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Abstract

Genetic Programming (GP) is a machine learning technique for automatic induction of computer
programs from examples. The examples typically consist of two parts: program arguments – the
input and a target program output. Both input and output may be expressed in terms of numeric or
textual variables or even a conglomerate of the above. This problem formulation enables formalizing
semantics of a program as a tuple of outputs it returns in effect of execution on the sample inputs.
Use of semantics in GP gains an interest in research community, since the semantic methods
developed so far in GP proved capable of achieving lower error, better generalization and smaller
programs and quicker convergence to an optimum than the contemporary methods.

We embrace existing notions of semantics of program, semantic distance, semantic neutrality
and effectiveness of genetic operators under the umbrella of common conceptual framework for
Semantic Genetic Programming (SGP).

Then, we show that if a fitness function is a metric, the fitness landscape spanned over a space
of all programs proxied by semantics becomes a cone with the optimal semantics in the apex. This
provides justification for use of the recently developed Geometric Semantic Genetic Programming
(GSGP), where geometric genetic operators utilize the conic shape of the landscape. We derive
properties of progress and progress bounds of geometric operators for different combinations of
fitness functions and semantic distances.

We present a comprehensive literature review of existing semantic methods, discuss their
advantages and disadvantages and for each show how the defined properties apply to it.

Next, we propose an algorithm for backpropagating semantics trough program structure and
competent algorithms for operators: population initialization, parent selection, mutation and
crossover that are approximately geometric, effective and free of certain drawbacks of the existing
geometric methods.

Then, we experimentally assess the proposed algorithms and compare them with the existing
methods in terms of training set fitness, generalization on test set, probability of performing
geometric and effective application, size of produced programs and computational costs. We use
a suite of nine symbolic regression and nine Boolean program synthesis benchmarks. The analysis
shows that the proposed algorithms achieve performance that is consistently better than that offered
by other semantic GP methods for symbolic regression domain and not worse than the best other
methods for Boolean domain.

Finally, we experimentally find the proportions of competent mutation and competent crossover
that lead to the optimal results in the above range of benchmarks.
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Table of symbols

The table below presents the symbols used in the thesis accompanied with references to places of
their first use. Some of the symbols may appear in text with an optional sub- or superscript, with
meaning depending on the context. If there is a generalization-specialization relation between two
distinct notions, we use the same symbol for both of them, if not stated otherwise. Symbols not
listed in this table are local and their meaning depends on the context.

Symbol Meaning Introduced in

[...] Vector
(...) Tuple or open interval depending on the context (see below)
{...} Set or multiset
(a, b) Open interval from a to b
〈a, b〉 Closed interval from a to b
Pr(·) Probability
P Genotype set, specifically: program set Def. 2.1 on page 17
S Phenotype set, specifically: semantics set Def. 2.1 on page 17
s(·) Genotype-phenotype mapping, specifically: semantic mapping Def. 2.1 on page 17
p Genotype, specifically: program Def. 2.1 on page 17
s Phenotype, specifically: semantics Def. 2.1 on page 17
t Target semantics Def. 4.3 on page 44
P Population of individuals Def. 2.3 on page 18
f(·) Fitness function Def. 2.2 on page 18
Π Optimization problem Def. 2.2 on page 18
Φ Instruction set, Φt denotes terminals, Φn nonterminals Def. 3.2 on page 29
I Set of program inputs Def. 3.3 on page 30
O Set of program outputs Def. 3.3 on page 30
in Program input Def. 4.1 on page 43
out Program output; with asterisk refers to an optimal output Def. 4.1 on page 43
F List of fitness cases Def. 4.1 on page 43

d(·, ·) Semantic distance Def. 4.4 on page 44
S(x, y) Segment between z and y Def. 5.1 on page 47
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C(A) Convex hull of set A Def. 5.3 on page 48
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Chapter 1

Introduction

1.1 Motivation
The notion of automatic programming can be traced back to 1950s [14, 15], when it was meant
as a way of automated translation of program code expressed as a high-level specification into
a low-level machine language. Nowadays we call a tool that carries out this above mentioned
task a compiler and it became an inherent part of every software development process. In the
meantime, the term ‘automatic programming’ was granted another meaning. The development
of artificial intelligence methods led to emergence of a new field of research under the umbrella
of automatic programming methods, called inductive programming — a study on methods that
construct programs using incomplete knowledge. By ‘incomplete knowledge’ is meant that problem
statement does not contain complete information on what the resulting program is supposed to do.
More specifically, in program induction program behavior is constrained only by a set of examples
of expected behavior. Thus, program induction task is twofold: it is expected to automatically
synthesize a program that meets the given constrains, and that program is supposed to generalize
beyond these constraints.

To the best of our knowledge the first works on inductive programming date back to the 1970s,
when the first attempts to induce LISP programs from examples were made [171, 25]. After
a decade, in the early 1990s this idea gave rise to inductive logic programming (ILP) [120], where
the hypotheses (programs in logic) are constructed with use of the background knowledge.

In roughly the same time period, a different approach, called genetic programming (GP) [80, 141]
was born. Genetic programming is an inspired by natural evolution methodology for automatic
design of discrete structures from discrete entities. These structures are often, but not limited
to, computer programs written in a chosen programming language. GP is not constrained to
any programming paradigm or domain and in this sense is more general than ILP that induces
logic programs only. To date GP is considered the most widespread, general and successful
contemporary approach to inductive programming, with over 10000 scientific contributions in
scientific materials [92]. The highlights of GP include automatically designed antenna with human-
competitive characteristic that is used by NASA in its Space Technology mission 5 [99, 100, 67],
automatic discovery of physical laws based on measurements acquired from the physical process
[156] and automatic repair of bugs in software written by humans [53, 96].

GP is however not free from challenges. First of all, the relation between program structure (its
source code) and its behavior is very complicated. A minute change of program code, e.g., a negation
of a logical expression, can drastically change program behavior. On the other hand, a substantial
syntactic change like, e.g., code refactoring, may have no influence on program behavior. This
characteristic leads to difficulty in designing efficient genetic operators for GP. Secondly, many
moves conducted by GP genetic operators are neutral, i.e., they do not affect program behavior.
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This may be the case when the move occurs in a part of code that does not have any impact on
program behavior. The third challenging issue in GP is undesirable growth of program code over
iterations of the program induction algorithm. These three issues seem to be the main causes of
GP’s under-performance in some real-world applications, e.g., where sizeable programs need to be
synthesized to solve a given task.

In almost three decades of GP research, multiple attempts have been made to cope with the
abovementioned issues. Although many of them were successful, none of these issues were completely
solved. Fortunately, the dawn of semantic-awareness in GP in recent years of research brings hope
that the issues can be finally overcome. Semantics is a formal object that describes the behavior of
a program. A wide range of recent works [20, 22, 21, 74, 178, 179, 130, 85, 115, 87, 86, 186, 133,
55, 131] show that GP equipped with semantic-aware routines performs better and can solve more
difficult program induction problems than the ordinary variant of GP.

1.2 Scope of the thesis
The broad range of variants and applications of genetic programming inclines us to narrow our
investigation to this paradigm of program induction (program synthesis) [80, 141]. We state the
program induction problem in terms of supervised learning [152, Ch 18], where a set of examples
is given, each consisting of program arguments and an output value. The examples are split into
training and test parts, for induction and verification of generalization of a program, respectively.
We assume that programs are represented as abstract syntax trees and do not use memory or storage
persistent between executions, feature no side effects and are deterministic, i.e., the consecutive
execution with immutable arguments lead to the same program outcome.

In this thesis we focus on a common conceptual framework for GP that embraces notions of
semantics, effectiveness and geometry at each stage of evolutionary search. That is, we propose
a consistent formalization of these notions for population initialization, parent selection and variation
operators and focus on interactions between the parts of evolution that come from these formalisms.

The presented theoretical analysis is to a great extent general and independent on a domain of
the evolved programs. The proposed methods are prepared for synthesis of imperative programs
working with real and Boolean variables and assessed in problems of symbolic regression and
induction of Boolean expressions. The methods can be easily adopted to an other programming
paradigms, problem domains and learning schemes.

In the past semantics was used by either a variation operator [20, 22, 178, 179], population
initialization [21, 75] or selection [55] to prevent breeding, creating or selecting two or more seman-
tically equal programs, respectively, thus to improve effectiveness of the evolutionary search. Other
works [114, 115, 83, 85, 87, 86, 186, 133] used semantics to assign a location in multidimensional
space to a program and defined genetic operations on programs that have certain well-defined
impact on this location. These semantic methods are often called geometric, since they are aware
of geometry of the space. To our knowledge, there is only one work [131] that attempts to combine
the geometric considerations with investigation of effectiveness. We also address this topic in this
thesis.

1.3 Research goals
We formulate six research goals:

• Formulate a common conceptual and formal framework for semantic methods in genetic
programming,
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• Show that search in program space can be made more efficient when intermediated by semantic
space,
• Define and prove properties of progress for geometric semantic genetic programming,
• Identify the sources of neutrality of genetic operations,
• Develop geometric and neutrality-resistant algorithms for population initialization, selection,

crossover and mutation for genetic programming, so that they together enable solving difficult
program induction problems quickly, reliably and accurately,
• Design, implement, and test the proposed algorithms in a common software framework,
• Verify the developed algorithms and compare them with existing techniques in a computational
experiment.

1.4 Explanation of the title
In linguistic terms, the term ‘competent’ in title of this thesis may be considered controversial when
attributed to an inanimate entity, which is genetic programming. That is, after Oxford Dictionary
of English [170], the term ‘competent’ is reserved to a person having the necessary ability, knowledge
or skill to do something, or to an entity being legal authority. However, genetic programming is an
algorithm and the community of computer scientists often impersonates algorithms by e.g., saying
that an algorithm searches, finds, solves etc. Therefore, it seems natural to also endow the algorithm
with ‘competence’.

Moreover, the term ‘competent’ has a long-standing presence in evolutionary algorithms. It has
been introduced there by Goldberg [60], to characterize the class of competent genetic algorithms
that solve hard problems, quickly, reliably, and accurately — hence overcoming the limitations of the
extant technology. Later the term ‘competent’ was also used in the context of genetic programming
by Sastry and Goldberg [155] with the same meaning.

In this study we adopt the terminology proposed by Goldberg and similarly to the Goldberg’s
definition, we identify the competent algorithms for geometric semantic genetic programming with
algorithms that solve difficult program induction problems quickly, reliably and accurately.

1.5 Related papers
The achievements presented in this thesis are related to the following publications of the author:

• Tomasz P. Pawlak, Review and Comparative Analysis of Geometric Semantic Crossover
Operators, Genetic Programming and Evolvable Machines, Springer, 2015 [134],
• Tomasz P. Pawlak, Bartosz Wieloch, Krzysztof Krawiec, Semantic Backpropagation for
Designing Search Operators in Genetic Programming, IEEE Transactions on Evolutionary
Computation, IEEE Press, 2014 [133],
• Tomasz P. Pawlak, Combining Semantically-Effective and Geometric Crossover Operators
for Genetic Programming, PPSN XIII, Lecture Notes in Computer Science 8672:454–464,
Springer, 2014 [131],
• Tomasz P. Pawlak, Krzysztof Krawiec, Guarantees of Progress for Geometric Semantic Genetic
Programming, Workshop on Semantic Methods in Genetic Programming, PPSN XIII, 2014
[132],
• Krzysztof Krawiec, Tomasz P. Pawlak, Approximating Geometric Crossover by Semantic
Backpropagation, GECCO ’13, pp. 941–948, ACM, 2013 [86],
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• Krzysztof Krawiec, Tomasz P. Pawlak, Locally Geometric Semantic Crossover: A Study on
the Roles of Semantics and Homology in Recombination Operators, Genetic Programming
and Evolvable Machines 14(1):31–63, Springer, 2013 [87],
• Krzysztof Krawiec, Tomasz P. Pawlak, Quantitative Analysis of Locally Geometric Semantic

Crossover, PPSN XII, Lecture Notes in Computer Science 7491:397–406 [85],
• Krzysztof Krawiec, Tomasz P. Pawlak, Locally Geometric Semantic Crossover, GECCO ’12,
pp. 1487–1488, ACM, 2012 [84].

1.6 Organization of the thesis
Chapter 2 introduces assumptions, general scheme and variants of evolutionary algorithms. Chap-
ter 3 describes details of genetic programming in its canonical form and common contemporary
modifications.

In Chapter 4 we introduce the notions of semantics, neutrality and effectiveness for operators
involved in GP search (initialization, selection, and variation operators). In Chapter 5 we present
the recently introduced notion of geometry in semantic GP and the theory behind it, including the
characteristics of geometric operators with respect to a wide range of fitness functions.

Chapter 6 contains a comprehensive survey of existing semantic methods in genetic programming.
Chapter 7 is devoted to complete description of Competent Algorithms for operators of GP that

combine the desirable features of effective and geometric methods.
Chapter 8 poses research questions to be answered in experiments and presents the general

description of them. The outcomes of extensive computational experiments are presented in
two subsequent chapters: Chapter 9 concerns assessment of genetic operators in isolation, and
Chapter 10 consists of verification how the operators act together in GP search.

Finally, Chapter 11 concludes the thesis and provides suggestions for future work.



Chapter 2

Evolutionary Algorithms at a glance

The purpose of this chapter is to introduce the key concepts of evolutionary algorithms. We start
from the brief introduction to evolutionary algorithms, discuss general assumptions, and present
a scheme of evolutionary algorithm. Then we review the existing variants of evolutionary algorithms.
The chapter is concluded by a review of famous achievements of evolutionary algorithms.

2.1 Introduction
Evolutionary algorithm (EA) [47] is an optimization technique inspired by natural evolution. For
this reason, the general scheme of the algorithm as well as nomenclature of EAs are to a great
extent borrowed from their biological counterparts. In the following we bring these notions and use
them consistently across this study. The beginnings of EAs can be traced back to the late 1960s and
early 1970s to the works of Fogel et al. [52], Holland [65, 66], and Rechenberg [143]. Although their
works were independent, they share many common features, discussed in Subsections 2.1.1–2.1.6,
and as such were later united under the common name of evolutionary algorithm. What is worth
noting is that those features are inherent to the evolutionary algorithms – no other optimization
technique incorporates all of them – which distinguishes EAs as a separate class of optimization
algorithms.

2.1.1 Genotype-phenotype separation
EAs are designed to solve optimization problems, where the objective is to find a solution that
optimizes given objective function. The technical representation of a solution, known as genotype,
is logically separated from the use or effects of its application to the problem, known as phenotype.
In this sense the genotype encodes the corresponding phenotype, like in nature DNA encodes an
actual look and operation of a human. The distinction is made to conveniently manipulate a simple
structure that describes a more complicated model of a solution to the problem, e.g., a genotype
being a string of bits may represent integer number on the phenotypic level, similarly a genotype
consisting of a matrix of numbers may encode connections in a graph in the phenotype. An atomic
component of genotype (e.g., bit or number, respectively) is called gene. Formally, we define:

Definition 2.1. Let P be a genotype set, S be a phenotype set, and s : P → S be a genotype-
phenotype mapping (a function).

Note that we do not impose any restrictions on P and S, thus they can contain any formal
objects. However there exists a mapping function s(·) that interlinks objects in these two sets.
There are also no specific restrictions for s(·), thus multiple genotypes in P can be assigned to
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a single phenotype in S and there may be phenotypes in S, that do not have a counterpart in P . If
s(·) is an identity function, the separation of genotypes and phenotypes vanishes.

Thanks to the separation, the same genotypes can represent different phenotypes depending
on interpretation and problem statement. Since that the standard variants of EAs cope well with
distinct real world problems and the algorithm itself abstracts from the particular meaning of the
solution. Thus there is no need for major modifications to the algorithm to adapt it to a certain
problem.

2.1.2 Fitness function
To navigate the quality of solutions, we introduce fitness function that assigns a numeric value,
called fitness, to each solution, called individual. By biological analogy fitness indicates how ‘fit’ an
individual is to a given environment, like in EA fitness indicates what ‘good’ and ‘bad’ solutions
are, hence what the improvement means. Therefore fitness function actually defines the problem to
be solved. In the field of the classical optimization the fitness function would be called objective
function and the problem to be solved, an optimization problem. Formally:

Definition 2.2. Let f : S → R be a fitness function. Π = (P, f) is an optimization problem and
p∗ = arg maxp∈P f(s(p)) is an optimal solution to the problem Π.

Note that the domain of fitness function is phenotype set, while the optimization problem
involves its representation — genotype set. Since the genotype-phenotype mapping acts as a link
between these two sets, fitness function can be used to indirectly assign a fitness to a genotype.
Hence in the following we allow for a shorthand notation f(p) ≡ f(s(p)). The fitness function is
to be maximized or minimized depending on particular problem statement, note however that a
minimized function can be easily turned into maximized one by multiplying it by −1 and vice versa.
The optimal solution p∗ to the problem is a solution p for which the corresponding phenotype
achieves the highest value of the fitness function. Note that there may be more than one such
a solution.

2.1.3 Population of solutions
The algorithm operates on a collection of solutions, in EA terminology called population of
individuals. The search space is sampled by the population and explored in parallel, possibly in
different directions during evolutionary search. This lessens the risk of algorithm getting stuck in
local optima , in contrast to e.g., local search heuristics. Formally:

Definition 2.3. Population of individuals P is multiset of genotypes from P, i.e.,P = (P,m),
where m : P → N≥1 is a function that maps genotype into a number of its occurrences in P .

For convenience we allow in the following the abuse of notation by using the set-like notation
for both contents of the multiset, i.e., {a, a, b} and operators, e.g.,⊂,⊆,⊃,⊇,∈, jointly to sets and
multisets.1

The population P is usually constrained by a given size, that is kept constant during the
evolutionary run. However due to evolutionary search may obtain the same solution in a different
ways, the number of distinct individuals in population, often called diversity, may vary in time.
The diversity is usually calculated by counting up a distinct genotypes in the population (genotypic
diversity), or unique phenotypes obtained using genotype-phenotype mapping from the population
(phenotypic diversity) or distinct fitness values (fitness-based diversity).

1A set can be considered as a multiset having m : P → {1}.
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2.1.4 Generational characteristic
The algorithm creates a new individuals from the existing ones in a population by mixing together
given two or more genotypes or randomly modifying a given single genotype. In this scheme, by
biological analogy the individuals chosen to be mixed or modified are called parents, and the created
individuals are called offspring. This process is repeated iteratively and the created offspring belong
to a new generation that replaces generation of their parents.

2.1.5 Stochasticism
Evolutionary algorithm is a stochastic optimization technique, i.e., EA involves random variables
that influence outcomes of genetic operators and affect selection of individuals to be modified or
to be promoted to the next generation. The probabilities of certain actions are parameters of the
algorithm.

2.1.6 Metaheuristic
Since many real-world problems are NP-hard, there do not exist exact polynomial-time algorithms
for them. Thus an attempt to solve such a problems for a big real-world instances becomes
futile. This characteristic is the main motivation for development of heuristics, i.e., algorithms that
are likely to produce well-performing (yet not necessarily optimal) solutions in polynomial time.
Evolutionary algorithm is just a one of such algorithms, or more specifically a meta-heuristics,
i.e., a general (i.e., not problem-specific) ‘meta-algorithm’. The characteristic feature of EAs is their
ability to maintain both exploration and exploitation. By ‘exploration’ we mean search in distant,
distributed parts of the solution space to find regions of good solutions, and by ‘exploitation’ we
mean the search condensed in a small region of good solutions to find a local optimum of this region.

2.2 The Evolutionary Algorithm
The general scheme for all EAs is presented in Algorithm 2.1. It starts from initialization of the
population P . Then each solution is evaluated. Next, the main part of the algorithm begins:
the evolutionary loop. In the loop a new population P ′ is being filled by the offspring bred using
selected parents from the current population P . Breeding is done by applying variation operations
to the selected parents. When population P ′ gets filled, replaces the current one (P ), and each
individual in it is a subject to the evaluation. The evolutionary loop is repeated until a termination
condition is satisfied. Finally the best solution found in the population is returned by the algorithm.
Alternatively we can store the best solution found across entire evolutionary run and return it,
however for brevity we omit this extension in Algorithm 2.1.

Instead of replacement of an entire population by another population at the end of evolutionary
loop, only a part of the population may be replaced by a new one. This substitution model is called
steady-state [183]. In steady-state model in each generation µ individuals are selected from current
population P and become parents to λ offspring. The next generation population P ′ consists then
of individuals from the old one except λ individuals that are replaced by λ offspring to keep the
population size constant across generations, i.e.,P ′ = P\{p1, p2, ..., pλ} ∪ {p′1, p′2, ..., p′λ}.

Two alternative substitution models were proposed by Rechenberg [143], in (µ, λ) model µ
parents are selected2 from P to produce λ offspring that constitute the next population P ′ (possibly
each parent breeds multiple times). In (µ+ λ) model µ parents are added together with λ offspring

2Rechenberg’s model originally selects µ the best individuals in P , however other selection mechanisms (cf. Section
3.5) are possible
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Algorithm 2.1: Pseudocode of the general evolutionary algorithm scheme.

1: function EvolutionaryAlgorithm

2: P ←InitializePopulation()

3: Evaluate(P )
4: while ¬TerminationCondition do :: Evolutionary loop
5: P ′ ← ∅
6: while |P ′| 6= |P | do
7: {p1, p2, ...} ← Select(P )
8: {p′1, p′2, ...} ← ApplyVariationOperations({p1, p2, ...})
9: P ′ ← P ′ ∪ {p′1, p′2, ...}
10: P ← P ′

11: Evaluate(P )
12: return arg maxp∈P f(p)

to the next population P ′. Note the former model assumes that population size is λ and the latter
one that µ+ λ.

The operations on individuals EA performs by means of random functions, called initialization,
selection and variation operators, respectively. Each realization of a random function may result in
a different function. Below we discuss all of the distinguished parts of EA, including the operators
and evaluation and termination condition.

2.2.1 Initialization
At the beginning EA prepares a population of solutions using an initialization operator, defined
below:

Definition 2.4. Initialization operator is a nullary random function that returns programs, i.e.,OP :
∅ → P.

Notice by definition the initialization operator produces a single individual at once, hence the
operator is to be applied multiple times to fill up the entire population.

2.2.2 Evaluation
Evaluation phase consists of application of fitness function f(·) to each individual in the population.

The fitness function typically calculates a kind of an error, a cost or profit of application of
a solution to a problem. For instance common fitness functions are: absolute error, squared error or
relative error w.r.t. an expected output, total cost of running a schedule, amount of used material
or a number of games won by an individual etc.

The evaluation phase is often the most computationally expensive part of the algorithm, since it
often requires running a simulation, computing a complex physical model or playing large amount of
games. From this reason it is quite common to avoid reevaluation of an individual by caching fitness
values for particular genotypes or use a fast approximate of ‘real’ fitness function, e.g., function
running a physical model with less precision.

2.2.3 Selection
The role of selection is to choose individuals from the current population that take part in genetic
operations and produce offspring. In EA selection chooses good individuals, i.e., individuals that are
not necessary the best in the population. Actually the systematic choice of the best individual can
quickly lead to a loss of diversity and convergence of entire population to a single point of search



2.2 The Evolutionary Algorithm 21

space, consequently leading to unsatisfactory results of the optimization. The preference of good
individuals to the bad ones, called selection pressure, depends on the particular selection method
and may be a subject to be tuned. Formally we define:

Definition 2.5. Selection operator is a random function, such that OP : P |P | → P.

That is, a selection operator takes as an argument the entire population and returns a single
genotype from it. However in some applications there is a need to select two or more somehow
related genotypes, for such a case we define after Miller [110] a mate selection operator and extend
it to the case of n ≥ 2 mates:

Definition 2.6. n-mate selection operator is a random function, such that OP : Pn−1×P |P | → P .

It distinguishes itself from a simple selection operator in that it takes n− 1 extra arguments —
a set of mate genotypes (other candidate solutions) with respect to which the related nth genotype
is to be selected from the population.

Below we briefly introduce the most common selection operators. An interested reader is referred
to [47, Ch 3] for discussion on pros and cons of these operators.

Definition 2.7. Fitness proportional selection is selection operator OP : P |P | → P which, when
applied to population P , chooses an individual p ∈ P with probability proportional to its fitness,
i.e., f(p)/

∑
p′∈P

f(p′).

Definition 2.8. µ-tournament selection (µ-TS) [109], where µ : µ ∈ N≥1, µ ≤ |P | is tournament
size, is selection operator OP : P |P | → P that randomly draws a set C of µ candidate individuals
from population and returns the best candidate in C.

The higher the value of µ is, the higher the probability of choosing good individuals from the
population. Hence µ controls selection pressure of the operator. In practical applications µ is rather
small, typically in the range 〈2, 7〉 [47, 80, 101]. Tournament selection is insensitive to absolute
values of fitness , hence it is the preferred operator in many applications.

2.2.4 Variation operators
By a variation operator (line 8 of Algorithm 2.1) we mean any operator that produces new individuals
from the existing ones. Arguments of the operator are typically called parents and the returned value
is referred to as offspring. Typically in EA we distinguish three variation operators: reproduction
(cloning), mutation and crossover, although literature abounds with many other operators.

Definition 2.9. Reproduction is identity function, i.e.,OP : P → P.

In other words reproduction returns a solution given as the argument without any changes in it.
Reproduction together with selection of n best individuals in population are commonly used to
realize elitism, i.e., a mechanism that moves n best individuals from the current population to the
next one. The intent behind this mechanism is to guarantee the survival of the best so far solution
in the population. Reproduction is sometimes also used when an other variation operator fails and
a technical realization of EA requires an offspring to be provided anyway.

Definition 2.10. Mutation is an unary random function that, given a single parent solution,
produces an offspring , i.e.,OP : P → P.

Since mutation takes a single solution and modifies it to create a new one, its function is similar
to the function of search operators employed in local search algorithms. In EAs we commonly
assume that phenotype of the produced offspring is similar to phenotype of its parent, which usually
is achieved by sharing common fragments of genotype. This idea can be extended to a two-parent
operator that creates a single offspring:



22 2 Evolutionary Algorithms at a glance

Definition 2.11. Crossover is a binary random function that, given two parent solutions, produces
an offspring that is a mixture of both parents, i.e.,OP : P × P → P.

Crossover gives the evolutionary algorithm ability to combine a desirable parts of the given
parent solutions and drop the undesirable ones to create an offspring being superior to its parents.
However the most variants of crossovers are stochastic and unaware of a quality of a solution. Only
thanks to the selection pressure the good offspring survive and the bad ones extinct in the population
over generations, contributing so to the progress of evolution. Note that the algorithms’ ability
to combine features of solutions is quite unique, and uncommon for a wide range of optimization
techniques other than EA. However even in EAs are a few exceptions (discussed later in Section 2.3).

In general a higher-arity variation operators are mathematically feasible and easy to technically
realize, however since such a breeding schematics are not found in the nature, they are barely used
in practice. Nevertheless some studies indicate positive effects of multi-parent breeding on the
progress of optimization [48, 174, 35].

The particular algorithms of discussed operators are representation-dependent, and as such will
be discussed shortly in respective sections.

