more complex objects and for large numbers of object classes, one usually has
to rely on model-based approach and explicitly specify the models of objects to
be recognized, which is often tedious and time-consuming.

To avoid overfitting on one hand and model-based approach on the other,
in this paper we make the learning process unsupervised in the sense that the
learner is not explicitly told how it should discriminate the positive examples
from the negative ones. Rather than that, it is encouraged to reproduce a selected
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aspect of the object being recognized, which, in turn, enables more thorough
evaluation.

In experimental part, we tackle the problem of interpretation of hand-drawn
sketches. In real-world scenarios, such recognition systems may be helpful for di-
rect digitization of hand-sketched diagrams, for instance, block diagrams, UML
diagrams, etc., saving the time required for tedious manual re-entry of paper
notes. Such drawings are typically acquired using input devices like TabletPC
computers, PDAs, or graphics tablets (digitizers). Most such devices produce
on-line data, i.e., provide both spatial and temporal information about pen (sty-
lus) position. As our approach requires spatial information only, its applicability
spans also off-line interpretation of sketches stored as ordinary raster images
(e.g., acquired from paper drawing using a scanner).

According to Krishnapuram et al. [3], the complete task of sketch interpre-
tation may be subdivided into three subtasks: (i) segmentation of drawing into
disjoint shapes that are recognized independently, (ii) fitting of shapes (models)
to drawings, and (iii) recognition of particular shapes. The approach described in
this paper tackles two latter tasks. However, we discuss the possibility of tackling
the segmentation task as well.

The primary contribution of this paper may be summarized as development
and practical verification of a novel method to object recognition that (i) uses
genetic programming to evolve visual learners, (ii) estimates learner’s fitness by
assessing its ability to restore essential features of the input image, and (iii) uses
visual primitives as basic ‘granules’ of visual information.

2 Generative Visual Learning

The proposed approach may be shortly characterized as generative visual learn-
ing, as our evolving learners aim at reproducing the input image and are rewarded
according to the quality of that reproduction. The reproduction is partial, i.e.,
the learner restores only a particular aspect of the image contents. In this paper,
the aspect of interest is shape, whereas other factors, like color, texture, shading,
are ignored.

The reproduction takes place on a virtual canvas spanned over the input im-
age. On that canvas, the agent is allowed to perform some elementary drawing
actions (DAs for short). To enable successful reproduction, DAs should be com-
patible with the image aspect that is to be reconstructed. In this paper, we
consider hand-drawn polygons and, to enable the learner to restore their shape,
we make our DAs draw sections.

As an example, let us consider reconstruction of an empty triangular shape.
It requires from the learner performing the following steps: (i) detection of con-
spicuous features — triangle corners, (ii) pairing of the detected triangle corners,
and (iii) performing DAs that connect the paired corners. However, within the
proposed approach, the learner is not given a priori information about the con-
cept of the corner nor about the expected number of them. We expect the learner
to discover these on its own.
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To reduce the amount of data that has to be processed and to bias the learning
towards the image aspect of interest, our approach abstracts from raster data
and relies only on selected salient features in the input image s. For each locally
detected feature, we build an independent visual primitive (VP for short). The
complete set of VPs derived from s is denoted in following by P .

The learning algorithm itself does not make any assumptions about the par-
ticular salient feature used for VP creation. Reasonable instances of VPs include,
but are not limited to, edge fragments, regions, texems, or blobs. However, the
type of detected feature determines the image aspect that is reconstructed. As
in this paper we focus on shape, we use VPs representing prominent local lumi-
nance gradients derived from s using a straightforward procedure. Each VP is
described by three scalars called hereafter attributes ; these include two spatial
coordinates of the edge fragment and the local gradient orientation.

3 GP-Based Learners

On the top level, the proposed method uses evolutionary algorithm that main-
tains a population of visual learners (individuals, solutions), each of them im-
plemented as genetic programming (GP, [4]) expression. Each visual learner L
is a procedure written in a form of a tree, with nodes representing elementary
operators that process sets of VPs. The terminal nodes (named ImageNodes)
fetch the set of primitives P derived from the input image s, and the consecutive
internal nodes process the primitives, all the way up to the root node. A partic-
ular tree node may (i) group primitives, (ii) perform selection of primitives using
constraints imposed on VP attributes or their other properties, or (iii) add new
attributes to primitives.

