
Competent Geometric Semantic Genetic
Programming for Symbolic Regression and

Boolean Function Synthesis

Tomasz P. Pawlak tpawlak@cs.put.poznan.pl
Institute of Computing Science, Poznan University of Technology, Poznań, Poland

Krzysztof Krawiec krawiec@cs.put.poznan.pl
Institute of Computing Science, Poznan University of Technology, Poznań, Poland

Abstract
Program semantics is a promising recent research thread in Genetic Programming (GP).
Over a dozen of semantic-aware search, selection, and initialization operators for GP
have been proposed to date. Some of those operators are designed to exploit the geomet-
ric properties of semantic space, while some others focus on making offspring effective,
i.e., semantically different from their parents. Only a small fraction of previous works
aimed at addressing both these features simultaneously. In this paper, we propose
a suite of competent operators that combine effectiveness with geometry for population
initialization, mate selection, mutation and crossover. We present a theoretical rationale
behind these operators and compare them experimentally to operators known from lit-
erature on symbolic regression and Boolean function synthesis benchmarks. We analyze
each operator in isolation as well as verify how they fare together in an evolutionary run,
concluding that the competent operators are superior on a wide range of performance
indicators, including best-of-run fitness, test-set fitness, and program size.

Keywords
semantics, metrics, geometry, effectiveness, theory, experiment

1 Introduction

Recent research in Semantic Genetic Programming (SGP) (Vanneschi et al., 2014) pushed
the envelope of EC-based program synthesis by shifting the focus from program syntax
to program behavior. An important thread in this area is Geometric Semantic GP (GSGP)
(Moraglio et al., 2012), where program semantics is interpreted as a point representing
its output on the training set in a multidimensional space, dubbed semantic space.

Research in GSGP focuses on designing search operators that have well-defined
impact on the geometric relationships between programs in the semantic space (Sec-
tion 2). However, practice shows that they often produce offspring solutions that, though
formally geometric, fail to be useful. For instance, an offspring program that is seman-
tically equivalent to its parent does not advance search and is a waste of computing
resources. The empirical evidence we brought in previous study (Pawlak et al., 2015a)
shows that this happens frequently. In other words, conventional GSGP constrains the
distribution of offspring semantics, but is in principle not concerned with shaping the
resulting distribution. In this paper, we scrutinize that distribution with respect to
effectiveness, meant as the prospective likelihood of search progress. To control and
improve effectiveness, we propose a suite of algorithmic components that, apart from

c©201X by the Massachusetts Institute of Technology Evolutionary Computation x(x): xxx-xxx

T. Pawlak, K. Krawiec

providing for geometric properties (in an exact or approximate sense), are also effective,
i.e., produce candidate programs that are likely to advance search. We achieve this goal
with two means: by using improved variants of effective search operators (mutation
and crossover) proposed in our earlier works (Pawlak et al., 2015b; Krawiec and Pawlak,
2013a; Wieloch and Krawiec, 2013), and by augmenting the conventional GSGP work-
flow with semantic-aware and geometric components: effective geometric initialization
and effective geometric mate selection (Sect. 4, Pawlak (2015)). These contributions
together form a coherent approach dubbed competent GSGP.

We start with a brief formalization in Sect. 2, and in Sect. 3 review the related work.
In the experimental part, we analyze each of the proposed components in isolation (most
of Sect. 5), and then assess the joint performance of the competent suite (Sect. 5.6) and
discuss the results and prospects (Sects. 6 and 7).

2 Semantics in GP

For the sake of this study, we assume that programs are functions, i.e., feature no side
effects, nor persistent state between applications to input data. Let I denote a set of
all program inputs, and O be a set of all program outputs. A program p has thus the
signature p : I → O, and we write o = p(in) to state that p applied to input in ∈ I
returns an output o ∈ O. The set of all programs is denoted by P .

Given an n-tuple I ∈ In of inputs, I = [in1, . . . , inn], the semantics s = [o1, o2, ..., on]
is a tuple of corresponding outputs oi ∈ O , and S ⊆ On be a set of all semantics. Note
that semantics is any combination of elements of O, including the combinations that
cannot be generated by any program in P . The semantics of a program p is the tuple of
outputs it produces for the elements of I , i.e., s(p) = [p(in1), . . . , p(inn)]. By definition
s(p) ∈ S. Though s(p) depends on the inputs in I , we write s(p) for brevity.

A program induction problem is defined by a program space P , a tuple of n inputs
I ∈ In, a target semantics t ∈ S, and a minimized fitness function f : S → R≥0. A pair
of corresponding elements from I and t, i.e., (ini, ti), ini ∈ I, i = 1, . . . , n, forms a fitness
case. We assume that f(s) = d(s, t) for target t and some metric d. A program p∗ such
that s(p∗) = t is an optimal solution to such program induction problem, and minimizes f ,
i.e., f(s(p∗)) = 0.

In the following, we define properties for each operator involved in GP search:
population initialization, mate selection and search operators.

2.1 Geometric search operators and convex hulls

Moraglio et al. (2012) formalized geometric mutation and crossover operators for se-
mantic GP. We adapt those definitions to the notation used in this paper.

Definition 1. A mutation operator is a (random) function P → P . A mutation operator
is r-geometric iff the semantics s(p′) of the produced offspring p′ belongs to a ball of
radius r centered in parent’s semantics p, i.e., ‖s(p′), s(p)‖ ≤ r.

Moraglio (2011) showed that the convex hull of offspring population is a (proper or
not) subset of the convex hull of the parent population. Starting from that observation,
we extend the conventional two-parent geometric crossover to an arbitrary number of
parents. Let C(X) denote the convex hull of X , i.e., the smallest convex set that includes
X . For brevity, we abuse the notation by writing C(P) to denote the convex hull in S
spanning the semantics of programs from P and refer to it as a convex hull of programs.

Definition 2. A k-ary crossover (k ≥ 2) is a (random) function Pk → P . A k-ary
crossover is geometric iff the semantics s(p) of the offspring p belongs to the convex hull

2 Evolutionary Computation Volume x, Number x

Competent Geometric Semantic Genetic Programming for Symbolic Regression and Boolean Function Synthesis

t t t

Figure 1: The effects of geometric crossover in n = 2-dimensional semantic space R2

under the L2 metric. Left: initial population, center: second generation, right: third
generation. Dashed polygons are convex hulls of previous generations.

of semantics of its parents pi, i = 1..k, i.e., s(p) ∈ C ({p1, p2, ..., pk}).

For k = 2, a convex hull is equivalent to a segment, and Def. 2 becomes identical to
that presented by Moraglio et al. (2012). Convex hulls embrace different sets of semantics
for different metrics. For more details and rationale see (Pawlak and Krawiec, 2016a;
Pawlak, 2015).

Following the proof by Moraglio (2011), the relevance of convex hulls for geometric
crossover is illustrated for n = 2 fitness cases in Fig. 1. The black points mark the
semantics of seven programs. An application of a k-ary geometric crossover to any k
programs from that set (left inset) can produce offspring in the convex hull of that set
only (the shaded area). If geometric crossover is the only search operator employed, all
resulting offspring lie in this convex hull (central inset). With each generation, the convex
hull shrinks (or at most remains unchanged). In the limit, the convex hull collapses to
a single point (semantics).

What follows from this example is that the necessary condition for a geometric
crossover to produce an offspring with semantics t is that t must be included in the
convex hull of the population. We formalize this observation as follows.

Theorem 3. A geometric k ≥ 2-ary crossover applied to a set of programs P may produce
a program p such that s(p) = t iff t ∈ C(P).

Proof. The proof follows from Def. 2, i.e., a geometric k-ary crossover must produce only
offspring in the convex hull of the parents, hence if t lies outside this convex hull, the
operator is unable to reach t.

As already noted by Moraglio et al. (2012), geometric semantic mutation does not
require a similar assumption, i.e., it ultimately converges to the target regardless whether
t ∈ C(P) holds or not. However, that convergence may require many iterations, which
depends, among others, on the radius of the ball in Def. 1. Geometric crossover can
make long ‘leaps’ in S, reducing the number of required iterations.

2.2 Target-geometric initialization and mate selection

Whether the target remains within the convex hull of population depends on (i) the
initial population and (ii) the choice of the parents to mate when producing consecutive
populations. We define the desirable properties of these objects below. The first property
originated in our previous work (Pawlak and Krawiec, 2016b).

Evolutionary Computation Volume x, Number x 3

T. Pawlak, K. Krawiec

Definition 4. An initialization operator is a (random) function that produces a multiset
P of elements from P . An initialization operator is t-geometric iff the convex hull of
programs in P includes t, i.e., t ∈ C(P).

Definition 5. A k-mate selection operator is a (random) function P → Pk. A k-mate
selection operator is t-geometric iff the convex hull of the selected programs pi, i = 1..k,
includes t, i.e., t ∈ C({p1, p2, ..., pk}).

The practical upshot of the above is that GP equipped with a target-geometric
initialization, a target-geometric mate selection, and geometric search operators is likely
to maintain its target t in population’s convex hull in consecutive iterations1 (assuming
it was present in the initial population). The usefulness of these components depends
on their effectiveness, which we cover in the next subsection, and on the technical
possibility of constructing geometric and effective operators for a given semantic space
and metric, which we investigate in Sect. 4.

2.3 Effective operators

We consider an operator effective if it avoids producing programs that are semantically
equal to already considered programs. The meaning of the phrase ‘already considered
programs’ depends on the context, so we define effectiveness separately for initialization,
selection, and search operators.

Definition 6. An initialization operator is effective iff each initial population P it pro-
duces does not contain semantically equal programs, i.e.,∀i 6=js(pi) 6= s(pj), pi, pj ∈ P .

Definition 7. A k-mate selection operator sel : 2P → Pk is effective iff, for any P ⊆ P, no
two programs in sel(P) have the same semantics, i.e.,∀i 6=js(pi) 6= s(pj), pi, pj ∈ sel(P).

Definition 8. A k-ary search operator h : Pk → P is effective iff, for any P ∈ Pk,
each offspring produced by h from P is semantically distinct from all its parents,
i.e., ∀p′∈h(P),p∈P s(p′) 6= s(p).

Effective operators lower the risk of revisiting the same solutions and are beneficial
for diversification of population. We expect them to increase the odds of solving program
induction problems, and verify this hypothesis in Sect. 5.

3 Previous works

This paper involves initialization, mate selection, and search operators, so we structure
the review around these categories.

3.1 Semantic-aware search operators

Design of geometric search operators is arguably the main research area within GSGP.
The key reference methods are here Semantic Geometric Crossover (SGX) and Mutation
(SGM) proposed by Moraglio et al. (2012). SGX works by linearly combining parent pro-
grams. SGM builds an offspring from a parent program and a carefully designed random
expression so that in effect the semantics of the offspring is only slightly disturbed (up
to a controlled degree) with respect to parent’s semantics (see Pawlak (2016) for proof).

SGM was thoroughly studied by Moraglio et al. (2013); Moraglio and Mambrini
(2013), in the Boolean and symbolic regression domains, respectively. Pawlak and Kraw-
iec (2016a) analyzed bounds on fitness change in a single application of SGX and SGM

1This likelihood would be turn into certainty if the search operator guaranteed that the resulting offspring
(i.e., the next population) forms a convex hull that includes t. However, each application of a typical search
operator is independent and returns only one offspring, which precludes ensuring this property.

4 Evolutionary Computation Volume x, Number x

Competent Geometric Semantic Genetic Programming for Symbolic Regression and Boolean Function Synthesis

under different metrics and fitness functions. Moraglio et al. (2014) adapted SGX to gram-
matical evolution. SGX and SGM are geometric, but not effective in the sense of Def. 8.

To our knowledge, Krawiec and Lichocki (2009) proposed the first approximately
geometric crossover for GP. This operator involves brood selection: a set of offspring can-
didates is produced, and the one that minimizes a custom measure of divergence from
geometry is returned. This operator is characterized by high probability of producing off-
spring semantically equal to one of their parents (see Pawlak et al. (2015a)). This probabil-
ity was reduced to zero by Pawlak (2014), making so, this operator effective w.r.t. of Def. 8.

Krawiec and Pawlak (2013b) proposed Locally Geometric Crossover (LGX) that
approximates geometric crossover by replacing parent subprograms using library of
known programs. LGX does not guarantee that an offspring is semantically different
from its parents, thus is not effective.

Pawlak et al. (2015b); Krawiec and Pawlak (2013a); Wieloch and Krawiec (2013)
developed approximately geometric, but not effective, mutation (RDO) and crossover
(AGX) that are based on the idea of inverse execution of parent program(s). The com-
petent mutation and crossover proposed in Sects. 4.3 and 4.4 are respective variants of
RDO and AGX extended for effectiveness.

Nguyen et al. (2016) proposed Subtree Semantic Geometric Crossover (SSGX) that,
given parent programs, picks from each of them one subprogram that is semantically
most similar to the parent program and linearly combines them in the same manner as
SGX (Moraglio et al., 2012). SSGX produces programs smaller by few orders of magnitude
than SGX, while maintaining similar fitness-based characteristics. SSGX is approximately
geometric, but not effective.

Concerning semantic-aware operators that aim at being effective, Beadle and John-
son (2008, 2009b) proposed, respectively, Semantically Driven Crossover (SDX) and
Mutation (SDM) for the Boolean and artificial ant domains. SDX and SDM repeat in
a loop, respectively, the conventional Tree Crossover (TX) and Tree Mutation (TM) (Koza,
1992), until the produced offspring candidate is semantically different from its parents.
SDX and SDM are thus effective w.r.t. Def. 8.

Jackson (2010b) also experimented with an effective crossover based on TX (Koza,
1992), which admits an offspring only if its is semantically different from both its parents.

The series of publications by the same authors (Nguyen et al., 2009; Uy et al., 2011,
2013) proposes three crossover and one mutation operator. The common feature of all
these operators is that they breed offspring by replacing subprograms in parents with
semantically different subprograms. These operators are not effective in sense of Def. 8,
because other parts of offspring program may still cause it to be semantically equal to
one of its parents.

3.2 Semantic-aware population initialization

Most works on initialization in SGP focus on providing semantic diversity in the initial
population. In one of the earliest attempts of that type, Looks (2007) proposed Semantic
Sampling (SS) – a population initialization heuristic that defines bins for programs of
particular sizes and fills them up to assumed capacity by semantically distinct programs.

Semantically Driven Initialization (SDI) presented by Beadle and Johnson (2009a)
for the Boolean and artificial ant domains is effective in sense of Def. 6. SDI starts with
seeding a population with single node-programs. Then, it iteratively picks a random
instruction and combines it with programs drawn from the population. The resulting
program is added to the population if no other program in there has equal semantics.

Jackson (2010a) proposed Behavioral Initialization (BI) that acts as a wrapper on

Evolutionary Computation Volume x, Number x 5

T. Pawlak, K. Krawiec

the Ramped Half and Half method (RHH, Koza (1992)). BI invokes RHH in a loop and
admits an initialized program to the population if it is semantically different from all
programs already present in the population. Thus, BI is effective, but not geometric.

The recent Semantic Geometric Initialization (SGI) (Pawlak and Krawiec, 2016c) is
geometric and effective in the sense of Defs. 4 and 6. SGI surrounds a target by a set
of semantics that form a convex hull that includes the target. Then, it applies domain-
specific exact algorithms that explicitly construct programs for the abovementioned
semantics. SGI turns out to significantly improve the performance of GSGP.

3.3 Semantic-aware selection operators

The works on semantic-aware selection, including mate selection, are few and far
between. Galván-López et al. (2013) proposed Semantic Tournament Selection (STS),
a 2-mate selection operator. STS selects the first parent using Tournament Selection (TS,
Miller and Goldberg (1995)). The second parent is the best one from a set of candidates
drawn from the population, where the candidates that are semantically equal to the first
parent are discarded. If all candidates in this set are worse than the first parent, STS by
definition allows the same program to be selected twice and act as both parents. Hence,
STS is not effective w.r.t. Def. 7.

For a comprehensive survey of semantic methods in GP, the reader is referred to
Vanneschi et al. (2014); Pawlak et al. (2015a).

From all the above-mentioned initialization operators, only the one by Pawlak
and Krawiec (2016b) is t-geometric. However, programs initialized by that operator by
design memorize the correct outputs for particular inputs (by storing them explicitly in
the program), and as such are unable to generalize well for unseen inputs. In contrast,
the competent initialization (CI) proposed in this paper searches for semantically unique
programs that expand population’s convex hull while not explicitly storing correct
outputs in program code. As it will become clear in the following section, the competent
tournament selection (CTS) is significantly different from past work too: it takes into ac-
count the relative locations of the target and mates’ semantics, which none of the former
semantic-aware selection methods did. The semantic-aware mutation and crossover
operators that complement our competent framework are effective counterparts of their
ancestors presented in (Pawlak et al., 2015b; Krawiec and Pawlak, 2013a; Wieloch and
Krawiec, 2013).

4 Proposed Competent Operators

The definitions presented in the previous section determine only the desirable properties
of GSGP operators, but do not propose concrete algorithms. In this section we present
a suite of competent operators for GP, i.e., algorithms that are effective (Defs. 6–8) and
designed to approximate the geometric characteristics (Defs. 1–5). The latter characteristics
are achieved only approximately or in the limit by some of the proposed components,
for the reasons that we detail in the following. This however does not prevent them from
performing significantly better than the original GSGP, as we demonstrate in Sect. 5.