2.2.5 Termination condition
EA is metaheuristic, and as such it does not feature a strict worst-case time complexity or any
other limit on computation costs. There is only a termination condition that determines when to
stop the algorithm.

There are multiple reasons for which the optimization is to be terminated. First possibility is
when the global optimum is found — in some applications it is quite easy to determine if a solution
is optimal, e.g., when fitness function attains its upper or lower bound. In others the optimality of
a solution is not known, e.g., when evolving game strategies where the strategy can be evaluated
only on a set of opponents. However even in the former case, the algorithm is not guaranteed to
reach the optimum, thus some limits on execution time have to be imposed. These limits typically
involve number of generations, computation time, or number of evaluations of a fitness function.
Sometimes, the termination condition also features indicators of stagnation, e.g., a loss of diversity
dropping below a certain threshold, or no improvement of fitness of the best found solution for
a few generations.

2.3 Variants of Evolutionary Algorithms
The purpose of this section is to briefly review the existing variants of evolutionary algorithms in
their canonical or standard forms, thus excluding the uncommon or exotic derivatives.

2.3.1 Evolutionary Programming
Historically the first attempt to simulate the natural evolution to create an artificial intelligence
system was made in 1960s by Fogel et al. [52]. Fogel was probably the first who noticed that
instead of simulating a particular achievements of Nature, like e.g., neural networks, it can be more
beneficial to simulate the force that created those achievements — natural evolution. The proposed
technique was named evolutionary programming (EP). The key idea is to create a system that
is able to adapt its behavior to meet some specific goals in a given changing environment and
generalizes its characteristics among different states of the environment.

The original formulation of evolutionary programming involves a pragmatic approach to adapt
a representation of the genotype to a given problem. However in many real-world applications it
boils down to optimization of function of the form g : Rn → R, thus a typical adopted representation
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is a vector of numbers, i.e., [x1, x2, ..., xn] ∈ Rn. Nowadays we use an extra vector of adaptation
coefficients for mutation operator, thus the actual genotype becomes extended to a vector of form
[x1, x2, ..., xn, σ1, σ2, ..., σn] ∈ R2n. This form of EP is called meta-EP [50] and became de facto
standard in contemporary EP.

Since the genotype representation is supposed to be problem-dependent, the variation operators
must be adapted to it. For the sake of brevity, we focus in the following on operators working on
real-valued vectors only. In the original formulation of EP, there is no crossover and, as it was later
verified, it does not improve the algorithm’ performance significantly [51]. Hence mutation is the only
operator involved in search. EP mutation is an unary operator that, given a parent genotype in form
[x1, x2, ..., xn, σ1, σ2, ..., σn], produces an offspring genotype [x′1, x′2, ..., x′n, σ′1, σ′2, ..., σ′n] according
to formula:

σ′i = σi(1 + αN(0, 1)) (2.1)
x′i = xi + σ′iN(0, 1) (2.2)

where N(0, 1) denotes a random variable with Gaussian distribution with average 0 and standard
deviation 1, and α ≈ 0.2 [47, Ch 5]. To prevent neutral mutations, i.e.,mutations that do not
change solution and lead to ineffective search, a rule of thumb is recommended that prevents too
small values of σ′i, i.e.,σ′i = max{σi(1 + αN(0, 1)), ε}, where ε is small value greater than 0.

2.3.2 Evolutionary Strategies

The other method, designed specifically for optimization of real function of real variables, i.e., g :
Rn → R, was proposed by Rechenberg in 1970s [143]. The method is named evolutionary strategies
(ES) and, similarly to Fogel’s evolutionary programming, it also involves a real-valued vector as
a genotype and a Gaussian-like mutation as the main variation operator. However in contrary to
evolutionary programming, it also engages crossover.

Genotype in ES is represented by a vector of real numbers, consisting of three parts: the objective
variables −→x to be optimized, standard deviations −→σ , and rotation angles −→α i.e., [−→x ,−→σ ,−→α ] =
[x1, x2, ..., xn, σ1, σ2, ..., σn, α1, α2, ..., αn] ∈ R3n.

Over the years, correlated mutation operator [150] became a standard in ES, thus we introduce
it below. Correlated mutation performs a multimodal Gaussian translation of the given point
−→x of genotype in the search space, taking into account different dynamics of its dimensions and
possible rotations of axes. Formally given genotype of form [−→x ,−→σ ,−→α ] the algorithm outputs a new
genotype [−→x ′,−→σ ′,−→α ′] in three steps:

σ′i = σie
τ ′N(0,1)+τNi(0,1) (2.3)

α′i = (αi + βNi(0, 1)) mod 2π − π (2.4)
−→x ′ = −→x +R(−→α ′) · diag(−→σ ′) · −→N (−→0 , I) (2.5)

where τ ∝ 1/
√

2/
√
n, τ ′ ∝ 1/

√
2n, and β is rotation angle change coefficient, typically 5◦ [47, Ch

4]. N(·, ·) is value drawn from normal distribution; when appears with variable index i, it is drawn
separately for each i, when appears with −→· , it is a random vector drawn from multimodal Gaussian
distribution. R(·) is rotation matrix of given angles, diag(·) is diagonal matrix, and I is identity
matrix. The ranges of α′is are typically bound to 〈−π, π) by calculating modulo this interval in
Eq. (2.4).

Crossover is much simpler operator. There are two schemes: intermediary and discrete. Given
two parent genotypes (denoted by a superscript index), a crossover produces a single offspring by
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applying the following formula to each component i of genotype separately:

x′i =

 1
2 (x1

i + x2
i ), intermediary

x1
i or x2

i , chosen uniformly discrete

According to [47, Ch 4], these two schemes are used together. The intermediary one is
recommended for crossing over of −→σ and −→α parameters, and the discrete one for the variable part
−→x . The discrete scheme supports exploration of different combinations of components of a vector,
and intermediate scheme assures a more cautious adaptation of parameters.

Evolutionary strategies were the first evolutionary optimization technique that featured self-
adaptation of parameters [47, Ch 4], realized there by tuning of σis in Eq. (2.3). The typical
behavior of ES is that the standard deviations σis decrease over the course of evolution, particularly
when the population converges to the optimum.

2.3.3 Genetic Algorithms
Genetic algorithm (GA) introduced by Holland [65, 66] in 1970s is the third and the most recognizable
variant of evolutionary algorithm. The initial works of Holland concerned the strategies of adaptation
in nature and in artificial systems, however most of them were actually focused on function
optimization.

The canonical and most common representation of genotype in GA is a string of bits of constant
length, i.e., [b1, b2, ..., bn] ∈ {0, 1}n. Although such a representation is very general and natural to
those familiar with computer science, it is low-level and conceptually distant from the phenotypic
features it is supposed to encode. For this reason, a genotype-phenotype mapping in GA is supposed
to ensure that all solutions can be produced, as well as that all genotypes produce a valid phenotypes.
In practice, these assumptions are often softened, and the mapping is allowed to sometimes produce
an invalid phenotype, however in such a case typical workaround is to penalize such a solution
during evaluation phase. The other challenge is epistasis — the interactions between distant and
apparently unrelated bits that separately lead to different phenotype features than together. This
is, among others, the case for coding of integer numbers, where one bit determines a sign of an
integer and other bits determine absolute value. Other issue comes from different significance of
particular bits that is dependent on bits’ positions, and a minute change of genotype can reflect in
a major change of phenotype. Consider four-bit integer numbers 01112 (7) and 10002 (8), in this
case change of phenotype value just by one results in complete inversion of the entire genotype. On
the other hand change of 01112 (7) to 01102 (6) requires only a flip of a single bit. The discussed
problem can be to some extent handled by introducing Gray code [62], a coding system that assigns
to a consecutive integer numbers a binary strings that differ only by a single bit, however for other
genotype-phenotype mappings it may be not so obvious.

Other representations of genotype, like integer vectors or permutations are also common in the
literature, however in the following we focus only on the standard form of GA.

There are three common crossover operators in GA: each of them takes as arguments two parent
genotypes in form [b11, b12, ..., b1n] and [b21, b22, ..., b2n] to produce an offspring in form [b′1, b′2, ..., b′n].

Let us start from the one-point crossover. It starts with drawing at random an integer k from
the range 〈1, n− 1〉, then it splits parent genotype vectors at the drawn location and exchanges
the tail of the first parent with the tail of the second one, producing so the offspring. Offspring’s
genotype is [b11, b12, ..., b1k, b2k+1, b

2
k+2, ..., b

2
n],3 where Γth bit is the last one taken from the first parent

and k + 1 bit is the first bit taken from the second parent. The split location is known as crossover
point.

3Blue color denotes part of genotype taken from the second parent.
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A natural generalization of one-point crossover is the m-point crossover. In an m-point
crossover, a vector

−→
k = [k1, k2, ..., km] of crossover points is drawn from the range 〈1, n− 1〉,

where 1 ≤ m ≤ n − 1 and ∀i,j:i<j : ki < kj . Genotypes are split in m points, and then even-
numbered subvector separated by split points is taken from the second parent and replaces the
corresponding one in the first parent, producing so the offspring. Thus the offspring genotype is
[b11, b12, ..., b1k1

, b2k1+1, b
2
k1+2, ..., b

2
k2
, b1k2+1, b

1
k2+2, ..., b

1
n].3

The other approach of iterating over parents’ genotypes in parallel, and at each bit drawing
randomly a bit from one of the parents is known as uniform crossover. The probabilities of choosing
a particular parent’s bit are usually equal for both of them, and the offspring’s genotype takes
a form [b11, b22, b23, b14, ..., b1n].3

Note that all the presented crossover operators clearly waste the half of the genes provided by
the parents, that may be used to produce a second offspring. To be consistent, we assume that
second offspring can be produced by running crossover again with parents swapped and the same
crossover points. Production of two offspring is actually the case for most real-world applications of
GA.

Note that the choice of a particular crossover operator imposes a certain positional bias on the
search. For instance one- and m-point crossovers tend to keep subsequences of genes together, while
the uniform crossover does not. If for a particular genotype-phenotype mapping, a conglomerate
of genes contributes to a single phenotype feature, then a natural choice would be one- or m-
point crossover, since the uniform one is unlikely to preserve the parts of genotypes that have
meaningful interpretation. In turn uniform crossover allows us to easily control the distributional
bias, i.e., percentage of bits taken from each parent.

GA mutation, given a single parent genotype [b1, b2, ..., bn] produces an offspring genotype
[b′1, b′2, ..., b′n] by iterating over the parent’s bits and flipping each of them with certain probability.
Thus offspring’s genotype may take the form [b1,¬b2, b3, ...,¬bn]. The probability of negating a bit
is rather small. The typical approach is to negate on average a single bit per genotype [47, Ch 3].

Schema Theorem and Building Blocks Hypothesis

The theorem on the improvement of population of solutions and progress in genetic algorithms is
known as schema theorem [65, 66]. For brevity we narrow our considerations to GA using strings
of bits, one-point crossover, bitwise mutation and fitness proportionate selection (cf. Definition 2.7).
We discuss only the most important conclusions, for a more thorough discussion and proofs please
refer to [66].

Definition 2.12. Schema (plural: schemata) H=[h1, h2, ..., hn] ∈ {0, 1,#}n is a hyperplane, where
0 and 1 are fixed values, while # means ‘don’t care’, i.e., 0 or 1. Genotype [b′1, b′2, ..., b′n] ∈ {0, 1}n
matches schema H if the fixed values of H are equal to corresponding values in the genotype,
i.e.,∀i=1..nbi = hi.

Definition 2.13. The order o(H) of a schema H is the number of fixed values in H and the
defining length l(H) of a schema H is the distance between the first and the last fixed positions in
H.

Theorem 2.14. The proportion m(H, g) of solutions matching schema H at subsequent generations
g is:

m(H, g + 1) ≥ m(H, g) · f(H)
f
·
(

1− Pr(C) · l(H)
n− 1

)
· (1− Pr(M) · o(H))

where f(H) is fitness of schema H calculated as an average of fitness of all matched genotypes, f is
average fitness in population, Pr(C) is probability of crossover, Pr(M) is probability of mutation
and n is length of the genotype.
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The conclusion of Theorem 2.14 is that a number of schemata that are fit above average, short
and low-ordered increase in population over generations. GA implicitly identifies in population
such schemata and juxtaposes them during the course of evolution, producing so better and better
schemata. This explanation is commonly referred in the literature to as building blocks hypothesis,
and the short, low-order and highly fit schemata are called building blocks [59].

2.3.4 Genetic Programming
Genetic programming (GP) is the fourth main variant of evolutionary algorithm, intended for
induction of programs. Since genetic programming is the main concern of this study, we thoroughly
discuss it in Chapter 3. Then in Chapter 4 we describe the novel, semantic form of genetic
programming and in Chapter 5 we discuss its advanced, geometric variant.

2.4 Estimation of Distribution Algorithms
A common property of all EA variants presented in Section 2.3 is explicit use of a population
of individuals and variation operators that operate on the individuals by mixing and modifying
them to contribute to the search progress. The Estimation of Distribution Algorithms (EDA) [94]
do not involve particular individuals nor variation operators, and use an estimated probability
distribution of good solutions as a model of population. This estimation is obtained by means
of e.g., tuning parameters of multimodal Gaussian distribution, induction of Bayesian networks,
or other probabilistic formalisms. Hence the formal object being evolved consists only of the
parameters of the distribution, rather than of actual solutions (i.e., individuals). A sample of actual
genotypes is drawn from this probabilistic model only to evaluate it and to finally provide a concrete
solution.

EDA does not involve variation operators; instead, it adapts the parameters of the model in
a representation-dependent way. It should be clear by now that EDA at conceptual level is a kind
of meta-algorithm that can be adapted to any representation of a genotype, hence can be combined
with any variant of evolutionary algorithm presented in Section 2.3.

2.5 Applications
Evolutionary algorithms proved to be useful in solving non-trivial real-world problems in engineering,
information technology, physics, medicine, forensics and many other areas. In this section we
attempt to summarize some of the recent famous and human-competitive achievements of EAs.
All of the results presented below received Humies — awards given in annual competition to
human-competitive results developed automatically with use of biology-inspired algorithms [8].
The achievements of genetic programming will be reviewed in a separate Section 3.12 in the next
chapter.

Manos et al. [105, 104] used a multi-objective genetic algorithm to design the geometry of
polymer optical fibres designed for a particular areas of interest. They developed a genotype-
phenotype mapping that maps a bitstring genotype into a radially symmetric structure representing
a cross-section of a optical fibre that is guaranteed to satisfy manufacturing constraints. Various
kinds of designs were discovered, and as the authors claim, new design themes were identified.
Finally the optical fibre designed by GA was manufactured and its usefulness was experimentally
proved.

Yao et al. [191] developed genetic algorithm for fast and robust detection of ellipses in imaging
data. Their algorithm outperformed industry-standard family of Hough transform algorithms.
Hough transform was first designed for detection of lines [69], next generalized to an arbitrary
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shape [45], then immunized to a noisy data by randomization [189]. Yao’s genetic algorithm
outperformed the most robust Hough transform variant in terms of accuracy of approximation of
complex and overlapping shapes, insensitivity to the absolute size of a hape and low number of
false positives.

Grasemann et al. [61] used coevolutionary genetic algorithm to develop wavelet for image encoder
for task of compression of fingerprint images. The developed encoder outperformed the industry
standard JPEG2000 [2] and a hand-designed wavelet that won FBI competition for fingerprint
image compression software [76] in terms of peak signal-to-noise ratio of the compressed image
w.r.t. the original one. Consequently the developed wavelet enables storing fingerprint images with
a higher quality given the same storage space, or with the comparable quality requiring 15%− 20%
less storage.

Bartels et al. [18] used evolutionary strategies to optimize pulse shape of a laser beam to indirectly
control X-ray harmonics emitted by atoms of gas in response to the laser light. Use of evolutionary
strategies allowed authors to tune spectral characteristics of the emitted radiation and improve
intensity of X-rays by an order of magnitude.

Li et al. [98] used mixed-integer evolution strategies to optimize parameters for detectors
of lumen in intravascular ultrasound images. The proposed technique automatically finds good
parameter values for a given set of images and the obtained results were not worse than the
human-tuned parameters for each considered data sample.

Glazer et al. [58] proposed a genetic algorithm-based framework for automatic defect classification
of wafers used for semiconductor manufacturing. To date, the industry standard defect classifiers
are manually designed with use of expert knowledge. The proposed method, when compared to
the manual design, showed significant improvement of accuracy of classification of defective parts.
Moreover, the method automatically adapts to a changes of technology and manufacturing process,
while the human-designed detectors need to be adjusted manually after every technological change.





Chapter 3

Genetic Programming

In this chapter we introduce genetic programming, describe solution representation, and thoroughly
discuss the underlying components of the genetic programming algorithm. Next we review the
non-canonical, but widespread variants of genetic programming, and discuss the differences between
genetic programming and other variants of evolutionary algorithms. The chapter is concluded by
survey of applications of genetic programming.

3.1 Introduction
Genetic Programming (GP) is a domain-independent evolutionary approach intended for induction of
discrete structures using discrete, atomic parts. The parts are often instructions and the structures
are computer programs, hence the name of the method. The basic methodology and assumptions
on genetic programming were initially developed by John Koza in early 1990s [80]. In Sections 3.2
— 3.8 we discuss Koza’s vision of GP which, augmented with only a few improvements through the
years, became the canon of contemporary GP. For brevity we narrow our description to GP applied
to program induction.

3.2 Program Representation
In GP, programs are made of instructions:

Definition 3.1. An instruction is an function of an arbitrary arity, domain and codomain.

Instructions can be divided into terminals, i.e., nullary instructions, and non-terminals, i.e., instructions
that take one or more arguments. Terminals include constants, which return the same value in
every execution or named variables that read program arguments upon execution . Non-terminal
instructions are typically domain-dependent and can be divided into application instructions,
e.g.,math or Boolean operators, and flow-control instruction, e.g., jumps, conditional ifs etc. Notice
the implicit assumption coming from Definition 3.1 that each instruction is required to return
exactly one output value.

Definition 3.2. Instruction set Φ has the closure property if all instructions in it are type-consistent
and safe to evaluate [80, 141].

Instructions in a set Φ are type-consistent if all of them accept outputs produced by any other
instruction from Φ. Although type consistency may be considered limiting, it is always satisfied
when a domain and codomain of instructions represent the same type. This is the case when
evolving arithmetic or Boolean expressions. However when mixing types a little fiddling with the
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Figure 3.1: Exemplary abstract syntax tree for the program 2x2 + 3x+ 1. Terminal and nonterminal nodes are
marked by dotted frames. Control flow is denoted by arrows.

definitions of instructions is required. For instance we can employ instructions with automatic
conversion of types, e.g., to convert real values to Boolean ones, treat non-positive real values
as logical zero and positive real values as logical one. Conversion in the other way can assign
arbitrary numeric values to logical zero and one. An alternative to requiring type consistency is
using type-aware operators (cf. Definitions 2.4, 2.5, 2.10, 2.11) that do not violate the constraints
imposed by an instruction set. This is the case for strongly-typed GP [113], where type system of
instructions and a grammar resulting from this system are respected.

An instruction is safe to evaluate if it must not fail at runtime. Instruction may fail due to an
invalid argument, e.g., division supplied with zero divisor. In GP it is quite common to handle such
cases by protected versions of instructions. For instance, division is usually protected by assuming
that it returns either 0 or 1 if divisor is 0, depending on implementation [80, 141, 168].

Definition 3.3. Program p : I → O is composition of instructions from Φ, where I is a set of
program inputs and O is a set of program outputs.

In canonical GP solutions are typically represented at genotypic level by abstract syntax trees
(AST). AST as used in GP is a tree, where each node contains an instruction. A number of
children of a node reflects the arity of the consisting instruction, hence leaf nodes are terminals
and intermediate nodes consist of non-terminals. Terminals representing named variables read
program input, each intermediate node reads the outputs of its children nodes and computes an
output. Root node of the tree returns program output. An example of AST is shown in Figure 3.1.
From Definition 3.3 it follows also that the considered programs have no side effects nor memory
persistent across executions.1 Also, all such programs by definition halt (since program is actually
a function).

It should be clear by now that genotype (cf. Definition 2.1) p in GP takes the form of program
p and a set of all genotypes P becomes a set of all programs P that can be produced from a given
instruction set Φ, i.e., in terms of formal languages p is a word under alphabet Φ and P is a language
under alphabet Φ, p ∈ P.

3.3 Problem statement and fitness assessment
Program induction problem as approached in GP is an optimization problem Π = (P, f) where
one is supposed to construct a program p that maximizes (or minimizes) a fitness function f . The

1GP with persistent memory and side effects can be easily implemented, however for the scope of this thesis, it is
enough to consider programs devoid of these features.
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Algorithm 3.1: Full and grow initialization operators for program tree. h ∈ N≥1 is maximum height of the
tree, Φt ⊂ Φ and Φn ⊂ Φ are subsets of all terminals and nonterminals in Φ, respectively, Random(·) returns
a random element from the given set, Arity(·) returns arity of the supplied instruction.

1: function Full(h,Φt,Φn)
2: if h = 1 then
3: return Random(Φt)
4: r ← Random(Φn)
5: for i = 1..Arity(r) do
6: ri ← Full(h− 1,Φt,Φn)
7: return r

1: function Grow(h,Φt,Φn)
2: if h = 1 then
3: return Random(Φt)
4: r ← Random(Φn ∪ Φt)
5: for i = 1..Arity(r) do
6: ri ← Grow(h− 1,Φt,Φn) :: Assign child node
7: return r

solution space P is constrained to programs obtainable using given instruction set Φ. This statement
is consistent with Definition 2.2. Fitness function typically measures some kind of an error, amount
of used resources (e.g., time) or accuracy of a program on a set of training examples. Actually
a program in GP has to be run to assess its behavior and total cost of evaluating a program in
GP involves multiple executions of the program with different inputs or in a different environment
states. In fact each program in the population has to be executed to obtain its fitness and to make
the programs comparable.

Over the years many techniques for limiting the evaluation cost were proposed, however they
are mainly technical tricks that seem to be natural for every experienced software developer are
beyond the scope of this thesis. An interested reader is referred to [141, 101].

Definition 3.4. Instruction set Φ is sufficient if the set of all programs P that can be constructed
from Φ contains at least one satisfactory solution, i.e., a solution with fitness above (below) a given
threshold.

Naturally by extending the instruction set by an additional instruction, the solution space may
be also extended, hence more satisfactory solutions may be included in it, allowing GP find such
solution more easily. On the other hand the inclusion of unnecessary or redundant instructions
in the set seems to not negatively affect GP’s performance in most cases [141, Ch 3]. Notice
lack of sufficiency allows GP to induce only an approximate solution, hence it is usually better
to include an additional instruction in the set, than not. Unfortunately sufficiency is hard to
be satisfied and can be guaranteed only for those problems, where theory or experience state
that a satisfactory solution can be obtained from the given instruction set [141, Ch 3]. For
instance when inducing a continuous differentiable arithmetic expression, a set of polynomial
instructions, e.g., {+,−,×, x} ∪ R is sufficient, since polynomials are able to express any C∞-class
function e.g., using Taylor series [173]. For induction of Boolean programs it is sufficient to use any
functionally complete set of instructions, e.g., {nand, in1, in2, ..., inn}, where ini reads ith component
(argument) of program input. In general it may be necessary to use a set of instructions that is
known to be Turing complete [175].

3.4 Population initialization
Like all EAs, GP involves an initialization stage that determines the initial search points (candidate
solutions). The earliest and to our knowledge the most common initialization operators are Full
and Grow operators [80] presented in Algorithm 3.1. The modes of operation of both of them are
very similar. Each of them takes as an argument the maximum tree height hmax2 to be generated
and recursively creates instruction nodes to be attached in the respective nodes of the tree being

2In this thesis, we strictly differentiate between the notions of height and depth, which are often confused in other
works. Height is property of tree — length of the longest path from the tree root to leaf, while depth is property of
node — length of the path from the tree root to the node.
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created. The full operator always produces full trees, i.e., at depths from 1 to hmax − 1 nodes are
randomly chosen from the set of nonterminals, while the remaining nodes are chosen from the set
of terminals, hence leafs are always at the maximum depth. The grow operator creates trees of
variable height and shape by using all instructions for the choice at each node having depth less
than the maximal and the set of terminals for the remaining nodes.

Although both operators guarantee that the produced tree does not violate the constraint on
tree height, they do not explicitly constrain the size of produced trees, i.e., number of nodes in the
tree. The actual tree size depends on arity of nonterminals, hmax, and for grow operator also on the
proportions of terminals to nonterminals. A high fraction of terminals leads to small trees, as they
are then more likely to be selected before hmax is reached. Otherwise, the grow operator creates
big trees. Note that greater hmax usually leads to greater overall size of initialized programs. On
average, the full operator creates bigger trees than the grow operator.

In practice neither full nor grow operators provide satisfactory variety of tree shapes and sizes
on their own [80]. Therefore, they are typically paired together, which is known as the Ramped
Half and Half method [80] (RHH). RHH initializes population by running, with hmax varying in
a user-specified range, the full operator for half of the population and the grow operator for the
other half. Syntactic duplicates are discarded.

3.5 Selection
To our knowledge most researchers use tournament selection (cf. Definition 2.8) as a preferred
selection operator in GP [141, Ch 2]. Selection pressure of µ-TS is insensitive to absolute values of
fitness, can be fine tunable and kept roughly constant during GP run. These features make µ-TS
perfectly fit to most GP applications. The tournament size typically used in GP practice varies
from three [178, 179], through four [70, 144, 149], five [115, 167], six [70] to seven [101, 87, 133, 19].

3.6 Crossover
The canonical approach to cross-over two programs in GP is Tree-Swapping Crossover (TX) [80, 141].
TX is presented in Algorithm 3.2 and its exemplary application to a pair of programs is presented in
Figure 3.2. Given two parent program trees p1 and p2 TX begins with randomly drawing from them
nodes p′1 and p′2, respectively. The chosen nodes p′1 and p′2 are called crossover points. Typically,
a node is chosen from the tree leafs with probability 10% and from the intermediate nodes with
probability 90%. The root node is never chosen. These probabilities were originally proposed by
Koza [80] to overcome a strong bias for choosing leafs by an uniform choice of nodes. In a full
binary tree of height h, a leaf is chosen uniformly with probability 2h−1

/(2h−1) ≈ 1/2, effectively
causing half of the crossover points to be leafs. Next TX replaces the subtree rooted at p′1 in parent
p1 with subtree rooted at p′2 in parent p2, creating so the offspring. The remaining parts of parent
trees are wasted.

Alternatively the second offspring may be created from the remaining parts, which is quite
common approach [101]. To be consistent with Definition 2.11 we assume that TX is run twice to
produce two offspring: the second time with swapped parents and with fixed crossover points in
both runs.

TX only mixes code fragments given in parents, and as such may lead to lose of some code
fragments, especially when run under strong selection pressure. This in turn may lead to loss of
diversity and poor results, as programs may permanently lose access to some input variables. This is
sometimes worked around by using large populations, e.g., |P | ≥ 1000 [80, 81] or even |P | ≥ 100000
[11, 82]. The argument is that complete loss of them is unlikely.
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Algorithm 3.2: Tree-swapping crossover operator. RandomNode(·) picks a random node from the given tree,
Replace(p1, p

′
1, p
′
2) replaces subtree rooted at p′1 in p1 with subtree p′2.