Table 1 presents the complete list of GP operators that may reside in par-
ticular tree nodes. We use strongly-typed GP (cf. [4]), which implies that two
operators may be connected to each other only if their input/output types match.
The following types are used: numerical scalars (� for short), sets of VPs (Ω,
potentially nested), attribute labels (A), binary arithmetic relations (R), and
aggregators (G).

The non-terminal GP operators may be divided into following categories:

1) Scalar operators (as in standard GP applied to symbolic regression; see
[4]). Scalar operators accept arguments of type � and return result of type �.

2) Selectors. The role of a selector is to filter out some of the VPs it receives
from its child node(s) according to some objectives or condition. Selectors accept
at least one argument of type Ω and return result of type Ω. Non-parametric
selectors expect two child nodes of type Ω and produce an output of type Ω.
Operators that implement basic set algebra, like set union, intersection, or dif-
ference, belong to this category. Parametric selectors expect three child nodes
of types Ω, A, and �, respectively, and produce output of type Ω. For instance,
operator LessThan applied to child nodes (P , po, 0.3) filters out all VPs from P
for which the value of the attribute po (orientation) is less than 0.3.
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Table 1. The GP operators

Type Operator
� Ephemeral random constant
Ω ImageNode – the VP representation P of the input image s
A px, py, po and custom attributes added by AddAttribute
R Equals, Equals5Percent, Equals10Percent, Equals20Percent, LessThan,

GreaterThan
G Sum, Mean, Product, Median, Min, Max, Range
� +(�,�), –(�,�), *(�,�), /(�,�), sin(�), cos(�), abs(�), sqrt(�), sgn(�), ln(�)
Ω SetIntersection(Ω,Ω), SetUnion(Ω,Ω), SetMinus(Ω,Ω), SetMi-

nusSym(Ω,Ω), SelectorMax(Ω,A), SelectorMin(Ω,A), SelectorCom-
pare(Ω,A,R,�), CreatePair(Ω,Ω), CreatePairD(Ω,Ω), ForEach(Ω,Ω),
ForEachCreatePair(Ω,Ω,Ω), ForEachCreatePairD(Ω,Ω,Ω), AddAt-
tribute(Ω,�), AddAttributeForEach(Ω,�), GroupHierarchyCount(Ω,�),
GroupHierarchyDistance(Ω, �), GroupProximity(Ω, �), GroupOrientation-
Multi(Ω,�), Ungroup(Ω), Draw(Ω)

3) Iterators. The role of an iterator is to process one by one the VPs it receives
from one of its children. For instance, operator ForEach iterates over all the VPs
from its left child and processes each of them using the GP code specified by its
right child. The VPs resulting from all iterations are grouped into one VP and
returned.

4) Grouping operators. The role of those operators is to group primitives into
a certain number of sets according to some objectives or conditions. For in-
stance, GroupHierarchyCount uses agglomerative hierarchical clustering, where
euclidean distance of primitives serves as the distance metric.

5) Attribute constructors. An attribute constructor defines and assigns a new
attribute to the VP it processes. The definition of a new attribute, which must be
based on the values of existing VP attributes, is given by the GP code contained
in the right child subtree. To compute the value of a new attribute, attribute con-
structor passes the VP (operator AddAttribute) or the sub-primitives of the VP
(operator AddAtributeToEach) through that subtree. Attribute constructors ac-
cept one argument of type Ω and one of type �, and return a result of type Ω.

The detailed description of all implemented operators may be found in [5,6].
Given the elementary operators, the learner L applied to an input image s

builds gradually a hierarchy of VP sets derived from s. Each application of
selector, iterator, or grouping operator creates a new set of VPs that includes
other elements of the hierarchy. In the end, the root node returns a nested VP
hierarchy built atop of P , which reflects the processing performed by L for s.
Some of the elements of the hierarchy may be tagged by new attributes created
by attribute constructors.

Figure 1 illustrates an example of VP hierarchy built by the learner in response
to input image/stimulus s. In the left part of the figure, the short edge fragments
labeled by single lower-case letters represent the original VPs derived from the
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Fig. 1. The primitive hierarchy built by the learner from VPs, imposed on the image
(left) and shown in an abstract form (right); VP attributes not shown for clarity

input image s, which together build up P . In the right part, the VP hierarchy is
shown in an abstract way, without referring to the actual placement of particular
visual primitives in the input image. Note that the hierarchy does not have to
contain all VPs from P , and that a particular VP from P may occur in more
than one branch of the hierarchy.