All GSGP concepts depend on the choice of a metric, and so do the algorithms
proposed here. In the following, we assume the Minkowski metric of order z:

Lz(a, b) =

(∑
i

|ai − bi|z
) 1

z

. (1)

L1 is the city-block metric, and L2 is the Euclidean metric. Note that the Minkowski met-

6 Evolutionary Computation Volume x, Number x

Competent Geometric Semantic Genetic Programming for Symbolic Regression and Boolean Function Synthesis

Algorithm 1 Competent Initialization algorithm. Φ• is a set of terminals, Φ◦ is a set of
non-terminals, RANDOM(X) picks random element from set X , ARITY(p′) returns arity
of node p′.

1: function CI(Φ•, Φ◦)
2: P ← Φ• . Add terminals to population
3: while |P | < popsize do
4: p′ ← RANDOM(Φ◦)
5: for i = 1..ARITY(p′) do
6: p′i ← RANDOM(P) . Assign child node
7: if ∀p ∈ P : s(p) 6= s(p′) ∧ s(p′) /∈ C(P) then
8: P ← P ∪ {p′}
9: return P

ric can be applied to any domain with numeric elements, including symbolic regression
and the Boolean domain with 0/1 encoding.

4.1 Competent Initialization (CI)

Algorithm 1 presents Competent Initialization (CI) for tree-based programs. Like the
conventional GP search operators, CI constructs new programs from the programs
already present in the population.

The algorithm begins with filling the working initial population P with single-node
programs made of individual terminal (zero-argument) instructions. Then, it iteratively
builds new program candidates bottom-up from the programs already present in P , and
accepts a candidate p only if it meets two conditions (line 7): P contains no program
with the same semantics as p, and p expands the convex hull of the programs in P .
Verifying the latter condition is equivalent to checking whether s(p) ∈ C(P), which for
the L1-convex hull is true iff:

∀i min
p∈P

s(p)i ≤ s(p′)i ≤ max
p∈P

s(p)i (2)

To verify the condition for the L2-convex hull, we arrange the semantics of the
programs in P into a matrix, where element si,j is the jth component of the semantics
of the ith program in P . Then, s(p) ∈ C(P) iff the system of equations

s1,1 · · · s|P |,1
...

. . .
...

s1,n · · · s|P |,n
1 · · · 1


 x1

...
x|P |

 =


s(p)1

...
s(p)n

1

 (3)

has solution(s) ∀xi ∈ [0, 1]. The existence of such solutions can be verified by solving
this system using, e.g., Singular Value Decomposition (Burden and Faires, 2010), which
we do in the experimental part.

An implementation of Algorithm 1 requires additional safeguards that warrant
termination of the loop in lines 3–8, because CI may be unable to produce a program that
expands the convex hull of the population, for instance when the available instructions
are not sufficient to express certain semantics, or the convex hull already incorporates
the entire semantic space, i.e.,C(P) = S. Thus, if CI cannot fulfill the condition in
line 7 in an assumed number of attempts, it supplements the population with a random
program and starts the loop over. Moreover, CI discards the candidate programs that

Evolutionary Computation Volume x, Number x 7

T. Pawlak, K. Krawiec

Algorithm 2 Competent Tournament Selection algorithm. p is mate parent, µ is tourna-
ment size, and RANDOM(P, µ) draws without replacement µ elements from P .

1: function CTS(P)
2: p1 = TOURNAMENTSELECTION(P)
3: Γ← RANDOM(P\{p1}, µ)

4: p2 ← arg minp′∈Γ

distance to target︷ ︸︸ ︷
Lz(s(p′), t)

Lz(s(p′), s(p1))︸ ︷︷ ︸
distance to mate program

× (1 + |Lz(s(p′), t)− Lz(s(p1), t)|)︸ ︷︷ ︸
penalty for unequal distances of programs to target

5: return {p1, p2}

return the same value for all fitness cases, because in most problems such programs are
of little use.

CI is effective in the sense of Def. 6, because it explicitly forbids adding to the
population P a program that is semantically equal to any program already in P . CI does
not require the knowledge of the target (note the absence of t among CI’s arguments
in Algorithm 1), and can be thus applied to problems with unknown t . By the same
token CI is not target-geometric (Def. 4): the resulting convex hull C(P) is in general not
guaranteed to include t. Achieving such a guarantee would require a domain-specific
algorithm, which we did not want to involve in this study. Also, even a target-geometric
initialization operator would fail to produce a convex hull that encloses t if population
size was small compared to the dimensionality of semantic space n; for instance, it
may be hard to find two programs that form a convex hull enclosing t even in two-
dimensional semantic space. Nevertheless, we show in Sect. 5.2 that in practice CI is
likely to produce an initial population that includes t.

4.2 Competent Tournament Selection (CTS)

The intent behind the t-geometric k-mate selection (Def. 5) is to select from a population
k parent programs that form a convex hull that includes the target t. This makes it
possible for the subsequent k-ary geometric crossover to generate an offspring in the
proximity of t. Such k programs are guaranteed to exist in P if t ∈ C(P) and k ≥ n+ 1,
where n is the dimensionality of the semantic space (Carathéodory, 1911). It would be
tempting thus to consider such k-ary selection operators, if only t ∈ C(P). However, our
competent framework, though strongly motivated by geometric relationships between
programs, does not guarantee that the target is within the convex hull of the population
throughout the run. For instance already CI, which supplies the population with initial
programs, does not provide such a guarantee. In this context, there is limited motivation
for designing k-ary, k > 2 selection operators, and the Competent Tournament Selection
(CTS) that we propose below is designed to approximate the t-geometric 2-mate selection.

CTS (Algorithm 2) selects the first parent p1 using the tournament selection (Miller
and Goldberg, 1995). Then, it draws uniformly without replacement µ candidate pro-
grams and selects the one that minimizes the expression in line 5, which is a heuristic
measure of desirability of a candidate mate p′ for p1 with respect to three aspects:

1. The distance between s(p′) and the target t – to be minimized in order to to prefer
better programs,

2. The distance between s(p′) and s(p1) – to be maximized to penalize the candidates

8 Evolutionary Computation Volume x, Number x

Competent Geometric Semantic Genetic Programming for Symbolic Regression and Boolean Function Synthesis

−10 −5 0 5 10

−5

0

5

x1

x
2

(a) L1

−10 −5 0 5 10

−5

0

5

x1

x
2

(b) L2

Figure 2: Spatial characteristics of selection expression in CTS under L1 and L2 in R2,
for t = (0, 0) (black ×) and s(p1) = (−3, 2) (white ×). White color marks the minimum
of the expression, dark red marks the maxima (in the considered range), black is∞.

that are semantically too similar to p1 (and so prefer distinct programs) and to make
effective selection more likely (cf. Def. 7),

3. The difference between the distances of s(p′) and s(p1) from the target t – to be
minimized to promote the close-to-equidistant candidates p′.

Terms (2) and (3) make it likely for the center of the segment connecting s(p1) and
s(p′) to be close to t. Figure 2 presents the visualizations of the expression for L1 and L2

metrics in the R2 semantic space (n = 2). The minimal value of 0 is attained for the candi-
dates having target semantics, i.e., s(p′) = t, as mandated by the positive bias toward the
good candidates (term 1). For the points close to s(p1), the expression approaches infinity,
so such candidates are discouraged (term 2). Crucially, for the candidates located ‘on the
opposite side’ of t and at the same distance to t as p1, i.e.,Lz(s(p1), s(p′)) = 2Lz(s(p1), t),
the expression attains the relatively low value of 1/2 (term 3).

CTS is effective (Def. 7) because the drawing procedure in line 2 prevents repeated
selection of the same candidate (provided P contains at most µ semantic duplicates).
CTS is not t-geometric, since it does not guarantee selecting {p1, p2} such that t belongs
to the convex hull C({p1, p2}). Note that for k = 2, that convex hull is a segment
connecting s(p1) and s(p2), so picking a pair of programs with the above property from
a finite population P is particularly unlikely. Nevertheless, as we demonstrate later in
Sect. 5.3, simultaneous optimization of the three above terms allows CTS to select the
parents that are likely to result in geometric and well-performing offspring.

Contrary to what Algorithm 2 may suggest, CTS does not require access to the
target t. Note that the terms that t appears in (line 5) are actually fitness values: Lz(s(p′), t)
is nothing else than the fitness of p′, while Lz(s(p1), t) is the fitness of p1 (assuming
fitness uses on Lz). Therefore, even though CTS attempts to keep t within the convex
hull of the parents (or otherwise expand it towards t), the explicit knowledge of its
location is not essential, as the necessary information is conveyed by the fitness value.
Thus, similarly to CI, CTS can be applied to problems with an unknown t.

4.3 Competent Mutation (CM)

Competent Mutation (CM) relies on the concept of semantic backpropagation (SB) we intro-
duced in Random Desired Operator (RDO) (Pawlak et al., 2015b; Wieloch and Krawiec,

Evolutionary Computation Volume x, Number x 9

T. Pawlak, K. Krawiec

Algorithm 3 Competent Mutation algorithm. t is target, p is parent. LIBSEARCH(D,D∅)
returns a program that matches D and does not match D∅, RANDOMNODE(p) picks
random node from program p, REPLACE(p, a, p′) replaces a in p with p′, SB comes from
Algorithm 5 in Appendix A.

1: function CM(t, p)
2: a← RANDOMNODE(p)
3: D ← SB(t, p, a)
4: D∅ ← SB(s(p), p, a)
5: p′ ← LIBSEARCH(D,D∅)
6: return REPLACE(p, a, p′)

2013; Wieloch, 2013). The SB algorithm, given a semantics s, a program p, and a subpro-
gram a in p (i.e., its location in p), computes the combinatorial semantics. Combinatorial
semantics is a tuple of sets Di, each corresponding to a single fitness case. Di stores
the values such that, when substituted for a in p, cause the resulting program to return
the ith element of the target (ti) when evaluated on ith fitness case. Because program
execution on each fitness case is independent, any combination of values from Dis
causes the program to have semantics equal to s. In this way, combinatorial semantics
captures – in general exponentially many – semantics of subprograms that, when substi-
tuted for a, would make the resulting program attain semantics s. Because SB involves
domain-specific inversion of instructions, we detail it in Appendix A to maintain smooth
narration here.

Given a parent p and a target t, CM (Algorithm 3) starts with drawing a node a
from p. Then, it calls SB(t, p, a) to obtain the desired semantics D, i.e., the combinatorial
semantics of subprograms that would change p’s semantics to t when substituted for a.
Next, CM calls SB(s(p), p, a), i.e., backpropagates through the parent program p its own
semantics s(p). The resulting combinatorial semantics D∅ represents the forbidden seman-
tics – the subprograms that, when substituted for a, do not change the semantics of p.
Then, a library of subprograms is searched for a subprogram p′ that matches D as close
as possible and does not match D∅. An efficient algorithm for performing that search is
presented in Appendix B. Finally, CM replaces a in p with p′ to produce an offspring.

By aiming at desired semantics while simultaneously avoiding forbidden semantics,
CM attempts to modify the parent so that the offspring’s semantics becomes equal to t.
When that succeeds, CM solves a program induction problem in a single step; this is
however not frequent in practice, due to possible absence of an adequate subprogram in
the library.

Because the distance of the parent from the offspring can be arbitrary, CM is not
geometric in the sense of Def. 1.

Because library search must not return a subprogram that matches D∅, the off-
spring is guaranteed to be semantically different from the parent. Thus, CM is effective
w.r.t. Def. 8.

Note that, in contrast to all other operators in our competent suite, CM requires the
knowledge on the location of the target t.

4.4 Competent Crossover (CX)

Competent Crossover (CX) operates analogously to Approximately Geometric Semantic
Crossover (AGX) (Pawlak et al., 2015b; Krawiec and Pawlak, 2013a) and is augmented
with extensions that make it effective. Like CM, CX employs semantic backpropaga-

10 Evolutionary Computation Volume x, Number x

Competent Geometric Semantic Genetic Programming for Symbolic Regression and Boolean Function Synthesis

Algorithm 4 Competent Crossover algorithm. p1, p2 are parents. MIDPOINT is defined
in Eq. (4), RANDOMNODE, REPLACE and LIBSEARCH come from Algorithm 3, SB from
Algorithm 5.

1: function CX(p1, p2)
2: sm ← MIDPOINT(p1, p2)
3: a← RANDOMNODE(p1)
4: D ← SB(sm, p1, a)
5: D1

∅ ← SB(s(p1), p1, a)
6: D2

∅ ← SB(s(p2), p1, a)
7: p′ ← LIBSEARCH(D,D1

∅, D
2
∅)

8: return REPLACE(p1, a, p
′)

tion, this time however in order to produce an offspring that is geometric w.r.t. parent
programs.

CX (Algorithm 4) starts with calculating the midpoint sm between the semantics of
the parents p1 and p2, i.e., sm that satisfies Lz(s(p1), sm) = Lz(sm, s(p2)). Construction
of sm is domain-dependent and relies on the following formulas:

sm = MIDPOINT(p1, p2) ≡ (s(p1) ∧ sx) ∨ (¬sx ∧ s(p2)) (Boolean domain)
sm = MIDPOINT(p1, p2) ≡ 1

2 (s(p1) + s(p2)) (regression domain) (4)

where sx is a random semantics. To place sm as closely as possible to the actual midpoint
between s(p1) and s(p2), sx for the Boolean is drawn so that the numbers of bits inherited
from both parents’ differ by at most one in sm. Next, a node a is drawn in p1, and CX
calls SB(sm, p1, a) (Appendix A) to backpropagate sm in p1 to a, resulting in the desired
semantics D. Then, we attempt to attain effectiveness in a similar way as in CM:
the semantics of the parents, i.e., s(p1) and s(p2) are backpropagated through p1 to a,
resulting in forbidden semantics D1

∅ and D2
∅, respectively. Next, a library is searched for

a program p′ that matches D and does not match D1
∅ nor D2

∅ (cf. Appendix B). Finally,
p′ replaces the subprogram rooted at a in p1. The second offspring can be created by
swapping the parents.

The motivation for using the midpoint as as a temporary goal in the above procedure
is providing for better exploration. A candidate offspring located near a parent has
by definition very similar semantics and as such usually does not advance much the
search process. Promoting locations near to the midpoint helps exploring new areas in
semantic space.

Note also that CX is the only operator in the competent suite which explicitly refers
to domain’s specifics (in (4)). This is because CX constructs a new semantics sm, for
which a metric alone is not sufficient. Other operators do not require such constructive
means, as they depend only on metric’s values for semantics of existing programs.

If the library contains a subprogram that matches D, CX is guaranteed to produce
a geometric offspring and is thus geometric w.r.t. Def. 2. However, that is not guaranteed
for the finite libraries used in practice, so in absence of match, the semantically closest
subprogram from the library is returned and planted into the parent program. In such
cases CX can be considered approximately geometric, as it produces a good approxima-
tion of the midpoint between parents’ semantics, given the programs available in the
library.

CX is effective, because library search cannot return a subprogram with semantics in
D1

∅ or D2
∅, i.e., such that would result in an offspring semantically equal to either parent.

Evolutionary Computation Volume x, Number x 11

T. Pawlak, K. Krawiec

5 Experiments

5.1 Setup

We compare the operators from the suite presented in Sect. 4 (Competent Initialization
(CI), Tournament Selection (CTS), Mutation (CM) and Crossover (CX)) to the reference
operators in Table 1, i.e., canonical GP operators and the operators that are known to be
semantic but not simultaneously effective and geometric. In the first four experiments,
we characterize individual operators in isolation from other operators and outside evo-
lutionary runs. The characteristics in question include fitness distribution, effectiveness,
geometry, and program size. The fifth experiment (Sect. 5.6) concerns joint performance
of operators and verifies whether the competent operators lead to better performance
than the reference operators.

We use five univariate and four bivariate symbolic regression problems, and nine
Boolean program synthesis problems from Table 3. When choosing the problems, we
aimed on one hand at using a diversified suite of problems (different domains, varying
number of input variables, various difficulty) taken from a range of sources (the GP-
Benchmarks repository and previous works), while on the other hand trying to keep
the number of them within a reasonable limit. In univariate regression problems, 20
Chebyshev nodes (Burden and Faires, 2010) in the given range form the training set; the
test set comprises 20 points drawn uniformly from the same range. For bivariate prob-
lems, 10 values of each variable are analogously selected (Chebyshev nodes for training,
uniform drawing for testing), and their Cartesian products form the respective data sets.
In the Boolean domain, the training set incorporates all inputs and there is no test set.

Evolutionary runs are set up according to Table 2. Parameters not presented there
are set to ECJ’s defaults (Luke, 2010). Methods’ parameters are not fine-tuned to bench-
marks, because in this experiment we aim at side-by-side comparison rather than
maximization of performance. The only exception is the mutation step of SGM in sym-
bolic regression domain, because we found out that the default value (1.0) led to very
bad performance. In symbolic regression, two floating-point numbers in semantics are
considered equal if they differ by less than 2−52 ≈ 2.22× 10−16 (the difference between
1 and the closest IEEE754 double-precision number). The experimental software is
available online at www.cs.put.poznan.pl/tpawlak/link/?ECJCompetent.

5.2 Analysis of initialization

Our hypothesis is that the effective and geometric characteristics of CI are superior
to those of RHH and SDI. To verify this, we run these operators 30 times to produce
a population of size 1000 for each problem and analyze the resulting initial populations.