1: function TX(p1,p2)
2: p′1 ← RandomNode(p1)
3: p′2 ← RandomNode(p2)
4: return Replace(p1,p′1,p′2)
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Figure 3.2: Exemplary application of the tree-swapping crossover. Given two parent program trees p1 ≡ xy + 2
and p2 ≡ xy − 2/x, crossover points are picked at p′1 ≡ ×, p′2 ≡ /, respectively, splitting each parent into two
parts. The gray part of p1 is replaced by gray part of p2, producing so the offspring 2/x+ 2.

3.7 Mutation

Tree Mutation (TM) [80] is a unary counterpart of tree-swapping crossover. TM is presented in
Algorithm 3.3 and its exemplary run is shown in Figure 3.3. The operator acts similarly to tree-
swapping crossover. Given a single parent program p, TM first picks a mutation point p′ using the
same rules as TX. Then it generates a random tree r using, e.g., grow operator (cf. Algorithm 3.1).
Finally, TM replaces the subtree rooted at p′ in p by r, producing so the offspring.

Due to similarity of TM and TX, the mutation is often technically realized by crossover with
a random tree. This technique is known as headless chicken crossover [13].

Unlike TX, TM introduces new code fragments into population and is used as a common
workaround for lost of diversity and stagnation, especially in small populations. Note that a proper
proportion of mutation and crossover is essential to successful optimization [102, 103].

Algorithm 3.3: Tree mutation operator. RandomNode(·) and Replace(·, ·, ·) are defined in Algorithm 3.2, Φt,
Φn and Grow(·, ·, ·) are defined in Algorithm 3.1.

1: function TM(p)
2: p′ ← RandomNode(p)
3: r ← Grow(h,Φt,Φn)
4: return Replace(p,p′,r)
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Figure 3.3: Exemplary run of tree mutation. Given parent program p ≡ xy + 2, a mutation point p′ ≡ × is
picked, next random tree r ≡ x/2 is generated and replaces tree rooted at p′, producing offspring x/2 + 2.
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Figure 3.4: Breeding pipeline. Individuals from population P are subjected to selection, then a probabilistic
choice is made which operator executes next. The offspring produced by a selected operator is added to
population P ′ of the next generation. Double arrows indicate two individuals traversing a particular path at once.

3.8 Breeding pipeline
The default configuration of GP involves both mutation and crossover. In contrary to most EAs
where mutation is applied after crossover, in GP it is common to perform crossover and mutation in
parallel. In each iteration of the loop in lines 6 – 9 of Algorithm 2.1, evolutionary algorithm in line
8 executes variation operators. In GP, the operator is picked at random. More formally crossover
is executed with probability Pr(X) and mutation with probability Pr(M), Pr(X) + Pr(M) ≤ 1.
If neither of them is picked GP reproduces (cf. Definition 2.9) the selected parent individual(s) with
probability Pr(R) = 1− Pr(X)− Pr(M).

Typically in GP Pr(X) ≈ 0.9 and 0.01 > Pr(M) > 0.1 [80, 141, 101]. These setting plus
tournament selection of size in range 〈3, 7〉 (cf. Section 3.5) constitute the typical so-called ‘breeding
pipeline’ of genetic programming, i.e., a structure that defines the flow of individuals from the
current population P to the next generation population P ′. The pipeline is visualized in Figure 3.4.

3.9 Other variants of Genetic Programming
In this section we briefly introduce the non-canonical variants of genetic programming.

3.9.1 Linear Genetic Programming
Though conventional computer programs usually have tree-like structure, i.e., code units are
organized into methods, classes, namespaces and binaries, at the level of a single method the code
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Table 3.1: Execution of Push program (2 4 INTEGER.* 5.1 6.2 FLOAT.- FALSE TRUE BOOLEAN.AND).

Step Stacks Comment
1 EXEC: (2 4 INTEGER.* 5.1 6.2 FLOAT.- FALSE TRUE BOOLEAN.AND)

BOOLEAN: ()

FLOAT: ()

INTEGER: ()

Program is loaded onto execution
stack

2 EXEC: (INTEGER.* 5.1 6.2 FLOAT.- FALSE TRUE BOOLEAN.AND)

BOOLEAN: ()

FLOAT: ()

INTEGER: (4 2)

2 and 4 are popped from execution
stack and pushed into integer stack

3 EXEC: (5.1 6.2 FLOAT.- FALSE TRUE BOOLEAN.AND)

BOOLEAN: ()

FLOAT: ()

INTEGER: (8)

Integer multiplication is executed
by popping 4 and 2 from the integer
stack and pushing resulting 8

4 EXEC: (FLOAT.- FALSE TRUE BOOLEAN.AND)

BOOLEAN: ()

FLOAT: (6.2 5.1)

INTEGER: (8)

5.1 and 6.2 are popped from
execution stack and pushed onto
float stack

5 EXEC: (FALSE TRUE BOOLEAN.AND)

BOOLEAN: ()

FLOAT: (1.1)

INTEGER: (8)

Floating point subtraction is
executed by popping 6.2 and 5.1
from float stack and pushing
resulting 1.1

6 EXEC: (BOOLEAN.AND)

BOOLEAN: (TRUE FALSE)

FLOAT: (-1.1)

INTEGER: (8)

FALSE and TRUE are popped from
execution stack and pushed onto
Boolean stack

7 EXEC: ()

BOOLEAN: (FALSE)

FLOAT: (-1.1)

INTEGER: (8)

AND is executed by popping TRUE
and FALSE from Boolean stack and
pushing FALSE

usually forms a linear sequence of instructions. This statement is true for almost all industrial-
standard programming languages, like e.g., C++, C#, or Java. Industry-standard computer
architectures, like e.g., x86 or ARM, execute programs instruction by instruction, in a sequence,
except the control flow instruction like e.g., conditionals and loops. Thus even if a software developer
prepares a tree-like program structure, compiler translates it into a sequence of instructions.

These observations inspired research on induction of programs represented as sequences. The
first works on Linear Genetic Programming (LGP) date back to the first half of 1990s, to the
works of Banzhaf [17], Perkis [136] and Nordin [125]. Another popular linear GP paradigm is
embodied by Push programming language and the PushGP evolutionary system [167, 164, 165, 166].
Although PushGP is often classified as LGP system, Push features nesting of instructions and
strictly speaking Push programs are not linear as whole, but in parts.

Push programs run on an interpreter equipped with several stacks, each assigned to different
data type. There is a Boolean stack, float stack, integer stack, code stack and execution stack.
Common instructions consist of pushing and popping values onto and from a stack, peeking the
values on top of the stack, duplicating of peeked value, swapping of two peeked values or emptying
the whole stack. There are also instructions dedicated to each stack-type separately. For instance,
primitive logic instructions, e.g., not, and, or etc., are available for top elements of Boolean stack,
and e.g., +,−,×,... for float and integer stacks. There are also instructions for type conversion and
move data from stack to stack.



36 3 Genetic Programming

A program in Push is simply a sequence of instructions. Thus, the complete LR grammar3 of
Push consists of two lines:
PROGRAM := (SEQUENCE)

SEQUENCE := ∅ | instruction SEQUENCE | literal SEQUENCE | (SEQUENCE)

where instruction belongs to the set of available instructions, literal is an arbitrary value not
being an instruction and parenthesis are used to group parts of program together, e.g., to indicate
boundaries of subroutine.

A Push program is executed in the following manner. First, the interpreter pushes the program
onto execution stack. Then, it repeats the following steps until the stack becomes empty:

• Pop the first element from the execution stack,
• If it is a single instruction then execute it,
• Else if it is a literal then push it onto the appropriate stack,
• Otherwise split it into separate items4 and push onto execution stack in a reverse order.5

An example of Push program and its execution are presented in Table 3.1. A complete description
of Push programming language is presented in [166].

Push programs are to be evolved by PushGP evolutionary system. To perform this task PushGP
employs standard variation operators of linear genetic programming. LGP crossover given two
parent programs randomly chooses two subprograms (crossover points), one in each parent, then
exchanges a subprogram chosen from the first parent with the one chosen from the second parent
producing so the offspring. LGP mutation identifies a random subprogram in the parent program,
and replaces it by a randomly generated one, producing so the offspring. An interested reader is
referred to [145] for more details on linear GP and PushGP.

3.9.2 Grammatical Evolution
Another tree-based genre of genetic programming is Grammatical Evolution (GE) [128, 153]. GE
makes use of context-free grammars expressed in Backus–Naur Form [15] that constrain the way
in which instructions can be combined into a program. A genotype in GE encodes a derivation
tree of a given grammar (list of productions) using an integer vector that denotes a sequence of
0-base indexed productions from the list of productions that can be applied at the current state
of derivation. Hence GE involves an additional level of abstraction that separates encoding of
a program from program code.

In original formulation [128, 153] integers in the genotype are encoded as bitstrings and evolved
using standard mechanisms of genetic algorithms (cf. Section 2.3.3). Since these mechanisms are
unaware of the actual grammar and numbers of valid productions, they may produce genotypes
that consist of integers out of the range. The common workaround involves modulo a number of
valid productions to map them into the range.

Later the other approach was proposed where homologous crossover operator works at the level
of integer vectors, instead of bitstrings [129]. The operator given two parent genotypes, derives
their derivation trees, calculates a common region of productions rooted at the starting production.
Next it draws randomly a production that is in the common region (first crossover point), the same
in both parents, and the other production outside the common region (second crossover point),
separately in both parents.6 Finally the operator performs two-point crossover (cf. Section 2.3.3)
adopted to integer vectors using the drawn points to produce an offspring. The analysis in [129] has

3A grammar where parser reads input from Left to right and produces reversed Rightmost derivation.
4The popped element must be a list.
5Thus the first element is going to be placed at the top of the stack and the execution order will have been

maintained.
6There were also proposed a version where the second crossover point is common in both parents [129].
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shown that both above described approaches are statistically equivalent in terms of performance
and achieved results.

3.9.3 Cartesian Genetic Programming
In Cartesian Genetic Programming (CGP) proposed by Miller [111, 112] programs (genotypes)
are sequences of integers that encode planar graphs, with graph nodes being instructions. The
nodes are arranged into a discrete grid. The graph is encoded as a sequence of numbers, grouped in
triples. The first number indicates the opcode of instruction and the following integers indicate the
grid coordinates of instruction arguments (ancestors in the control flow graph). To prevent cycles,
an instruction is allowed to point only to coordinates smaller than its own coordinates. Program
inputs have designated coordinates, hence can be fetched in the same manner. Program output
is obtained by calling the instruction in the designated output location, which in turn recursively
calls its predecessors. Hence a program in CGP acts like an electronic circuit, which by the way is
quite common application of CGP [54, 73, 159].

Graphic structure of CGP programs allows reuse of subprograms many times, which is not
possible for tree programs in canonical GP.

Recently there was proposed Recurrent Cartesian Genetic Programming (RCGP) [176], where
the graph may contain cycles. To effectively handle the cycles, instructions are executed in the
predefined order and each instruction reads its arguments from the most recent outputs of other
instructions or program inputs. If an instruction attempts to read output value of an other
instruction that has not been executed yet, the output value is considered to be 0.7 The program
stores its own state in instructions’ outputs, thus if executed again with the same input, may result
in different output. RCGP is useful in applications where a memory persistent across program
executions or feedback information are required, e.g., in agent controller scenarios, where an agent
is supposed to explore and discover its operating environment [176].

CGP typically employs point mutation as the only variation operator. Given a parent genotype,
mutation first randomly draws an integer in genotype. Then it determines the function of that
integer: if the integer is an opcode, then it is replaced by a random integer (and thus random
opcode). Otherwise, if the integer refers to a coordinate in the grid, a new valid coordinate is
drawn.

3.9.4 Estimation of Distribution Algorithms in Genetic
Programming

In order to use EDA (cf. Section 2.4) with tree-based GP, EDA must be augmented to model
probability distribution of tree-like structures, i.e., programs. To our knowledge the first successful
attempt to EDA in GP was presented by Sałustowicz et al. [154] under the name of Probabilistic
Incremental Program Evolution (PIPE). In PIPE, the probability distribution is modeled using a
tree of an arbitrary size and shape, where each node holds a probability distribution of instructions.
Distributions in leafs are limited to terminals only, however the ones in the intermediate nodes
involve all instructions. Programs are sampled by recursively traversing the tree from tree root to
leafs and drawing in each node an instruction according to the probability distribution stored there.
Obviously the choice of an instruction in a node determines the number of child nodes that are
actually visited, and the choice of a terminal instruction terminates a given branch of tree.

PIPE models a different probability distribution in each tree node, however it does not store
information about conditional probability distributions. These observations where confirmed
experimentally [127], where the performance of standard GP and PIPE were statistically equivalent.

7Or other ‘neutral’ symbol depending on the domain.
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This drawback of PIPE has been addressed simultaneously by Sastry et al. [155] and Yannai
et al. [190]. In the former work a method called Extended Compact Genetic Programming (ECGP)
was proposed, that is an extension to PIPE, which for each node and each instruction in probability
table of this node stores entire subtree of probability tables instead of a single value. In this way, the
probabilities in a given subtree are conditional with regard to the choice of the root instruction of
that subtree. The latter work introduces Estimation of Distribution Programming (EDP) method,
that models probability distribution with a Bayesian network, hence the probability table in each
tree node consists of conditional probabilities w.r.t. to instructions in a subset of other nodes
(cycles in the network are forbidden). Note that EDP is able to model interdependencies between
nodes located in different branches of the tree, while ECGP can only model probability w.r.t. the
ascendants. ECGP requires thus (on average) less storage for the probabilistic model.

EDAs in GP are not limited only to the tree-based representation. In the work of Poli et al. [142]
an N-Gram GP system was proposed that combines a linear program from n-grams of instructions
and models the probability distribution using a multi-dimensional matrix. Each dimension of the
matrix corresponds to the specific index in an n-gram and enumerates all instructions. Each matrix
element contains the probability of choosing a particular sequence of instructions as an n-gram to
be appended to a partial program. The N-Gram GP was compared with a simple form of linear
GP and resulted in a noticeable improvements of performance, especially for more difficult problem
instances [142].

3.10 Challenges for Genetic Programming
Almost 30 years of research on genetic programming identified a few issues inherent to GP
methodology. Below we briefly discuss the most important of them, explain their origins and name
possible countermeasures and remedies.

The behavior of a program, meant as the output it produces for some input, is not only
determined by a particular set of instructions it is composed of, but also by how those instructions
are arranged together. Even a minute modification of this combination may have dramatic impact on
the program’s behavior. For instance negation of a loop condition, or swapping of arguments of an
asymmetric arithmetic operation may result in completely different program behavior. On the other
hand a complete reorganization of program parts may result in exactly the same behavior. This
observation is known as ruggedness of genotype-phenotype mapping in GP (cf. Definition 2.1), which
has been investigated in studies on fitness-distance correlation [37] and locality of representation
[148]. The complexity comes from the way how instructions interact: one instruction may enhance
or negate the effects of another or be neutral in certain syntactic structures. Additionally, the
number of combinations of instructions is exponential w.r.t. the instruction number and a program
size, which makes exhaustive search of the program set infeasible. What is more a number of
program (or instruction) input values is huge, or even infinite in some domains, which reflects in
difficult evaluation of the program behavior (that incorporates e.g., all corner cases).

In addition most random programs implement simple behaviors. For instance, Langdon [90]
showed that almost half of Boolean programs sampled uniformly out of all Boolean programs
built upon instructions {and,nand, or,nor, in1, in2, ..., in8} implement contradiction (a program that
returns 0 for all inputs) and almost other half tautology (a program that returns 1 for all inputs).
Of the remaining programs, about 1% rewrite inputs in straight or negated form and approximately
1h implement multi-input nor,nand, and, or depending on the considered maximal program size.
A similar distribution but with a less bias of tautology and contradiction was observed by Beadle
et al. [21] in the initial populations initialized by RHH. On the other hand, we showed in [133] that
some behaviors of arithmetic expressionsbuilt upon instructions {+,−,×, /, sin, cos, exp, log, x} are
more common than others and most of longer expressions are in fact linear combinations of simpler
ones. The conclusion from these works is that the distribution of behaviors of programs that come



3.10 Challenges for Genetic Programming 39

from uniform sampling of program space or are generated by conventional initialization operators
is highly non-uniform, with high fraction of behaviors that humans consider as simple. This
observation is important, because simple behaviors are usually not interesting from the perspective
of real-world program induction problems.

Another challenge for GP are introns. Intron is a fragment of a program that does not influence
program’s final output, i.e., is not executed at all (like dead code in conventional programming),
or its outcome is being cancelled by processing in another program fragment. The former case
occurs when a control flow is unable to reach some instructions, e.g., when a conditional instruction
evaluates to a constant value. The latter case occurs, e.g., when multiplying an expression by 0
or calculating a logical alternative with 1; in such cases, the outcome of the second argument
of the instruction does not matter. Note that these situations not only happen when a part of
a statement is a constant literal, it may also be an entire subprogram that evaluates to a constant
value. Therefore the exact way to detect introns involves static analysis of a program code and boils
down to solving Boolean satisfiability problem that is known to be NP-complete [38, 97]. Thus it is
usually not practiced in GP, except where domain-dependent features enable us to perform static
analysis efficiently [46]. Instead it is common to verify whether code fragments have impact on
fitness [126] or on program outputs [34].

Opinions on usefulness of introns are divided in GP community. Some of the researchers protect
introns as a mechanism of redundancy in code that prevents destruction of useful code fragments
by variation operations [126, 56], while others [12, 46] criticize introns for detrimental influence on
GP’s performance. Moreover a recent study indicates no relation between existence of introns and
GP’s performance [34]. Disagreements here clearly stem from the number of factors and parameters
that influence overall GP’s performance in a complex manner.

Nevertheless it is not subject to doubt that introns contribute to program growth during
an evolutionary run. The growth of program size during evolution is a natural consequence of
adaptation of programs to a given problem: with the growing size of programs, the number of
programs that solves the given problem is non-decreasing. Unfortunately the growth of introns
has no influence on program outcome and the effort put into evolving such a growing code may be
virtually lost.

The uncontrolled growth of code size that does not reflect in fitness improvement is called code
bloat, or bloat for short [141, Ch 11]. Bloat negatively affects computation costs of fitness evaluation
and variation operators. In addition oversized programs are difficult to interpret for humans, usually
overfit to a training data and feature poor generalization abilities.

Langdon [89] showed that bloat is not only essential to GP, instead it comes from variable-length
representation of genotype and may be encountered also by other optimization techniques. This is
because there is no correlation between program size and its fitness. And since there are more big
programs than the small ones, big programs are more likely to occurs in a population.

On the other hand Soule et al. [160] experimentally showed that in canonical GP introns are
more likely to occur in deep parts of abstract syntax trees than in the shallow ones, thus are
typically smaller than an average size of a subtree. Moreover TX and TM are more likely to select
crossover (or mutation) point in these deep regions than in shallow ones, hence are very likely to
occur in the intron parts. This plus observation that no matter what code is inserted into intron
part the entire part still remains intron, lead to conclusion that there is no bias for inserting highly
fit code parts in variation operations occurring in introns. Juxtaposing this with the Langdon’s
observation results in that big subtrees are more likely to be inserted into intron part of program,
than the remaining part.

Quite different explanation was provided by McPhee et al. [108]. They claim that standard
variation operators in GP are biased in producing offspring similar to their parents. The existence
of similar individuals in population leads to better average fitness and lower variance, however
mixing of similar individuals decreases diversity and causes bloat.
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A natural way to cope with bloat is imposition of limits on size of a program, i.e., for canonical
GP operators are not allowed to produce individuals of greater height or size than the limit,
and if such an individual is created, it gets discarded. The particular way to handle this case is
operator and implementation-dependent, the operator may be run again with the same or other
arguments, or its argument is returned as the operator’s output. Crane et al. [40] showed that
imposing either height or size limits on abstract syntax trees result in similar distributions of tree
sizes in a population, with a remark that height limits appear to bias a bit distribution towards
lower heights than the corresponding size limits. A similar analysis has been conducted by McPhee
et al. [107] for linear GP, where the authors show that low limits on program length cause quick
convergence of an average program length in population to a certain value, while for high limits no
convergence occurs, instead the average length of programs oscillates over time in a certain range.

The other way to fight bloat involves bloat-aware operators. The common method here is
parsimony pressure [80] that subtracts (or adds) a scaled program size from a program’s fitness.
Typically the scaling coefficient is constant across evolutionary run, however Zhang et al. [192]
showed that dynamic adaptation of this coefficient may be beneficial. Nevertheless the method takes
into account only the absolute size of programs and does not employ information on distribution
of program sizes in population. From that reason Poli proposed a Tarpeian method [139] that
randomly assigns the worst fitness to some of the above-average sized individuals and then runs
a selection operator of a choice.

Langdon proposed size-fair crossover [91] for canonical GP that acts like TX, however with the
second crossover point in the second parent restricted to the points where the size of an underlying
subtree is no more than as twice as big than the subtree rooted at the first crossover point in the
first parent. Similarly Langdon proposed size-fair mutation [93] that restricts the size of subtree to
be inserted into parent w.r.t. the size of subtree to be deleted in the parent. Later Crawford-Marks
et al. [41] moved the idea of size-fair operators to linear GP.

3.11 Genetic Programming in contrast to other
Evolutionary Algorithms

All evolutionary algorithms presented in Section 2.3, except genetic programming have one common
feature: all of them optimize a given model of a problem. That is, each genotype determines
a particular combination of values of free variables of the model, and the interpretation of those
variables within a model is fixed. In genetic programming the model is not known in advance, and
only the constraints of the model are given, e.g., instruction set, the maximum size of a genotype
etc. Hence GP creates and optimizes entire model of the problem.

In other words, GP evolves an executable code that inputs a given problem instance and outputs
a solution to the instance, while conventional EAs evolve solutions directly. In this sense GP’s
solutions are active, i.e., adapt to the given problem instance, and other EA’s solutions are passive,
i.e., when applied to a different problem instances, they often turn out to be infeasible or obtain
much worse fitness.

It should be clear by now that executable code evolved by genetic programming (in fact a variant
of a heuristic search algorithm) can be an other heuristic search algorithm, where the other heuristic
search algorithm is a solution to the given problem and the other heuristic search algorithm’s
output is a solution to a particular problem instance. The heuristic synthesis of a heuristic search
algorithm is known under the name hyper-heuristic optimization [147, 29].

From technical perspective the above properties are mainly reflected in the length of genotype and
mode of its fitness evaluation. In conventional EA genotype has usually a fixed length, i.e., number
of free variables is fixed in the model, while in GP genotype changes over time, since a particular
program structures are added and/or removed. Because genotype in EA solves only a particular



3.12 Applications 41

instance of a particular problem, it must be applied only once to the problem to assess the solution’s
fitness. In contrast, an objective8 fitness assessment of GP’s program requires multiple executions
of the program on different problem instances. Therefore, fitness assessment in GP is by design
computationally much more demanding than in other variants of EA.

3.12 Applications
In this section we present some of the most remarkable achievements and applications of genetic
programming presented in the past literature. As when reviewing other EAs (cf. Section 2.5) we
focus here on works that were awarded in the Humies competition [8]. From a wide range of
biologically-inspired, not limited only to EAs, techniques included in the competition, GP scored
about 54% of gold awards and 52% of total awards, including gold, silver and bronze, in the years
2004− 2014. This indicates how important and how powerful GP is in solving real-world problems
when compared with the other techniques.

Hornby et al. [67, 99, 100] used genetic programming to automatically design an antenna
that meets the demanding characteristics specified by NASA for use in spacecraft. First, the
authors automatically evolved an antenna that was 100% compliant with the NASA’s requirements.
Then, the initial requirements were modified due to a change of a launch vehicle, thus within
four weeks a new design of antenna was developed and fabricated using the proposed technique.
The new antenna again was compliant with the requirements and during tests in an anechoic
chamber it outperformed the human-designed one, scoring 93% efficiency9 in contrast to 38% of
the human-designed one, which naturally reflects in higher range and stronger signal.

Forrest et al. [53] applied genetic programming to automatically fix errors in C programs created
by human software developers. The authors took source codes or their fragments of 11 open-source
and proprietary applications with known errors in their code. The software included, among others,
operating system of Microsoft Zune media player [10], Null httpd web-server [5] and Flex lexical
analyzer [4]. Genetic programming supplied with a small set of positive tests that verify if the
software behaves according to the specification, and even a smaller set of negative tests10 that
cause failures, fixed all the errors, each in on average three minutes. The same authors in a more
recent work [96] used GP to fix errors in a more complex applications, like PHP interpreter [6],
Python interpreter [7] and Wireshark network sniffer [9]. This time 52% of errors were successfully
fixed. The authors employed Amazon EC2 cloud computing infrastructure [3] to estimate costs of
automatic software repair, which resulted in $7.32 per error on average.

Spector et al. [163] evolved discriminator [182], Pixley [137], majority [16] and Mal’cev [71] terms
of finite algebras that were many orders of magnitude smaller than the forms created by previously
known methods. Moreover, the authors compared the efficiency of GP system with to the date
the most time-efficient algebraic method by Clark et al. [36] that turned out to be a few orders of
magnitude slower than GP.11

In another work Spector [162] used PushGP to evolve programs for quantum computers. The
proposed approach was experimentally verified with success on a series of quantum computing
problems, e.g., unstructured database search, a general gate of a certain function that scales with the
size of a problem instance, and a quantum communication without a direct physical link between
communicating objects.

8Truly objective fitness assessment would embody all problem instances, however in most problems the number
of instances would cause the objective assessment to be computationally infeasible, thus it is common practice to
conduct fitness assessment only on a sample thereof.

9Amount of energy emitted divided by amount of energy consumed.
10Cardinalities of sets of positive and negative tests were in 〈2, 6〉 and 〈1, 2〉, respectively, depending on the

application.
11Months vs minutes for small algebras and years (estimate) vs minutes for bigger algebras.
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Widera et al. [184] created energy functions for prediction of folding of protein ternary structures
that achieve predictive power better than an expert-designed ones and optimized by Nelder-Mead
downhill simplex algorithm [121].

Schmidt et al. [157] proposed a genetic programming approach to solve iterated function problems,
i.e., problems in form g(g(g(x))...) = h(x), where h(x) is known and g(x) is to be found. The iterated
functions are in general useful in revealing functions producing fractals [24], image compression
[23] and modeling of dynamical systems [26]. According to the authors they obtained a brand new
solution to the problem of finding formula for g(x) in equation g(g(x)) = x2 − 2 that is the first
non-trigonometric solution to this problem published in the literature.



Chapter 4

Semantic Genetic Programming

In this chapter we introduce the notion of semantics and show how it can be used in genetic
programming. Then we define related to the semantics properties of effectiveness and neutrality for
GP operators.

4.1 Introduction
Semantic Genetic Programming (SGP) is a branch of GP that involves semantic information
about evolved programs. In theory of formal languages, semantics is a rigorous specification
of meaning or behavior of programs [124]. There are three general ways to describe semantics:
operational semantics that describes how a program is to be executed by an abstract computational
machine [1, 138], denotational semantics that models behavior with mathematical objects that
represent effects of computation [158], and axiomatic semantics that expresses behavior by means
of constraints and assertions to be met by a program before and after execution [124].