Individual’s fitness is based on DAs (drawing actions) that it performs in re-
sponse to visual primitives P derived from training images s ∈ S. To reconstruct
the essential features of the input image s, the learner is allowed to perform DAs
that boil down to drawing sections on the output canvas c. To implement that
within the GP framework, an extra GP operator called Draw is included in the
set of operators presented in Table 1. It expects as an argument one VP set T
and returns it unchanged, drawing on canvas c sections connecting each pair of
VPs contained in T .

The drawing created on the canvas c by the learner L for an input image s is
then evaluated to provide feedback for L and enable its potential improvement.
This evaluation consists in comparing the contents of c to s. For this purpose,
a simple and efficient approach was designed. In general, this approach assumes
that the difference between c and s is proportional to the minimal total cost of
bijective assignment of lit pixels of c to lit pixels of s. The total cost is a sum of
costs for each pixel assignment. The cost of assignment depends on the distance
between pixels in the following way. When the distance is less than 5, the cost is
0; maximum cost equals 1 when the distance is greater than 15; between 5 and
15 the cost is a linear function of the distance. For pixels that cannot be assigned
(e.g., because there are more lit pixels in c than in s), an additional penalty of
value 1 is added to the total cost. In order to compute the minimal total cost of
assignment a greedy heuristic was applied.

The (minimized) fitness of L is defined as the total cost of the assignment
normalized by the number of lit pixels in s ∈ S, averaged over the entire training
set of images S. The ideal learner perfectly restores shapes in all training images
and its fitness amounts to 0. The more the canvas c produced by a learner differs
from s, the greater its fitness value.
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Fig. 2. Selected training examples

4 Related Research in Visual Learning

In most approaches to visual learning reported in literature, learning is limited to
parameter optimization that usually concerns only a particular processing step,
such as image segmentation, feature extraction, etc. A limited number of learn-
ing methods concerns more or less complete recognition systems [7,8,9,2,10,11].
In [1,2] we proposed a methodology that evolved feature extraction procedures
encoded either as genetic programming or linear genetic programming individu-
als. The idea of GP-based processing of attributed visual primitives was explored
for the first time in [12], and was further developed in [13,5,6].

The approach presented in this paper may be considered as a variant of genera-
tive pattern recognition. In a typical paper on that topic [14], Revow et al. used a
predefined set of deformable models encoded as B-splines and an elastic match-
ing algorithm based on expectation maximization for the task of handwritten
character recognition. In [3], an analogous approach has been proved useful for
recognition of hand-drawn shapes. However, the approach presented here goes
significantly further, as it does not require a priori database of object models.
And, last but not least, the recognition (restoration) algorithm has to restore
the input image using multiple drawing actions, which implies the ability to
decompose the analyzed shape into elementary components.

5 Experimental Evaluation

In this section we demonstrate how to apply the approach to recognize and
classify hand-drawn sketches (shapes). Using a TabletPC computer we prepared
a training set containing 48 images of four elementary shapes: diamonds (D),
rectangles (R), triangles pointing upwards (TU), and triangles pointing down-
wards (TD), each shape represented by 12 examples. The shapes were of differ-
ent dimensions, orientations and placed at random locations on a raster image of
640×480 pixels. Figure 2 illustrates selected training examples, shown for brevity
in one image; note however, that each shape is a separate training example.
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Fig. 3. Visualization of primitives derived from objects depicted in Fig. 2

Figure 3 shows visualization of primitives obtained from objects from Fig. 2.
Each segment depicts a single VP, with its spatial coordinates located in the
middle of the segment and the orientation depicted by slant.

Technically, we used generative evolutionary algorithm maintaining the popu-
lation of 25,000 GP individuals for 300 generations. Koza’s ramped half-and-half
operator with ramp from 2 to 6 [4] was used to produce the initial population.
We applied tournament selection with tournament of size 5, using individuals’
sizes for tie breaking and thus promoting smaller GP trees. Offspring were cre-
ated by crossing over selected parent solutions from previous generation (with
probability 0.8), or mutating selected solutions (with probability 0.2). The GP
tree depth limit was set to 10; the mutation and crossover operations might be
repeated up to 5 times if the resulting individuals do not meet this constraint;
otherwise, the parent solutions are copied into the subsequent generation. Ex-
cept for the fitness function implemented for efficiency in C++, the algorithm has
been implemented in Java with help of the ECJ package [15]. For evolutionary
parameters not mentioned here explicitly, ECJ’s defaults have been used.