For brevity, in this and following experiments we present only aggregate results,
while the details and statistical assessment can be found in Appendix C. Unless stated
otherwise, the characteristic in question is first averaged over a number of runs for
a given operator and problem, then the averages obtained by particular operators are
ranked on that problem, and finally the ranks are averaged over the entire problem suite.
In Table 4 we present the average ranks of the number of semantically unique programs
in initial populations and the ranks of the average number of programs produced until
the target t is included in population’s L1-convex hull. Details results are shown in
Tables 17 – 18.

The results confirm that both CI and SDI produce populations composed entirely
of semantically unique programs. For the semantic-unaware RHH, the fraction of such
programs is lower for all problems. This is reflected by the outranking graph in the first

12 Evolutionary Computation Volume x, Number x

http://www.cs.put.poznan.pl/tpawlak/link/?ECJCompetent

Competent Geometric Semantic Genetic Programming for Symbolic Regression and Boolean Function Synthesis

Table 1: Compared operators.

Name Citation Se
m

an
tic

Ef
fe

ct
iv

e
G

eo
m

et
ri

c

RHH Ramped Half-and-Half Koza (1992)
SDI Semantically Driven Initializationa Beadle and Johnson (2009a) ! !
TS Tournament Selection Miller and Goldberg (1995)
STS Semantic Tournament Selection Galván-López et al. (2013) !
TM Tree Mutation Koza (1992)
SDM Semantically Driven Mutationa Beadle and Johnson (2009b) ! !

SGM Semantic Geometric Mutation Moraglio et al. (2012) ! !
TX Tree Crossover Koza (1992)
SDX Semantically Driven Crossovera Beadle and Johnson (2008) ! !

SGX Semantic Geometric Crossover Moraglio et al. (2012) ! !
aSDI, SDM and SDX are designed for semantics represented as binary decision diagrams (BBDs) or sequence

of agent moves in the Boolean and controller domains. We augmented them to handle tuple semantics (Sect. 2)
by verifying if two tuple semantics are equal, instead of verifying if two BDDs or move sequences are equal.

Table 2: Parameters of evolution.

Generic parameters Symbolic regression Boolean domain
Number of runs 30
Fitness function L2 metric L1 metric
Population size 1000
Termination condition 100 generations or find of a program with fitness 0
Instructions x1, x2, +, −, ×, /, sin, cos,

exp, log, ERCa
x1, x2, ..., x11,b and,
or, nand, nor, ERC

Operator-specific parameters
RHH, SDI, CI Max tree height 6
RHH Syntactic duplicate

retries
10

SDI, SDM,
SDX

Semantic duplicate
retries

10

CI Convex hull
expansion retries

10

TS, STS, CTS Tournament size µ 7

CM, CX Programs in library All semantically unique programs built from
above instructions (except ERCs) and having
height up to
4 3

SGM
Random tree source GROW (Koza, 1992) with tree height in range [3, 6]
Mutation step Uniformly drawn from

range [0, 0.02]
1

SGX Random tree source Constant uniformly drawn
from range [0, 1]

GROW with tree
height in range [3, 6]

alog is defined as log |x|; / returns 0 if divisor is 0.
bThe number of inputs depends on a particular problem instance

Evolutionary Computation Volume x, Number x 13

T. Pawlak, K. Krawiec

Table 3: Benchmark problems.

Symbolic regression Boolean domain

Prob. Definition (formula) Range n Problem Instance
(bits) n

R1 (x1 + 1)3/(x2
1 − x1 + 1) [−1, 1] 20

Even parity
Par6 64

R2 (x5
1 − 3x3

1 + 1)/(x2
1 + 1) [−1, 1] 20 Par7 128

Kj3 0.3x1 sin(2πx1) [−3, 3] 20 Par8 256
Kj4 x3

1e
−x1 cos(x1) sin(x1)(sin2(x1) cos(x1)− 1) [0, 10] 20 Multiplexer Mux11 2048

Kj11 x1x2 + sin((x1 − 1)(x2 − 1)) [−3, 3]2 100 Mux20 220

Ng9 sin(x1) + sin(x2
2) [0, 1]

2
100 Majority Maj9 512

Ng12 x4
1 − x3

1 +
x2
2

2 − x2 [0, 1]
2

100 Maj10 1024

Pg1 1/(1 + x−4
1) + 1/(1 + x−4

2) [−5, 5]
2

100 Comparator Cmp8 256

Vl1 e−(x1−1)2/(1.2 + (x2 − 2.5)2) [0, 6]
2

100 Cmp101024

Table 4: Average ranks over problems and outranking graphs of initialization operators
on numbers of semantically unique programs in population P and programs produced
until target t is included in population’s L1-convex hull. Details in Tables 17 – 18 in
Appendix C.

Operator: RHH SDI CI Outranking graph

Ranks on number of semantically
unique programs in P 3.00 1.50 1.50

CI
((

SDI
��

RHH

Ranks on number of programs
produced until t ∈ C(P)

2.06 2.53 1.42
CI // SDI

RHH

0 20 40 60 80
0

0.05

0.1

0.15

F
ra

c
ti
o
n

o
f
p
ro

g
ra

m
s

R2

0 20 40 60 80
0

0.05

0.1

0.15 Ng9

0 20 40 60 80
0

0.05

0.1

0.15 Vl1

0 20 40 60
0

0.2

0.4

0.6

0.8

Fitness

F
ra

c
ti
o
n

o
f
p
ro

g
ra

m
s

Par7

0 500 1,000 1,500
0

0.1

0.2

Fitness

Mux11

0 50 100 150 200
0

0.05

0.1

0.15

Fitness

Cmp8

Rhh Sdi Ci

1

Figure 3: Distribution of fitness in initial population in selected problems.

14 Evolutionary Computation Volume x, Number x

Competent Geometric Semantic Genetic Programming for Symbolic Regression and Boolean Function Synthesis

row of Table 4. Since SDI and CI provide semantic uniqueness by definition, there is no
need to statistically assess these differences.

Concerning the number of programs needed to to include the target in an L1-convex
hull of population, the lowest rank is achieved by CI. Table 18 in Appendix C reveals
that in 12 out of 18 problems CI needs the lowest number of programs to attain that goal.
In the remaining 6 problems, RHH achieves the lowest average and for one problem
RHH and CI are on par on this characteristic. The Friedman’s test (Kanji, 1999) results
in p-value of p = 2.03× 10−3, suggesting that some pairwise differences are significant.
Thus, we conduct a post-hoc analysis using symmetry-test (Hothorn et al., 2015) and
present the resulting outranking graph in the second row of Table 4 (the significant
differences (p < 0.05) are shown as arcs). The graph reveals that CI requires significantly
fewer programs to include the target in the convex hull than SDI.

All operators manage to build the desired convex hull with much smaller numbers
of programs than the population size considered here (1000). None of the 540 runs
performed here failed to produce a convex hull. However, the observed differences may
become critical for smaller populations. Also, we hypothesize that in semantic spaces of
higher dimensionality (greater n), it would be much harder for RHH and SDI to produce
a convex hull that includes t.

For additional insight, we collect the histograms of fitness values of generated
programs for a representative sample of problems and present them in Fig. 3. The
distributions vary heavily across the problems, while having overall similar shapes for
individual operators. RHH produces very rugged distributions with few peaks that
correspond to most common semantics. SDI features a lower number of such peaks,
and they are typically less prominent. The distributions for CI are most smooth and
unimodal for most problems. We hypothesize that the further the produced programs
are from the target on average (i.e., the greater the average fitness), the more programs
CI has to produce to include the target in the convex hull. This hypothesis is supported
by Pearson’s correlation coefficient of these two factors, which amounts to 0.49, while
the t-test for significance of correlation results in the p-value of 0.01.

5.3 Analysis of selection

In this experiment we verify whether CTS (Sect. 4.2) is effective and more probable to
be t-geometric than STS or TS. To this aim, we apply these operators to populations
initialized by RHH and CI. There are thus three setups for RHH’s populations: RTS,
RSTS, RCTS, and three for CI’s populations: CTS, CSTS, CCTS. There are 30 runs for
each problem and setup, and each run involves producing an initial population of size
1000 by a given initialization operator, followed by 500 acts of selection of two parents
from that population.

Table 5 presents the average ranks over problems on the empirical probability that
an application of a given selection operator is effective (first row) and t-geometric under
L1 (second row); see Tables 19 – 22 for detailed results. CTS achieves the best average
ranks; its likelihood of selecting programs effectively is close to 1.0 for all problems, and
for populations initialized by both algorithms. CTS returned two semantically equal
programs only eight times out of over quarter a million selection acts performed in the
experiment. STS is second-best, and TS ranks last for both initialization methods. The
probabilities for STS and TS are higher for the populations initialized by CI. Friedman’s
test (p = 1.16 × 10−12) indicates that the only setup not surpassed by both RCTS and
CCTS is CSTS.

Concerning the characteristic of being t-geometric selection, recall that for k = 2-

Evolutionary Computation Volume x, Number x 15

T. Pawlak, K. Krawiec

Table 5: Average ranks over problems and outranking graphs on probabilities that
selection is effective, and t-geometric under L1. Details in Tables 19 – 22 in Appendix C.

Setup: RTS RSTS RCTS CTS CSTS CCTS Outranking graph

Ranks on probability
that selection is effective 5.94 4.17 1.36 4.78 3.11 1.64

RTS CTS

RSTS

OO

CSTS

ii

RCTS

>>

OO

::

CCTS

dd

ii

``

Ranks on probability
that selection is
t-geometric under L1

3.00 3.56 1.67 4.86 4.72 3.19

RTS //

))
CTS

RSTS CSTS

RCTS

OO

::

55

CCTS

ary selection operators, convex hull (Def. 5) is a segment connecting the semantics of
selected programs. For L2 metric, the empirical probability of such an L2-segment to
include t is very low (< 0.001 in preliminary analysis). Thus, in this experiment we use
L1. An L1-segment (a hyperrectangle) may have significant chance of including any t in
low-dimensional spaces (low n), but that becomes much less likely for higher n (and
n ≥ 20 for all problems considered here).

All selection operators achieve higher probabilities of including t in parents’ convex
hull for the populations initialized by RHH, however conclusive Friedman’s test (p =
1.08× 10−6) shows that the difference between the initialization methods is significant
only for TS. In 13 out of 18 problems, RCTS achieves the highest probability, which
makes RCTS significantly more t-geometric than STS and CTS. CCTS achieves the
highest probability for three problems. Within the groups of setups that use a given
initialization method CTS is the most geometric operator.

5.4 Analysis of mutation

We compare the mutation operators from Table 1, i.e., TM, SDM, SGM, and CM, with
respect to effectiveness, geometry and impact on program size, by applying them to
programs drawn uniformly from populations initialized by RHH and CI. There are four
setups operating on RHH-initialized population: RTM, RSDM, RSGM, RCM, and four
operating on CI-initialized population: CTM, CSDM, CSGM, CCM. In each of 30 runs
per problem, we first initialize the population of size 1000 programs, and then apply the
mutation operator to each of them.

Table 6 presents the aggregated ranks on the empirical probability that a mutation
is effective (top row), and on the offspring-to-parent L1 distance (bottom row). SDM
features the highest probabilities of effectiveness and ranks best for both initialization
methods. CM is the runner-up and TM is the least effective operator for both initialization
methods. Friedman’s test (p = 2.13 × 10−10) confirms significance of these findings:
SDM outranks all other operators on effectiveness.

The definition of geometric mutation is parameterized by the radius r (Def. 1).
Rather than setting this parameter in advance and counting how many times a given
mutation act is r-geometric, we abstract from r and record the L1-distance of offspring
to parent. In Table 6, we present the ranks on the median of that distance. The setups
that use CI produce offspring closer to parents than the corresponding setups with RHH,
except for SGM. CTM achieves the overall lowest rank with CCM as the runner-up.
According to Friedman’s test (p = 2.87× 10−9) these two setups are indiscernible and

16 Evolutionary Computation Volume x, Number x

Competent Geometric Semantic Genetic Programming for Symbolic Regression and Boolean Function Synthesis

Table 6: Average ranks and outranking graphs on probability that application of muta-
tion is effective and on the median offspring to parent L1-distance. Details in Tables 23 –
25 in Appendix C.

Setup: RTM RSDM RSGM RCM CTM CSDM CSGM CCM Outranking graph

Ranks on
probability of
effective
mutation

6.11 1.50 5.56 4.56 6.89 1.78 4.83 4.78

RTM CTM

RSDM

OO

��

!!

44

**

$$

CSDM

jj

tt

zz

OO

��

}}
RSGM CSGM

RCM CCM

Ranks on
offspring to
parent
L1-distance

6.39 7.00 4.89 4.17 1.83 3.50 5.11 3.11

RTM CTMoo
tt

zz }}
RSDM CSDM

jj

oo

RSGM CSGM

RCM

>>

CCM

__

dd

Table 7: Average and .95-confidence interval of offspring to parent size ratio. Details for
all problems are to be found in Table 26 in Appendix C.

Domain RTM RSDM RSGM RCM CTM CSDM CSGM CCM
Regression 2.40 ±0.04 2.47 ±0.04 5.16 ±0.07 2.59 ±0.04 1.04 ±0.01 0.97 ±0.01 1.63 ±0.02 1.08 ±0.01

Boolean 0.86 ±0.01 0.79 ±0.01 1.45 ±0.01 1.29 ±0.02 0.91 ±0.00 0.71 ±0.01 1.07 ±0.00 0.97 ±0.02

produce offspring closer to parent than RTM and RSDM, and for CTM also RSGM and
CSGM. For setups involving RHH, RCM is the best by providing the lowest rank. The
offspring produced by RSDM are the most distant from the parents. Note that SGM is
parameterized with a mutation step (Moraglio et al., 2012) (which we set as reported in
Table 2), so the comparisons with this operator should be taken with a grain of salt.

To compare the operators with respect to offspring size, we record the ratio of the
number of nodes in an offspring to the number of nodes in its parent. The ratio of 1.0
indicates that an operator produces on average offspring that is as large as parent. This
indicator abstracts from the absolute sizes of programs, which may vary heavily already
in the initial populations considered here.

Table 7 presents the average and .95-confidence interval of offspring-to-parent size
ratio. The setups involving CI lead to ratios closer to 1.0 than the the corresponding
setups with RHH; the exception is SDM in the Boolean domain, where the opposite holds.
The reason for this deviation may be that CI, required to provide semantic diversity
in the initial population, tends to build larger programs than RHH, and single-subtree
mutations affect relatively smaller fraction of larger programs than of smaller programs.
The ratio closest to 1.0 is provided by CSDM in the regression domain, and CCM in
the Boolean domain. The second closest setup in regression domain is CTM and in
the Boolean domain CSGM. Note that the size of offspring produced by CM can be
controlled by restricting the size of programs in the library.

5.5 Analysis of crossover

We compare the crossover operators from Table 1, i.e., CX TX, SDX and SGX, by applying
them to the programs drawn uniformly from populations initialized by RHH and CI.
There are four setups using RHH: RTX, RSDX, RSGX, RCX and four using CI: CTX,

Evolutionary Computation Volume x, Number x 17

T. Pawlak, K. Krawiec

Table 8: Average ranks and outranking graphs on probability that an application of
crossover is effective, and on probability that an application effective and L1-geometric.
Details in Tables 27 – 30 in Appendix C.

Setup: RTX RSDX RSGX RCX CTX CSDX CSGX CCX Outranking graph

Ranks on
probability of
effective
crossover

7.00 3.06 4.00 5.50 7.44 2.17 2.25 4.58

RTX CTX

RSDX

OO

!!

55

CSDX

ii

zz

OO

}}
RSGX

>> ::

CSGX

dd

uu

``

RCX CCX

hh

Ranks on
probability of
effective
L1-geometric
crossover

6.67 4.78 1.78 3.06 7.72 6.22 1.22 4.56

RTX CTX

RSDX

55

CSDX

RSGX

>>

OO

::

55

))
CSGX

dd

ii

``

OO

��
RCX

44 @@

::

CCX

jj

Table 9: Average and .95-confidence interval of ratio of offspring’s size to average
parents’ size. Details for all problems are to be found in Table 31 in Appendix C.

Domain RTX RSDX RSGX RCX CTX CSDX CSGX CCX
Regression 1.00 ±0.00 1.00 ±0.00 2.35 ±0.00 1.78 ±0.00 0.98 ±0.00 1.00 ±0.00 2.04 ±0.00 0.96 ±0.00

Boolean 1.00 ±0.00 0.99 ±0.00 2.19 ±0.00 1.01 ±0.00 0.99 ±0.00 0.99 ±0.00 2.03 ±0.00 0.89 ±0.00

CSDX, CSGX, CCX. We run each setup 30 times on each problem, and each run executes
500 applications of crossover.

Table 8 presents the average ranks on the empirical probability that crossover
application is effective, and on the empirical probability that it is effective and L1-
geometric (see Tables 27 – 30 in Appendix C for details). Setups that use CI lead to
lower ranks than the corresponding RHH setups, except for TX where the opposite holds.
CSDX ranks first and CSGX is the close runner-up. For each initialization method TX is
least likely to be effective, and CX comes as last-but-one in the ranking. It is however
worth to note that the probabilities achieved by CX (Table 27) are still high: over .99 for
symbolic regression and in the range .47–.87. for the Boolean domain. Friedman’s test
confirms significance of these results with p = 6.50× 10−10.