In recent research in GP a kind of denotational semantics has been widely adopted. The GP
semantics involves representation typical to data sets in supervised learning problems.

Formally, training data is a list of fitness cases:

Definition 4.1. A fitness case is a pair of program input and the corresponding correct output,
i.e., (in, out∗) ∈ F ⊆ I × O, where F is a list of fitness cases, each of them having unique input,
i.e.,∀i=1..|F |ini ∈ (ini, out∗) ∈ F,∀j=1..|F |,j 6=iinj ∈ (inj , out∗) ∈ F : inj 6= ini, I and O come from
Definition 3.3.

In other words, a fitness case is a sample of a correct program behavior: it describes the outcome
of a single execution of a hypothetical program given an input in and returning a correct output
out∗. Given a specific program p and a fitness case (in, out∗), p executed with an input in returns
its (not necessary correct) output out, which we denote as out = p(in).

From above formulation it follows that for each input there is exactly one correct output. This
is also a common assumption in machine learning, which GP can be seen a form of.

Definition 4.2. A sampling semantics (semantics for short) s ∈ S is a tuple of |F | values
from O, such that its elements correspond to fitness cases in F , i.e., s = (out1, out2, ..., out|F |),
∀i=1..|F |outi ∈ O. Semantic mapping s : P → S is a function with property s(p1) = s(p2) ⇔
∀i=1..|F |ini ∈ F : p1(ini) = p2(ini), where p1, p2 ∈ P.

In other words, sampling semantics consists of a finite sample of outputs provided for each
fitness case in F . Thus, sampling semantics is not a complete description of a program behavior
and depends on the choice of fitness cases in F .
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The definition of semantics does not refer to a program, which allows manipulating semantics
directly without knowing if a program having that particular semantics exists. Therefore, we can
even synthesize an ‘abstract’ semantics if needed.

Since a part of a program is a valid program itself (cf. Definition 3.3), a semantics can be
calculated for any subprogram of a given program to describe its behavior more thoroughly than
just by its outputs.

If elements of O are numbers, semantics takes the form of a vector [178, 86, 186, 87, 179, 55,
133, 34]. However in this thesis we assume that O holds any objects (e.g., Booleans), hence we
prefer to use the term ‘tuples’.

Definition 4.3. Given a set of fitness cases F, a target t ∈ S is a semantics composed of the correct
outputs for each fitness case, i.e., t = (out∗1, out∗2, ..., out∗|F |),∀i=1..|F |out

∗
i ∈ F .

The divergence between the correct output out∗ and the one out returned by a program p is an
error committed by p on this particular fitness case, e.g., a binary error. In the following we assume
that fitness function f(·) is monotonous1 with respect to the errors obtained for each fitness case
in F . However, at this point we do not need to specify yet how the errors are aggregated. The fitness
of a program p can be calculated directly from its semantics s(p). A program p having semantics
s(p) = t is optimal with respect to f(·). In terms of the bio-inspired terminology introduced in
Section 2.1.2, the domain of the fitness function is set of phenotypes (cf. Definition 2.2), which
here is a set of semantics S, and semantic mapping s(·) is a genotype-phenotype mapping from
Definition 2.1. Because fitness function involves F , F implicitly becomes a part of the optimization
problem Π = (P, f) from Definition 2.2.

To express similarity between semantics we use semantic distance:

Definition 4.4. Semantic distance between two semantics is a function d : S × S → R≥0 with
the following properties: d(s1, s2) = 0⇔ s1 = s2 (identity of indiscernibles), d(s1, s2) = d(s2, s1)
(symmetry), d(s1, s3) ≤ d(s1, s2) + d(s2, s3) (triangle inequality).

Properties of semantic distance cause it to be a metric. The simplest function that meets the
above requirements is discrete metric, i.e.,

d(s1, s2) =

0 s1 = s2

1 otherwise.
(4.1)

In the following we commonly use semantic distance on semantics of specific programs, hence we
allow for an abuse of a notation and use a shorthand d(p1, p2) ≡ d(s(p1), s(p2)).

4.2 Semantic neutrality and effectiveness
GP searches program space P using variation operators, whose action may result in move in P that
is not reflected in move in semantic space S. This, however, is undesirable from the perspective of
achieving the goal, i.e., finding the optimal program.

Below we introduce the notions of semantic neutrality and effectiveness for particular operators
introduced in Section 2.2.

Definition 4.5. An application of an initialization operator is neutral w.r.t. population P iff
semantics s(p′) of an initialized program p′ is equal to a semantics of any program p already in the
population P , i.e.,∃p∈P s(p) = s(p′). Otherwise the application is effective, i.e.,∀p∈P s(p) 6= s(p′).
Initialization operator is effective iff all its applications are effective.

1f(·) must be non-decreasing w.r.t. errors for fitness minimization, and non-increasing for maximization.
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The role of initialization operator is to provide initial sampling of solution space. If a population
consists of programs having duplicated semantics, the number of actually sampled distinct solutions
is smaller than a number of individuals in the population, hence the computational effort invested in
neutral initializations is lost. On the other hand population that consists exclusively of semantically
distinct programs fully exploits its sampling potential and is more likely to reveal beneficial solutions.

In analogy to initialization operators, an n-mate selection operator from Definition 2.6 can be
effective or not:

Definition 4.6. An application of an n-mate selection operator to mate programs {p1, p2, ..., pn−1}
and a population P is neutral iff semantics of the selected nth program p′ ∈ P is equal to a semantics
of any of the mate programs, i.e.,∃i=1..n−1 : s(pi) = s(p′). Otherwise the application is effective,
i.e.,∀i=1..n−1 : s(pi) 6= s(p′). n-mate selection operator is effective iff all its applications are effective.

According to Algorithm 2.1, the programs resulting from selection and mate selection operators
become input to variation operators, and as such become parents to offspring created there. The
parents are representatives of good solutions in the current population and should constitute
a semantically diverse sample.

Definition 4.7. An application of a variation operator to a set of parents {p1, p2, ..., pn} is neutral
iff semantics s(p′) of the produced offspring p′ is equal to a semantics of any of its parents,
i.e.,∃i=1..n : s(pi) = s(p′). Otherwise the application is effective, i.e.,∀i=1..n : s(pi) 6= s(p′).
Variation operator is effective iff all its applications are effective.

That is, we say that a variation operator is effective if all produced offspring are semantically
different from their parents. An offspring is effective w.r.t. its parents iff it is produced by an
effective application of a variation operator, otherwise we attribute the offspring neutral.

Note that from properties of genotype-phenotype (semantic) mapping (cf. Section 2.1.1) two
programs may have different code, but the same semantics, thus syntactic difference of an offspring
and its parents is not sufficient for an application to be effective.

Nevertheless, it is challenging to design a variation operator that guarantees effectiveness, in
particular in the extreme case of all parents being semantically identical. An exception is mutation,
because it takes only one parent. Therefore, the natural way is to provide semantically different
parents to the variation operator by an effective mate selection operator. Use of this idea for all
n ≥ 2-ary variation operators together with effective mutations makes breeding effective, i.e., no
offspring in the next population is semantically equal to any of its parents. Note that this still does
not guarantee that the next population contains no programs that are semantically equal to the
ones in the current population, since the produced offspring is not compared to the semantics of
programs in the current population.

The notion of neutrality is not new in GP, however its meaning outside SGP is quite different.
In GP, the concept of neutrality occurs in two contexts: (i) neutral code, i.e., introns [79, 49],
and (ii) neutral mutation that does not lead to phenotypic [79] or fitness [49] change. The latter
meaning is somehow similar to the one presented in Definition 4.7, however these early studies use
bitstrings [79] or integer vectors [49] for genotypes and abstract syntax trees [79, 49] for phenotypes.
In contrast, we, and the majority of researchers in the field, consider now AST to be a genotype
and semantics to be a phenotype. Recently the topic of semantic neutrality (in some studies called
ineffectiveness [21, 131]) and effectiveness was addressed by a few papers on SGP, with some of
the works defining neutrality and effectiveness of operators using semantics of entire programs
[21, 20, 22, 133, 131, 55], while others using semantics of parents’ and offspring’s subprograms
[178, 123, 179].





Chapter 5

Geometric Semantic Genetic
Programming

The main aim of this chapter is to show how geometry of semantic space can be utilized by GP to
improve search performance and solve difficult program induction problems. We discuss geometry
of metric spaces and show how the choice of a metric for fitness function influences the shape
of a fitness landscape. Next, we define geometry-aware semantic operators for GP and describe
their properties. Then, we outline the main differences between the geometric operators and other
semantic methods.

5.1 Metrics and geometries
We focus on three commonly used Minkowski metrics: L1 (taxicab metric), L2 (Euclidean metric),
L∞ (Chebyshev metric), where

Lz(x, y) = z

√∑
i

|xi − yi|z.

Definition 5.1. A segment S(x, y) in a space X between x and y, x, y ∈ X, is the set of all v ∈ X
that satisfy ‖x, y‖ = ‖x, v‖+ ‖v, y‖, where ‖·, ·‖ is a metric in X.

Note that we defined a segment using only a metric, thus we do not impose any restrictions on
the objects x, y, v, except that they come from a metric space. Figure 5.1 presents the segments
under the L1, L2, L∞ metrics in the two-dimensional real space, i.e.,x, y, v ∈ R2. An L1-segment
has the shape of a (hyper-)rectangle,1 with x and y in the opposite corners and sides parallel to the

1Assuming that by hyperrectangle we mean the shape under L2 metric, in the common sense. Formally it is
L1-segment. This comment applies also to other figures described in this section.
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Figure 5.1: Segments in two dimensions under L1, L2, L∞ metrics.
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Figure 5.2: Balls in two dimensions under L1, L2, L∞ metrics.
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Figure 5.3: A convex hulls in two dimensions under L1, L2, L∞ metrics.

axes of coordinate system. L2-segment is just a section of a straight line passing trough x and y
and delimited by them. L∞-segment is a polyhedron (rectangle in 2D) with x and y in opposite
corners and sides angled at 45◦ to adequate axes of the coordinate system.

Definition 5.2. A ball B(x, r) of radius r ∈ R>0 with a center in x in a space X, x ∈ X, is set of
all v ∈ X that satisfies ‖x, v‖ ≤ r, where ‖·, ·‖ is a metric. Sphere is an analogous set that satisfies
‖x, v‖ = r.

Figure 5.2 shows balls of radius r centered in x under the L1, L2, L∞ metrics in two dimensional
real space, i.e.,x, v ∈ R2. L1-ball takes form of regular polyhedron with edges inclined by 45◦
degrees with respect to the adequate axes of the coordinate system. L2-ball is a filled sphere and
L∞-ball is a (hyper-)cube with sides parallel to axes of the coordinate system.

Definition 5.3. A convex set2 is a set X where the segments between all pairs of elements in X
are contained in X. Convex hull C(Y ) of set Y is the intersection of all convex sets that contain Y .

In other words, a convex hull of Y is the smallest convex set that contains Y . In Figure 5.3 we
visualized the convex hulls for the L1, L2, L∞ metrics in R2. L1-convex hull is a (hyper-)rectangle
with edges parallel to the axes of coordinate system, L2-convex hull is a polygon where each vertex
contains an element from the enclosed set Y and L∞-convex hull is a polygon without the above
property, but with sides angled by 45◦ to adequate axes of the coordinate system.

We will use shorthand notation Lz(p1, p2) ≡ Lz(s(p1), s(p2)), where p1, p2 ∈ P, to indicate Lz
distance between programs.

5.2 Fitness landscape
In Section 4.1 we assumed that fitness function measures an error committed by a program on a set
of fitness cases, which is a common practice in GP. This idea is often implemented by means of
root mean square error (RMSE) or mean absolute error (MAE). The key observation is that fitness

2Typically convex set is defined for L2 geometry and its generalization to other metrics is referred to as geodesically
convex set, however we do not separate these two notions, as our further considerations apply to both of them.
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Figure 5.4: Transformation of solution space from P to S and impact on fitness landscape.

functions defined in such ways are metrics, where the first metric argument is semantics s ∈ S under
assessment (possibly, but not necessarily, a semantics of an actual program p, s = s(p), p ∈ P) and
the second is target t: f(s) = ‖s, t‖. Furthermore, a semantic distance is a metric too and may
be used as the fitness function: f(s) = d(s, t). Note that the above does not necessarily restrict
semantic distance d(·, ·) and fitness function f(·) to be the same metric.

Fitness function plotted against a set of all programs P forms a surface, termed fitness landscape
[188], where elevation of each point equals to a value of fitness of an underlying program. When
an arrangement of underlying programs depends on their purely syntactic features, the fitness
landscape is likely to be rugged with lots of valleys and hills and no clear area of good solutions
e.g., so-called deep valley.

We redefine the arrangement of programs by employing semantic set S as a proxy between
program set P and fitness landscape. That is, semantic mapping s(·) maps P onto S and semantic
distance d(·, ·) imposes a certain structure onto S that reflects distances between program semantics
and makes S a space.

The observation that is crucial here is that the fitness function is a metric and the fitness
landscape proxied by semantic space is a cone with target in the apex, i.e., assigned the optimal
zero fitness. Transformation of solution space and its impact on fitness landscape is visualized in
Figure 5.4.

A particular shape of a fitness landscape cone depends on the metric. Figure 5.5 shows fitness
landscapes under L1, L2, L∞ metrics, i.e., f(s) = Lz(s, t). Level sets of fitness landscape are spheres
under the corresponding metric and dimensionality of semantic space, located at various levels
of fitness. In L1, fitness landscape cone takes the form of a regular pyramid with edges rotated
by 45◦ to the fitness axis and level sets rotated by 45◦ to corresponding axes of the coordinate
system. Under L2 fitness landscape is just an ordinary cone. In L∞ it is again a pyramid with
edges inclined at 45◦ to the fitness axis, however with level sets parallel to corresponding axes of
the coordinate system.

It should be obvious that searching semantic space under such fitness landscapes should be
easy: in each point of the fitness landscape, gradient clearly indicates the direction towards the
global optimum. There are also no plateaus, i.e., gradient does not zero anywhere. However, let
us not forget that S is not the space being searched. The entire search process takes place in the
program space P, and S is only an image of it. Therefore, unless one designs specialized operators
(see next section), the moves in P translate into moves in S in a very complex and hard to predict
way. What is more semantics in S that are infeasible in P constitute holes in the fitness landscape
— barriers that forbid specific moves in the semantic space and may be conflicting with direction of
improvement indicated by the gradient of the fitness landscape, thus difficult to avoid. These two
facts constitute the main challenges in searching the solution space.

In the following we attempt to exploit the properties of conic fitness landscapes by introducing
the notion of geometric operators.
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Figure 5.5: Fitness landscape under L1 (left), L2 (center), L∞ (right) metrics. Black areas represent (exemplary)
regions of semantics without counterpart in program set.

5.3 Geometric operators
We present and extend previously formulated by Moraglio et al. [115] framework of Geometric
Semantic Genetic Programming (GSGP). The original work defines only geometric mutation and
crossover, however we extend it for other variation operators, initialization and mate selection,
thus making it a complete framework of operators for GP. In the following, each time we refer to
GSGP, we mean a GP algorithm employed with geometric operators introduced in this extended
framework, instead of the Moraglio et al. one.

In this section we introduce GSGP operators, and in the next one we discuss how the operators
interact with each other and how they influence the evolutionary search.

As defined in Section 2.2, an operator is a random function, thus in below definitions we
distinguish between properties of the operator and properties of its application.

Definition 5.4. An application of an initialization operator is geometric w.r.t. population P iff
the convex hull of semantics s(p) of programs p already present in P and semantics s(p′) of the
initialized program p′ includes the target, i.e., t ∈ C({s(p) : p ∈ P} ∪ {s(p′)}). An initialization
operator is n-geometric iff n is minimum size of population P for which all applications of this
operator are geometric.

Left part of Figure 5.6 presents in R2 semantic space under L2 metric two exemplary applications
of an initialization operator given p1 and p2 are already present in P . An application of the operator
that produces p′ is not geometric, since the convex hull of semantics s(p′) and s(p1) and s(p2) (the
dashed one) does not include the target t. An application that produces p′′ is geometric, since the
corresponding convex hull (the dotted one) includes t.

Note that 1-geometric initialization is an idealized case, where the convex hull must be built
from a single program semantics, thus 1-geometric initialization must produce a program having
target semantics. For real-world problems, such an operator is virtually unrealizable, and if it
existed, it would solve the program induction problem in just one step.

Definition 5.5. An application of an n-mate selection operator to mate programs {p1, p2, ..., pn−1}
and population P is geometric iff the convex hull of semantics s(p′) of the selected parent p′ and se-
mantics of mate programs {s(p1), s(p2), ..., s(pn−1)} includes target, i.e., t ∈ C({s(p′), s(p1), s(p2), ...,
s(pn−1)}). An n-mate selection operator is geometric iff all its applications are geometric.

Left part of Figure 5.6 (the same like for initialization) presents in R2 under L2 two exemplary
applications of a 3-mate selection operator. Given that p1 and p2 are mate programs here, an
application that selects p′ is not geometric, because the convex hull of semantics s(p′) and s(p1)
and s(p2) does not include t. An application that selects p′′ is geometric, because the convex hull
includes t.
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Figure 5.6: Exemplary applications of an initialization (left), a 3-mate selection (left too), a mutation (center)
and an ternary variation operator (right) in R2 under L2 metric: p′s are results of non-geometric applications,
p′′s of geometric.

A necessary condition for an application of an n-mate selection operator to be geometric is
existence of at least one program in the population that satisfies the above requirement, i.e.,∃p′ ∈ P :
t ∈ C({s(p′), s(p1), s(p2), ..., s(pn−1)}). After Carathéodory’s theorem [30], the necessary condition
is satisfied in an R|F | semantic space for n ≥ |F |+ 1 if t is in the convex hull of P , e.g., if P was
initialized by a geometric initialization. Otherwise, an n-mate selection may not exist.

After [114, 115], we define geometric mutation operator:

Definition 5.6. An application of a mutation operator to a parent p is r-geometric iff the semantics
s(p′) of a produced offspring p′ belongs toB(s(p), r) ball, i.e., s(p′) ∈ B(s(p), r). A mutation operator
is r-geometric iff all its applications are geometric.

Center part of Figure 5.6 presents exemplary applications of a mutation operator given parent p.
An application that produces p′ is not r-geometric, because the distance of t to s(p′) is greater
than r. An application that produces p′′ is r-geometric, because the distance of t to s(p′′) is less
than r.

Below we present the definition of n ≥ 2-ary geometric variation operator that is a natural
generalization of definition of geometric crossover introduced in [114, 115]:

Definition 5.7. An application of n ≥ 2-ary variation operator to parents {p1, p2, ..., pn} is
geometric iff the semantics s(p′) of a produced offspring p′ belongs to the convex hull of semantics
of its parents, i.e., s(p′) ∈ C ({s(p1), s(p2), ..., s(pn)}). An n ≥ 2-ary variation operator is geometric
iff all its applications are geometric.

Right part of Figure 5.6 presents exemplary applications of a ternary variation operator given
parents p1, p2, p3. An application that produces p′ is not geometric, because s(p′) is outside the
convex hull of the parents’ semantics. An application that produces p′′ is geometric, because s(p′)
belongs to the convex hull of the parents’ semantics.

In the following we adopt the naming introduced in this section also to programs and call them
geometric if they were obtained by a geometric application of an operator.

5.4 Discussion on design of geometric operators
The general idea behind the extended framework of GSGP presented in this thesis, is to employ
a convex hull of semantics of programs in a population (a convex hull of population for short) to
geometrically restrict part of solution space to be searched, such that this convex hull incorporates
the target t.

Figure 5.7 visualizes this idea in R2 semantic space under L2 metric, and presents how the
convex hull of the population changes over generations.

GSGP by means of geometric initialization operator begins from creating a population, which
convex hull includes t (left part of Figure 5.7).
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t t t

Figure 5.7: Visualization of the idea behind the extended framework of GSGP in R2 under L2 metric. Left:
initial population, center: second generations, right: third generation. Dashed polygons are convex hulls from
previous generation.

In each iteration of evolutionary loop (cf. Algorithm 2.1) GSGP gradually shrinks the population’s
convex hull. This routine begins from selection of parents such that, a convex hull of their semantics
is subset of the convex hull of the population. Then, variation operators are employed to produce
offspring, such that a convex hull of an offspring’s population is included in the convex hull of the
parents’ (center part of Figure 5.7).

In effect, the whole population is concentrated around the target (right part of Figure 5.7).
We indicate two necessary conditions allowing efficient search by n ≥ 2-ary variation operators

that come from that definition.

Theorem 5.8. A geometric n ≥ 2-ary variation operator can produce in one application a program
having semantics t iff a convex hull of semantics of parent programs includes t.

Proof. The proof comes from Definition 5.7, i.e., a geometric n-ary variation operator is unable to
produce offspring that lies outside the convex hull of the parents, hence if t lies outside the convex
hull, the operator is unable to reach t.

The condition in the above theorem can be met by supplying variation operator with parents
selected by geometric n-mate selection. Note that for crossover (2-ary operator) the convex hull
in Definition 5.7 of n-ary geometric variation operator boils down to a segment between parents’
semantics.

Theorem 5.9. If all variation operators involved in search are geometric n ≥ 2-ary variation
operators, a program having semantics t can be acquired iff the convex hull of a population includes t.

Proof. The proof comes from observation that convex hulls of subsequent populations are subsets
of previous ones (a proof for crossover that can be generalized to n ≥ 2-ary operators is to be found
in Theorem 3 in [114]).

In case the convex hull of a newly created population does not include the target, it can be
expanded in two ways. First, by means of a geometric mutation operator, that is the only operator
in GSGP able to expand the convex hull in the subsequent generation. Second, by adding some
programs from the previous population to the new one, e.g., using elitism or a reproduction biased
towards expansion of the convex hull.

Note that choice of a certain metric for semantic distance affects set of solutions that is obtainable
by a single application of a geometric operator. In the next section we show how particular metrics
influence properties of geometric operators and bound performance of the GSGP search.
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5.5 Properties of geometric operators
From practical perspective, the key property of a variation operator is whether the moves it conducts
in the search process improve the quality of solutions. In other words, whether a variation operator
causes a search process to make progress. Extending our previous work [132] we define following
properties of variation operators:

Definition 5.10. A variation operator is weakly progressive (WP) iff all the produced offspring p′
are not worse than the worst of their parents {p1, ..., pn}, i.e., f(p′) ≤ maxi=1..n f(pi).

In other words if an operator is WP it must not deteriorate the fitness of the produced
offspring with respect to its parents. If all variation operators involved in search are WP, the worst
fitness in the next population P ′ will be not worse than the worst fitness of parents selected for
recombination, which in turn must be not worse than the worst fitness in the current population P ,
i.e.,maxp′∈P ′ f(p′) ≤ maxp∈P f(p). Note WP does not guarantee that the operator produces
a solution strictly better than any of its parents. To overcome this deficiency, we define next
property:

Definition 5.11. A variation operator is potentially progressive (PP) iff for every set of parents
{p1, ..., pn} an image of the operator Im(OP (·)) (a subset of the operator’s codomain containing
offspring that can be created from the given set of parents) applied to this set of parents contains an
offspring p′ that is not worse than the best of its parents, i.e.,∃p′ ∈ Im(OP ({p1, ..., pn})) : f(p′) ≤
mini=1..n f(pi).

In other words PP means that an operator is able to produce offspring not worse than all of
its parents. In practice an operator that is both WP and PP has the potential of improving on
average the worst fitness in a population every generation, thus in turn positively contribute to the
search progress. Note that the operator being solely PP is not guaranteed to not worsen the fitness.
From this reason we strengthen PP below:

Definition 5.12. A variation operator is strongly progressive (SP) iff all the produced offspring p′
are not worse than the best of their parents {p1, ..., pn}, i.e., f(p′) ≤ mini=1..n f(pi).

SP property implies both WP and PP, hence the corresponding discussions apply here. SP
property refers only to a single application of a variation operator and as such does not con-
strain a population wide characteristics of progress in a higher extent than WP property solely,
i.e.,maxp′∈P ′ f(p′) ≤ maxp∈P f(p). Note also that we do not require SP operator to produce strictly
better offspring, because operator like that is formally unrealizable: when supplied with an optimal
parent program, it cannot produce a better offspring.

One may ask why we care of the properties defined above, given that GP, like other metaheuristics,
occasionally accepts deterioration of working solutions, as a mechanism of escaping local optima and
revealing alternative search paths towards the global optimum. First, these properties characterize
variation operators in abstraction from a search algorithm, and in this sense are general. Second,
because fitness landscape is unimodal, (cf. Section 5.2), the gradient in each place indicates the
path towards the global optimumand there is no reason to worsen the best-so-far solution. However
we admit that if regions of infeasible semantics exist in the landscape they may hinder reach of the
global optimum, although independently on whether an operator has or not the above properties.
Third, these properties refer only to variation operators, hence given a poorly fit parents the
operator, even being SP, would still produce a poorly fit offspring. Therefore a convex hull of
succeeding population is unlikely be much less than the convex hull of the current population.

Theorem 5.13. The r-geometric mutation under a semantic distance d = Lzd and fitness function
f = Lzf is potentially progressive.



54 5 Geometric Semantic Genetic Programming

Proof. Consider a parent p and its fitness under Lzf metric f(p) = Lzf (s(p), t). By definition of
the ball, the Lzd distance between p and its offspring p′ located in an Lzd -ball B(s(p), r) amounts
to d(p, p′) = Lzd(p, p′) ≤ r. From the Cauchy-Schwarz [169] and Hölder’s [146] inequalities, the Lzf
distance of p to p′ is bounded by

Lzd(p, p′) ≤ Lzf (p, p′) ≤ |F |
1
zf
− 1
zd Lzd(p, p′) ≤ |F |

1
zf
− 1
zd r

if 0 < zf ≤ zd ≤ ∞, otherwise
Lzf (p, p′) ≤ Lzd(p, p′) ≤ r.

Triangle inequalities f(p) ≤ f(p′)+Lzf (p, p′) and f(p′) ≤ f(p)+Lzf (p, p′) set bounds for offspring’s
fitness f(p′), which we compactly write as f(p′) = f(p)± Lzf (p, p′). This in turn is bounded by

f(p′) =

f(p)± r|F |
1
zf
− 1
zd zf ≤ zd

f(p)± r otherwise.

In conclusion, the offspring can be better than its parent, thus an r-geometric mutation is PP for
all combinations of Lzf and Lzd metrics. Moreover, an r-geometric mutation is not WP and SP,
since the offspring may be also worse than the parent.

Theorem 5.14. A geometric n ≥ 2-ary variation operator under the semantic distance d = Lzd
and fitness function f = Lzf is weakly progressive if the Lzf -ball is a convex set under Lzd .