The experiment was conducted according to the following procedure. First,
for each class of shape (D, R, TU and TD), 5 evolutionary runs were performed
using the training set for fitness computation. From each run, the best individual
(learner) was chosen. These 20 individuals constituted the pool of individuals,
which we used to build a recognition system that was subsequently evaluated on
a separate test set containing 124 shapes. We present results for two recognition
systems:

1) Simple recognition system consists of 4 best-in-class individuals, selected from
the pool according to fitness value (based on the training data). This straightfor-
ward system performs recognition of the test example t by computing fitnesses of
all four individuals for t and indicating the class associated with the fittest indi-
vidual. The rationale behind such a procedure is following. The learner was taught
only to perform well on images from one class and its fitness should be near 0 only
for images of this class. For example, it is unlikely that an individual that learned
the concept of triangle could recognize squares, thus it will get a high fitness value.
Simple recognition system achieves test-set accuracy of classification of 88.71%;
the detailed confusion matrix is presented in Table 2a.
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Table 2. Test-set confusion matrices for simple recognition system (a) and voting
recognition system (b) (rows: actual object classes, columns: system’s decisions)

(a)

D R TU TD
D 33 0 3 0
R 1 25 3 2

TU 0 0 28 0
TD 5 0 0 24

(b)

D R TU TD
D 34 1 1 0
R 2 27 1 1

TU 0 0 28 0
TD 0 0 0 29

Fig. 4. The generative restoration process performed by trained learners

2) Voting recognizer uses all 20 individuals from the pool and runs multiple
voting procedures to utilize the diversity of individuals obtained from different
evolutionary runs. Technically, all 54 possible combinations of individuals-voters
are considered, always using one voter per class. Each voting produces one de-
cision, using the same procedure as the simple recognition system. The class
indicated most frequently in all votings is the final decision of the recognition
system. This approach performs significantly better than the simple recognition
system and attains test-set recognition accuracy of 95.16% (confusion matrix
presented in Table 2b).

In Fig. 4, we illustrate the process of generative shape restoration performed
by the well-performing individuals for randomly selected test shapes. Thin dotted
lines mark the shapes drawn by a human, whereas thick continuous lines depict
drawing actions performed by the individual (sections). Darker colors reflect
overlapping of multiple DAs. It may be easily observer that, in most cases, the
evolved individuals successfully reproduce the overall shape of the recognized
object. Reproduction seems to be robust despite various forms of imperfectness
of the hand-drawn figures.

In Fig. 5, we present the GP code of selected individual trained to recognize
objects from the TU class. It should be emphasized that this individual uses
several nodes to issue drawing actions. In this way, the evolved individual ex-
ploits the inherent ability of our approach that allows gradual composition of
recognized object from primitive components (sections).
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Fig. 5. The GP code of selected well-performing individual trained on TU class

6 Conclusions

The obtained results demonstrate the ability of the approach to evolve generative
object recognition systems that successfully classify real-world sketches. This
result has been obtained using very limited background knowledge, encoded in
GP operators. Learners are not provided with negative examples (each learner is
trained only on examples from its own class), so new object classes may be added
without the need of modifying the existing recognizers. The method offers low
time complexity, resulting mostly from primitive-based processing. Recognition
of an object takes on average only 0.1ms for implementation running on 2.4GHz
AMD Opteron processor.

In this preliminary study we focused on recognition of basic geometrical
shapes. Interpretation of more complex images may require more sophisticated
and substantially larger GP individuals. To alleviate scalability issues that may
arise in such a case, we devised an extended approach that performs automatic
decomposition of image processing into multiple GP trees and enables sharing of
decomposed trees between multiple learning tasks. Preliminary results indicate
that such approach is profitable in terms of convergence speed [5,6].

Future research could concern other aspects of visual information, like color
or texture, and other input representation spaces, like region adjacency graphs.
It would be also interesting to investigate the possibility of some integration of
different aspects of visual stimuli.
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