Concerning the empirical probability that crossover is effective and geometric under
L1 metric, we exclude the neutral applications because they do not advance search, even
though they are geometric according to Def. 2. Unsurprisingly, the exact geometric SGX
scores the lowest ranks for both initialization methods and thus is the most geometric
operator, with probabilities in the range .74–.999 (and 1.0 when including the neutral
applications, see Table 29). The conclusive result of Friedman’s test (p = 7.22× 10−15)
shows that this result is better than results of all other setups except RCX. The ranks
achieved by SGX are lower when a population is initialized by CI, which confirms
that geometric initialization helps SGX to produce geometric effective offspring. The
runner-up is CX, for which the rank is lower for the population initialized by RHH. The
least geometric operator is TX.

Table 9 presents the average and .95-confidence interval of the ratio of the number
of nodes in the offspring to the average number of nodes in the parents (for the rationale
on ratio-based measures, see Sect. 5.4). RTX diverges the least from the neutral value

18 Evolutionary Computation Volume x, Number x

Competent Geometric Semantic Genetic Programming for Symbolic Regression and Boolean Function Synthesis

of 1.0 in both considered domains. The more divergent are, in order, RSDX, CSDX,
CTX. Note that the differences between the ratios of those four setups are minute: all of
them range in the interval [0.98, 1.0]. CX maintains higher ratios in RHH’s populations
([1.01, 1.78]) than in CI’s populations, ([0.89, 0.96]). As in the case of mutation, the size
of the offspring produced by CX can be tuned by restricting the size of programs in the
library. Because SGX combines parents using an extra code piece, it produces offspring
that are on average over twice as large as the parents.

5.6 Joint performance of operators

We assess the joint performance of the operators analyzed in previous sections. We
compare four configurations of the generational GP algorithm equipped with the op-
erators from Table 1: (i) the canonical operators: RHH, TS, TX and TM in proportions
90:10 (RTSTXM), (ii) the effective non-geometric operators: SDI, STS, SDX and SDM in
proportions 50:50 (SSTSSDXM), (iii) the geometric non-effective operators: RHH, TS,
SGX and SGM in proportions 50:50 (RTSSGXM) and (iv) the competent operators: CI,
CTS, CX and CM in proportions 50:50 (CCTSCXM). In this experiment, we replace the
Mux20 problem by 16-bit Comparator (Cmp16), because calculating the 220-bit long
semantics in Mux20 for every (sub-)program in every generation required over 24 hours
per run on high-performance servers, while the 216-bit long semantics in Cmp16 results
in substantially shorter time.

Figure 4 and Table 10 present the average and .95-confidence interval of the best-of-
generation and the best-of-run fitness, respectively. In symbolic regression, CCTSCXM
is the unquestionable winner in terms of best-of-run fitness and speed of convergence.
No other setup outperforms CCTSCXM throughout entire runs. In the Boolean domain
CCTSCXM achieves the best-of-run fitness in four out of nine problems. In the remaining
five problems RTSSGXM is the best. The outcome of Friedman’s test (p = 1.39× 10−6,
Table 11) confirms the superiority of CCTSCXM over all other setups except SSTSSDXM.

Table 12 shows the median and .95-confidence interval of the test-set fitness of
the best-of-run program on the training set. In seven out of nine problems CCTSCXM
outperforms all other setups while RTSTXM proves best twice. Friedman’s test (p =
6.91 × 10−4, Table 13) shows that RTSSGXM generalizes significantly worse than all
setups except the canonical one: RTSTXM. Notice that all setups overfit on the Pg1
problem, with CCTSCXM overfitting particularly strongly. We explain this phenomenon
by the use of Chebyshev nodes as training set points (cf. Sect. 5.1). This choice tends
to sample the target function more densely at the extremes of training range, while
undersampling the center of this range. The values of the Pg1 function (cf. Table 3) vary
much stronger in the center of the training range than close to the boundaries of that
range. Thus, only a small fraction of training data reflects the most varying (and thus
most decisive for the fitness value) part of the sought function.

Table 14 presents the average and .95-confidence interval of the number of nodes
in the best-of-run program. CCTSCXM produces the smallest programs in all Boolean
problems and Ng9, while RTSTXM produces the smallest programs in seven out of
nine symbolic regression problems. RTSSGXM produces programs that are significantly
larger (Friedman’s p = 4.03 × 10−7, Table 15) than the programs produced by the all
other setups.

6 Discussion

The consistency of analytical investigations in Sects. 5.2–5.5 with the overall good
results produced by the competent suite in Sect. 5.6 demonstrate that effectiveness and

Evolutionary Computation Volume x, Number x 19

T. Pawlak, K. Krawiec

0 20 40 60 80 100
0

1

2
A

v
g
.

b
e
st

fi
tn

e
ss R1

0 20 40 60 80 100
0

0.2

0.4

0.6 R2

0 20 40 60 80 100
0

0.5

1

1.5
Kj3

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

A
v
g
.

b
e
st

fi
tn

e
ss Kj4

0 20 40 60 80 100
0

5

10

Kj11

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
Ng9

0 20 40 60 80 100
0

0.2

0.4

0.6

A
v
g
.

b
e
st

fi
tn

e
ss Ng12

0 20 40 60 80 100
0

1

2

3
Pg1

0 20 40 60 80 100
0

0.5

1
Vl1

0 20 40 60 80 100
0

10

20

A
v
g
.

b
e
st

fi
tn

e
ss Par6

0 20 40 60 80 100
0

20

40

60
Par7

0 20 40 60 80 100
0

50

100
Par8

0 20 40 60 80 100
0

50

100

150

200

A
v
g
.

b
e
st

fi
tn

e
ss Mux11

0 20 40 60 80 100
0

50

100
Maj9

0 20 40 60 80 100
0

50

100

Maj10

0 20 40 60 80 100
0

10

20

30

40

Generations

A
v
g
.

b
e
st

fi
tn

e
ss Cmp8

0 20 40 60 80 100
0

50

100

150

Generations

Cmp10

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
·104

Generations

Cmp16

RTsTxm SStsSdxm RTsSgxm CCtsCxm

1

Figure 4: The average and .95-confidence interval of the best-of-generation fitness.

20 Evolutionary Computation Volume x, Number x

Competent Geometric Semantic Genetic Programming for Symbolic Regression and Boolean Function Synthesis

Table 10: The average and .95-confidence interval of the best-of-run fitness.

Problem RTSTXM SSTSSDXM RTSSGXM CCTSCXM

R1 0.171 ±0.052 0.119 ±0.032 1.051 ±0.102 0.006 ±0.001

R2 0.195 ±0.029 0.089 ±0.024 0.131 ±0.013 0.003 ±0.001

Kj3 0.414 ±0.085 0.304 ±0.069 0.828 ±0.053 0.028 ±0.007

Kj4 0.197 ±0.034 0.171 ±0.030 0.589 ±0.038 0.012 ±0.010

Kj11 4.995 ±0.591 4.492 ±0.516 6.658 ±0.297 0.874 ±0.181

Ng9 0.193 ±0.048 0.099 ±0.046 0.186 ±0.014 0.000 ±0.000

Ng12 0.286 ±0.043 0.157 ±0.027 0.169 ±0.012 0.014 ±0.003

Pg1 0.196 ±0.081 0.158 ±0.071 0.586 ±0.037 0.029 ±0.005

Vl1 0.318 ±0.076 0.262 ±0.033 0.659 ±0.017 0.048 ±0.007

Par6 15.167 ±1.307 8.867 ±0.726 0.000 ±0.000 4.567 ±0.743

Par7 42.033 ±1.926 33.100 ±1.823 0.100 ±0.107 27.033 ±1.163

Par8 97.167 ±2.490 92.533 ±2.265 1.667 ±0.427 76.733 ±1.782

Mux11 119.533 ±8.712 118.433 ±8.833 132.333 ±11.252 8.167 ±2.574

Maj9 28.767 ±2.313 17.433 ±2.128 0.000 ±0.000 2.033 ±0.581

Maj10 9.833 ±1.653 1.600 ±0.809 0.000 ±0.000 3.567 ±1.007

Cmp8 9.033 ±0.953 2.633 ±0.776 0.000 ±0.000 0.000 ±0.000

Cmp10 40.067 ±4.159 27.033 ±3.355 0.433 ±0.239 0.100 ±0.107

Cmp16 3762.000 ±379.835 2541.533 ±220.290 887.733 ±73.149 578.381 ±79.870

Rank: 3.611 2.389 2.639 1.361

Table 11: Post-hoc analysis of Friedman’s test (p = 1.39 × 10−6) using symmetry test
conducted on Table 10: p-values of incorrectly judging an operator in a row as better
than the one in a column. The p-values ≤ .05 are represented by arcs in the graph.

RTSTXM SSTSSDXM RTSSGXM CCTSCXM

RTSTXM
SSTSSDXM 0.023 0.937
RTSSGXM 0.106
CCTSCXM 0.000 0.078 0.015

RTSTXM SSTSSDXMoo

RTSSGXM CCTSCXM

ff

oo

Table 12: The median and .95-confidence interval of test-set fitness of the best of run
program on training set.

Problem RTSTXM SSTSSDXM RTSSGXM CCTSCXM

R1 0.11 ≤ 0.15 ≤ 0.30 0.05 ≤ 0.09 ≤ 0.20 18.25 ≤ 18.30 ≤ 18.40 0.00 ≤ 0.00 ≤ 0.01

R2 0.07 ≤ 0.11 ≤ 0.16 0.04 ≤ 0.08 ≤ 0.18 3.36 ≤ 3.37 ≤ 3.38 0.00 ≤ 0.00 ≤ 0.00

Kj3 1.14 ≤ 1.28 ≤ 1.70 1.11 ≤ 1.35 ≤ 1.88 2.18 ≤ 2.23 ≤ 2.32 1.11 ≤ 1.40 ≤ 1.95

Kj4 0.62 ≤ 1.38 ≤ 2.49 1.02 ≤ 1.26 ≤ 3.62 2.31 ≤ 2.36 ≤ 2.43 0.05 ≤ 0.12 ≤ 0.17

Kj11 6.85 ≤ 10.46 ≤ 26.19 6.81 ≤ 7.16 ≤ 9.95 49.57 ≤ 49.69 ≤ 49.89 1.76 ≤ 3.66 ≤ 11.35

Ng9 0.07 ≤ 0.12 ≤ 0.19 0.00 ≤ 0.01 ≤ 0.10 6.05 ≤ 6.06 ≤ 6.07 0.00 ≤ 0.00 ≤ 0.00

Ng12 0.10 ≤ 0.13 ≤ 0.21 0.05 ≤ 0.07 ≤ 0.10 2.17 ≤ 2.17 ≤ 2.18 0.01 ≤ 0.01 ≤ 0.02

Pg1 3.30 ≤ 3.89 ≤ 5.10 3.54 ≤ 4.25 ≤ 4.94 7.56 ≤ 7.60 ≤ 7.63 16.91 ≤ 38.04 ≤ 157.62

Vl1 0.41 ≤ 0.80 ≤ 1.45 0.49 ≤ 0.76 ≤ 1.55 3.50 ≤ 3.52 ≤ 3.57 0.11 ≤ 0.15 ≤ 0.23

Rank: 2.56 2.00 3.89 1.56

Evolutionary Computation Volume x, Number x 21

T. Pawlak, K. Krawiec

Table 13: Post-hoc analysis of Friedman’s test (p = 6.91× 10−4) using symmetry test con-
ducted on Table 12: p-values of incorrectly judging an operator in a row as generalizing
better than the one in a column. The p-values ≤ .05 are represented by arcs in the graph.

RTSTXM SSTSSDXM RTSSGXM CCTSCXM

RTSTXM 0.126
SSTSSDXM 0.798 0.010
RTSSGXM
CCTSCXM 0.354 0.885 0.001

RTSTXM SSTSSDXM

xx
RTSSGXM CCTSCXMoo

Table 14: The average and .95-confidence interval of number of nodes in the best of run
program. Values ≥ 104 are rounded to an order of magnitude.

Problem RTSTXM SSTSSDXM RTSSGXM CCTSCXM

R1 121.10 ±16.82 137.23 ±22.37 1017 ±1016 432.17 ±27.26

R2 86.77 ±17.07 125.50 ±21.11 1017 ±1017 364.20 ±31.29

Kj3 150.30 ±23.82 182.23 ±27.05 1017 ±1016 343.53 ±29.78

Kj4 169.00 ±21.14 190.70 ±22.39 1017 ±1018 277.83 ±43.63

Kj11 187.13 ±44.50 235.67 ±29.34 1017 ±1016 353.21 ±35.82

Ng9 86.00 ±13.40 63.30 ±14.12 1017 ±1016 7.20 ±0.28

Ng12 70.67 ±17.52 118.03 ±17.98 1017 ±1017 466.70 ±50.76

Pg1 93.93 ±12.81 91.80 ±15.87 1017 ±1016 413.27 ±30.44

Vl1 126.27 ±15.10 155.27 ±24.06 1017 ±1016 316.80 ±25.02

Par6 451.07 ±42.17 997.73 ±85.91 106 ±105 309.20 ±28.09

Par7 495.80 ±53.29 1103.47 ±128.26 1016 ±1016 298.87 ±28.35

Par8 492.80 ±38.55 1039.93 ±91.49 1017 ±1016 331.07 ±30.69

Mux11 179.27 ±33.51 156.67 ±24.37 1017 ±1016 119.07 ±9.56

Maj9 542.20 ±39.54 1065.53 ±88.65 1010 ±109 313.47 ±6.96

Maj10 589.00 ±48.32 1007.20 ±60.34 109 ±108 292.13 ±13.11

Cmp8 352.67 ±35.96 575.67 ±51.92 105 ±105 99.87 ±7.59

Cmp10 343.87 ±36.88 588.47 ±61.11 1016 ±1016 155.87 ±13.32

Cmp16 240.47 ±28.44 478.13 ±46.19 1017 ±1017 196.14 ±16.21

Rank: 1.72 2.39 4.00 1.89

Table 15: Post-hoc analysis of Friedman’s test (p = 4.03 × 10−7) using symmetry test
conducted on Table 14: p-values of incorrectly judging an operator in a row as producing
smaller programs than the one in a column. The p-values ≤ .05 are represented by arcs
in the graph.

RTSTXM SSTSSDXM RTSSGXM CCTSCXM

RTSTXM 0.408 0.000 0.980
SSTSSDXM 0.001
RTSSGXM
CCTSCXM 0.651 0.000

RTSTXM

��

SSTSSDXM

xx
RTSSGXM CCTSCXMoo

22 Evolutionary Computation Volume x, Number x

Competent Geometric Semantic Genetic Programming for Symbolic Regression and Boolean Function Synthesis

geometric character of semantic GP operators are viable performance predictors. The
particular indicators and quantities proposed and reported in Sects. 5.2–5.5 can be thus
used as guides for designing initialization, selection, and search operators.

Although the components proposed here do not adhere strictly to the formal def-
initions of geometric properties (Defs. 2–4), they are designed with geometry and
effectiveness in mind, and trade the geometric perfection in exchange for practically
acceptable computational overhead. In this sense, we find them a viable alternative to
the exact geometric operators proposed by Moraglio et al. (2012). As elegant as they are,
the exact operators represent one extreme on the spectrum of the above trade-off, and
often pay for good training-set performance with poor generalization (Table 12) and
skyrocketing program size (Table 14). Though program size can be to an extent managed
by simplification or reuse of subexpressions (Vanneschi et al., 2013), generalization
remains an challenge. In machine learning terms, the exact operators as proposed by
Moraglio et al. (2012) have no bias and, consequently, exhibit high variance (Geman
et al., 1992) when confronted with a test set. This problem may be addressed by geometric
block mutations (Moraglio et al., 2013) that are biased by modifying program semantics
on several fitness cases simultaneously. However these operators have been proposed
for Boolean domain only, and assessment of their generalization performance was be-
yond the scope of that study. The competent operators have also nonzero bias, which
apparently helps them generalize well, as verified empirically in this study.

An interesting side-result of the experiment conducted in this work is the worse
than expected performance of the exact geometric approach (RTSSGXM) in the regression
domain. In contrast to previous works that reported excellent results (including the
original Moraglio et al. (2012) paper), we found it hard to optimize RTSSGXM’s configu-
ration for performance in the continuous domain. Figure 4 and tables reflect the best
configuration obtained by using various mutation steps and size of the random ‘mixing’
tree in SGM (SGX for L2 is parameter-free). This tuning made it possible for RTSSGXM
to catch up with the remaining configurations in three out of nine benchmarks, but
did not help generalization: in terms of test-set fitness, RTSSGXM clearly ranks last in
Table 12. Our working explanation for the observed underperformance points to three
possible causes. Firstly, the continuous benchmarks in our suite are hard (Table 3): apart
from one polynomial (Ng12), all problems involve rational, transcendental or periodic
functions. Secondly, the instruction set for regression problems includes the trigono-
metric, exponential and logarithmic functions and is broader than in most previous
studies that use polynomial instructions only (Moraglio et al., 2012; Vanneschi et al.,
2013; Zhu et al., 2013; Castelli et al., 2012, 2013a,b, 2014, 2015). The latter characteristic
may make it harder to provide a desirable magnitude of variation necessary for SGM to
safely converge to the target.