Proof. Let p1, p2, ..., pn be the parents. Assume without loss of generality that f(p1) = maxi=1..n f(pi).
Let B(t, r) (B for short) be an Lzf -ball, where r = f(p1) = Lzf (s(p1), t). By definition,
∀i=1..nf(pi) ≤ r and {s(p1), s(p2), ..., s(pn)} ⊆ B. By the non-decreasing property of convex hull,3
Lzd-convex hull C(B) is a superset of Lzd-convex hulls of all subsets of B, i.e.,C({s(p1), s(p2), ...,
s(pn)}) ⊆ C(B). If B is a convex set under Lzd then B = C(B) and C({s(p1), s(p2), ..., s(pn)}) ⊆ B
holds. Otherwise B ⊂ C(B), thus there may be a pair of parents’ semantics in B, such that an
Lzd -segment connecting them is not contained in B. In conclusion, if B is a convex set under Lzd ,
the offspring p′ : s(p′) ∈ C({s(p1), s(p2), ..., s(pn)}) is not worse than p1, i.e., f(p′) ≤ f(p1) = r,
and the geometric n ≥ 2-ary variation operator in question is WP.

Theorem 5.15. The geometric n ≥ 2-ary variation operator under the semantic distance d = Lzd
and fitness function f = Lzf is potentially progressive.

Proof. Let p1, p2, ..., pn be the parents. Assume without loss of generality that f(p1) = mini=1..n f(pi).
Let B(t, r) (B for short) be an Lzf -ball, where r = f(p1) = Lzf (s(p1), t). By definition,
s(p1) ∈ B and an Lzd-convex hull of parents has a nonempty intersection with B, i.e., s(p1) ∈
C({s(p1), s(p2), ..., s(pn)})∩B. In conclusion, there exists an offspring p′ : s(p′) ∈ C({s(p1), s(p2), ...,
s(pn)}) that is not worse than the best of the parents, i.e., f(p′) ≤ f(p1) = r and the geometric
n ≥ 2-ary crossover operator is PP.

Theorem 5.16. A geometric n ≥ 2-ary variation operator under a semantic distance d = Lzd and
fitness f = Lzf is strongly progressive if the Lzf -ball is a convex set under Lzd and all parents have
the same fitness.

Proof. Consult the proof of Theorem 5.14, and change the constraint on parents’ fitness from
f(p1) = maxi=1..n f(pi) to ∀i=2..nf(pi) = f(p1), so that it requires all parents to have the same
fitness. Then the proof shows that offspring’s fitness must not be worse then the fitness of the
worst (and simultaneously the best) parent.

3X ⊆ Y implies that C(X) ⊆ C(Y )
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Figure 5.8: Lzf -balls and their Lzd -convex hulls for zf , zd ∈ {1, 2,∞}.

The semantics of parents in Theorem 5.16 are equidistant from t, however they are not necessary
the same. Actually the parents lie in the Lzf -sphere centered in t with radius equal to parents’
fitness.

Note that Theorems 5.14 – 5.16 can be easily generalized to other metrics, since their proofs do
not refer to specifics of Lz, rather come from general properties of metrics. However other metrics
are out of scope of this thesis, thus for consistency we continue using Lz throughout the rest of this
text.

A question arises for which combinations of metrics’ parameters, i.e., zf and zd, Lzf -ball is
a convex set under Lzd . The theorems below answer this question and Figure 5.8 visualizes Lzf -balls
and their Lzd -convex hulls in R2 to help understand the proofs.

Theorem 5.17. An L∞-ball is a convex set under L1.

Proof. L1-convex hull is the smallest hyper-rectangle (cf. Section 5.1) enclosing an Lzf -ball B(t, r).
The diameter of the ball is 2r, thus the convex hull’s edge length is also 2r in each dimension,
and each coordinate of the point of the convex hull that is most distant from t differs from the
coordinate of t by r. Therefore the distance of this point from t under any Lzf metric is zf

√
|F |rzf .

Since limzf→∞
zf

√
|F |rzf = r, L∞-ball is a convex set under L1. If zf 6= ∞, then zf

√
|F |rzf > r

and Lzf -ball is not a convex hull under L1.
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Table 5.1: (a) Properties of progress and (b) upper bounds of ratios of offspring’s fitness to the worst parent
fitness for geometric n ≥ 2-ary variation operator w.r.t. semantic distance d = Lzd and fitness function f = Lzf ,
zd, zf ∈ {1, 2,∞}.

(a)

d\f L1 L2 L∞
L1 PP PP WP, PP
L2 WP, PP WP, PP WP, PP
L∞ WP, PP PP PP

(b)

d\f L1 L2 L∞
L1 |F |

√
|F | 1

L2 1 1 1
L∞ 1

√
2 2

Corollary 5.18. For an n ≥ 2-ary variation operator, the L1 semantic distance and the Lzf fitness
function, the upper bound of ratio of offspring’s fitness to its the worst parent is zf

√
|F |rzf /r =

zf

√
|F |.

Theorem 5.19. An Lzf -ball is a convex set under L2 for zf ≥ 1.

Proof. L2-convex hull is a convex polygon that is tangential to Lzf -ball B(t, r) unless zf < 1. Hence
the Lzf -ball and its L2-convex hull are the same sets. For Lzf<1, B(t, r) is not a convex set since
the L2-convex hull of the Lzf<1-ball is equivalent to L1 ball of radius r. Under Lzf<1, the point
of the L2-convex hull that is the most distant from t is located in the center of (any) side of the
L2-convex hull, i.e., at the distance of zf

√
|F | × (r/|F |)zf from t.

Corollary 5.20. For n ≥ 2-ary variation operator, L2 semantic distance and Lzf<1 fitness function
the upper bound of ratio of an offspring’s fitness to its the worst parent is zf

√
|F | × (r/|F |)zf /r =

|F |1/zf−1.

Theorem 5.21. L1-ball is a convex set under L∞.

Proof. L∞-convex hull takes the form of an L1-ball that encloses the entire Lzf -ball B(t, r). The
walls of L∞-convex hull that are tangential to the Lzf -ball B(t, r) are at the distance r from t

under Lzf . The edges of L∞-convex hull have length of 2r under Lzf and their tangent points are
in the middle. Thus, the Lzf distance to the point of L∞ convex hull that is the most distant from
t (i.e., a vertex of the L∞ convex hull polygon) is r × 21−1/zf . For zf = 1, this distance amounts to
r, hence the L1-ball is a convex set under L∞.

Corollary 5.22. For n ≥ 2-ary variation operator, L∞ semantic distance and Lzf fitness func-
tion, if zf ≥ 1, then the upper bound of ratio of an offspring’s fitness to its the worst parent is
r × 21−1/zf /r = 21−1/zf . If zf < 1, the upper bound is the same as for L2 semantic distance,
i.e., |F |1/zf−1.

The upper bounds provided by proof to Theorem 5.13 and Corollaries 5.18, 5.20, 5.22 are derived
for continuous semantic space. In discrete space that is in fact a subset of the continuous space,
semantics (programs) reaching these bounds may not exist. Thus the actual upper bounds would
be tighter in discrete space.

To sum up, in Table 5.1a we present how particular progress properties hold for geometric
n ≥ 2-ary variation operators. Note that SP holds for the same cases where WP, provided all
parents have the same fitness (cf. Theorem 5.16). However, we omitted SP in Table 5.1a due to this
additional requirement. Table 5.1b presents the maximum relative deterioration of offspring’s fitness
to the worst parent’s under semantic distance d = Lzd and fitness f = Lzf for zf , zd ∈ {1, 2,∞}.

From practical perspective, the above relationships between metrics are useful if definition of
a program induction problem features a fitness function that is a scaled Lz metric, likeRMSE or
MAE. The choice of semantic distance and fitness function has critical importance for the properties
of progress, and can be used as a means towards improving the performance of GSGP.
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All fitness function metrics return 0 for the optimal program, hence the particular choice of
a metric impacts only gradient of the fitness landscape, and in turn, the indicated way to the
optimum. Therefore if fitness function is not fixed in problem definition, but, e.g., from technical
reasons, semantic distance is a fixed metric, one may choose fitness function metric that enables
GSGP to find the global optimum more smoothly.

Our results are consistent with the previous results of Moraglio [114], where he showed that
if semantic distance and fitness function are the same metric and that metric satisfies Jensen’s
inequality [77] (e.g.,L2), geometric crossover is weakly progressive. Our result is more general, as
the proof can be applied to different metrics for semantic distance and fitness function that may or
may not fulfill Jensen’s inequality on its own. Also, the reasoning above holds for all geometric
n ≥ 2-ary variation operators. Moraglio showed also that, given the same assumptions, a geometric
crossover produces an offspring p′ that on average has better fitness than an average fitness of its
parents p1, p2, i.e., f(p′) ≤ (f(p1)+f(p2))/2.

5.6 Runtime analysis of Geometric Semantic GP
Let us outline runtime analysis of GSGP. We start with evolution of Boolean programs, where
semantics are strings of bits, i.e.,S = {0, 1}|F |, like genotypes in genetic algorithms in Section 2.3.3.
If semantic distance is Hamming distance [63], which for bitstrings is equivalent to L1, a convex hull
of {s1, s2, ..., sn} is a set of all points with coordinates being combinations of all values occurring
on particular bits in sis.

By merging all points comprising Hamming convex hull such that we store 0 and 1 on dimension
where all semantics are respectively 0 and 1, and # otherwise, we obtain schema (cf. Definition 2.12)
for all semantics contained in the convex hull.

For crossovers known from genetic algorithms we prove:

Lemma 5.23. One-point, two-point and uniform crossovers are geometric crossovers under Ham-
ming distance.

Proof. Since one-point, two-point and uniform crossover exchange corresponding parents’ bits, each
bit is inherited in the offspring from one of its parents. Thus, the offspring belongs to the Hamming
convex hull of its parents (an L1 segment for two parents).

Corollary 5.24. Assuming fitness proportionate selection, one-point crossover and no mutation,
schema theorem (cf. Theorem 2.14) holds for GSGP evolving Boolean programs. Consequently,
the number of programs having semantics consistent with above average fit, short and low-order
schemata increases over the course of evolution.

In related work Moraglio et al. [119] derived probability of finding global optimum using a kind
of generalization of GSGP and GA with uniform crossover and convex fitness function (e.g.,L2).
Moreover, they showed that on average GSGP requires polynomial number of generations and
polynomial size of a population w.r.t. number of fitness cases |F |, hence polynomial expected
computation time w.r.t. |F | to find the optimum.

In a more recent work Moraglio et al. [116] applied GSGP equipped only with mutation to
evolution of programs operating on real values. For semantic distance and fitness function being L2,
they derived expected computation times Θ(|F | log |F |) and Θ(log 1/ε) w.r.t. the number of fitness
cases |F | and a value ε > 0 of the fitness function to be achieved. Moreover, they experimentally
verified that GSGP with mutation on average requires fewer generations to solve a regression
problem, than an equivalent variant of evolutionary strategy (cf. Section 2.3.2).
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5.7 Comparison with other Semantic GP methods
A quite distinctive feature of geometric semantic GP, not found in other semantic GP methods, is
directed and precisely designed search strategy. That is, each search step performed by operators of
GSGP, as defined in Section 5.3, is devoted to shrink convex hull of a population and concentrate
programs’ semantics around the target.4 In contrast most of other semantic methods (reviewed in
the next chapter) are trial-and-error approaches that repeatedly apply standard syntactic operators
until certain conditions are met. Therefore, the search performed by them is indirect, random, and
in most cases blind to the structure of solution space. Actually, most of these methods are designed
specifically to reduce amount of semantically neutral moves and to ensure effectiveness of the search
(cf. Definitions 4.5 – 4.7), however with no bias in any specific direction.

Geometric operators are not effective by definition: a newly initialized program may be semanti-
cally equal to any other program already present in a population, parents selected for reproduction
may have the same semantics, and a produced offspring may be semantically equal to any of them.
Indeed, this can be considered as a drawback of GSGP methodology, however use of geometric
operators does not preclude making them effective. These two features may coherently co-exist in
a single operator.

The next difference between GSGP and other SGP methods lies in use of and requirements for
semantic distance and fitness function. Most semantic non-geometric methods only verifies whether
two programs are semantically equal or distinct, which can be done without use of semantic distance
and fitness function. In contrast, GSGP requires both semantic distance and fitness function to be
metrics, since metric is what establishes a geometry of the search space. Providing a metric for
some domains may be difficult, but for semantics composed from program’s outputs, i.e., sampling
semantics (cf. Definition 4.2), a metric can be provided always, e.g., by means of Hamming distance.

4Except initialization, which in fact creates the initial population and its convex hull.



Chapter 6

Overview of past works on Semantic
Genetic Programming

We review past works related to the semantics in GP, focusing but not limiting ourselves to
tree-based GP. We divide them into contributions on semantic non-geometric GP and semantic
geometric GP, and present them in Sections 6.1 and 6.2, respectively. The algorithms presented
in the following are unified and/or generalized w.r.t. their original formulations to make them
independent on semantic representation and/or domain, while keeping the original ideas intact.
Every modification is indicated and discussed in text. While reviewing these algorithms, we pay
special attention to their effectiveness (cf. Definitions 4.5 – 4.7) and geometry (cf. Definitions 5.4 –
5.7), as they are ones of the key concepts of this thesis.

6.1 Works on Semantic Non-geometric Genetic
Programming

Albeit sampling semantics from Defintion 4.2 is the most common way of defining semantics in
GP works, below we describe alternative representations of semantics found in past GP literature.
Then we divide the works according to the part of GP workflow, and finally present some of the
operator-independent research.

6.1.1 Alternative representations of semantics
Beadle et al. used Reduced Ordered Binary Decision Diagrams (ROBDDs) [27] in a series of papers
[21, 20, 22] to represent semantics of Boolean programs. ROBBD is indeed a canonical form of
Boolean program i.e., it expresses complete knowledge on program behavior, and for a particular
behavior and variable ordering, ROBDD is unique. Hence ROBDDs are useful for equivalence
checking of two Boolean programs.

Note that ROBBDs are not suitable for non-Boolean domains while sampling semantics is
a domain-independent data structure. Actually both ROBDD and sampling semantics store
equivalent amount of information on program behavior if sampling semantics enumerates all
combinations of program inputs. Otherwise, ROBDD cannot be created, while sampling semantics
can.

Both sampling semantics and ROBBD are useful in modeling program behavior where the target
behavior is known. However in applications like induction of a program for a robot controller, the
optimal behavior is not known in advance.
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Algorithm 6.1: Semantically Driven Initialization algorithm. Before running the algorithm first time, all terminals
Φt from instruction set Φ are copied to P , i.e.,P = Φt. ε1 ≥ 0 is similarity threshold, const is semantics of any
constant program, Random(·) and Arity(·) are defined in Algorithm 3.1.

Require: Φt ⊆ P
1: function SDI(P , Φn)
2: repeat
3: r ← Random(Φn)
4: for i = 1..Arity(r) do
5: ri ← Random(P ) :: Assign child node
6: until ∀p ∈ P : ε1 ≤ d(p, r) ∧ s(r) 6= const
7: return r

Algorithm 6.2: Behavioral Initialization algorithm. h ∈ N≥1 is maximum height of the tree, ε1 ≥ 0 is similarity
threshold, Grow(·) and Full(·) are defined in Algorithm 3.1.

1: function BI(h, P , Φt, Φn)
2: repeat
3: r ← Grow(h, Φt, Φn) :: Or Full(h, Φt, Φn) with 0.5 probability
4: until ∀p ∈ P : ε1 ≤ d(p, r)
5: return r

To express semantics of a robot controller, Beadle et al. [21, 22] used a sequence of robot moves
and orientations in an environment obtained by executing its program in loop a limited number of
times. In other works semantics there is a trace of the robot (or its program).

Similar representations to the Beadle’s one were used by Jackson [74, 75] and Galvan-Lopez
et al. [55], however Jackson used solely a sequence of moves of a robot, while Galvan-Lopez et al. solely
a sequence of orientations.

6.1.2 Initialization operators
Beadle et al. [21] proposed Semantically Driven Initialization (SDI). Originally, they used ROBDD
and sequence of robot movements as representations of semantics, and their algorithm is specific
to Boolean and controller domains. In Algorithm 6.1 we present the generalized version of SDI
that could be used in other domains and with other representations of semantics. To Algorithm 6.1
be equivalent to the original one, d(·, ·) has to be a discrete metric from Eq. (4.1) and const be
semantics of tautology and contradiction.

SDI is a trial-and-error approach that combines a randomly drawn instruction with the already
existent in the population. If the created program is semantically distinct from all other programs
in the population, it is accepted. Otherwise the algorithm makes a new attempt to create a program.
Note that Algorithm 6.1 is not guaranteed to halt, thus in practical implementation it needs a limit
on number of iterations of the loop in lines 2–6.1

SDI creates semantically more diverse populations than RHH (cf. Section 3.4), however the
relative performance of SDI when compared to RHH is highly problem-dependent, and none of
these methods is ultimately better.

Jackson [74] experimented with initialization operators that promote structural and behavioral
diversity and showed that the former slightly and the latter noticeably improve GP’s performance on
a set of relatively easy problems. We present in Algorithm 6.2 Jackson’s Behavioral Initialization (BI)
operator from that work. It is actually a wrapper on RHH, that discards semantically duplicated
programs. For ε1 = 0, BI is equivalent to RHH, for ε1 > 0 BI is effective (cf. Defintion 4.5).

1A fixed limit ceases the algorithm to be strictly effective, however it may be considered effective in the limit of
iteration count approaching ∞. For clarity we do not distinguish these two terms. This comment actually applies to
the most of algorithms presented in this chapter.
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Algorithm 6.3: Semantic Tournament Selection algorithm. p is mate parent, ε1 ≥ 0 is similarity threshold,
µ comes from Definition 2.8, Random(·) is defined in Algorithm 3.1.

Require: P = {p1, p2, ..., p|P |}
1: function STS(p,p1,p2,...,p|P |)
2: p′ ← Random(P )
3: for i = 1..µ do
4: r ← Random(P )
5: if f(r) > f(p′) ∧ ε1 ≤ d(r, p) then
6: p′ ← r

7: return p′

Algorithm 6.4: Semantically Driven Mutation algorithm. ε1 ≥ 0 is similarity threshold, TM(·) is defined in
Algorithm 3.3.

1: function SDM(p)
2: repeat
3: p′ ← TM(p)
4: until ε1 ≤ d(p′, p)
5: return p′

Originally there is a limit on the number of iterations of loop in lines 2 – 4,1 which is required for
the algorithm to halt.

6.1.3 Selection operators
Galvan-Lopez et al. [55] proposed a 2-mate selection operator, called Semantic Tournament Selection
(STS), presented in Algorithm 6.3. Given a first parent selected by TS (cf. Definition 2.8), STS
samples the population µ times and selects the best of the µ sampled individuals that has semantics
different than the first parent; µ is here an analog to tournament size in TS. If none of the sampled
individuals has different semantics, a random one is returned. Note that if the random program
p′ drawn in line 2 is semantically equivalent to first parent p and not worse than all programs r
drawn in line 4, STS produces a neutral second parent, thus STS is not effective.

The main advantage of STS is that its computation cost is nearly the same as TS, given that
fitness values and semantics of individuals are already calculated (cf. lines 3 and 11 of Algorithm
2.1). The performance of GP employed with STS is statistically better than the performance of the
canonical GP algorithm.

6.1.4 Mutation operators
Beadle et al. [22] proposed Semantically Driven Mutation (SDM). Originally, SDM was designed for
Boolean domain and semantics represented by ROBDD, in Algorithm 6.4 we generalized SDM to
more domains and representations of semantics by introducing semantic distance in comparison
of semantics. The algorithm is equivalent to the original one when ε1 = 1 and d(·, ·) is a discrete
metric from Eq. (4.1). SDM applies TM in a loop until the produced offspring is semantically more
distant from its parent than a given threshold ε1. For ε1 > 0, SDM is effective, for ε1 = 0 SDM is
equivalent to TM (cf. Section 3.7). Note that the algorithm may not halt, hence implementation it
requires a limit on number of iterations of the loop in lines 2 – 4.1

Experimental analysis indicated that GP equipped solely with SDM synthesizes more fit programs
than combination of TX and TM. Moreover, SDM produces programs of similar size to those
evolved using combination of TX and TM.
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Algorithm 6.5: Semantic Aware Mutation (left) and Semantic Similarity-based Mutation (right) algorithms.
ε1, ε2 are distance thresholds, 0 ≤ ε1 ≤ ε2, RandomNode(·) and Replace(·, ·, ·) are defined in Algorithm 3.2. Φt,
Φn and Grow(·, ·, ·) are defined in Algorithm 3.1

1: function SAM(p)
2: repeat
3: p′ ← RandomNode(p)
4: r ← Grow(h,Φt,Φn)
5: until ε1 ≤ d(r, p′)
6: return Replace(p,p′,r)

1: function SSM(p)
2: repeat
3: p′ ← RandomNode(p)
4: r ← Grow(h,Φt,Φn)
5: until ε1 ≤ d(r, p′) ≤ ε2
6: return Replace(p,p′,r)

Algorithm 6.6: Semantically Driven Crossover algorithm. ε1 ≥ 0 is similarity threshold, TX is defined in
Algorithm 3.2.

1: function SDX(p1,p2)
2: repeat
3: p′ ← TX(p1, p2)
4: until ε1 ≤ d(p′, p1) ∧ ε1 ≤ d(p′, p2)
5: return p′

Quang et al. [123] Semantic Aware Mutation (SAM) and Semantic Similarity-based Mutation
(SSM). SAM works like TM, except that a newly created random subprogram is accepted only
if it is semantically more distant from the subprogram to be replaced than a given threshold ε1.
SSM accepts a new subprogram only if its distance is within a range [ε1, ε2]. Note that the original
formulation of SAM involves only one iteration of the loop in lines 2 – 5, however to unify SAM
with SSM we actually allow more iterations.2 The second difference is in condition in line 5 of SSM,
where we use non-strict inequalities (≤), while the authors use two strict inequalities (<). Different
types of inequalities in SSM and in SAM were probably not intended by the authors. To guarantee
that both algorithms halt, a limit on a number of iterations of the loop in lines 2 – 5 is required.
Neither SAM nor SSM is effective, because even if a random subprogram r is semantically distinct
from the replaced one p′, the distinction may not hold for entire offspring and its parent.

Experiments reported in [123] showed that SAM is inferior for GP performance when compared
to TM, and SSM is superior to both TM and SAM. We believe that the main reason for much
weaker results of SAM than SSM lies in the lack of repetitions in the original SAM algorithm, what
gives SAM fewer chances (than in case of SSM) to meet the semantic distance condition

6.1.5 Crossover operators
Beadle et al. [20] proposed Semantically Driven Crossover (SDX). SDX is actually a trial-and-error
wrapper on TX (cf. Section 3.6) that repeats TX application to the parents until the created
offspring is semantically different from both of the parents. SDX is originally developed for
evolution of Boolean programs and ROBDD semantics, however we present in Algorithm 6.6
a natural generalization of the algorithm that handles more domains and forms of semantics. To be
consistent with the original formulation the comparison in line 5 has to involve ε1 = 1 and discrete
metric from Eq. (4.1) as d(·, ·). For real domain ε1 would be a small positive number and d(·, ·) be
Euclidean metric. Given ε1 > 0 SDX is effective, for ε1 = 0 SDX is equivalent to TX.

The loop in lines 2 – 5 guarantees that the produced offspring is effective, however it may not
halt. To overcome this drawback technical realization should impose a limit on the number of
iterations.1If the limit exceeds, the neutral offspring is to be returned or crossover attempt is to be
repeated with different parents, which is recommended approach by the authors.

2Originally SAM performed TM if the first attempt to create semantically different subprogam failed, which
lowers the overall probability of accepting semantically equal subprogram, but not eliminate this case.
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Algorithm 6.7: Semantic Aware Crossover (left) and Semantic Similarity-based Crossover (right) algorithms.
ε1, ε2 are distance thresholds, 0 ≤ ε1 ≤ ε2, RandomNode(·) and Replace(·, ·, ·) are defined in Algorithm 3.2.

1: function SAX(p1,p2)
2: repeat
3: p′1 ← RandomNode(p1)
4: p′2 ← RandomNode(p2)
5: until ε1 ≤ d(p′1, p′2)
6: return Replace(p1,p′1,p′2)

1: function SSX(p1,p2)
2: repeat
3: p′1 ← RandomNode(p1)
4: p′2 ← RandomNode(p2)
5: until ε1 ≤ d(p′1, p′2) ≤ ε2
6: return Replace(p1,p′1,p′2)

Algorithm 6.8: The Most Semantic Similarity-based Crossover algorithm. c is number of candidate pairs of
crossover points, ε1 ≥ 0 is similarity threshold, RandomNode(·) and Replace(·, ·, ·) are defined in Algorithm 3.2.

1: function MSSX(p1,p2)
2: Γ = ∅
3: repeat
4: p′1 ← RandomNode(p1)
5: p′2 ← RandomNode(p2)
6: if ε1 ≤ d(p′1, p′2) then
7: Γ = Γ ∪ {(p′1, p′2)}
8: until |Γ| = c
9: (p′1, p′2)← arg min(p′1,p′2)∈Γ d(p′1, p′2)
10: return Replace(p1,p′1,p′2)

Experiments verified that GP equipped with SDX on average achieves better fitness and produces
smaller programs than with TX. Use of SDX accompanied with SDM results in better fitness than
use of SDM solely, however they produce substantially bigger trees than TX and TM [22].

Quang et al. proposed in [178] two algorithms based on TX: Semantic Aware Crossover (SAX)
and Semantic Similarity-based Crossover (SSX). In case of SAX they attempted to generalize the
ideas that founded SDX to the domain of real function synthesis by introducing semantic distance in
comparison of semantics. However their approach is not completely compatible with SDX, because
in contrary to SDX, they compare semantics at the level of crossover points, while SDX does it
at entire programs. Note that even when the semantics of exchanged subprograms are different,
the entire crossover application may be neutral, hence SAX is not effective crossover operator. For
ε1 = 0 SAX is equivalent to TX.

SSX operates similarly to SAX, however it involves a second threshold on semantic distance that
bounds from up the distance between subprograms to be exchanged. The authors argue use of the
upper bound by that not only the subprograms to be exchanged should be semantically different
but also not too distant from each other to perform efficient GP search. SSX is not effective from
the same reason as SAX. For ε1 = 0 and ε2 =∞ SSX is equivalent to TX.

Note that technical realization of both algorithms requires a limit on number of iterations of
loops in lines 2 – 5, to guarantee halting.

Performance reports on SAX and SSX found in the literature are divergent. Quang et al. in a
series of papers [122, 177, 178] report that both SAX and SSX noticeably overcome TX, while in
Krawiec et al. [87] we showed that the performances of SAX and TX are nearly the same, while the
performance of SSX is noticeably worse. We [131] confirmed on a wider set of problem domains
than previous papers that SAX is statistically better than TX. Moreover in the same paper we
experimentally verified theoretical observation that SAX is not effective operator.

On the basis of SSX, Quang et al. [179] proposed The Most Semantic Similarity-based Crossover
(MSSX). Their algorithm is trial-and-error approach that begins from drawing a set of pairs of
candidates for crossover points, one point per pair from each parent. Pairs having semantics less
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Algorithm 6.9: Semantic Control Crossover algorithm. c is number of candidate pairs of crossover points,
α = αmax − (αmax − αmin)× g/G, where αmin, αmax ∈ R are bounds for scaling coefficient α, αmin ≤ αmax, g is
current generation number and G is total generations number, R(Γ) is probability distribution with probability
density function Pr((p′1, p′2) : (p′1, p′2) ∈ Γ) = dα(p′1,p′2)∑

(p′′1 ,p
′′
2 )∈Γ

dα(p′′1 ,p′′2 )
, RandomNode(·) and Replace(·) are defined

in Algorithm 3.2.

1: function SCX(p1,p2)
2: Γ = ∅
3: repeat
4: p′1 ← RandomNode(p1)
5: p′2 ← RandomNode(p2)
6: Γ = Γ ∪ {(p′1, p′2)}
7: until |Γ| = c
8: (p′1, p′2) ∼ R(Γ) :: Select pair proportionally to scaled distance between nodes in this pair
9: return Replace(p1,p′1,p′2)

distant than a threshold are discarded. Once the set is filled by c candidates,3 MSSX chooses the
pair with the smallest distance between semantics of subprograms to be exchanged. Note the loop in
lines 3 – 8 may never end, so the limit on the number of iterations is required. Argumentation behind
MSSX is similar to that behind SSX: exchange of semantically as similar as possible subprograms
is beneficial, but not when the subprograms are semantically equal to each other, because then the
computation effort is virtually lost. MSSX is not effective operator.

Quang et al. reported that GP equipped with MSSX finds significantly better solutions than GP
equipped with TX or SSX on a series of symbolic regression benchmark problems.

Hara et al. [64] proposed Semantic Control Crossover (SCX) operator with similar mode of
operation to MSSX, however with a fine-grained automatic shaping of probability distribution
of accepting particular pairs of crossover point candidates. The distribution is tuned depending
on the semantic distance within a candidate pair and a current stage of evolution. SCX is
presented in Algorithm 6.9. Given two parent programs SCX first draws from them c pairs of
candidates for crossover points, one point in each parent per pair. Then SCX draws from the set of
candidates Γ according to probability distribution R(Γ), defined in the caption of Algorithm 6.9,
i.e., proportionally to scaled semantic distance between subprograms in each pair. α ∈ R is scaling
coefficient that controls trade-off between exploration and exploitation of a solution space. For
α ≥ 1 there is significant bias towards exploration of far subprograms, for 0 < α < 1 the bias for
exploration is compressed, for α = 0 there is no preference at all4 and for α < 0 there is significant
bias towards exploitation of semantically close subprograms. Value of α varies over evolutionary run
in range 〈αmin, αmax〉, according to formula presented in the caption of Algorithm 6.9, i.e., initially
promotes exploration, then gradually moves bias towards exploitation. SCX is not effective because
all candidate pairs in Γ may consist of semantically equal subprograms.

Hara et al. evaluated SCX only on two relatively easy benchmarks and reported a slight
improvement w.r.t. TX. However a deeper analysis of Hara’s results suggests that SCX is very
sensitive to values of αmin and αmax and on average performs as good as TX.

6.1.6 Other work
Castelli et al. [34] proposed changes to GP scheme that enable modeling and shaping of distribution
of semantics in the population. The algorithm starts with a population of semantically distinct
programs. Then, in every generation a desired distribution of semantics is modeled, depending on

3Actually the original formulation in [179, Alg. 2] misses the line where a counter is updated and does not explain
this in text, so we hypothesize that the counter refers to the number of candidates, not just iterations of the loop.

4For the scope of SCX we assume that 00 = 1 and 0/0 = 1 to handle indeterminate forms in definition of R(Γ).
For α = 0 SCX is equivalent to TX.
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distribution and fitness values of semantics in the previous generation. Newly created offspring
are accepted to join the population only if they match the desired semantics distribution or have
fitness better then the best program found so far.

Castelli’s approach lead to improvements in fitness obtained by GP, but also increased bloat.
The authors proposed to explicitly find and delete introns in every generation, which did not
significantly degraded the fitness-based performance of the approach, but decreased an average
program size.

Jackson [75] conducted an analysis on structural, semantic (behavioral)5 and fitness-based
diversity in populations of GP. He found out that population initialization affects only a few
first generations of GP algorithm, then the diversity of programs depends mainly on variation
operators. For canonical GP employed only with TX the structural diversity typically increases in
the initial generations, then becomes constant over time. On the other hand, semantic diversity
drops rapidly and after few generations stabilizes at low levels. Dynamics of fitness-based diversity is
problem-dependent. Jackson also confirmed experimentally that use of semantic diversity-promoting
methods in initialization and crossover operators noticeably improves GP performance.

Vanneschi et al. [180] prepared an extensive survey of semantic methods in GP that briefly sums
up recent papers. The authors divided semantic methods into those that care only on semantic
diversity in a population, manipulate semantics indirectly e.g., by trial-and-error modifications
of syntax, or directly i.e., by making modifications in syntaxthat influenceprogram’s semantics in
a certain way. Nevertheless the authors do not present specifics of the algorithms or comparison of
them.

6.2 Works on Geometric Semantic Genetic
Programming

Below we briefly characterize past works on geometric semantic genetic programming, mainly
focusing on specific algorithms comply with or approximating principles of geometric operators.

6.2.1 Exact geometric variation operators
Moraglio et al. [115] proposed exact Semantic Geometric Mutation (SGM) and Semantic Geometric
Crossover (SGX) for programs working in Boolean, classifier and real domains. Both operators are
constructive approaches that build an exact geometric offspring ‘on top’ of the code of its parent(s)
(cf. Definitions 5.6 and 5.7). SGM prepends a given parent program p with a domain dependent
formula that moves its semantics in a semantic space:

p′ =

p ∨ px with 0.5 probability

p ∧ ¬px otherwise
(Boolean domain)

p′ = p+ ε× px (real domain)

where p′ is an offspring, and px is a random subprogram. In the Boolean domain, px is a random
minterm that incorporates all named variables in a considered set of instructions Φ. In the real
domain, px is any random program created from Φ. To alleviate bias of (possibly) non-uniform
distribution of programs to be created from Φ (cf. Section 3.10), px can be replaced by (px1 − px2),
where px1 and px2 are random programs created from Φ, i.e., from the same probability distribution.

5Notion ‘behavior’ in Jackson’s works is equivalent to sampling semantics here.
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SGM is a 1-geometric mutation (cf. Definition 5.6) in Boolean and classifier domains for Hamming
distance as semantic distance, and r-geometric in real domain for any Lz metric as semantic distance,
where r is proportional to ε.

SGX combines two given parents p1, p2 in a formula that returns a random point in the segment
between their semantics:

p′ = (p1 ∧ px) ∨ (¬px ∧ p2) (Boolean domain)
p′ = p1 × px + (1− px)× p2 (real domain)

where p′ is an offspring. px is a random program created from the set of instructions Φ. For real
domain, if semantic distance is L2 then px is constrained to a constant from 〈0, 1〉 else if L1 then
px outputs values in range 〈0, 1〉 for each fitness case, i.e.,∀(in,out∗)∈F 0 ≤ px(in) ≤ 1.

SGX is geometric in Boolean and classifier domains for Hamming distance, and in the real
domain for L1 and L2 distances.

Note that the construction of SGM and SGX assume that the set of instructions Φ contains
instructions that allow constructing an appropriate formula, e.g., for SGX the formula that defines
a point on a segment under given metric.

Unfortunately SGM and SGX may result in an offspring that is semantically equal to one of its
parents. Therefore, both SGM and SGX are not effective.

These operators cause also substantial bloat by design. SGM adds an extra code piece to
a parent, resulting in a bigger offspring each time. SGX combines entire parent programs, producing
an offspring that is roughly two times greater than the average size of the parents. The formulas for
average program size in a population after g generations of evolution using either SGM or SGX are

p0 + g × (px + c) (SGM)
2p0 + (2g − 2)(p0 + px + c/2) (SGX)

where p0 is the average program size in the initial population, px is the average size of px, c is
the number of instructions required to combine px with the parent(s), i.e., a domain dependent
constant, e.g., for SGM and real domain two instructions: + and ×. Note that the formula for SGX
is exponential in g, what was also verified experimentally in [134].

The memory and computational time requirements for evolving and/or running bloated programs
are challenging, what was already signaled by authors of the method. They proposed to use a domain-
dependent program simplification procedure. Unfortunately problem of program simplification in
general is NP-hard [44], which in turn makes precise simplification futile for large programs created
by SGM and SGX.

The problem of bloat in SGX and SGM was also addressed by Vanneschi et al. [181], who
formalized an obvious observation that SGM and SGX never modify programs once they have
been created. The idea is to store in an offspring the pointer(s) to parent(s) instead of the entire
parent(s). Thus one instance of parent’s code may be used multiple times in multiple offspring,
their offspring and so on. This, together with caching of parents’ semantics lead to a memory- and
time-efficient implementation of SGM and SGX.

The performance of SGX was compared to other algorithms for geometric semantic crossover
operators (presented in subsequent sections) in our previous work [134], where SGX turns out to
achieve the best results of all compared operators in evolution of Boolean programs, however in
real domain it causes an entire population to converge to a single point in semantic space and in
consequence underperforms.

Despite the challenges discussed above , SGX and SGM found use with success in symbolic
regression, function prediction [31, 32, 33] and classification [193].
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Algorithm 6.10: Locally Geometric Semantic Crossover algorithm. CommonRegion(·, ·) returns set of common
nodes in the given programs, Midpoint(·) is defined by Eq. (6.1), RandomNode(·) and Replace(·, ·, ·) are defined
in Algorithm 3.2, LibrarySearch(·) returns from a library a program as close as possible to the supplied semantics.

1: function LGX(p1, p2)
2: c← CommonRegion(p1, p2)
3: p′1, p

′
2 ← RandomNode(c) :: Select nodes at the same locus in each parent

4: sm ← Midpoint(p′1, p′2)
5: p′ ← LibrarySearch(sD)
6: return Replace(p1, p′1, p′)

6.2.2 Locally geometric semantic crossover
In our previous work [84] we proposed and later deeply investigated [85, 87] the Locally Geometric
Semantic Crossover (LGX) that approximates the geometric recombination of parent programs at
the level of homologously chosen subprograms.

Algorithm 6.10 presents the pseudocode of LGX. Given two parent programs p1, p2 LGX starts
from calculating a syntactic common region of them [140], the tree constructed by simultaneously
descending both parent trees from their roots until reaching nodes of different arities. Intuitively, the
common region is the subset of program nodes that overlaps when program trees are superimposed
on each other. Next, LGX uniformly picks two homologous nodes p′1, p′2 (at the same locus)
in the common region, one in each parent. Then, a desired semantics sD that is semantically
geometric with respect to these subprograms, i.e., a point on the segment s(p′1), s(p′2), is calculated
by domain-dependent Midpoint(·, ·) formula:

sm = (s(p′1) ∧ sx) ∨ (¬sx ∧ s(p′2)) (Boolean domain)
sm = 1

2 (s(p′1) + s(p′2)) (real domain)
(6.1)

where sx is a random semantics, such that the numbers of bits in sm coming from each parent’s
semantic are the same concerning only bits that differ. Next, a library of known programs is
searched for the program p′ that minimizes the semantic distance to sm. Finally, p′ replaces p′1 in
p1, producing so the offspring.

To produce the second offspring, we assume LGX is run with the parents swapped and the same
nodes are picked from the common region.

Eq. (6.1) is intended to calculate the center of the segment between semantics of parents’
subtrees, i.e., a point such that d(s(p′1), sm) = d(sm, s(p′2)). For the Boolean domain and Hamming
distance there may be many points like that, or none at all, depending on the distance d(p′1, p′2) is
even or odd, respectively. For an odd distance, we allow violating the above equality by 1. In the
real domain and for L2 there is exactly one sm that satisfies the equality; for other Lzs there may
be more such points, and Eq. (6.1) produces one of them for any z ≥ 1.

The source of the programs for the library is parameter of the method. It can be the set of all
(sub)programs available in the current population, a precomputed set of programs, or mix of these
two. The way how the library is constructed is not critical, however the number of the programs in
the library increase the costs of searching, which may so become the main computation cost of the
method.

LGX is not a geometric operator in strict sense for two reasons. First, it does not geometrically
recombine parent programs; rather than that, it assumes that geometric recombination performed
at deep parts of parents’ trees would propagate trough program structures to the root, which is
obviously not guaranteed due to, e.g., non-monotonous characteristics of instructions (see [86] for
analysis). Second, in general the library is not guaranteed to contain a program of desired semantics,
and even a slight mismatch between the desired semantics and its best match in the library may
be amplified when propagated to the program tree root.
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Algorithm 6.11: Krawiec & Lichocki Crossover algorithm. c is number of offspring candidates,
MostGeometric(·, ·, ·) is given in Eq. (6.2), TX(·, ·) is defined in Algorithm 3.2.

1: function KLX(p1, p2)
2: Γ← ∅
3: repeat
4: Γ← Γ ∪ { TX(p1, p2) }
5: until |Γ| = c
6: return MostGeometric(Γ, p1, p2)

LGX is not an effective operator, since library search in line 5 of Algorithm 6.10 is allowed to
return a program having the same semantics as s(p′1). Such a program, when put in place of p′1 in
line 6, does not change semantics in any node up on the path to p1’s root.

Experimental analysis in [87] showed that fitness-based performance and generalization ability
of LGX is superior to TX (cf. Section 3.6), homologous one-point crossover [140], and two semantic
crossovers: SAX and SSX (cf. Section 6.1.5). However, the same analysis showed that LGX suffers
from noticeable bloat and significantly higher computation cost than the other operators.

6.2.3 Approximately geometric semantic crossover
Krawiec and Lichocki [83] proposed a KLX operator to approximate geometric crossover in semantic
space that combines principles of trial-and-error and brood selection (see [172]). In the original
paper, the authors considered four variants that share common principles. Below we focus on only
the one that achieved the best performance in that work.

KLX, presented in Algorithm 6.11, runs in a loop an other crossover operator, e.g., TX, and
stores all generated candidate offspring in a set Γ (often called brood in analogous works in EC).
Then KLX selects the candidate that is the closest to being geometric with respect to the parents,
while possibly balancing the distances from them:

MostGeometric(Γ, p1, p2) = arg min
p′∈Γ

(d(p1, p
′) + d(p′, p2)︸ ︷︷ ︸

distance sum

+ |d(p1, p
′)− d(p′, p2)|︸ ︷︷ ︸
penalty

) (6.2)

This formula is composed of two parts. The first of them is the sum of semantic distances between
the parents and the candidate offspring p′. For an offspring lying in the segment between the
parents, that distance is equal to the semantic distance between the parents. The closer s(p′) is to
the segment, the smaller this term. The second term is the penalty for producing an offspring that
is non-equidistant from the parents; for an offspring located in center of the segment, it amounts
to 0.

KLX is not effective operator, since the criterion of offspring selection does not deny candidate
offspring that are semantically equal to any of their parents. This issue was addressed in our
previous work [131], where we proposed to replace the MostGeometric(·, ·, ·) call in Algorithm 6.11
with:

MostGeometric+(Γ, p1, p2) =

MostGeometric(Γ′, p1, p2) Γ′ 6= ∅

MostGeometric(Γ, p1, p2) Γ′ = ∅
where Γ′ = {p′ : p′ ∈ Γ, d(p1, p

′) > ε, d(p′, p2) > ε}

(6.3)

where ε > 0 is a threshold on semantic distance between a candidate and the parent. Eq. (6.3)
discards from the set of candidates those that are semantically equal to any parent, making the
choice of the offspring effective. However if all candidates in Γ are neutral, it falls back to Eq. (6.2),
which is equivalent to a random selection of one of the offspring candidates. KLX augmented with
Eq. (6.3)will be referred to as KLX+ in the following.
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The results presented by Krawiec et al. [83] show that KLX performs as well as TX. This was
later confirmed in our study [134], where we also identified the main cause for it: on a typical
Boolean problem, nearly 90% of offspring produced by KLX are neutral. On the other hand, less
than 0.1% of offspring produced by KLX+ is neutral in an experiment reported in [131], and in
consequence KLX+ indeed performs significantly better than KLX, TX and TX augmented to be
effective.

6.2.4 Geometric crossovers for syntactic metrics
Moraglio et al. in their early works [117, 118] analyzed properties of geometric operators defined
for syntactic metrics of program code. Those studies do not refer to semantics and provide the
equivalents of Definitions 5.6 and 5.7 for a set of programs P using syntactic metrics instead of
semantic ones.

In [117] they proved that TX is not geometric under any metric, and that homologous crossover
[140] is not geometric under any graphic metrics.6 They defined structural Hamming distance
for abstract syntax trees, proved its metric properties and showed that homologous crossover is
geometric under that metric.

In [118] Moraglio et al. carried out a similar analysis for edit-distance and linear programs. They
proved that all homologous crossovers for linear programs are geometric under edit distance and
derived bounds on edit distance between parents and offspring produced by homologous crossover.

6Graphic metric is metric defined for pairs of graphs.





Chapter 7

Competent Algorithms for Geometric
Semantic Genetic Programming

We present general vision followed by precise description of competent algorithms for GP operators
for each stage of evolution: initialization, selection, mutation and crossover that combine features
of effective (cf. Section 4.2) and geometric (cf. Section 5.3) operators.

7.1 The vision
Semantic GP is a relatively recent thread in genetic programming. The studies conducted in this
area usually focus on individual components of evolutionary algorithm, most commonly on variation
operators. Most attention is usually paid to performance (program error), with the other qualities
treated as of secondary importance. Though many of the results delivered in course of such efforts
are valuable, the past research seems a bit fragmented and lacking an overall vision.

In response to that state of affairs, in this thesis we come up with the concept of competent
algorithms for geometric semantic GP. By competent algorithms we mean algorithms implementing
particular operators of evolutionary workflow: initialization, selection, mutation and crossover
operators that:

• Together constitute a complete and consistent algorithmic suite of GP operators (cf. research
goals in Section 1.3),
• Address (possibly all) challenges identified in SGP: particularly neutrality, poor generalization
of programs and bloat (cf. Sections 3.10 and 4.2),
• Take into account possibly many theoretical consequences of the geometric structure of
semantic space (e.g., the conic fitness landscape in Section 5.2),
• Follow GSGP’s definitions from Section 5.3 and directly manipulate a convex hull of a popu-
lation,
• Explicitly decompose big program induction problems into smaller ones,
• Are easily applicable to different domains, e.g., in not making assumptions about the nature
of a domain and programming language of consideration – unlike, e.g., the exact geometric
crossover (cf. Section 6.2.1) that requires the semantic ‘mixing’ of parents to be expressible in
a given programming language,
• And, as a consequence of the above, are robust and solve a wide range of problems quickly,
reliably and accurately (cf. Section 1.4).
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Algorithm 7.1: Competent Initialization algorithm. SDI(·, ·, ·) is defined in Algorithm 6.1.

Require: Φt ⊆ P
1: function CI(P , Φt, Φn)
2: repeat
3: p′ ← SDI(P,Φt,Φn)
4: until s(p′) /∈ C({s(p) : p ∈ P}) :: p′ is not in the convex hull of the population
5: return p′

By designing such competent algorithms and using them together, we hope to substantially boost
the performance of semantic GP methods. We are particularly interested in developing a competent
variant of GSGP where all abovementioned components are competent in the above sense. We begin
from presenting competent algorithms for population initialization and mate selection. Next, we
introduce a helper algorithm for program inversion that is used by competent variation operators
presented in the subsequent sections: mutation and crossover. Then, we discuss the design of the
operators and propose a way to efficiently store and search a library of programs that is used by
the variation operators. Finally, we show how the use of the proposed variation operators influences
fitness landscape.

7.2 Competent Initialization
Algorithm 7.1 presents Competent Initialization (CI). The algorithm is based on semantically driven
initialization (Algorithm 6.1). The key novelty of CI is that it calls SDI in a loop and accepts the
returned program p′ if its semantics s(p′) is not a part of a convex hull of the population being
initialized (as opposed to SDI, which was interested in semantic uniqueness only). In other words,
CI in each call returns a program that expands the convex hull of the population in an attempt to
include the target t in the hull, because as we showed in Theorem 5.9 this is necessary condition for
n ≥ 2-ary geometric variation operators to reach t. CI inherits SDI’s requirement to include all
terminals in the population before calling the CI function for the first time, i.e.,P = Φt

A semantics s(p′) of a new candidate program p′ belongs to the L1-convex hull of the population
if s(p′) can be expressed as a linear combination of semantics present in the population. Let us
arrange the semantics of programs in a population into a matrix, where si,j is value of semantics of
ith program in the population for the jth fitness case. Then, s(p′) belongs to the L1-convex hull of
the population iff system of equations

s1,1 s2,1 · · · s|P |,1
s1,2 s2,2 · · · s|P |,2
...

...
. . .

...
s1,|F | s2,|F | · · · s|P |,|F |



x1

x2
...

x|P |

 = s(p′)

has solution(s) for ∀xi ∈ 〈0, 1〉. This can be verified, e.g., by means of Gaussian elimination [57, Ch
3] or linear programming [187]. The implementation involved in an experiment use the latter one.

For L2-convex hull, an additional equation that ensures the combination is convex has to be
added to that system: ∑

i

xi = 1.

Note that the loop in lines 2 – 4 of Algorithm 7.1 is not guaranteed to halt. SDI may be unable
to produce a program that expands the convex hull of the population. Another possibility is that
the convex hull may already incorporate the entire semantic space, i.e.,C({s(p) : p ∈ P}) = S,
in which case it cannot be further expanded. A natural choice to handle the first case is to limit
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Algorithm 7.2: Competent Tournament Selection algorithm. p is mate parent, µ comes from Definition 2.8,
Random(·) is defined in Algorithm 3.1.

Require: P = {p1, p2, ..., p|P |}
1: function CTS(p,p1,p2,...,p|P |)
2: Γ = ∅
3: repeat
4: Γ← Γ ∪ { Random(P\Γ) }
5: until |Γ| = µ

6: return arg minp′∈Γ

distance to target︷ ︸︸ ︷
d(s(p′), t)
d(p′, p)︸ ︷︷ ︸

distance to mate program

× (1 + |d(s(p′), t)− d(s(p), t)|)︸ ︷︷ ︸
penalty for unequal distances of programs to target

the number of iterations of the loop. Concerning the second case, one needs to verify whether
C({s(p) : p ∈ P}) = S holds, and if that happens, accept any program subsequently created by SDI.

Because all programs initialized by CI come from SDI and SDI is effective in sense of Definition 4.5,
CI is effective too.

CI strives to include the target t in the convex hull by expanding it to cover as much as possible
semantic space. This does not guarantee that t gets included in the convex hull in a certain fixed
number of applications. However, in the limit of population size (and number of applications)
approaching infinity, t gets included in the convex hull. Hence, CI can be considered geometric in
the limit or ∞-geometric (see Definition 5.4).

7.3 Competent Selection
Algorithm 7.2 presents Competent Tournament Selection (CTS), which is a 2-mate selection operator
based on tournament selection (cf. Definition 2.8). CTS is motivated by the desired properties of
geometric selection defined in Definition 5.5. CTS samples uniformly without repetition µ candidate
programs from the population, where µ is tournament size. Next, from the set of candidates it
selects and returns the one that minimizes the formula in line 6.

This formula involves three terms:

• The distance of a candidate p′ to the target t – to be minimized to impose selection pressure
towards better solutions,
• The distance of a candidate p′ to the mate program p – to be maximized to penalize neutral
candidates and ensure effectiveness of selection (cf. Definition 4.6),
• The penalty for selecting a candidate p′ with a different distance to the target t than the
mate program p – to prefer candidates in a certain perimeter of t, i.e., so that when p′ is
selected, t is located close to the center of the convex hull of s(p) and s(p′).

In Figure 7.1, we provide visualizations of the formula for L1, L2, L∞ semantic distances in the
R2 semantic space. The formula attains the minimal value of 0 for the candidate having target
semantics t, which is an effect of bias towards good candidates; infinity for semantics equal to the
mate program s(p); and 2 for semantics equidistant to s(p) and t; and 1/2 for semantics with the
same distance to t as s(p) but on the opposite side of t, i.e., d(p, p′) = 2d(s(p), t).

Due to probabilistic choice of candidates, inclusion of t in the selected programs’ convex hull
cannot be guaranteed and CTS is approximately geometric in the sense of Definition 5.5.

From the other perspective, CTS accepts a neutral candidate iff all the candidates are semantically
equal to p, i.e., when the formula in line 6 is ∞ for all the candidates.
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Figure 7.1: Spatial characteristics of selection formula in CTS under L1, L2, L∞ semantic distances in R2,
t = (0, 0) (denoted by × in plots), mate program semantics s(p) = (−3, 2). White is the minimum of the
formula, dark red is the maximum (in the considered range), black is ∞.

7.4 Semantic Backpropagation for competent
variation operators

Competent variation operators introduced in the subsequent sections require the concept of desired
semantics and a related algorithm. We present them below.

Definition 7.1. A desired semantics is a tuple D of |F | sets Di corresponding to particular
fitness cases in F , where each Di contains the values from a set of program outputs O, i.e.,D =
(D1, D2, ..., D|F |), ∀i=1..|F |Di ⊆ O.

Desired semantics is a generalization of sampling semantics in that it stores multiple values for
each fitness case. Desired semantics D = (D1, D2, ..., D|F |) is a compact equivalent (and implicit
representation) of a set of semantics resulting from the Cartesian product of all Dis, i.e., Πi=1..|F |Di.
For instance, D = ({2, 3}, {1, 7}) is equivalent to the set of four semantics {(2, 1), (2, 7), (3, 1), (3, 7)}.
A single semantics s is equivalent to a desired semantics, where each Di contains corresponding
component of s, i.e., ∀i=1..|F |Di = {si}. In the following, the transformations of semantics from/to
desired semantics are implicit. Note that Dis are allowed to be empty, which will come in handy in
the following.

We term this formal object desired semantics because in the following it will express a set of
expected/preferred behaviors of a program.

We say that a desired semantics D is matched by a program p if semantics s(p) is in the set of
sampling semantics represented by D, i.e., s(p) ∈ Πi=1..|F |Di.

To proceed, we need to extend Definition 4.4 of semantic distance for desired semantics. Let D1

and D2 be desired semantics. Then the distance dD(·, ·) between them is:

dD(D1, D2) = min
s1∈Πj∈JD1

j
, s2∈Πj∈JD2

j

d(s1, s2) (7.1)

J = {i = 1..|F | : D1
i 6= ∅ ∧D2

i 6= ∅}.

dD is thus the minimal distance between all pairs of sampling semantics defined by D1 and D2,
where D1

i and D2
i are omitted from the Cartesian product for each i, where D1

i or D2
i is empty.

If all D1
i and D2

i are omitted, the semantic distance is unknown. For D1 and D2 representing
a single semantics, dD(·, ·) ≡ d(·, ·), hence we drop subscript D in dD and implicitly use the adequate
formula in the following.
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Algorithm 7.3: Semantic Backpropagation algorithm. D is desired semantics of program p, r is the node in p
to calculate desired semantic for. Child(a, r) returns the child of node a on the path from a to r and Pos(a, r)
returns the child’s position in the list of arguments of a. Invert(a, k, o) is defined in Table 7.1. D is entire
domain, e.g.,R or B = {0, 1} for real or Boolean domains, respectively.