7 Conclusions

We demonstrated that the capabilities of GSGP can be substantially boosted by extending
geometric considerations beyond the basic framework of search operators to population
initialization and selection, and by equipping those components with mechanisms that
make them effective. The empirical results clearly show that these extensions prove
successful in practice for the Boolean and symbolic regression domains (Sect. 5.6), while
the experiments in Sects. 5.2–5.5 revealed the causes of these observations.

The proposed suite of competent operators represents a ‘holistic’ approach to se-
mantic GP, where all key components of evolutionary search infrastructure are designed
with semantic and geometric aspects in mind. As the experimental results demonstrate,

Evolutionary Computation Volume x, Number x 23

T. Pawlak, K. Krawiec

this is beneficial for the overall search performance for the two domains considered
in this paper, which proves that there is more to GSGP than just search operators. On
the other hand, it is clear that the particular components proposed here form just one
of many conceivable suites, and the quest for other, possibly even better performing
toolkits should continue. Designing population initialization operators and selection
operators that guarantee – in deterministic or stochastic sense – the convex hull of popu-
lation to include the target seems particularly appealing. Another interesting challenge
for future research is defining competent operators tailored to other domains, and their
empirical assessment.

Acknowledgments

This work was supported by grant no. 2014/15/B/ST6/05205, funded by the National
Science Centre, Poland.

A Combinatorial Semantics and Semantic Backpropagation

Semantic backpropagation (SB, Pawlak et al. (2015b); Krawiec and Pawlak (2013a); Wieloch
and Krawiec (2013)) is an algorithm employed by CM and CX (cf. Sects. 4.3 and 4.4)
that, given a semantics s, a program p, and subprogram a in p (i.e., its location in
p), computes the combinatorial semantics, a formal object that captures the semantics
which, when substituted for a in p, cause the resulting program to have semantics
equal to s. A combinatorial semantics is a tuple D = (D1, D2, ..., Dn) of n sets Di ⊆ O,
where Di corresponds to the ith fitness case (i.e., the ith dimension of the considered
semantic space). Di stores the values that, when plugged at location a into p applied
to ith fitness case, cause p to return the ith element of the semantics s. Because an
application of p to every fitness case is independent, D implicitly represents the set
of semantics resulting from the Cartesian product of Dis, i.e., Πn

i=1Di. This allows
us to capture an exponential number of semantics within a compact formal object.
For instance, for n = 2, D = (D1, D2) = ({4, 5}, {2, 3}) is equivalent to the set of
four semantics {(4, 2), (4, 3), (5, 2), (5, 3)}. The transformations between semantics and
combinatorial semantics will be assumed implicit in the following. A program pmatches
the desired semantics D if semantics s(p) is in the set of semantics represented by D,
i.e., s(p) ∈ Πn

i=1Di.
SB (Algorithm 5) calculates the combinatorial semantics by inverting program

execution for the considered semantics. For each component Di of D, SB traverses the
path of instructions from the program root node to a designated node a (where the
subtree to calculate combinatorial semantics for is rooted). In each node r and its desired
output o, SB inverts the execution of r w.r.t. the output of the next node ck (the kth child)
on the path toward a by calling INVERT(r, k, o). INVERT executes an inverted instruction
r−1 for which r outputs o, i.e., o = r(c1, c2, ..., ck, ..., cn) ⇒ ck = r−1(o, c1, c2, ...cn),
where cis are the outputs of r’s children nodes. The resulting ck becomes the desired
output for the next node on the path. SB terminates when a is reached. The time
complexity of SB is O(nm), where n is the dimensionality of semantic space and m is
the number of nodes in program p.

Realization of INVERT is domain-dependent. Table 16 defines it for the common
instructions from the regression and Boolean domains. Depending on the properties of
the instruction r that is subject to inversion, four cases can be delineated when calling
INVERT(r, k, o).

24 Evolutionary Computation Volume x, Number x

Competent Geometric Semantic Genetic Programming for Symbolic Regression and Boolean Function Synthesis

Table 16: Definition of INVERT(r, k, o) for regression and Boolean domains. For an
instruction r with arguments ci the formulas determine the value for the first (k = 1,
center column) and the second (k = 2, right column) argument, given the output value
o for r. Set symbols are omitted for clarity where there is only a one value.

Subprogram r INVERT(r, 1, o) INVERT(r, 2, o)

R
eg

re
ss

io
n

do
m

ai
n

c1 + c2 o− c2 o− c1
c1 − c2 o+ c2 c1 − o

c1 × c2


o/c2 c2 6= 0

R c2 = 0 ∧ o = 0

∅ c2 = 0 ∧ o 6= 0


o/c1 c1 6= 0

R c1 = 0 ∧ o = 0

∅ c1 = 0 ∧ o 6= 0

c1/c2


o× c2 c2 6= ±∞
R c2 = ±∞∧ o = 0

∅ c2 = ±∞∧ o 6= 0


c1/o c1 6= 0

R c1 = 0 ∧ o = 0

∅ c1 = 0 ∧ o 6= 0

exp(c1)

{
log o o ≥ 0

∅ otherwise
—

log |c1| {−eo, eo} —

sin c1

{
{arcsin o− 2π, arcsin o} |o| ≤ 1

∅ otherwise
—

cos c1

{
{arccos o− 2π, arccos o} |o| ≤ 1

∅ otherwise
—

Bo
ol

ea
n

do
m

ai
n

not c1 not o —

c1 and c2


o c2

B not c2 and not o

∅ not c2 and o


o c1

B not c1 and not o

∅ not c1 and o

c1 or c2


o not c2

B c2 and o

∅ c2 and not o


o not c1

B c1 and o

∅ c1 and not o

c1 nand c2


not o c2

B not c2 and o

∅ not c2 and not o


not o c1

B not c1 and o

∅ not c1 and not o

c1 nor c2


not o not c2

B c2 and not o

∅ c2 and o


not o not c1

B c1 and not o

∅ c1 and o

c1 xor c2 c2 xor o c1 xor o

Evolutionary Computation Volume x, Number x 25

T. Pawlak, K. Krawiec

Algorithm 5 Semantic Backpropagation algorithm. D is the combinatorial semantics that
is to be propagated to a designated node a in program p to calculate the combinatorial
semantics for a. CHILD(r, a) is a child of node r on the path from r to a, and POS(r, a)
is a’s position in the list of children of r. INVERT is defined in Table 16. D is the entire
domain, e.g.,R or B = {0, 1}. Note that if SB is supplied with semantics s instead of
combinatorial semantics D, the type cast would be implicit.

1: function SB(D, p, a)
2: for all Di ∈ D do . For each input
3: r ← p
4: while r 6= a ∧Di 6= ∅ ∧Di 6= D do
5: k ← POS(r, a)
6: D′i ← ∅
7: for all o ∈ Di do
8: D′i ← D′i ∪ INVERT(r, k, o)

9: Di ← D′i
10: r ← CHILD(r, a)

11: return D

• If r is a bijection2, it is fully invertible and INVERT returns a single value of the
argument in question, calculated from the output and the remaining arguments.
Examples are addition, subtraction, negation and xor.

• If r is a non-injective instruction, i.e., maps multiple argument values to the same
output, there are many (possibly infinitely many) inversions and INVERT outputs
a set. Examples include the absolute value | · | and sin(x).

• If the considered argument has no impact on r’s output and the actual output of r is
equal to the given one, INVERT returns the entire domain D, because whatever value
from D is fed into the considered argument, r’s output remains correct. Examples
are multiplication by 0 and Boolean conjunction with false.

• Finally, if r is a non-surjective instruction and the requested output value o is not in
its image and thus cannot be returned by r, INVERT returns ∅.

Note that all these four cases may co-occur for the same instruction for different values
of the requested output o, i.e., for different fitness cases.

B Efficient library search

The LIBSEARCH algorithm searches a library of programs for a subprogram that matches
a given desired combinatorial semantics D as close as possible and simultaneusly
does not match (one or more) forbidden combinatorial semantics D∅. The core of the
algorithm can be briefly expressed as

LIBSEARCH(D,D1
∅, D

2
∅, ...) = arg min

p∈L′
min

s∈ΠiDi

‖s(p), s‖ (5)

L′ = {p : p ∈ L ∪ D,∀Dj
∅
∀s∅∈ΠiD

j
∅i
s(p) 6= s∅} (6)

2For multi-argument instructions r, we consider bijection w.r.t. the argument that is to be found by inversion,
assuming other arguments are fixed. For instance, x+ y → z is bijective w.r.t. x assuming fixed y.

26 Evolutionary Computation Volume x, Number x

Competent Geometric Semantic Genetic Programming for Symbolic Regression and Boolean Function Synthesis

where D is a desired semantics, and D1
∅, D

2
∅, ... are forbidden semantics

(cf. Sects. 4.3–4.4).
The set of programs L′ searched by LIBSEARCH is a is union of a set of programs

L that come from an arbitrary source (e.g., are created in advance) and a set of all
single-node constant programs D. Programs that match any forbidden semantics Dj

∅
are excluded from L′ (see definition of matching in Appendix A). Eq. (5) calculates the
minimum distance of a program in L′ to each semantics that comes from the Cartesian
product of components of D (Appendix A).

Below we present how to efficiently calculate Eq. (5) for Minkowski metric. Let us
substitute a metric with Minkowski metric:

LIBSEARCH(D,D1
∅, D

2
∅, ...) = arg min

p∈L′
min

s∈ΠiDi

 n∑
j=1

|sj(p)− sj |z
 1

z

(7)

This can be transformed to (details in Pawlak (2015, Ch7)):

LIBSEARCH(D,D1
∅, D

2
∅, ...) = arg min

p∈L′

n∑
j=1

min
sk∈Dj

|sj(p)− sk|z (8)

This formula reveals that the distance to the semantics represented by D can be mini-
mized separately for each component of D, eliminating so the need of computing the
Cartesian product. Eq. (8) can be calculated in O(n|L′| log |Di|) time, provided that the
elements of Dis are sorted.

To limit the cardinality of L′, we constrain the set of constants in D. We observe that
each Dj in Eq. (8) defines its own marginal distance. Such a distance has minima where
|c− sk|z = 0, i.e., c = sk. Therefore, the sum of marginal distances cannot have minima
for constants beyond the following set:

D′ = {c : c ∈ D, min
⋃

Di∈D
Di ≤ c ≤ max

⋃
Di∈D

Di} (9)

For L1 metric (z = 1), the term under summation in Eq. (8) reduces to piecewise
linear function with roots in Di and no plateaus. Since the sum of piecewise linear
functions is a piecewise linear function too and has minima in the same points where
the summed functions, i.e.,

⋃
Di∈D

Di, we may narrow the set of candidate minima D′ to:

D′′ =
⋃

Di∈D
Di (10)

In this way, the overall set of constants is greatly reduced.For z 6= 1, the term under
min in Eq. (8) is non-linear and we cannot reduce D′ this way.

For domains where D′ has low cardinality, e.g., the Boolean one, it is relatively cheap
to search the entire set D′. For the regression domain, D′ may be still infinite, and it
may be necessary to calculate the value that minimizes Eq. (8) using e.g., a numerical
optimization technique or approximate the result by searching the reduced set D′′ like
for L1 (what we do in the experiment) .

References

Beadle, L. and Johnson, C. (2008). Semantically driven crossover in genetic programming.
In IEEE CEC’08, pages 111–116, Hong Kong. IEEE Computational Intelligence Society,
IEEE Press.

Evolutionary Computation Volume x, Number x 27

T. Pawlak, K. Krawiec

Beadle, L. and Johnson, C. G. (2009a). Semantic analysis of program initialisation in
genetic programming. Genetic Programming and Evolvable Machines, 10(3):307–337.

Beadle, L. and Johnson, C. G. (2009b). Semantically driven mutation in genetic program-
ming. In IEEE CEC’09, pages 1336–1342, Trondheim, Norway. IEEE Computational
Intelligence Society, IEEE Press.

Burden, R. and Faires, J. (2010). Numerical Analysis. Cengage Learning.

Carathéodory, C. (1911). über den variabilitätsbereich der fourierschen konstanten
von positiven harmonischen funktionen. Rendiconti del Circolo Matematico di Palermo,
32:193–217.

Castelli, M., Castaldi, D., Giordani, I., Silva, S., Vanneschi, L., Archetti, F., and
Maccagnola, D. (2013a). An efficient implementation of geometric semantic genetic
programming for anticoagulation level prediction in pharmacogenetics. In Correia,
L., Reis, L. P., and Cascalho, J., editors, Proceedings of the 16th Portuguese Conference
on Artificial Intelligence, EPIA 2013, volume 8154 of Lecture Notes in Computer Science,
pages 78–89, Angra do Heroismo, Azores, Portugal. Springer.

Castelli, M., Manzoni, L., and Vanneschi, L. (2012). An efficient genetic programming
system with geometric semantic operators and its application to human oral bioavail-
ability prediction. arXiv.

Castelli, M., Vanneschi, L., and Popovic, A. (2015). Predicting burned areas of forest
fires: an artificial intelligence approach. Fire Ecology, 11(1):106–118.

Castelli, M., Vanneschi, L., and Silva, S. (2013b). Prediction of high performance con-
crete strength using genetic programming with geometric semantic genetic operators.
Expert Systems with Applications, 40(17):6856–6862.

Castelli, M., Vanneschi, L., and Silva, S. (2014). Prediction of the unified parkinson’s
disease rating scale assessment using a genetic programming system with geometric
semantic genetic operators. Expert Systems with Applications, 41(10):4608–4616.

Galván-López, E., Cody-Kenny, B., Trujillo, L., and Kattan, A. (2013). Using semantics in
the selection mechanism in genetic programming: a simple method for promoting
semantic diversity. In IEEE CEC’13, volume 1, pages 2972–2979, Cancun, Mexico.

Geman, S., Bienenstock, E., and Doursat, R. (1992). Neural networks and the
bias/variance dilemma. Neural Comput., 4(1):1–58.

Hothorn, T., Hornik, K., van de Wiel, M. A., and Zeileis, A. (2015). Package ’coin’:
Conditional inference procedures in a permutation test framework.

Jackson, D. (2010a). Phenotypic diversity in initial genetic programming populations.
In EuroGP’10, volume 6021 of LNCS, pages 98–109, Istanbul. Springer.

Jackson, D. (2010b). Promoting phenotypic diversity in genetic programming. In
PPSN’10, volume 6239 of LNCS, pages 472–481, Krakow, Poland. Springer.

Kanji, G. (1999). 100 Statistical Tests. SAGE Publications.

Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press, Cambridge, MA, USA.

28 Evolutionary Computation Volume x, Number x

Competent Geometric Semantic Genetic Programming for Symbolic Regression and Boolean Function Synthesis

Krawiec, K. and Lichocki, P. (2009). Approximating geometric crossover in semantic
space. In GECCO’09, pages 987–994, Montreal. ACM.

Krawiec, K. and Pawlak, T. (2013a). Approximating geometric crossover by semantic
backpropagation. In GECCO’13, pages 941–948, Amsterdam, The Netherlands. ACM.

Krawiec, K. and Pawlak, T. (2013b). Locally geometric semantic crossover: a study on
the roles of semantics and homology in recombination operators. Genetic Programming
and Evolvable Machines, 14(1):31–63.

Looks, M. (2007). On the behavioral diversity of random programs. In GECCO’07,
volume 2, pages 1636–1642, London. ACM Press.

Luke, S. (2010). The ECJ Owner’s Manual – A User Manual for the ECJ Evolutionary
Computation Library, zeroth edition, online version 0.2 edition.

Miller, B. L. and Goldberg, D. E. (1995). Genetic algorithms, tournament selection, and
the effects of noise. Complex Systems, 9:193–212.

Moraglio, A. (2011). Abstract convex evolutionary search. In Beyer, H.-G. and Lang-
don, W. B., editors, Foundations of Genetic Algorithms, pages 151–162, Schwarzenberg,
Austria. ACM.

Moraglio, A., Krawiec, K., and Johnson, C. G. (2012). Geometric semantic genetic
programming. In PPSN XII, volume 7491 of LNCS, pages 21–31, Taormina, Italy.
Springer.

Moraglio, A. and Mambrini, A. (2013). Runtime analysis of mutation-based geometric
semantic genetic programming for basis functions regression. In GECCO’13, pages
989–996, Amsterdam, The Netherlands. ACM.

Moraglio, A., Mambrini, A., and Manzoni, L. (2013). Runtime analysis of mutation-based
geometric semantic genetic programming on boolean functions. In Foundations of
Genetic Algorithms, pages 119–132, Adelaide, Australia. ACM.

Moraglio, A., McDermott, J., and O’Neill, M. (2014). Geometric semantic grammatical
evolution. In Semantic Methods in Genetic Programming, Ljubljana, Slovenia. Workshop
at Parallel Problem Solving from Nature 2014 conference.

Nguyen, Q. U., Nguyen, X. H., and O’Neill, M. (2009). Semantics based mutation in
genetic programming: The case for real-valued symbolic regression. In Mendel’09,
pages 73–91, Brno, Czech Republic.

Nguyen, Q. U., Pham, T. A., Nguyen, X. H., and McDermott, J. (2016). Subtree semantic
geometric crossover for genetic programming. Genetic Programming and Evolvable
Machines. Online first.

Pawlak, T. (2014). Combining semantically-effective and geometric crossover opera-
tors for genetic programming. In PPSN XIII, volume 8672 of LNCS, pages 454–464,
Ljubljana, Slovenia. Springer.