1: function SemanticBackpropagation(D, p, r)
2: foreach Di ∈ D do :: For each fitness case
3: a← p
4: while a 6= r ∧Di 6= ∅ ∧Di 6= D do
5: k ← Pos(a, r)
6: D′i ← ∅
7: foreach o ∈ Di do
8: D′i ← D′i ∪ Invert(a, k, o)
9: Di ← D′i
10: a← Child(a, r)
11: return D

×
—

×
x 1 x —

x 2

-1 0 1

-2 0 0

3 1 1

1 2 3

1 2 3

1 2 3 1 1 1

1 2 3

2 2 2

-1 0 3

2 2 0 3 2 3

c1=

D (2)=c1-D (1)

D(1)=

c2=

D(3)=D(2)/c2

1 2 3
1 2 3

Original semantics
Desired semantics (backpropagated)
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the desired semantics

is calculated

Desired semantics D
 of entire program

Figure 7.2: Example of semantic backpropagation. A desired semantics of entire program (blue dotted one) is
propagated backwards through the path to the designated (blue) node. Black vectors are current semantics of
respective subprograms.

Desired semantics is the key formalism used by Semantic Backpropagation presented in Algo-
rithm 7.3. Semantic backpropagation was first introduced independently in [86] and [186], then
unified and augmented in our joint study [133]. The goal of semantic backpropagation is to deter-
mine, given the desired semantics of a given program and the designated node r in this program, the
desired semantics D for r such that, when a subprogram matching D replaces r, the entire program
will match the program’s desired semantics. The rules of conduct of semantic backpropagation are
based on the idea of inversion of program execution.

Semantic backpropagation traverses, for each fitness case separately, the path of program nodes
(instructions) from the root node to the designated node r. In each node a, where the desired
output is o, semantic backpropagation inverts the execution of a w.r.t. the next node c1 in the
path toward r. Technically, an argument of a is calculated using inverted instruction a−1 for which
a returns o, i.e., o = a(c1, c2, ..., cn) =⇒ c1 = a−1(o, c2, ...cn), where cis are outputs returned by
children nodes. The algorithm terminates when r is reached.

An exemplary run of semantic backpropagation is presented in Figure 7.2. The input to the
algorithm is desired semantics D(1) = ({−2}, {0}, {0}), program p = x× 1− x× (x− 2), and the
node r for which the desired semantics is to be calculated. The first component of the semantics
(−2) is propagated to the right child of root node ‘−’ by executing inverted instruction 3 = 1− (−2),
where 1 is the first component of semantics of the left child. Next, 3 is propagated trough ‘×’
node to its right child by executing 3 = 3/1. Finally, 3 becomes the first component of the desired
semantics for r. These steps are repeated for each fitness case.



Table 7.1: Definition of Invert(a, k, o) for real and Boolean domains. For a subprogram a (an instruction
node with one or two children that returned c1 and c2) the formulas determine the desired value for the first
(k = 1, center column) and the second (k = 2, right column) argument, given the desired value o of the whole
subprogram a. For clarity we omitted set symbols where there is only a one value.

Subprogram a Invert(a, 1, o) Invert(a, 2, o)
Real domain

c1 + c2 o− c2 o− c1
c1 − c2 o+ c2 c1 − o

c1 × c2


o/c2 c2 6= 0
R c2 = 0 ∧ o = 0
∅ c2 = 0 ∧ o 6= 0


o/c1 c1 6= 0
R c1 = 0 ∧ o = 0
∅ c1 = 0 ∧ o 6= 0

c1/c2


o× c2 c2 6= ±∞
R c2 = ±∞∧ o = 0
∅ c2 = ±∞∧ o 6= 0


c1/o c1 6= 0
R c1 = 0 ∧ o = 0
∅ c1 = 0 ∧ o 6= 0

exp(c1)
{

log o o ≥ 0
∅ otherwise

—

log |c1| {−eo, eo} —

sin c1

{
{arcsin o− 2π, arcsin o} |o| ≤ 1
∅ otherwise

—

cos c1

{
{arccos o− 2π, arccos o} |o| ≤ 1
∅ otherwise

—

Boolean domain
not c1 not o —

c1 and c2


o c2

B not c2 and not o
∅ not c2 and o


o c1

B not c1 and not o
∅ not c1 and o

c1 or c2


o not c2
B c2 and o
∅ c2 and not o


o not c1
B c1 and o
∅ c1 and not o

c1 nand c2


not o c2

B not c2 and o
∅ not c2 and not o


not o c1

B not c1 and o
∅ not c1 and not o

c1 nor c2


not o not c2
B c2 and not o
∅ c2 and o


not o not c1
B c1 and not o
∅ c1 and o

c1 xor c2 c2 xor o c1 xor o
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Algorithm 7.4: Competent Mutation algorithm. t is target, p is parent. OracleGet(D,Dø) returns a program
that matches D and does not match Dø, RandomNode(·) and Replace(·, ·, ·) are defined in Algorithm 3.2,
SemanticBackpropagation(·, ·, ·) comes from Algorithm 7.3.

1: function CM(t, p)
2: a← RandomNode(p)
3: D ← SemanticBackpropagation(t, p, a)
4: Dø ← SemanticBackpropagation(s(p), p, a)
5: p′ ← OracleGet(D,Dø)
6: return Replace(p, a, p′)

Invert(a, k, o) performs an inversion of a single instruction a, with respect to its kth child
node and the desired output o. This procedure is domain-dependent. In Table 7.1 we present
the definition of this function for commonly used instructions in the real and Boolean domains.
In general there are four cases that have to handled by Invert(a, k, o).

• The instruction a is bijection, i.e., one-to-one correspondence. In this case the instruction
is fully invertible and desired value of the instruction’s argument can be unambiguously
determined depending on the output and other arguments, thus Invert(·, ·, ·) returns a single
value. Examples of instructions are addition, subtraction, negation and exclusive or.
• a is non-injective instruction. Instructions like that map many input values to the same

output, hence their inversion is ambiguous. There may be finite or infinite number of possible
inversions. For instance, absolute value | · | results the same output when supplied with two
opposite inputs, however sin(x) has infinite number of inversions in form arcsin(o + 2kπ),
where k ∈ Z.
• Other kind of ambiguity comes from instruction arguments that have no impact on the

instruction’s output. Examples are multiplication by 0 and Boolean ‘and’ with 0, where the
value of the second argument does not matter. In this case Invert(·, ·, ·) returns the entire
domain D, e.g.,R for real domain instructions or B for the Boolean ones.
• a is a non-surjective instruction. This is the case, where exist values in the instruction’s
codomain that cannot be produced by that instruction for any input from its domain.
If such a value is requested for the instruction’s output, the inversion results in inconsistence.
Invert(·, ·, ·) handles this situation by returning ∅.

It should be clear by now that instruction inversion is contextual: it depends on the value of the
requested output and the values of other arguments, which in turn depend on the other parts of the
program (in the sibling nodes of the nodes in the considered path). Hence, all above mentioned cases
may co-occur in the same instruction, for different values from instruction’s domain and codomain.

7.5 Competent Mutation
In Algorithm 7.4 we present Competent Mutation (CM), the algorithm inspired by Random Desired
Operator (RDO) [133, 186, 185]. Both CM and RDO are based on ideas of program inversion and
geometric mutation (cf. Definition 5.6). The main difference between them is that CM is effective
operator, while RDO is not.

Given one parent p and the target t, CM starts with picking a random node a in p. Then, it calls
SemanticBackpropagation(t, p, a), i.e., uses semantic backpropagation to propagate t to a resulting
in desired semantics D. Next, semantic backpropagation is called again to propagate p’s semantics
s(p) to a, resulting in forbidden semantics Dø, i.e., semantics that when put in a would result in
no change of s(p) (technically D and Dø are the same structures). Then, an oracle is queried for
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(sub)program p′ that matches D and does not match Dø. Finally, p′ replaces a in p to create an
offspring.

Oracle is a component that returns a program that meets the constraints imposed by D while
not meeting the constraints specified by Dø. In general, this requires solving a separate program
induction problem as specified in Section 3.3, the only difference being that the problem is this
time defined by desired semantics rather than sampling semantics. In this sense, this approach
involves problem decomposition and defines a ‘local’ subproblem, as declared in Section 7.1. There
are several motivations for which we expect solving such subproblems to be easy. It is reasonable
to assume that computational cost of solving program induction problem monotonically increases
w.r.t. program size. Also, desired semantics represents a set of semantics, not just a single target,
and finding a program with semantics in such a set should be in general easier than finding a program
with a specific semantics. These observations lead to hypothesis that the problem to be solved by
the oracle is on average easier than the original program induction problem, in particular that there
are more programs solving such a problem and they are shorter than for the original problem.

Technically, the oracle can be realized by performing a separate GP, or searching a library of
known programs. The first option is computationally demanding. On the other hand, library-based
approach constitutes fair trade-off between computational costs and quality of the result. Note
that none of the options guarantees solving the problem optimally, i.e., the program returned by
the oracle is not guaranteed to meet the constraints specified by D. Details of the library-based
approach chosen for use in experiment are presented in Section 7.7.

Given a perfect oracle and desired semantics D, where ∀i=1..|F |Di 6= ∅, CM is r-geometric, where
r = d(s(p), t). However, because the oracle is not guaranteed to return a program that matches the
constraints, CM is expected to produce offspring in distance close to d(s(p), t), where the divergence
from that value is related to an error conducted by the oracle.

Because the oracle returns a program that is not guaranteed to perfectly match D, such
a program may cause CM to produce neutral offspring. For this reason we supply the oracle with
forbidden semantics Dø and so that programs that match Dø can be ignored (and never returned
by it). Given technical realization of the oracle perfectly discards all programs matching Dø, CM
is unable to produce neutral offspring, thus CM is effective.

Note that current semantics s(a) of node a cannot be used in place of forbidden semantics Dø,
because there may be more semantics (different to s(a)) that when put in a may result in the same
semantics s(p) of the entire program p. In turn by backpropagating current semantics s(p) of parent
p to a, Dø is obtained that represents all semantics that when put in ado not change s(p).

7.6 Competent Crossover

Algorithm 7.5 presents Competent Crossover (CX), an operator based on our previously published
operator Approximately Geometric Semantic Crossover (AGX) [133, 86]. Both CX and AGX
are approximately geometric, but CX is also effective as formalized in Definitions 5.7 and 4.7,
respectively.

The main idea behind CX is to calculate the midpoint between semantics of parents p1 and
p2, using the domain-dependent Eq. (6.1) — the same formula as for LGX, hence the respective
discussion applies. Next, a node a is picked from p1 and the midpoint semantics is backpropagated
in p1 to a, resulting in desired semantics D. Then, the current semantics of p1 and p2 are
backpropagated to a, which we denote by D1

ø and D2
ø, respectively, and treat as forbidden

semantics. Next, an oracle is queried for program p′ that matches D and does not match both D1
ø

and D2
ø. Finally, p′ replaces the subprogram rooted at a in p1, producing the offspring. The second

offspring can be created by swapping parents.
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Algorithm 7.5: Competent Crossover algorithm. p1, p2 are parents. Midpoint(·, ·) is defined in Eq. (6.1),
RandomNode(·) and Replace(·, ·, ·) are defined in Algorithm 3.2, SemanticBackpropagation(·, ·, ·) in Algo-
rithm 7.3, OracleGet(·, ·) in Algorithm 7.4.

1: function CX(p1, p2)
2: sm ← Midpoint(p1, p2)
3: a← RandomNode(p1)
4: D ← SemanticBackpropagation(sm, p1, a)
5: D1

ø ← SemanticBackpropagation(s(p1), p1, a)
6: D2

ø ← SemanticBackpropagation(s(p2), p1, a)
7: p′ ← OracleGet(D,D1

ø, D
2
ø)

8: return Replace(p1, a, p
′)

CX, similarly to CM, decomposes the original program induction problem and solves the new
one using an oracle. For consistency, we use for CX the same technical realization of the oracle as
for CM, detailed in Section 7.7.

Given a perfect oracle and desired semantics D, where ∀i=1..|F |Di 6= ∅, CX is geometric crossover,
i.e., it is guaranteed to produce offspring, whose semantics lies in the midpoint of the segment
between parents. However the imperfect match of desired semantics and the program returned by
the technical realization of the oracle leads to an approximately geometric result of application.

The oracle in CX, like in CM, is supplied with forbidden semantics of parents to protect the
oracle from returning a program that results in a neutral offspring.

7.7 Implementing oracle by library search
We technically realize the oracle by searching a library of prepared in advance programs for the
one with semantics as close as possible to the given desired semantics D and not matching the
forbidden semantics Dø. Formally,

LibrarySearch(D,D1
ø, D

2
ø, ...) = arg min

p∈L′
d(s(p), D) (7.2)

L′ = {p : p ∈ L, d(s(p), D1
ø) ≥ ε, d(s(p), D2

ø) ≥ ε, ...} (7.3)

where L ⊆ P is a library, D is desired semantics, D1
ø, D

2
ø, ... are forbidden semantics, ε ≥ 0 is

similarity threshold. For the Boolean domain ε = 1, for the real one ε is a small value that represents
arithmetic precision in a particular system. Setting ε = 0 disables verification of forbidden semantics.

To provide even closer match of D, we define a function that calculates a constant program
that minimize error w.r.t. D and does not match D1

ø, D
2
ø, ...:

OptimalConstant(D,D1
ø, D

2
ø, ...) = arg min

c∈D′
d([c], D) (7.4)

D′ = {c : c ∈ D, d([c], D1
ø) ≥ ε, d([c], D2

ø) ≥ ε, ...}

where [c] is semantics of the constant program that returns c for each input, D is domain. Note
that c calculated this way may not be available in the given instruction set and an appropriate
instruction may need to be synthesized on demand.

Finally we combine LibrarySearch with OptimalConstant into the oracle that returns a program
from L or the optimal constant depending on which one provides a closer match:

OracleGet(D,D1
ø, D

2
ø, ...) = arg min

p∈{LibrarySearch(D,D1
ø,D

2
ø,...),OptimalConstant(D,D1

ø,D
2
ø,...)}

d(s(p), D).
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Equation (7.2) refers to semantic distance from Eq. (7.1) that in turn involves Cartesian product
of components of desired semantics. This suggest that to calculate d(D1, D2), all combinations
of components of desired semantics D1 and D2 must be enumerated, which may be a subject for
combinatorial explosion. Below we show that for Lz metrics, Eq. (7.2) can be calculated efficiently.

First, in Eq. (7.5) we expand Eq. (7.2) by substituting d with Lz metric. Since raising to the
power of 1

z is monotonous, we can move it outside inner min term in Eq. (7.6) and drop in Eq. (7.7),
because it does not change the result of arg min. Minimum of sums in Eq. (7.7) is equal to minimum
of sums of minimums in Eq. (7.8). Because each sum in Eq. (7.8) is equal, we drop the minimum in
Eq. (7.9).

arg min
p∈L′

min
s∈ΠiDi

 |F |∑
j=1
|sj(p)− sj |z

 1
z

(7.5)

= arg min
p∈L′

 min
s∈ΠiDi

|F |∑
j=1
|sj(p)− sj |z

 1
z

(7.6)

= arg min
p∈L′

min
s∈ΠiDi

|F |∑
j=1
|sj(p)− sj |z (7.7)

= arg min
p∈L′

min
s∈ΠiDi

|F |∑
j=1

min
sk∈Dj

|sj(p)− sk|z (7.8)

= arg min
p∈L′

|F |∑
j=1

min
sk∈Dj

|sj(p)− sk|z (7.9)

The final formula proves that the choice of the optimal sks from components Di of desired
semantics D can be done for each fitness case separately, hence the calculation of Cartesian product
of Dis is superfluous.

An analogous result can be shown for semantic distances in definition of L′ in Eq. (7.3). First, we
substitute D1 = s(p), D2 = Dø and Eq. (7.1) with Lz metric for d(·, ·), which results in Eq. (7.10).
Then we carry out similar transformations to the above, resulting in Eq. (7.11).

min
s∈ΠiDi

 |F |∑
j=1
|sj(p)− sj |z

 1
z

≥ ε (7.10)

|F |∑
j=1

min
sk∈Dj

|sj(p)− sk|z ≥ εz (7.11)

Assuming that technically Dis are sorted, Eq. (7.9) can be calculated in O(|L| · |F | · log |Di|).

Similarly we show how to efficiently calculate an optimal constant from Eq. (7.4). An analogous
transformation for Eq. (7.4) results in Eq. (7.12). Since Dis in Eq. (7.12) define their own marginal
distance functions without maximums, and with minimums in points from Dis, i.e., the points
where |c− si|z = 0, their sum cannot have minimums in points lower than the minimum and higher
than the maximum point in

⋃
Di∈D

Di, hence we narrow the domain of c in Eq. (7.13).

arg min
c∈D′

∑
Di∈D

min
si∈Di

|c− si|z (7.12)
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= arg min
c∈D′′

∑
Di∈D

min
si∈Di

|c− si|z (7.13)

D′′ = {c : c ∈ D′, min
⋃

Dk∈D
Dk ≤ c ≤ max

⋃
Dk∈D

Dk}

Equation (7.13) for L1 (z = 1) boils down to Eq. (7.14). The term under summation in Eq. (7.14)
is piecewise linear function with roots in Di and no plateaus. Since the sum of piecewise linear
functions is also piecewise linear function, the sum has minima, in the same points where the
summed functions, i.e.,

⋃
Dk∈D

Dk. Thus we narrow the set of c values in Eq. (7.15).

arg min
c∈D′′

∑
Di∈D

min
si∈Di

|c− si| (7.14)

= arg min
c∈D′′∩

⋃
Dk∈D

Dk

∑
Di∈D

min
si∈Di

|c− si| (7.15)

Given Dis are sorted, Eq. (7.15) can be calculated in O(|F |2 · |Di| · log |Di|) time.
Unfortunately for z 6= 1, the function is non-linear and the whole set D′′ is supposed to be

searched. For Boolean domain the search can be efficiently conducted, since there are only two
values to verify, i.e., {0, 1}. However for real domain a kind of numerical optimization method may
be required to solve this problem optimally.

The source of programs for the library can be arbitrary. In [133] we studied two types of libraries:
dynamic library built from all (sub)programs found in the current population, and static library
created from programs precomputed prior to the evolutionary run. The main advantage of static
library is the cost of creating library to be borne once, since the library can be reused multiple times.
In contrary dynamic library has to be built every generation. On the other hand, dynamic library
is able to adapt to changing state of evolution, while the static one is immutable. Our previous
research confirmed an expected result that from the perspective of fitness-based performance of
AGX and RDO, it does not matter how the library is created, but how many distinct semantics are
represented by programs inside. We hypothesize that the same conclusion applies CX and CM,
since they are effective derivations of AGX and RDO, respectively.

7.8 Discussion on applicability of the operators
CTS requires the knowledge on the target t. This is not a common requirement, since most of
selection operators found in literature do not require access to t.

CM requires access to t too. For both CTS and CM this drawback can be worked around,
e.g., by substituting t supplied as argument with an artificially synthesized surrogate target.

On the other hand, CX constructs a surrogate target of recombination using semantics of parents.
CX does not require any information on target t of the program induction problem. This may be
considered as an advantage of CX over CM, and paves the way for using CX in problems, where
CM cannot be used. For instance, in a scenario, where fitness function is evaluated by an external
system or a simulator, in which the target is hidden.

7.9 Fitness landscape and program inversion
However fitness landscape seen by GSGP is a cone (see Section 5.2), the search performed by the
oracle in CM and CX operators does not benefit from this fact. This is because the conic shape of
the fitness landscape is transformed by semantic backpropagation in a non-linear way caused by
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Figure 7.3: Transformation of L2-fitness landscape for two fitness cases and target t = (0, 0) when inverting
program cos(sin x). Plots present fitness of the entire program depending on semantics of its parts. Crosses
mark fitness 0.

(unrestricted) characteristics of instructions on the backpropagation path. The single target of the
original fitness landscape may be duplicated or vanish at all depending on approached instructions,
current semantics of the program and the original target.

Figure 7.3a visualizes L2-fitness landscape for two fitness cases and target t = (0, 0). Given
a program cos(sin x), semantic backpropagation inverts it instruction by instruction. Figure 7.3b
shows fitness landscape after inverting the root cos(·) node, i.e., fitness of cos(·) program in function
of semantics of its argument. Target t is replicated here infinite times due to periodicity of cos(·)
and new targets take form of (π/2 + kπ, π/2 + kπ), k ∈ Z. Hence the oracle when queried for
a replacement for cos(·) argument may return a program matching any of these new targets to
result in semantics t of the entire program. Next, when backpropagation descends to the sin(·) node
the fitness landscape is transformed again, which we visualize in Figure 7.3c. This time, however,
all targets vanish, since there is no real argument for which cos(sin(·)) outputs 0. In general target
vanishes if semantic backpropagation returns ∅ for any Di in desired semantics. In this situation
the oracle cannot return a program that causes semantics t of the entire program, however we
argument that the fitness of the entire program still can be improved unless all Dis are ∅. This
is the reason why we discard empty sets in Eq. (7.1) for semantic distance, allowing thus library
search to operate.

There are two crucial conclusions of the above example. First, the number of replicated targets
may grow exponentially in length of the backpropagation path. However desired semantics is
designed to handle this situation in the memory-efficient way. For instance 16 targets seen in
Figure 7.3b are stored using 8 values: D = ({−3π/2,−π/2, π/2, 3π/2}, {−3π/2,−π/2, π/2, 3π/2}). Second,
transformation of the fitness landscape causes non-linear relation between semantic distances
calculated inside program and for entire programs. Hence, even a little mismatch between desired
semantics and the semantics of the program returned by the oracle may be amplified when measured
for the entire program. On the other hand, a high distance measured inside program, may be
alleviated for the entire program.



Chapter 8

Design of experiments

This chapter is devoted to present general insight on design of experiments. First, we formulate
research questions. Then, we present benchmark problems and the parameters of evolution that
are fixed across experiments. Finally, we introduce technical tools and statistical framework to
carry out the experiments and analyze the outcomes. The actual experiments will be presented in
subsequent chapters.

8.1 Research questions
We want to experimentally evaluate characteristics of competent algorithms presented in Chapter 7
on a broad suite of benchmark problems and in comparison to selected reference algorithms.
We analyze the impact and characteristics of initialization, selection, mutation and crossover in
separate experiments. Then, we verify how the particular combinations of the parts act together
and determine the optimal proportions of mutation and crossover.

More specifically, we execute this experimental plan by answering five questions.

Question 1

Does CI provide more semantically diverse and geometric populations than canonical RHH (cf. Sec-
tion 3.4) and effective non-geometric SDI (cf. Algorithm 6.1)? We answer this question in Section 9.1.

Question 2

Is the probability of selecting geometric and effective parents higher for CTS than for traditional
TS (cf. Definition 2.8) and non-geometric STS (cf. Algorithm 6.3)? The corresponding experiment
is presented in Section 9.2.

Question 3

Are the key characteristics of CM (training and test-set fitness, effectiveness, programs size,
time-requirements) better than those of the canonical TM’s (cf. Algorithm 3.3), effective SDM’s
(cf. Algorithm 6.4) and exact geometric SGM’s (cf. Section 6.2.1)? Does the use of CI in place of
RHH influences the characteristics of CM? We answer this question in Section 9.3.

Question 4

Are the key characteristics of CX (training and test-set fitness, effectiveness, geometry, programs
size, time-requirements) better than those of the canonical TX’s (cf. Algorithm 3.2), effective SDX’s
(cf. Algorithm 6.6) and exact geometric SGX’s (cf. Section 6.2.1)? Does the use of CI and CTS
influences characteristics of CX? The corresponding experiment is carried out in Section 9.4.
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Table 8.1: Benchmark problems. In single-variable symbolic regression 20 Chebyshev nodes and 20 uniformly
picked points in the given range are used for training- and test-sets, respectively. For two-variable these numbers
amount to 10 for each variable and Cartesian product of them constitutes F . In Boolean domain training-set
incorporates all inputs and there is no test-set.

Symbolic regression benchmarks
Problem Definition (formula) Variables Range |F |
R1 (x1 + 1)3/(x2

1 − x1 + 1) 1 〈−1, 1〉 20
R2 (x5

1 − 3x3
1 + 1)/(x2

1 + 1) 1 〈−1, 1〉 20
R3 (x6

1 + x5
1)/(x4

1 + x3
1 + x2

1 + x1 + 1) 1 〈−1, 1〉 20
Kj1 0.3x1 sin(2πx1) 1 〈−1, 1〉 20
Kj4 x3

1e
−x1 cos(x1) sin(x1)(sin2(x1) cos(x1)− 1) 1 〈0, 10〉 20

Ng9 sin(x1) + sin(x2
2) 2 〈0, 1〉2 100

Ng12 x4
1 − x3

1 + x2
2

2 − x2 2 〈0, 1〉2 100
Pg-1 1/(1 + x−4

1 ) + 1/(1 + x−4
2 ) 2 〈−5, 5〉2 100

Vl1 e−(x1−1)2
/(1.2 + (x2 − 2.5)2) 2 〈0, 6〉2 100

Boolean benchmarks
Problem Instance Variables |F |

Even parity
Par5 5 32
Par6 6 64
Par7 7 128

Multiplexer Mux6 6 64
Mux11 11 2048

Majority Maj7 7 64
Maj8 8 128

Comparator Cmp6 6 64
Cmp8 8 256

Question 5

Does the combination of CX and CM lead to smaller training and test errors, smaller programs,
or less time-requirements? What are the optimal proportions of CX and CM? The experiment is
presented in Chapter 10.

8.2 Benchmark problems
We conduct our experiments using symbolic regression and Boolean function synthesis problems of
quite different characteristics to determine which observations generalize across problem domain
boundaries, and which not.

The aim of symbolic regression problem is to induce a function that minimizes the total
approximation error. It differs from typical regression problem in that, there is no a priori given
model given to be tuned, but the model is to be expressed with a set of available arithmetic
instructions and elementary functions. In other words, symbolic regression is model-free regression,
and its formulation exactly matches our definition of program synthesis task as formulated in
Section 3.3.

We employ nine symbolic regression benchmarks taken from [106] and [134], listed in Table 8.1.
There are five univariate problems, three rational functions, one trigonometric function and one
mixed trigonometric-exponential function. There are four bivariate problems, one trigonometric, one
polynomial, one rational and one mixed exponential-rational function. GP may produce virtually
any function, including polynomial.
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For polynomial interpolation, a Runge’s phenomenon [151] may occur, a problem of oscillation
of the model at the ends of the interpolating range. We employ a common workaround to protect
from Runge’s phenomenon by choosing Chebyshev nodes [28, Ch 8]:

xk = 1
2(a+ b) + 1

2(b− a) cos
(

2k − 1
2n π

)
, k = 1..n

as values for independent variables in the training-set. For the univariate problems, we calculate
n = 20 Chebyshev nodes in the range 〈a, b〉 indicated in Table 8.1, for bivariate problems, we
calculate n = 10 Chebyshev nodes in that range for each variable, next combine them using
Cartesian product. For test-set we pick uniformly 20 or 10 values from that range, respectively for
one- and two-variable problems. Note that this procedure is in general not applicable to real-world
problems, where the data is given ‘as-is’ and there is no control on the choice of arguments of
regressed function.