Pawlak, T. P. (2015). Competent Algorithms for Geometric Semantic Genetic Programming.
PhD thesis, Poznan University of Technology, Poznan, Poland.

Evolutionary Computation Volume x, Number x 29

T. Pawlak, K. Krawiec

Pawlak, T. P. (2016). Geometric semantic genetic programming is overkill. In EuroGP’16,
Lecture Notes in Computer Science. Springer.

Pawlak, T. P. and Krawiec, K. (2016a). Progress properties and fitness bounds for
geometric semantic search operators. Genetic Programming and Evolvable Machines,
17(1):5–23.

Pawlak, T. P. and Krawiec, K. (2016b). Semantic geometric initialization. In Heywood,
M. I., McDermott, J., Castelli, M., Costa, E., and Sim, K., editors, EuroGP 2016: Pro-
ceedings of the 19th European Conference on Genetic Programming, volume 9594 of LNCS,
pages 261–277, Porto, Portugal. Springer Verlag.

Pawlak, T. P. and Krawiec, K. (2016c). Semantic geometric initialization. In EuroGP’16,
Lecture Notes in Computer Science. Springer.

Pawlak, T. P., Wieloch, B., and Krawiec, K. (2015a). Review and comparative analysis of
geometric semantic crossovers. Genetic Programming and Evolvable Machines, 16(3):351–
386.

Pawlak, T. P., Wieloch, B., and Krawiec, K. (2015b). Semantic backpropagation for
designing search operators in genetic programming. IEEE Transactions on Evolutionary
Computation, 19(3):326–340.

Uy, N. Q., Hoai, N. X., O’Neill, M., McKay, R. I., and Galvan-Lopez, E. (2011).
Semantically-based crossover in genetic programming: application to real-valued
symbolic regression. Genetic Programming and Evolvable Machines, 12(2):91–119.

Uy, N. Q., Hoai, N. X., O’Neill, M., McKay, R. I., and Phong, D. N. (2013). On the
roles of semantic locality of crossover in genetic programming. Information Sciences,
235:195–213.

Vanneschi, L., Castelli, M., Manzoni, L., and Silva, S. (2013). A new implementation
of geometric semantic GP and its application to problems in pharmacokinetics. In
Krawiec, K., Moraglio, A., Hu, T., Uyar, A. S., and Hu, B., editors, Proceedings of the
16th European Conference on Genetic Programming, EuroGP 2013, volume 7831 of LNCS,
pages 205–216, Vienna, Austria. Springer Verlag.

Vanneschi, L., Castelli, M., and Silva, S. (2014). A survey of semantic methods in genetic
programming. Genetic Programming and Evolvable Machines, 15(2):195–214.

Wieloch, B. (2013). Semantic Extensions for Genetic Programming. PhD thesis, Poznan
University of Technology.

Wieloch, B. and Krawiec, K. (2013). Running programs backwards: instruction inversion
for effective search in semantic spaces. In GECCO’13, pages 1013–1020, Amsterdam,
The Netherlands. ACM.

Zhu, Z., Nandi, A. K., and Aslam, M. W. (2013). Adapted geometric semantic genetic
programming for diabetes and breast cancer classification. In IEEE International
Workshop on Machine Learning for Signal Processing (MLSP 2013).

30 Evolutionary Computation Volume x, Number x

Competent Geometric Semantic Genetic
Programming for Symbolic Regression and

Boolean Function Synthesis:
Appendix C: Detailed experimental results

Tomasz P. Pawlak tpawlak@cs.put.poznan.pl
Institute of Computing Science, Poznan University of Technology, Poznań, Poland
Krzysztof Krawiec krawiec@cs.put.poznan.pl
Institute of Computing Science, Poznan University of Technology, Poznań, Poland

Tables 17 – 30 present the detailed results of the experiments described in Sections
5.2 – 5.5 of [Pawlak and Krawiec, 2017].

References

[Pawlak and Krawiec, 2017] Pawlak, T. P. and Krawiec, K. (2017). Competent geomet-
ric semantic genetic programming for symbolic regression and boolean function
synthesis. Evolutionary Computation. Early access.

mailto:tpawlak@cs.put.poznan.pl
mailto:krawiec@cs.put.poznan.pl

Table 17: (a) The average and .95-confidence interval of the number of semantically
unique programs in population. (b) Outranking graph of operators.

(a)

Problem RHH SDI CI
R1 979.00 ±1.43 1000.00 ±0.00 1000.00 ±0.00

R2 979.00 ±1.43 1000.00 ±0.00 1000.00 ±0.00

Kj3 976.07 ±1.52 1000.00 ±0.00 1000.00 ±0.00

Kj4 979.73 ±1.35 1000.00 ±0.00 1000.00 ±0.00

Kj11 976.30 ±1.46 1000.00 ±0.00 1000.00 ±0.00

Ng9 977.50 ±1.52 1000.00 ±0.00 1000.00 ±0.00

Ng12 977.50 ±1.52 1000.00 ±0.00 1000.00 ±0.00

Pg1 978.20 ±1.38 1000.00 ±0.00 1000.00 ±0.00

Vl1 979.23 ±1.43 1000.00 ±0.00 1000.00 ±0.00

Par6 558.73 ±5.08 1000.00 ±0.00 1000.00 ±0.00

Par7 622.57 ±4.35 1000.00 ±0.00 1000.00 ±0.00

Par8 676.00 ±3.79 1000.00 ±0.00 1000.00 ±0.00

Mux11 779.57 ±4.55 1000.00 ±0.00 1000.00 ±0.00

Mux20 887.90 ±4.08 1000.00 ±0.00 1000.00 ±0.00

Maj9 717.60 ±5.38 1000.00 ±0.00 1000.00 ±0.00

Maj10 747.93 ±4.22 1000.00 ±0.00 1000.00 ±0.00

Cmp8 676.00 ±3.79 1000.00 ±0.00 1000.00 ±0.00

Cmp10 747.93 ±4.22 1000.00 ±0.00 1000.00 ±0.00

Rank: 3.00 1.50 1.50

(b)

CI

""

SDI

��
RHH

Table 18: (a) The average and .95-confidence interval of the number of programs pro-
duced until population’s L1-convex hull includes the target. (b) Post-hoc analysis of
Friedman’s test (p = 2.03× 10−3) using the symmetry test: p-values of incorrectly judg-
ing an operator in a row as including the target in the convex hull using fewer programs
than the one in a column. The p-values ≤ .05 are represented by arcs in the graph.

(a)

Problem RHH SDI CI
R1 72.03 ±24.80 54.60 ±19.64 25.93 ±6.80

R2 11.37 ±2.31 17.70 ±3.94 12.63 ±2.49

Kj3 7.97 ±1.32 13.90 ±3.31 12.23 ±2.55

Kj4 8.07 ±1.90 13.40 ±3.19 11.60 ±2.21

Kj11 61.80 ±10.19 86.83 ±19.87 60.70 ±13.43

Ng9 9.03 ±1.95 11.03 ±5.11 7.50 ±2.16

Ng12 10.70 ±2.80 14.97 ±4.44 11.33 ±2.62

Pg1 16.17 ±2.82 20.20 ±4.28 15.97 ±3.36

Vl1 7.90 ±1.34 7.90 ±1.44 8.90 ±2.09

Par6 5.67 ±0.77 5.63 ±0.75 4.87 ±0.52

Par7 6.33 ±0.80 5.30 ±0.56 5.07 ±0.57

Par8 7.37 ±0.74 5.77 ±0.68 5.43 ±0.58

Mux11 7.33 ±0.95 7.43 ±0.96 6.40 ±0.63

Mux20 10.65 ±1.58 7.50 ±1.30 7.10 ±1.13

Maj9 6.53 ±0.75 5.97 ±0.76 5.37 ±0.60

Maj10 5.97 ±0.65 7.10 ±0.80 6.33 ±0.61

Cmp8 7.20 ±0.81 5.73 ±0.69 5.33 ±0.53

Cmp10 6.30 ±0.96 7.17 ±0.87 6.30 ±0.65

Rank: 2.06 2.53 1.42

(b)

RHH SDI CI
RHH 0.322

SDI
CI 0.127 0.002

CI // SDI

RHH

2

Table 19: The probability that selection is effective, with .95-confidence interval. The
values of 1.000 not in bold are factually smaller than one.

Problem RTS RSTS RCTS CTS CSTS CCTS
R1 0.996 ±0.001 0.999 ±0.000 1.000 ±0.000 0.996 ±0.001 0.999 ±0.000 1.000 ±0.000

R2 0.995 ±0.001 0.999 ±0.000 1.000 ±0.000 0.996 ±0.001 0.999 ±0.000 1.000 ±0.000

Kj3 0.990 ±0.001 0.998 ±0.001 1.000 ±0.000 0.996 ±0.001 0.999 ±0.000 1.000 ±0.000

Kj4 0.992 ±0.001 0.999 ±0.000 1.000 ±0.000 0.996 ±0.001 1.000 ±0.000 1.000 ±0.000

Kj11 0.992 ±0.001 0.999 ±0.000 1.000 ±0.000 0.996 ±0.001 1.000 ±0.000 1.000 ±0.000

Ng9 0.995 ±0.001 0.999 ±0.000 1.000 ±0.000 0.997 ±0.001 0.999 ±0.000 1.000 ±0.000

Ng12 0.996 ±0.001 1.000 ±0.000 1.000 ±0.000 0.996 ±0.001 0.999 ±0.000 1.000 ±0.000

Pg1 0.996 ±0.001 0.999 ±0.000 1.000 ±0.000 0.996 ±0.001 1.000 ±0.000 1.000 ±0.000

Vl1 0.993 ±0.001 0.999 ±0.000 1.000 ±0.000 0.997 ±0.001 1.000 ±0.000 1.000 ±0.000

Par6 0.972 ±0.002 0.973 ±0.002 1.000 ±0.000 0.996 ±0.001 1.000 ±0.000 1.000 ±0.000

Par7 0.974 ±0.002 0.974 ±0.002 1.000 ±0.000 0.996 ±0.001 0.999 ±0.000 1.000 ±0.000

Par8 0.978 ±0.002 0.980 ±0.002 1.000 ±0.000 0.997 ±0.001 0.999 ±0.000 1.000 ±0.000

Mux11 0.819 ±0.004 0.966 ±0.002 1.000 ±0.000 0.996 ±0.001 1.000 ±0.000 1.000 ±0.000

Mux20 0.926 ±0.004 0.985 ±0.002 1.000 ±0.000 0.996 ±0.001 1.000 ±0.000 1.000 ±0.000

Maj9 0.992 ±0.001 0.999 ±0.000 1.000 ±0.000 0.996 ±0.001 1.000 ±0.000 1.000 ±0.000

Maj10 0.993 ±0.001 0.999 ±0.000 1.000 ±0.000 0.997 ±0.001 0.999 ±0.000 1.000 ±0.000

Cmp8 0.985 ±0.001 0.998 ±0.001 1.000 ±0.000 0.995 ±0.001 0.999 ±0.000 1.000 ±0.000

Cmp10 0.993 ±0.001 0.999 ±0.000 1.000 ±0.000 0.997 ±0.001 0.999 ±0.000 1.000 ±0.000

Rank: 5.944 4.167 1.361 4.778 3.111 1.639

Table 20: Post-hoc analysis of Friedman’s test (p = 1.16× 10−12) using the symmetry test
conducted on Table 19: p-values of incorrectly judging an operator in a row as more ef-
fective than the one in a column. The p-values ≤ .05 are represented by arcs in the graph.

RTS RSTS RCTS CTS CSTS CCTS
RTS

RSTS 0.046 0.921
RCTS 0.000 0.000 0.000 0.052 0.998

CTS 0.408
CSTS 0.000 0.525 0.075
CCTS 0.000 0.001 0.000 0.161

RTS CTS

RSTS

OO

CSTS

__

RCTS

AA

OO

GG

CCTS

WW

__

]]

Table 21: Probability and .95-confidence interval that selection is t-geometric under L1.

Problem RTS RSTS RCTS CTS CSTS CCTS
R1 0.001 ±0.000 0.001 ±0.000 0.001 ±0.000 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000

R2 0.000 ±0.000 0.000 ±0.000 0.001 ±0.000 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000

Kj3 0.000 ±0.000 0.000 ±0.000 0.001 ±0.000 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000

Kj4 0.000 ±0.000 0.000 ±0.000 0.001 ±0.000 0.001 ±0.000 0.001 ±0.000 0.001 ±0.000

Kj11 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000

Ng9 0.000 ±0.000 0.000 ±0.000 0.001 ±0.000 0.000 ±0.000 0.000 ±0.000 0.001 ±0.000

Ng12 0.002 ±0.001 0.002 ±0.000 0.004 ±0.001 0.000 ±0.000 0.000 ±0.000 0.001 ±0.000

Pg1 0.001 ±0.000 0.001 ±0.000 0.001 ±0.000 0.000 ±0.000 0.000 ±0.000 0.001 ±0.000

Vl1 0.001 ±0.000 0.001 ±0.000 0.002 ±0.000 0.001 ±0.000 0.001 ±0.000 0.002 ±0.001

Par6 0.036 ±0.002 0.031 ±0.002 0.166 ±0.004 0.003 ±0.001 0.003 ±0.001 0.006 ±0.001

Par7 0.028 ±0.002 0.027 ±0.002 0.138 ±0.004 0.001 ±0.000 0.001 ±0.000 0.002 ±0.000

Par8 0.022 ±0.002 0.019 ±0.002 0.110 ±0.004 0.000 ±0.000 0.000 ±0.000 0.001 ±0.000

Mux11 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000

Mux20 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000

Maj9 0.000 ±0.000 0.000 ±0.000 0.018 ±0.002 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000

Maj10 0.000 ±0.000 0.001 ±0.000 0.001 ±0.000 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000

Cmp8 0.006 ±0.001 0.007 ±0.001 0.022 ±0.002 0.000 ±0.000 0.000 ±0.000 0.002 ±0.001

Cmp10 0.003 ±0.001 0.003 ±0.001 0.012 ±0.001 0.000 ±0.000 0.000 ±0.000 0.001 ±0.000

Rank: 3.000 3.556 1.667 4.861 4.722 3.194

3

Table 22: Post-hoc analysis of Friedman’s test (p = 1.08× 10−6) using the symmetry test
conducted on Table 21: p-values of incorrectly judging an operator in a row as more
geometric than the one in a column. The p-values ≤ .05 are represented by arcs in the
graph.

RTS RSTS RCTS CTS CSTS CCTS

RTS 0.939 0.023 0.045 1.000
RSTS 0.244 0.370
RCTS 0.223 0.020 0.000 0.000 0.108

CTS
CSTS 1.000
CCTS 0.991 0.059 0.108

RTS //

!!

CTS

RSTS CSTS

RCTS

OO

FF

==

CCTS

Table 23: Probability and .95-confidence interval that mutation is effective.

Problem RTM RSDM RSGM RCM CTM CSDM CSGM CCM
R1 0.986 ±0.006 1.000 ±0.000 0.992 ±0.004 0.995 ±0.004 0.977 ±0.008 1.000 ±0.000 0.984 ±0.006 1.000 ±0.000

R2 0.985 ±0.006 1.000 ±0.000 0.992 ±0.004 0.994 ±0.004 0.977 ±0.007 1.000 ±0.000 0.984 ±0.006 0.999 ±0.001

Kj3 0.961 ±0.010 1.000 ±0.000 0.992 ±0.004 0.973 ±0.008 0.982 ±0.007 1.000 ±0.000 0.984 ±0.006 1.000 ±0.000

Kj4 0.960 ±0.010 1.000 ±0.000 0.992 ±0.005 0.969 ±0.009 0.978 ±0.007 1.000 ±0.000 0.982 ±0.007 1.000 ±0.000

Kj11 0.972 ±0.008 1.000 ±0.000 0.980 ±0.007 0.988 ±0.005 0.985 ±0.006 1.000 ±0.000 0.982 ±0.006 1.000 ±0.000

Ng9 0.988 ±0.005 1.000 ±0.000 0.980 ±0.007 0.997 ±0.003 0.988 ±0.005 1.000 ±0.000 0.983 ±0.006 0.999 ±0.001

Ng12 0.977 ±0.007 1.000 ±0.000 0.979 ±0.007 0.988 ±0.005 0.988 ±0.005 1.000 ±0.000 0.983 ±0.006 0.999 ±0.001

Pg1 0.986 ±0.006 1.000 ±0.000 0.979 ±0.007 0.998 ±0.002 0.986 ±0.006 1.000 ±0.000 0.982 ±0.007 1.000 ±0.000

Vl1 0.971 ±0.008 1.000 ±0.000 0.979 ±0.007 0.982 ±0.007 0.982 ±0.007 1.000 ±0.000 0.981 ±0.007 0.999 ±0.002

Par6 0.713 ±0.022 0.996 ±0.003 0.754 ±0.021 0.753 ±0.021 0.377 ±0.024 0.992 ±0.005 0.871 ±0.017 0.493 ±0.025

Par7 0.756 ±0.021 0.994 ±0.004 0.788 ±0.020 0.755 ±0.021 0.489 ±0.024 0.993 ±0.004 0.870 ±0.017 0.557 ±0.024

Par8 0.779 ±0.020 0.999 ±0.002 0.801 ±0.020 0.784 ±0.020 0.477 ±0.024 0.997 ±0.003 0.894 ±0.015 0.569 ±0.025

Mux11 0.696 ±0.023 0.995 ±0.004 0.702 ±0.022 0.749 ±0.022 0.545 ±0.025 0.999 ±0.002 0.884 ±0.016 0.598 ±0.025

Mux20 0.813 ±0.024 0.999 ±0.002 0.811 ±0.024 0.716 ±0.027 0.748 ±0.027 0.999 ±0.002 0.940 ±0.015 0.686 ±0.028

Maj9 0.880 ±0.016 1.000 ±0.000 0.900 ±0.015 0.942 ±0.011 0.591 ±0.024 0.999 ±0.001 0.921 ±0.013 0.653 ±0.023

Maj10 0.911 ±0.014 1.000 ±0.000 0.902 ±0.015 0.946 ±0.011 0.616 ±0.023 0.995 ±0.003 0.926 ±0.013 0.690 ±0.023

Cmp8 0.853 ±0.017 0.999 ±0.002 0.851 ±0.018 0.912 ±0.014 0.564 ±0.024 0.996 ±0.003 0.900 ±0.015 0.605 ±0.024

Cmp10 0.903 ±0.015 1.000 ±0.000 0.894 ±0.015 0.939 ±0.012 0.622 ±0.023 0.999 ±0.002 0.928 ±0.013 0.677 ±0.023

Rank: 6.111 1.500 5.556 4.556 6.889 1.778 4.833 4.778

Table 24: Post-hoc analysis of Friedman’s test (p = 2.13 × 10−10) using the symmetry
test conducted on Table 23: p-values of incorrectly judging an operator in a row as more
effective than the one in a column. The p-values ≤ .05 are represented by arcs in the
graph.

RTM RSDM RSGM RCM CTM CSDM CSGM CCM

RTM 0.987
RSDM 0.000 0.000 0.004 0.000 1.000 0.001 0.001
RSGM 0.996 0.743
RCM 0.512 0.922 0.084 1.000 1.000
CTM

CSDM 0.000 0.000 0.014 0.000 0.004 0.005
CSGM 0.743 0.987 0.193
CCM 0.700 0.980 0.166 1.000

RTM CTM

RSDM

OO

��

��

::

$$

��

CSDM

dd

zz

��

OO

��

��

RSGM CSGM

RCM CCM

4

Ta
bl

e
25

:(
a)

M
ed

ia
n

an
d
.9
5
-c

on
fi

d
en

ce
in

te
rv

al
of

of
fs

p
ri

ng
-t

o-
p

ar
en

tL
1

d
is

ta
nc

e
re

su
lt

in
g

fr
om

m
u

ta
ti

on
op

er
at

or
s.

V
al

u
es

>
1
0
4

ar
e

ro
un

d
ed

to
an

or
d

er
of

m
ag

ni
tu

d
e.

(b
)P

os
t-

ho
c

an
al

ys
is

of
Fr

ie
d

m
an

’s
te

st
(p

=
2
.2
7
×

1
0
−
9
)u

si
ng

th
e

sy
m

m
et

ry
te

st
:p

-v
al

ue
s

of
in

co
rr

ec
tl

y
ju

dg
in

g
an

op
er

at
or

in
a

ro
w

as
pr

od
uc

in
g

of
fs

pr
in

g
le

ss
di

st
an

tt
o

th
e

pa
re

nt
th

an
th

e
on

e
in

a
co

lu
m

n.
T

he
p-

va
lu

es
≤

.0
5

ar
e

re
pr

es
en

te
d

by
ar

cs
in

th
e

gr
ap

h.

(a
)

Pr
ob

le
m

R
T

M
R

SD
M

R
SG

M
R

C
M

C
T

M
C

SD
M

C
SG

M
C

C
M

R
1

3
6
.5
2
≤

3
7
.8
1
≤

4
2
.6
7

3
2
.8
3
≤

3
5
.9
0
≤

3
6
.9
8

0
.6
1
≤

0
.7
9
≤

0
.7
9

4
2
.7
1
≤

4
3
.0
2
≤

4
4
.0
0

1
0
.5
4
≤

1
0
.9
1
≤

1
1
.8
2

1
2
.8
6
≤

1
3
.6
9
≤

1
4
.5
5

0
.5
8
≤

0
.6
5
≤

0
.9
1

1
6
.8
9
≤
1
7
.7
1
≤

1
9
.2
3

R
2

2
2
.0
1
≤

2
2
.5
9
≤

2
3
.9
6

1
9
.1
4
≤

2
0
.4
8
≤

2
1
.7
9

0
.5
2
≤

0
.5
4
≤

0
.5
6

1
1
.1
5
≤

1
1
.3
4
≤

1
1
.5
7

7
.7
7
≤

8
.2
4
≤

8
.5
9

8
.3
1
≤

8
.8
5
≤

9
.5
9

0
.5
3
≤

0
.5
4
≤

0
.5
9

1
0
.1
2
≤
1
0
.4
8
≤

1
1
.0
0

K
j3

3
8
.9
4
≤

4
0
.2
5
≤

4
0
.3
0

3
0
.8
2
≤

3
2
.7
4
≤

3
7
.1
1

3
.1
5
≤

8
.7
7
≤

1
3
.2
7

7
.1
4
≤

7
.1
6
≤

7
.3
5

9
.6
0
≤

1
0
.0
4
≤

1
0
.5
4

1
0
.5
3
≤

1
0
.8
8
≤

1
1
.2
0

3
0
.0
2
≤

4
5
.5
0
≤

2
8
9
0
.6
6

1
0
.0
8
≤
1
0
.4
5
≤

1
0
.6
6

K
j4

2
0
6
.6
7
≤
2
9
6
.6
2
≤

6
9
8
.3
9

1
4
2
.3
4
≤
2
7
4
.5
5
≤

5
9
5
.1
1

5
9
2
3
.3
9
≤

1
0
6
≤

1
0
6

5
.9
2
≤

5
.9
9
≤

6
.3
4

8
.6
6
≤

9
.0
1
≤

9
.5
3

9
.4
5
≤

9
.6
6
≤

1
0
.3
1

1
0
5

≤
1
0
5
≤

1
0
5

9
.1
4
≤

9
.3
5
≤

9
.8
3

K
j1

1
2
4
8
.2
3
≤
2
6
5
.9
0
≤

2
7
9
.0
9

2
2
0
.1
9
≤
2
3
5
.9
7
≤

2
4
7
.0
4

9
.2
5
≤

1
0
.4
1
≤

4
4
.6
4

2
6
0
.4
5
≤
2
7
6
.0
4
≤

3
2
4
.1
5

5
4
.0
2
≤

5
7
.1
2
≤

5
8
.9
3

5
9
.8
0
≤

6
2
.7
7
≤

6
5
.3
9

5
.9
6
≤
1
5
2
.3
4
≤

1
0
6

6
7
.5
5
≤
7
0
.2
6
≤

7
6
.3
1

N
g9

1
0
0
.2
3
≤
1
1
3
.2
9
≤

1
3
5
.2
0

1
0
2
.8
4
≤
1
1
5
.7
7
≤

1
3
0
.7
2

3
.4
3
≤

5
.7
8
≤

6
.3
9

3
8
.4
8
≤

3
9
.1
9
≤

3
9
.4
4

3
6
.5
7
≤

3
8
.8
2
≤

4
1
.5
5

3
9
.4
0
≤

4
1
.6
4
≤

4
4
.2
0

3
.3
2
≤

4
.9
4
≤

5
.4
9

4
2
.9
8
≤
4
4
.5
8
≤

4
5
.7
9

N
g1

2
1
3
1
.7
2
≤
1
3
6
.3
6
≤

1
5
8
.6
6

1
6
8
.3
9
≤
1
7
4
.1
3
≤

2
1
2
.8
1

3
.0
9
≤

5
.5
4
≤

6
.9
7

3
4
.3
2
≤

3
4
.4
4
≤

3
4
.7
5

4
5
.4
8
≤

4
6
.7
7
≤

4
8
.6
5

4
9
.0
0
≤

5
0
.8
5
≤

5
2
.8
4

4
.0
1
≤

4
.1
8
≤

7
.1
8

5
0
.9
0
≤
5
1
.8
2
≤

5
3
.8
4

Pg
1

4
6
1
.7
3
≤
5
4
3
.7
7
≤

6
8
6
.8
3

4
2
5
.8
1
≤
4
4
6
.1
2
≤

4
8
8
.6
3

1
0
8

≤
1
0
1
3
≤

1
0
3
6

8
3
.7
8
≤

8
5
.2
3
≤

8
7
.5
4

4
7
.1
1
≤
4
9
.6
4
≤

5
2
.0
7

5
4
.3
3
≤

5
7
.5
3
≤

5
8
.8
9

1
0
1
4

≤
1
0
3
7
≤

1
0
5
6

5
7
.7
7
≤
5
9
.1
5
≤

6
1
.6
8

V
l1

6
1
6
.8
7
≤
8
3
2
.1
1
≤

1
1
4
9
.9
8

7
7
6
.3
7
≤
8
1
6
.3
5
≤

1
1
9
0
.3
9

2
8
4
.1
7
≤
5
2
2
.3
5
≤

1
0
8

3
4
.4
6
≤

3
4
.8
7
≤

3
6
.5
1

4
7
.5
5
≤

4
8
.8
9
≤

5
0
.5
2

5
4
.2
4
≤

5
7
.3
5
≤

6
1
.4
9

1
0
1
3

≤
1
0
6
7
≤

1
0
1
2
5

5
0
.8
4
≤
5
1
.4
1
≤

5
2
.1
9

Pa
r6

9
.2
5
≤

1
0
.5
0
≤

1
1
.1
1

1
9
.1
1
≤

1
9
.4
5
≤

1
9
.8
5

1
5
.9
6
≤

1
6
.0
0
≤

1
6
.2
2

1
1
.4
0
≤

1
2
.0
0
≤

1
2
.5
0

0
.4
0
≤

0
.5
0
≤

0
.5
7

7
.8
0
≤

8
.6
7
≤

9
.0
0

1
5
.8
5
≤

1
6
.2
6
≤

1
6
.6
2

0
.0
0
≤

0
.2
9
≤

1
.0
0

Pa
r7

2
4
.5
7
≤

2
6
.1
8
≤

2
8
.0
0

3
9
.0
0
≤

3
9
.7
1
≤

4
1
.8
3

3
1
.3
2
≤

3
2
.1
9
≤

3
2
.3
3

2
4
.0
0
≤

2
5
.7
1
≤

2
8
.8
9

1
.4
3
≤

1
.7
8
≤

2
.0
0

1
4
.0
0
≤

1
5
.2
7
≤

1
7
.3
3

3
1
.2
0
≤

3
2
.0
8
≤

3
3
.2
4

1
.5
0
≤

2
.0
0
≤

2
.7
5

Pa
r8

4
5
.7
1
≤

5
0
.6
2
≤

5
3
.6
5

7
5
.8
3
≤

7
8
.0
0
≤

7
9
.0
5

6
1
.9
2
≤

6
4
.1
1
≤

6
4
.1
1

5
5
.5
6
≤

5
7
.8
5
≤

6
4
.0
0

3
.0
0
≤

3
.0
0
≤

3
.5
0

2
5
.1
4
≤

2
8
.0
0
≤

2
8
.8
6

6
2
.1
7
≤

6
3
.0
0
≤

6
4
.7
9

2
.0
0
≤

4
.0
0
≤

5
.0
0

M
ux

11
1
3
4
.6
7
≤
1
5
2
.0
0
≤

1
9
2
.0
0

5
1
3
.9
3
≤
5
2
4
.3
6
≤

5
6
9
.2
5

1
9
4
.5
5
≤
2
3
2
.2
0
≤

2
3
5
.0
0

1
5
6
.0
0
≤
1
6
1
.1
4
≤

1
8
0
.6
7

5
.5
0
≤

8
.0
0
≤

1
2
.0
0

1
2
1
.2
0
≤
1
2
8
.0
0
≤

1
3
7
.0
0

1
6
1
.8
8
≤
1
7
1
.7
7
≤

1
8
4
.4
4

1
6
.0
0
≤
2
0
.9
2
≤

3
0
.0
0

M
ux

20
1
0
5

≤
1
0
5
≤

1
0
5

1
0
5

≤
1
0
5
≤

1
0
5

1
0
5

≤
1
0
6
≤

1
0
6

1
0
5

≤
1
0
5
≤

1
0
5

9
7
7
2
.0
0
≤

1
0
4
≤

1
0
4

1
0
5

≤
1
0
5
≤

1
0
5

1
0
5

≤
1
0
5
≤

1
0
6

1
0
4

≤
1
0
4
≤

1
0
4

M
aj

9
1
4
9
.3
3
≤
1
6
0
.0
0
≤

1
7
0
.6
7

1
5
3
.6
0
≤
1
5
9
.8
0
≤

1
6
5
.5
0

1
3
3
.9
5
≤
1
3
5
.0
0
≤

1
3
5
.6
8

1
1
5
.1
4
≤
1
1
6
.7
6
≤

1
2
0
.3
3

6
.4
0
≤

8
.0
0
≤

1
2
.0
0

6
8
.0
0
≤

7
5
.7
1
≤

7
8
.2
9

1
3
5
.2
7
≤
1
3
5
.3
4
≤

1
3
5
.8
7

1
7
.0
0
≤
1
8
.8
0
≤

2
1
.6
0

M
aj

10
3
2
5
.8
2
≤
3
3
9
.2
0
≤

3
5
6
.2
7

3
2
0
.0
0
≤
3
3
0
.0
0
≤

3
4
3
.2
0

2
6
2
.6
5
≤
2
6
3
.0
2
≤

2
6
4
.0
6

2
4
4
.5
9
≤
2
5
7
.4
5
≤

2
6
7
.0
0

1
5
.0
0
≤
1
9
.0
0
≤

2
5
.0
0

1
0
9
.0
0
≤
1
1
7
.3
3
≤

1
3
9
.2
0

2
6
5
.5
0
≤
2
6
8
.6
2
≤

2
7
1
.0
0

3
4
.4
4
≤
4
2
.0
0
≤

4
9
.5
0

C
m

p8
7
1
.4
3
≤

7
6
.0
0
≤

7
7
.3
3

8
0
.5
0
≤

8
3
.4
7
≤

8
4
.0
0

6
9
.3
8
≤

7
0
.4
5
≤

7
0
.6
8

5
2
.7
8
≤

5
3
.3
3
≤

5
4
.8
2

3
.0
0
≤

4
.0
0
≤

5
.0
0

3
2
.6
0
≤

3
6
.7
5
≤

4
0
.6
7

6
8
.4
9
≤

6
9
.1
9
≤

6
9
.4
7

5
.0
0
≤

7
.0
0
≤

9
.8
0

C
m

p1
0

2
9
8
.6
7
≤
3
0
6
.0
0
≤

3
1
6
.0
0

3
0
2
.1
0
≤
3
0
6
.6
7
≤

3
1
4
.3
3

2
6
8
.0
0
≤
2
6
8
.9
7
≤

2
6
9
.2
7

2
1
5
.5
8
≤
2
1
7
.8
8
≤

2
3
1
.4
7

1
6
.0
0
≤
2
2
.5
0
≤

2
6
.8
3

1
2
5
.2
0
≤
1
4
0
.0
0
≤

1
5
8
.6
7

2
6
2
.4
7
≤
2
6
8
.7
1
≤

2
6
8
.9
0

3
3
.6
7
≤
4
0
.0
0
≤

4
8
.4
0

R
an

k:
6.

39
7.

00
4.

89
4.

17
1.

83
3.

50
5.

11
3.

11

(b
)

R
T

M
R

SD
M

R
SG

M
R

C
M

C
T

M
C

SD
M

C
SG

M
C

C
M

R
T

M
0.

99
5

R
SD

M
R

SG
M

0.
59

5
0.

16
1

1.
00

0
R

C
M

0.
11

6
0.

01
2

0.
98

7
0.

94
4

C
T

M
0.

00
0

0.
00

0
0.

00
4

0.
08

1
0.

45
4

0.
00

1
0.

77
1

C
SD

M
0.

00
9

0.
00

0
0.

68
7

0.
99

2
0.

50
0

C
SG

M
0.

77
1

0.
28

6
C

C
M

0.
00

1
0.

00
0

0.
36

5
0.

90
2

1.
00

0
0.

21
7

R
T

M
C

T
M

oo xx

��
��

R
SD

M
C

SD
M

ff

oo

R
SG

M
C

SG
M

R
C

M

@@

C
C

M

YY ^^

5

Table 26: The average and .95-confidence interval of offspring-to-parent size ratio
resulting from mutation.

Problem RTM RSDM RSGM RCM CTM CSDM CSGM CCM
R1 1.95 ±0.09 1.98 ±0.09 4.21 ±0.16 3.00 ±0.12 1.08 ±0.03 1.01 ±0.04 1.60 ±0.05 1.12 ±0.04

R2 2.54 ±0.14 2.59 ±0.14 5.19 ±0.21 3.18 ±0.12 1.06 ±0.03 1.00 ±0.04 1.59 ±0.05 1.10 ±0.03

Kj3 2.77 ±0.16 2.82 ±0.16 5.82 ±0.24 1.47 ±0.07 1.07 ±0.03 0.98 ±0.03 1.51 ±0.04 0.99 ±0.03

Kj4 2.72 ±0.17 2.80 ±0.17 5.71 ±0.25 1.42 ±0.07 1.04 ±0.03 0.95 ±0.03 1.53 ±0.05 0.95 ±0.03

Kj11 2.17 ±0.13 2.15 ±0.13 4.97 ±0.22 4.38 ±0.21 1.02 ±0.03 0.97 ±0.03 1.64 ±0.05 1.22 ±0.04

Ng9 2.07 ±0.11 2.15 ±0.12 4.80 ±0.20 2.86 ±0.09 1.04 ±0.03 0.98 ±0.04 1.73 ±0.05 1.17 ±0.04

Ng12 2.39 ±0.14 2.55 ±0.15 5.43 ±0.23 4.21 ±0.18 1.01 ±0.03 0.95 ±0.03 1.63 ±0.05 1.17 ±0.04

Pg1 2.09 ±0.12 2.07 ±0.12 4.82 ±0.19 2.53 ±0.12 1.03 ±0.03 0.95 ±0.04 1.73 ±0.06 1.06 ±0.03

Vl1 2.42 ±0.14 2.47 ±0.14 5.50 ±0.23 1.58 ±0.08 1.03 ±0.03 0.96 ±0.04 1.68 ±0.05 1.05 ±0.04

Par6 0.87 ±0.03 0.73 ±0.03 1.37 ±0.04 0.82 ±0.02 0.94 ±0.01 0.70 ±0.02 1.03 ±0.00 0.87 ±0.02

Par7 0.86 ±0.03 0.74 ±0.03 1.36 ±0.03 0.74 ±0.02 0.93 ±0.01 0.70 ±0.02 1.04 ±0.01 0.85 ±0.02

Par8 0.84 ±0.03 0.74 ±0.03 1.37 ±0.03 0.70 ±0.02 0.92 ±0.01 0.70 ±0.02 1.05 ±0.01 0.87 ±0.02

Mux11 0.82 ±0.02 0.64 ±0.03 1.23 ±0.03 1.13 ±0.04 0.89 ±0.01 0.70 ±0.02 1.06 ±0.01 0.88 ±0.02

Mux20 0.76 ±0.02 0.62 ±0.02 1.22 ±0.03 1.90 ±0.22 0.85 ±0.01 0.74 ±0.02 1.08 ±0.01 2.28 ±0.37

Maj9 0.85 ±0.04 0.88 ±0.04 1.63 ±0.05 1.80 ±0.06 0.90 ±0.01 0.73 ±0.02 1.10 ±0.01 0.93 ±0.02

Maj10 0.82 ±0.04 0.83 ±0.04 1.63 ±0.04 1.86 ±0.07 0.87 ±0.01 0.74 ±0.02 1.10 ±0.01 0.96 ±0.02

Cmp8 0.84 ±0.04 0.83 ±0.04 1.51 ±0.04 1.37 ±0.04 0.89 ±0.01 0.70 ±0.02 1.08 ±0.01 0.89 ±0.02

Cmp10 0.77 ±0.03 0.81 ±0.03 1.54 ±0.04 1.43 ±0.04 0.88 ±0.01 0.72 ±0.02 1.09 ±0.01 0.92 ±0.02

Table 27: Probability and .95-confidence interval that crossover is effective.

Problem RTX RSDX RSGX RCX CTX CSDX CSGX CCX
R1 0.841 ±0.004 0.995 ±0.001 0.999 ±0.000 0.990 ±0.001 0.917 ±0.004 0.999 ±0.000 1.000 ±0.000 1.000 ±0.000

R2 0.841 ±0.004 0.995 ±0.001 0.999 ±0.000 0.990 ±0.001 0.917 ±0.004 0.999 ±0.000 1.000 ±0.000 1.000 ±0.000

Kj3 0.840 ±0.004 0.995 ±0.001 0.999 ±0.000 0.990 ±0.001 0.919 ±0.004 1.000 ±0.000 1.000 ±0.000 1.000 ±0.000

Kj4 0.838 ±0.004 0.995 ±0.001 0.999 ±0.000 0.990 ±0.001 0.928 ±0.004 1.000 ±0.000 1.000 ±0.000 1.000 ±0.000

Kj11 0.848 ±0.004 0.994 ±0.001 1.000 ±0.000 0.992 ±0.001 0.940 ±0.003 1.000 ±0.000 1.000 ±0.000 1.000 ±0.000

Ng9 0.848 ±0.004 0.994 ±0.001 1.000 ±0.000 0.992 ±0.001 0.944 ±0.003 1.000 ±0.000 1.000 ±0.000 1.000 ±0.000

Ng12 0.848 ±0.004 0.994 ±0.001 1.000 ±0.000 0.992 ±0.001 0.944 ±0.003 1.000 ±0.000 1.000 ±0.000 1.000 ±0.000

Pg1 0.847 ±0.004 0.994 ±0.001 1.000 ±0.000 0.992 ±0.001 0.943 ±0.003 1.000 ±0.000 1.000 ±0.000 1.000 ±0.000

Vl1 0.847 ±0.004 0.994 ±0.001 0.999 ±0.000 0.992 ±0.001 0.944 ±0.003 1.000 ±0.000 1.000 ±0.000 1.000 ±0.000

Par6 0.624 ±0.006 0.925 ±0.003 0.747 ±0.005 0.706 ±0.005 0.422 ±0.006 0.863 ±0.004 0.823 ±0.004 0.468 ±0.006

Par7 0.655 ±0.006 0.941 ±0.003 0.786 ±0.005 0.737 ±0.005 0.472 ±0.006 0.903 ±0.003 0.855 ±0.004 0.524 ±0.006

Par8 0.678 ±0.005 0.954 ±0.002 0.821 ±0.004 0.776 ±0.005 0.495 ±0.006 0.910 ±0.003 0.873 ±0.004 0.537 ±0.006

Mux11 0.724 ±0.005 0.968 ±0.002 0.880 ±0.004 0.827 ±0.004 0.608 ±0.006 0.958 ±0.002 0.899 ±0.004 0.629 ±0.006

Mux20 0.779 ±0.006 0.984 ±0.002 0.937 ±0.003 0.884 ±0.005 0.772 ±0.006 0.992 ±0.001 0.949 ±0.003 0.758 ±0.006

Maj9 0.698 ±0.005 0.961 ±0.002 0.845 ±0.004 0.792 ±0.005 0.539 ±0.006 0.935 ±0.003 0.886 ±0.004 0.578 ±0.006

Maj10 0.707 ±0.005 0.966 ±0.002 0.863 ±0.004 0.809 ±0.005 0.565 ±0.006 0.943 ±0.003 0.896 ±0.004 0.600 ±0.006

Cmp8 0.678 ±0.005 0.954 ±0.002 0.821 ±0.004 0.776 ±0.005 0.495 ±0.006 0.910 ±0.003 0.873 ±0.004 0.537 ±0.006

Cmp10 0.707 ±0.005 0.966 ±0.002 0.863 ±0.004 0.809 ±0.005 0.565 ±0.006 0.943 ±0.003 0.896 ±0.004 0.600 ±0.006

Rank: 7.000 3.056 4.000 5.500 7.444 2.167 2.250 4.583

Table 28: Post-hoc analysis of Friedman’s test (p = 6.50× 10−10) using the symmetry test
conducted on Table 27: p-values of incorrectly judging an operator in a row as more ef-
fective than the one in a column. The p-values ≤ .05 are represented by arcs in the graph.

RTX RSDX RSGX RCX CTX CSDX CSGX CCX
RTX 0.999

RSDX 0.000 0.944 0.055 0.000 0.546
RSGX 0.005 0.593 0.001 0.995
RCX 0.593 0.249
CTX

CSDX 0.000 0.944 0.284 0.001 0.000 1.000 0.045
CSGX 0.000 0.981 0.407 0.002 0.000 0.080
CCX 0.067 0.959 0.012

RTX CTX

RSDX

OO

��

;;

CSDX

cc

��

OO

��

RSGX

@@ DD

CSGX

ZZ

{{

^^

RCX CCX

cc

6

Table 29: Probability and .95-confidence interval that crossover is L1-geometric and
effective.

Problem RTX RSDX RSGX RCX CTX CSDX CSGX CCX
R1 0.089 ±0.003 0.111 ±0.004 0.999 ±0.000 0.407 ±0.006 0.054 ±0.003 0.058 ±0.003 0.999 ±0.000 0.088 ±0.004

R2 0.089 ±0.003 0.111 ±0.004 0.999 ±0.000 0.407 ±0.006 0.054 ±0.003 0.058 ±0.003 0.999 ±0.000 0.088 ±0.004

Kj3 0.061 ±0.003 0.080 ±0.003 0.999 ±0.000 0.282 ±0.005 0.055 ±0.003 0.064 ±0.003 0.999 ±0.000 0.073 ±0.004

Kj4 0.084 ±0.003 0.113 ±0.004 0.999 ±0.000 0.316 ±0.006 0.068 ±0.004 0.076 ±0.004 0.999 ±0.001 0.094 ±0.005

Kj11 0.038 ±0.002 0.049 ±0.003 0.999 ±0.000 0.187 ±0.005 0.056 ±0.003 0.061 ±0.003 0.999 ±0.000 0.063 ±0.003

Ng9 0.104 ±0.004 0.126 ±0.004 0.999 ±0.000 0.375 ±0.006 0.059 ±0.003 0.061 ±0.003 0.999 ±0.000 0.078 ±0.004

Ng12 0.104 ±0.004 0.126 ±0.004 0.999 ±0.000 0.375 ±0.006 0.059 ±0.003 0.061 ±0.003 0.999 ±0.000 0.078 ±0.004

Pg1 0.050 ±0.003 0.062 ±0.003 0.999 ±0.000 0.207 ±0.005 0.061 ±0.003 0.065 ±0.003 0.999 ±0.000 0.072 ±0.004

Vl1 0.058 ±0.003 0.075 ±0.003 0.999 ±0.000 0.208 ±0.005 0.061 ±0.003 0.059 ±0.003 0.999 ±0.000 0.065 ±0.004

Par6 0.153 ±0.004 0.228 ±0.005 0.747 ±0.005 0.538 ±0.006 0.112 ±0.004 0.223 ±0.005 0.823 ±0.004 0.315 ±0.005

Par7 0.146 ±0.004 0.229 ±0.005 0.786 ±0.005 0.520 ±0.006 0.121 ±0.004 0.218 ±0.005 0.855 ±0.004 0.337 ±0.005

Par8 0.145 ±0.004 0.220 ±0.005 0.821 ±0.004 0.507 ±0.006 0.120 ±0.004 0.216 ±0.005 0.873 ±0.004 0.332 ±0.005

Mux11 0.141 ±0.004 0.202 ±0.005 0.880 ±0.004 0.432 ±0.006 0.111 ±0.004 0.192 ±0.005 0.899 ±0.004 0.327 ±0.005

Mux20 0.133 ±0.005 0.177 ±0.005 0.937 ±0.003 0.238 ±0.006 0.102 ±0.004 0.153 ±0.005 0.949 ±0.003 0.280 ±0.007

Maj9 0.144 ±0.004 0.212 ±0.005 0.845 ±0.004 0.483 ±0.006 0.116 ±0.004 0.207 ±0.005 0.886 ±0.004 0.333 ±0.005

Maj10 0.139 ±0.004 0.211 ±0.005 0.863 ±0.004 0.462 ±0.006 0.116 ±0.004 0.204 ±0.005 0.896 ±0.004 0.336 ±0.005

Cmp8 0.145 ±0.004 0.220 ±0.005 0.821 ±0.004 0.507 ±0.006 0.120 ±0.004 0.216 ±0.005 0.873 ±0.004 0.332 ±0.005

Cmp10 0.139 ±0.004 0.211 ±0.005 0.863 ±0.004 0.462 ±0.006 0.116 ±0.004 0.204 ±0.005 0.896 ±0.004 0.336 ±0.005

Rank: 6.667 4.778 1.778 3.056 7.722 6.222 1.222 4.556

Table 30: Post-hoc analysis of Friedman’s test (p = 7.22× 10−15) using the symmetry test
conducted on Table 29: p-values of incorrectly judging an operator in a row as more geo-
metric than the one in a column. The p-values ≤ .05 are represented by arcs in the graph.

RTX RSDX RSGX RCX CTX CSDX CSGX CCX
RTX 0.902

RSDX 0.286 0.008 0.641
RSGX 0.000 0.006 0.771 0.000 0.000 0.015
RCX 0.000 0.408 0.000 0.003 0.595
CTX

CSDX 0.999 0.595
CSGX 0.000 0.000 0.998 0.324 0.000 0.000 0.001
CCX 0.160 1.000 0.003 0.454

RTX CTX

RSDX

;;

CSDX

RSGX

@@

OO

DD

;;

##

CSGX

ZZ

cc

^^

OO

��
RCX

;; HH

DD

CCX

cc

Table 31: The average and .95-confidence interval of offspring-to-parent size ratio
resulting from crossover.

Problem RTX RSDX RSGX RCX CTX CSDX CSGX CCX
R1 1.00 ±0.01 1.00 ±0.01 2.36 ±0.00 1.67 ±0.01 0.97 ±0.01 1.00 ±0.01 2.04 ±0.00 0.93 ±0.01

R2 1.00 ±0.01 1.00 ±0.01 2.36 ±0.00 1.67 ±0.01 0.97 ±0.01 1.00 ±0.01 2.04 ±0.00 0.93 ±0.01

Kj3 1.00 ±0.01 1.00 ±0.01 2.36 ±0.00 1.71 ±0.01 0.97 ±0.01 1.00 ±0.01 2.04 ±0.00 0.93 ±0.01

Kj4 1.00 ±0.01 1.00 ±0.01 2.36 ±0.00 1.72 ±0.01 0.98 ±0.01 1.00 ±0.01 2.04 ±0.00 0.94 ±0.01

Kj11 1.00 ±0.01 1.00 ±0.01 2.34 ±0.00 1.92 ±0.01 0.98 ±0.01 1.00 ±0.01 2.05 ±0.00 0.98 ±0.01

Ng9 1.00 ±0.01 1.00 ±0.01 2.34 ±0.00 1.84 ±0.01 0.98 ±0.01 1.00 ±0.01 2.05 ±0.00 0.99 ±0.01

Ng12 1.00 ±0.01 1.00 ±0.01 2.34 ±0.00 1.84 ±0.01 0.98 ±0.01 1.00 ±0.01 2.05 ±0.00 0.99 ±0.01

Pg1 1.00 ±0.01 1.00 ±0.01 2.34 ±0.00 1.92 ±0.01 0.98 ±0.01 1.00 ±0.01 2.05 ±0.00 0.98 ±0.01

Vl1 1.00 ±0.01 1.00 ±0.01 2.34 ±0.00 1.95 ±0.01 0.98 ±0.01 1.00 ±0.01 2.05 ±0.00 0.99 ±0.01

Par6 1.00 ±0.01 0.99 ±0.01 2.18 ±0.00 0.97 ±0.01 0.98 ±0.01 0.98 ±0.01 2.02 ±0.00 0.87 ±0.01

Par7 1.00 ±0.01 0.99 ±0.01 2.19 ±0.00 0.99 ±0.01 0.99 ±0.01 0.99 ±0.01 2.02 ±0.00 0.87 ±0.01

Par8 1.00 ±0.01 1.00 ±0.01 2.19 ±0.00 1.01 ±0.01 0.98 ±0.01 0.99 ±0.01 2.02 ±0.00 0.87 ±0.01

Mux11 1.00 ±0.01 1.00 ±0.01 2.20 ±0.00 1.06 ±0.01 0.99 ±0.01 0.99 ±0.01 2.03 ±0.00 0.87 ±0.01

Mux20 1.00 ±0.01 1.00 ±0.01 2.20 ±0.00 1.16 ±0.02 0.99 ±0.01 1.00 ±0.01 2.04 ±0.00 1.28 ±0.02

Maj9 1.00 ±0.01 1.00 ±0.01 2.19 ±0.00 1.03 ±0.01 0.99 ±0.01 0.99 ±0.01 2.03 ±0.00 0.87 ±0.01

Maj10 1.00 ±0.01 1.00 ±0.01 2.20 ±0.00 1.04 ±0.01 0.99 ±0.01 0.99 ±0.01 2.03 ±0.00 0.87 ±0.01

Cmp8 1.00 ±0.01 1.00 ±0.01 2.19 ±0.00 1.01 ±0.01 0.98 ±0.01 0.99 ±0.01 2.02 ±0.00 0.87 ±0.01

Cmp10 1.00 ±0.01 1.00 ±0.01 2.20 ±0.00 1.04 ±0.01 0.99 ±0.01 0.99 ±0.01 2.03 ±0.00 0.87 ±0.01

7

	Introduction
	Semantics in GP
	Geometric search operators and convex hulls
	Target-geometric initialization and mate selection
	Effective operators

	Previous works
	Semantic-aware search operators
	Semantic-aware population initialization
	Semantic-aware selection operators

	Proposed Competent Operators
	Competent Initialization (Ci)
	Competent Tournament Selection (Cts)
	Competent Mutation (Cm)
	Competent Crossover (Cx)

	Experiments
	Setup
	Analysis of initialization
	Analysis of selection
	Analysis of mutation
	Analysis of crossover
	Joint performance of operators

	Discussion
	Conclusions
	Combinatorial Semantics and Semantic Backpropagation
	Efficient library search