In Boolean function synthesis problems, a set of fitness cases incorporates all combinations of
inputs, i.e., complete knowledge on desired program behavior, hence there are 2v training fitness
cases, where v is the number of input variables. For the same reason, there is no test-set. The
benchmarks presented in Table 8.1 come from [106] and are divided into four groups. In even parity
problems the goal is to return 1 if the number of input variables set to 1 is even, otherwise 0. In
multiplexer, the first n inputs determine which of the remaining 2n inputs should be copied to
program output. The total number of input variables in these problems is thus constrained by
v = n+ 2n, n ∈ Z. In majority, the aim is to return 1 if more than a half of inputs is 1, otherwise 0.
In comparator problem v input variables are divided in two groups of v/2 variables, which encode
two integers. The aim is to return 1 if the first number is greater than the second, otherwise 0.

8.3 Parameter setup
Table 8.2 presents the setting of parameters of GP used in experiments. The upper part of the
table groups the generic parameters of evolutionary search, while the lower one the parameters
specific for particular components (initialization, selection, mutation, crossover). Parameters not
presented there are set to ECJ’s defaults [101]. The presented parameters were tuned in preliminary
experiments.

A justification is required for the choice of fitness functions and semantic distances. For
symbolic regression L2, metric is actually a scaled root mean square error, which is a common error
measure used in regression problems. Analogously, L1 metric is equivalent to Hamming metric
for Boolean problems, which is a typical measure of error in Boolean domain. Given these fitness
functions, the natural choice of semantic distance metrics comes from the rationale presented in
Section 5.5. We use L2 semantic distance for symbolic regression, since under this metric geometric
crossover has the weak property of progress (cf. Definition 5.10), and the strong property of progress
(cf. Definition5.12) for parents of the same fitness. For Boolean domain we use L1 semantic distance
that does not provide the above properties, because of the discrete nature of Boolean space. That
is, a segment between two distinct points in Boolean space under Lz metrics other than L1 contains
only these two points. Therefore for Boolean domain the crossover can be simultaneously geometric
and effective only for L1 semantic distance.

Invert(a, k, o) function from Table 7.1 if there are more than one inversions of o available, returns
at most two representative values, e.g., one positive and one negative for trigonometric functions.
We did this to prevent semantic backpropagation from combinatorial explosion.

The optimal constant in Eq. (7.4) is calculated using formula

arg min
c∈(
⋃
Dk∈D

Dk)

∑
Di∈D

min
si∈Di

|c− si|z (8.1)
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Table 8.2: Parameters of evolution.

Generic parameters Symbolic regression Boolean domain
Number of runs 30
Fitness function L2 metric L1 metric
Semantic distance L2 metric L1 metric
Similarity threshold on
semantic distance

2−52 ≈ 2.22× 10−16 1

Population size 1000
Termination condition At most 100 generations or find of a program with fitness 0
Instructions Φ x1, x2, +, −, ×, /, sin, cos,

exp, log, ERCa
x1, x2, ..., x11,b and, or,
nand, nor, ERC

Algorithm-specific parameters
RHH,
SDI, CI

Max initial tree height 6

RHH Syntactic duplicate retries 10
SDI Semantic duplicate retries 10
CI Convex hull expansion

retries
10

TS, STS,
CTS

Tournament size µ 7

CM, CX Library Dynamic library composed of all subprograms in the
current population

SGM,
SGX

Random tree px source ERC in range 〈0, 1〉 Grow with tree height in
range 〈1, 3〉

SDM,
SDX

Neutral offspring retries 10

alog is defined as log |x|; / returns 0 if divisor is 0.
bThe number of inputs depends on a particular problem instance

that restricts the range of constants to be verified in Eq. (7.13) to values that exist in components
Dks of desired semantics D. The formula can be efficiently calculated in O(|F |2|Di| · log |Di|) time,
however may result in a suboptimal constant in symbolic regression (in Boolean domain the formula
is optimal).

The similarity thresholds in Table 8.2 are the minimal distances between semantics to consider
them distinct, respectively to the domains, e.g., in real domain the threshold equals to difference
between two subsequent floating point numbers, where one of them is 1, in Boolean domain the
threshold comes from distance between two semantics that differ in just one bit. We use these
thresholds in comparisons of semantics involved in the considered algorithms and to provide statistics
of effectiveness and neutrality.

The set of instructions Φ used by GP is domain-dependent. To satisfy its closure property
(cf. Definition 3.2) for symbolic regression we use protected versions of logarithm and division.
Protected logarithm returns the logarithm of the absolute value of its argument, i.e., log |x|, while
division returns 0 for divisor equal to zero. Our choice of this particular way of protecting division
comes from [168], where this form of protection led to the smallest training-set errors of produced
programs.

Instruction sets include Ephemeral Random Constants (ERCs). For symbolic regression, ERCs
are random constants in range 〈−1, 1〉 or for operators that are supported by a library, the constants
returned by Eq. (8.1). In Boolean domain, to maintain consistency with the symbolic regression
one, we use set of constants {0, 1}.

Instruction sets are sufficient to express an optimal solution for each problem (cf. Definition 3.4).
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Ci︸ ︷︷ ︸
initialization

Cts︸ ︷︷ ︸
selection

Cx75︸ ︷︷ ︸
crossover

Cm︸ ︷︷ ︸
mutation

Figure 8.1: An exemplary configuration encoded using the naming convention for experimental setups. The
configuration employs competent initialization, competent tournament selection implicitly accompanied with
tournament selection, competent crossover applied with probability 75% and competent mutation applied with
probability 100%− 75% = 25%.

We employ the naming convention presented in Figure 8.1 to succinctly identify experimental
configurations. The name of each configuration consists of four components:

• The name of initialization operator,
• The name of selection operator,
• The name of crossover operator, optionally followed by its probability Pr(X),
• The name of mutation operator, applied with probability Pr(M) = 1− Pr(X) (cf. breeding
pipeline, Section 3.8).

Probability is omitted if there is only one variation operator. Mate selection algorithms are
accompanied with tournament selection, which is implicit in the name.

8.4 Experimental tools
We implemented all compared algorithms in a unified environment of Evolutionary Computation in
Java (ECJ) software suite [101]. We use Java 1.8 and Linux running in x64 mode on Intel Core
i7-950 processor and 6GB DDR3 RAM. The CPU times obtained in this setup exclude calculation
of statistics.

The results were subject to thorough statistical analysis. For each statistical aggregate,
e.g., average, median, fraction or correlation, we provide corresponding 95% confidence intervals.

Each time we present results in a plot of an aggregate over generations, to calculate the aggregate
in generations where some of the runs terminated (e.g., found the optimum earlier), we use a value
from the generation where the optimum has been found.

Each time we present results in tabular form, we rank the algorithms on each benchmark problem
independently and present also the average ranks. Significance of differences between algorithms is
determined by means of Friedman’s test for multiple achievements of multiple subjects (Friedman’s
test for short) [78], a non-parametric test suitable for a wide range of statistical aggregates. In
case a null hypothesis of a Friedman’s test is rejected, i.e., the outcome (a.k.a. achievements in
this context) of at least one algorithm is statistically different than at least one other algorithm,
we conduct a post-hoc analysis using symmetry test[68] to determine the pairs of algorithms of
different achievements.

To measure association between numeric variables we use Pearson’s correlation coefficient [135],
and for ordinal variables Spearman’s rank correlation [161]. In both cases, we use t-test to determine
the significance of correlation [78]. For nominal variables we use χ2 test for independence [78]
together with Cramér’s V to express the strength of association in range 〈0, 1〉 independently on
sample size [39].





Chapter 9

Evaluation of Competent Algorithms
for operators in isolation

In this chapter we analyze competent algorithms for the operators proposed in Chapter 7 and
compare them with the existing canonical and semantic analogs. We consider initializations,
selections, mutations and crossovers separately to reveal their features, unaffected to the possible
extent by interactions with the other components of GP workflow. The chapter consists of four
separate experiments, presenting analysis of performance, distribution of semantics, effectiveness,
degree of geometry, size of programs and computational cost. Overall conclusions are provided at
the end of this chapter.

9.1 Initialization
This section is intended to experimentally assess the CI operator in the context of other population
initialization operators, RHH and SDI, and in effect answer question 1 posed in Section 8.1.

9.1.1 Fitness distribution
Empirical distributions of program fitness in populations initialized by RHH, SDI and CI, respectively,
for each benchmark problem, are presented in Figure 9.1. The width of each bin is 1 and bin values
are averaged over 30 runs of each operator initializing population of size 1000.

We observe that shape of distribution depends on domain. In symbolic regression, we observe
Poisson-like distributions with λ < 20 for all considered problems. The distributions in Boolean
domain remind normal distributions with standard deviation and kurtosis varying across problems.
To statistically verify our observations, we conduct D’Agostino’s K-squared tests for departure
from normality [42] for each combination of operator and problem and present p-values in Table
9.1. Indeed, the tests confirm that none of the operators produces normally distributed fitness
of programs in symbolic regression domain, however in Boolean domain RHH produces normal
distribution for Par* (where Par* stands for all Par problems) and Cmp8 problems, SDI for Par7
and Mux11 and CI for Mux*. Deep insight into histograms reveals the reason for divergence
between test results and observed distributions for other combinations of Boolean problems and
operators: in Mux* and Maj* problems odd values of fitness are much less likely than even values,
and in Cmp* problems even values are much more likely then the odd ones. Thus strictly speaking
the distributions are not normal, however they look like normal distributions with ‘holes’.

All considered operators produce programs in similar fitness ranges but of substantially different
shapes. RHH tends to produce multi-modal, rugged distributions with few peaks. SDI produces
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Figure 9.1: Empirical distribution of fitness in initial population initialized by RHH, SDI and CI, respectively.



Table 9.1: D’Agostino’s K-squared tests for departure from normality [42] of distribution of fitness in populations
initialized by RHH, SDI and CI, respectively, divided by problems. P-values ≥ 0.05 (in bold) reflect normal
distribution.

Problem RHH SDI CI
R1 0.000 0.000 0.000
R2 0.000 0.000 0.000
R3 0.000 0.000 0.000
Kj1 0.000 0.000 0.000
Kj4 0.000 0.000 0.000
Ng9 0.000 0.000 0.000
Ng12 0.000 0.000 0.000
Pg1 0.000 0.000 0.000
Vl1 0.000 0.000 0.000
Par5 0.606 0.000 0.000
Par6 0.606 0.000 0.000
Par7 0.606 0.606 0.000
Mux6 0.000 0.000 0.676
Mux11 0.000 0.996 0.483
Maj7 0.000 0.000 0.000
Maj8 0.000 0.000 0.000
Cmp6 0.000 0.000 0.000
Cmp8 0.063 0.000 0.000

Table 9.2: Median and 95% confidence intervals of fitness of programs in initial population created by RHH,
SDI and CI, respectively (the best in bold).

Problem RHH SDI CI
R1 18.23 ≤ 18.30 ≤ 18.36 19.26 ≤ 19.32 ≤ 19.37 20.26 ≤ 20.34 ≤ 20.42

R2 6.08 ≤ 6.12 ≤ 6.14 6.86 ≤ 6.92 ≤ 6.99 8.33 ≤ 8.49 ≤ 8.67

R3 3.65 ≤ 3.69 ≤ 3.72 5.54 ≤ 5.65 ≤ 5.74 7.65 ≤ 7.85 ≤ 8.05

Kj1 3.83 ≤ 3.87 ≤ 3.91 5.63 ≤ 5.74 ≤ 5.83 7.83 ≤ 8.02 ≤ 8.22

Kj4 5.64 ≤ 5.85 ≤ 6.07 8.91 ≤ 9.17 ≤ 9.41 17.12 ≤ 18.44 ≤ 19.98

Ng9 9.64 ≤ 9.78 ≤ 9.93 14.64 ≤ 14.87 ≤ 15.11 21.26 ≤ 22.00 ≤ 22.74

Ng12 11.06 ≤ 11.18 ≤ 11.30 14.85 ≤ 15.21 ≤ 15.55 22.45 ≤ 23.12 ≤ 23.86

Pg1 23.22 ≤ 23.54 ≤ 23.93 23.50 ≤ 23.91 ≤ 24.31 41.73 ≤ 43.75 ≤ 46.50

Vl1 17.55 ≤ 18.06 ≤ 18.82 19.77 ≤ 20.38 ≤ 20.89 51.71 ≤ 56.14 ≤ 60.90

Par5 16.00 ≤ 16.00 ≤ 16.00 16.00 ≤ 16.00 ≤ 16.00 16.00 ≤ 16.00 ≤ 16.00

Par6 32.00 ≤ 32.00 ≤ 32.00 32.00 ≤ 32.00 ≤ 32.00 32.00 ≤ 32.00 ≤ 32.00

Par7 64.00 ≤ 64.00 ≤ 64.00 64.00 ≤ 64.00 ≤ 64.00 64.00 ≤ 64.00 ≤ 64.00

Mux6 31.00 ≤ 31.00 ≤ 31.00 31.00 ≤ 32.00 ≤ 33.00 31.00 ≤ 32.00 ≤ 32.00

Mux11 1023.00 ≤ 1023.00 ≤ 1023.00 1023.00 ≤ 1025.00 ≤ 1039.00 1005.00 ≤ 1015.00 ≤ 1025.00

Maj7 58.00 ≤ 58.00 ≤ 58.00 64.00 ≤ 64.00 ≤ 64.00 64.00 ≤ 64.00 ≤ 64.00

Maj8 80.00 ≤ 82.00 ≤ 83.00 93.00 ≤ 93.00 ≤ 93.00 93.00 ≤ 93.00 ≤ 93.00

Cmp6 32.00 ≤ 32.00 ≤ 32.00 32.00 ≤ 32.00 ≤ 32.00 32.00 ≤ 32.00 ≤ 32.00

Cmp8 128.00 ≤ 128.00 ≤ 128.00 128.00 ≤ 128.00 ≤ 128.00 128.00 ≤ 128.00 ≤ 128.00

Rank: 1.33 2.14 2.53
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Table 9.3: Post-hoc analysis of Friedman’s test conducted on Table 9.2: p-values of incorrectly judging an
operator in a row as outranking an operator in a column. Significant (α = 0.05) p-values are in bold and
visualized as arcs in graph.

RHH SDI CI
RHH 0.010 0.000
SDI 0.333
CI

CI

SDI RHH

cc

oo

smoother distributions, mostly unimodal. CI provides distributions similar in shape to those of
SDI, however even smoother and with noticeably lower kurtosis.

The rugged characteristics of RHH’s fitness distribution may indicate bias of the operator toward
programs within a small set of semantics, i.e., oversampling of some areas of the search space and
undersampling others. In turn effectiveness of SDI and CI causes the search space to be sampled
more evenly.

Median and 95% confidence interval of fitness in initial populations provided by RHH, SDI and
CI, respectively, are given in Table 9.2.

RHH provides the lowest (the best) median fitness of all compared operators, while CI the
highest (the worst), and SDI fares in between. We explain this phenomenon by the fact that CI
strives to build certain geometric structures that may require some programs to be far from the
target, while other operators only discard syntactic (RHH) or semantic (SDI) duplicates, completely
ignoring the distribution of the programs in semantic space. Note that fitness results are of a lower
importance, since an initialization operator is supposed to prepare a beneficial starting conditions
for the variation operators, instead of solving the problem in the first place.

We conduct Friedman’s test on median fitness to assess differences between the operators. The
test results in p-value of 4.74× 10−5, thus at significance level α = 0.05 there is at least one pair
of significantly different operators. Post-hoc analysis presented in Table 9.3 indicates that RHH
produces significantly fitter programs than both SDI and CI, while the latter two are indiscernible.

9.1.2 Effectiveness and geometry
To verify effective properties of SDI and CI we count the average number of semantically unique
programs in population of size 1000 initialized by each of the considered operators and present the
average together with 95% confidence interval in Table 9.4.

All applications of SDI and CI are effective, hence both operators can be considered the most
reliable and accurate on this criterion. RHH achieves 46%− 98% effective applications, depending
on a problem. The differences in values observed for RHH come from varying dimensionality
and size of semantic spaces across problems and/or different inputs used to calculate semantics.
For symbolic regression the relationship between dimensionality of semantic space (20 for R*,
Kj* problems and 100 for the rest) and number of effective applications seems to be weak and
non-monotonous. In the Boolean domain, the number of effective applications clearly rises with the
dimensionality of semantic space. We explain this phenomenon by the fact that semantic space for
symbolic regression is continuous and infinite, while for Boolean domain it is finite and discrete,
making it more likely to create semantically equal programs.

Friedman’s test conducted on the number of unique programs results in conclusive p-value of
6.40× 10−7, thus we present post-hoc analysis in Table 9.5. The analysis confirms that both SDI
and CI provide significantly higher ratio of effective applications than RHH.

Table 9.6 shows average and 95% confidence interval of the numbers of applications of RHH,
SDI and CI until the first L1-geometric application (cf. Definition 5.4) in the Boolean domain. Note
that after the first geometric application, all subsequent applications are geometric by definition
(because population’s convex hull already consists the target). In other words we can say that an



Table 9.4: Average and 95% confidence interval of the numbers of semantically unique individuals in initial
population of size 1000 created by RHH, SDI and CI, respectively (the highest in bold).

Problem RHH SDI CI
R1 978.97 ±1.43 1000.00 ±0.00 1000.00 ±0.00

R2 978.97 ±1.43 1000.00 ±0.00 1000.00 ±0.00

R3 978.97 ±1.43 1000.00 ±0.00 1000.00 ±0.00

Kj1 978.97 ±1.43 1000.00 ±0.00 1000.00 ±0.00

Kj4 979.70 ±1.36 1000.00 ±0.00 1000.00 ±0.00

Ng9 977.50 ±1.52 1000.00 ±0.00 1000.00 ±0.00

Ng12 977.50 ±1.52 1000.00 ±0.00 1000.00 ±0.00

Pg1 978.20 ±1.38 1000.00 ±0.00 1000.00 ±0.00

Vl1 979.23 ±1.43 1000.00 ±0.00 1000.00 ±0.00

Par5 456.93 ±5.19 1000.00 ±0.00 1000.00 ±0.00

Par6 558.63 ±5.05 1000.00 ±0.00 1000.00 ±0.00

Par7 622.47 ±4.33 1000.00 ±0.00 1000.00 ±0.00

Mux6 558.63 ±5.05 1000.00 ±0.00 1000.00 ±0.00

Mux11 779.57 ±4.55 1000.00 ±0.00 1000.00 ±0.00

Maj7 622.47 ±4.33 1000.00 ±0.00 1000.00 ±0.00

Maj8 675.93 ±3.78 1000.00 ±0.00 1000.00 ±0.00

Cmp6 558.63 ±5.05 1000.00 ±0.00 1000.00 ±0.00

Cmp8 675.93 ±3.78 1000.00 ±0.00 1000.00 ±0.00

Rank: 3.00 1.50 1.50

Table 9.5: Post-hoc analysis of Friedman’s test for Table 9.4: p-values of incorrectly judging an operator in row
as producing higher number of effective programs than an operator in a column. Significant (α = 0.05) p-values
are in bold and visualized as arcs in graph.

RHH SDI CI
RHH
SDI 0.000
CI 0.000 1.000

CI

##
SDI // RHH

Table 9.6: Average and 95% confidence interval of the numbers of RHH, SDI and CI applications, respectively,
until the first L1-geometric application (the highest in bold). If a run does not result in any geometric application,
we count it as 1000 (max number of applications).

Problem RHH SDI CI
Par5 4.93 ±0.56 5.37 ±0.85 4.47 ±0.44

Par6 5.67 ±0.77 5.63 ±0.75 4.87 ±0.52

Par7 6.33 ±0.80 5.30 ±0.56 5.07 ±0.57

Mux6 5.00 ±0.52 5.50 ±0.73 4.87 ±0.53

Mux11 7.33 ±0.95 7.43 ±0.96 6.40 ±0.63

Maj7 5.53 ±0.75 5.27 ±0.55 5.03 ±0.57

Maj8 6.90 ±0.77 5.70 ±0.68 5.33 ±0.54

Cmp6 4.87 ±0.53 4.97 ±0.70 4.47 ±0.51

Cmp8 7.20 ±0.81 5.73 ±0.69 5.33 ±0.53

Rank: 2.56 2.44 1.00
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Table 9.7: Post-hoc analysis of Friedman’s test conducted on Table 9.6: p-values of incorrectly judging an
operator in a row as on average requiring less applications until the first L1-geometric one than an operator in
a column. Significant (α = 0.05) p-values are in bold and visualized as arcs in graph.

RHH SDI CI
RHH
SDI 0.970
CI 0.003 0.006

CI

�� ##
SDI RHH

Table 9.8: Average and 95% confidence interval of numbers of RHH, SDI and CI applications, respectively, until
the first L2-geometric application (the highest in bold). If a run does not result in any geometric application, we
count it as 1000 (max number of applications).

Problem RHH SDI CI
R1 432.00 ±114.75 437.07 ±108.40 300.40 ±85.36

R2 220.55 ±61.81 251.11 ±71.86 183.50 ±48.66

R3 180.69 ±29.40 162.32 ±26.97 97.35 ±11.24

Kj1 217.00 ±43.06 210.65 ±41.89 177.41 ±62.20

Kj4 136.83 ±44.44 176.78 ±54.41 144.90 ±38.89

Ng9 205.05 ±36.96 266.07 ±58.44 225.41 ±49.89

Ng12 200.60 ±38.42 270.19 ±59.85 224.29 ±49.35

Pg1 198.12 ±65.53 278.65 ±63.33 197.78 ±28.54

Vl1 164.09 ±56.46 200.61 ±49.66 144.25 ±20.08

Rank: 1.89 2.78 1.33

operator is on average n-geometric in meaning of Definition 5.4, where n is a number from Table
9.6. The averages clearly increase with dimensionality of semantic space for all combinations of
problems and operators.

The smallest ns are obtained by CI for all Boolean problems, and there is no clear leader in the
group of RHH and SDI. Moreover the confidence intervals for CI are the narrowest, thus the results
of CI can be considered very stable and reliable. Friedman’s test results in p-value 2.77× 10−3 and
post-hoc analysis from Table 9.7 leaves no doubt that CI requires fewer number of applications
than SDI and RHH to reach the first geometric application.

Table 9.8 presents analogous results for symbolic regression and L2 metric. In 6 out of 9
problems CI achieves the lowest average. In remaining three problems RHH achieves the lowest
average, however confidence intervals of RHH and CI overlap, which suggests that the differences
are not significant. In 7 out of 9 problems SDI requires the highest number of applications. In 6
out of 9 problems the confidence intervals for CI are the narrowest, thus CI’s results are the most
stable. Friedman’s test is conclusive with p-value of 6.23× 10−3, and post-hoc analysis in Table 9.9
indicates that CI requires significantly fewer applications than SDI, however the evidence is too
weak to differentiate CI or SDI with RHH.

Juxtaposition of Tables 9.6 and 9.8 leads to conclusion that building an L1-convex hull in
Boolean domain requires less applications than L2-convex hull in symbolic regression domain. This

Table 9.9: Post-hoc analysis of Friedman’s test conducted on Table 9.8: p-values of incorrectly judging an
operator in a row as on average requiring less applications until the first L2-geometric one than an operator in
a column. Significant (α = 0.05) p-values are in bold and visualized as arcs in graph.

RHH SDI CI
RHH 0.143
SDI
CI 0.466 0.006

CI

��
SDI RHH
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Table 9.10: Average and 95% confidence interval of numbers of nodes in programs produced by RHH, SDI and
CI, respectively (the lowest in bold).

Problem RHH SDI CI
R1 8.89 ±0.09 13.36 ±0.07 81.66 ±0.86

R2 8.89 ±0.09 13.36 ±0.07 80.96 ±0.84

R3 8.89 ±0.09 13.36 ±0.07 81.78 ±0.86

Kj1 8.89 ±0.09 13.36 ±0.07 82.00 ±0.86

Kj4 8.89 ±0.09 13.23 ±0.07 78.73 ±0.82

Ng9 8.76 ±0.08 12.68 ±0.07 64.76 ±0.66

Ng12 8.76 ±0.08 12.68 ±0.07 64.67 ±0.66

Pg1 8.76 ±0.08 12.52 ±0.06 59.12 ±0.62

Vl1 8.76 ±0.08 12.52 ±0.06 62.03 ±0.65

Par5 22.33 ±0.24 24.11 ±0.10 244.64 ±2.38

Par6 22.32 ±0.24 23.37 ±0.10 226.81 ±2.23

Par7 22.00 ±0.24 22.73 ±0.10 187.34 ±1.92

Mux6 22.32 ±0.24 23.37 ±0.10 226.81 ±2.23

Mux11 21.56 ±0.24 21.32 ±0.10 139.45 ±1.45

Maj7 22.00 ±0.24 22.73 ±0.10 187.34 ±1.92

Maj8 21.82 ±0.24 22.65 ±0.10 178.66 ±1.77

Cmp6 22.32 ±0.24 23.37 ±0.10 226.81 ±2.23

Cmp8 21.82 ±0.24 22.65 ±0.10 178.66 ±1.77

Rank: 1.06 1.94 3.00

Table 9.11: Post-hoc analysis of Friedman’s test conducted on Table 9.10: p-values of incorrectly judging an
operator in a row as producing smaller programs than an operator in a column. Significant (α = 0.05) p-values
are in bold and visualized as arcs in graph.

RHH SDI CI
RHH 0.021 0.000
SDI 0.004
CI

CI

SDI

OO

RHHoo

cc

may be explained by that Boolean semantic space is finite and consists of less points than the
infinite regression one. This inclines us to hypothesize that in all operators L1-convex hull of the
population reaches entire Boolean semantic space with similar ease like it incorporates the target.

In an additional analysis we confirmed that all 30 runs of all operators in all Boolean problems
had at least one L1-geometric application. In symbolic regression, for each problem and operator
there where runs that resulted in no geometric applications.

9.1.3 Program size
Table 9.10 presents average and 95% confidence interval of number of nodes in programs produced
by RHH, SDI and CI, respectively. In all but one problem RHH produces the smallest programs.
Only for Mux11, SDI produces smaller programs than RHH, however the difference is very low and
the confidence intervals overlap. CI produces noticeably larger programs than both other operators.

Friedman’s test is conclusive (p = 1.16× 10−8) and post-hoc analysis in Table 9.11 confirms
that RHH produces significantly smaller programs than SDI and CI, and SDI produces smaller
programs than CI.

Varying numbers of nodes across problems clearly reflect the characteristics of particular
operators. RHH produces exactly the same distribution of program sizes for all problems with the
same set of instructions. In contrast, the distributions of program sizes produced by SDI depends
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Table 9.12: Average and 95% confidence interval of time (seconds) required to initialize population of size 1000
by RHH, SDI and CI, respectively (the lowest in bold).

Problem RHH SDI CI
R1 0.05 ±0.00 0.32 ±0.12 14.04 ±6.18

R2 0.05 ±0.00 0.49 ±0.15 14.19 ±6.14

R3 0.05 ±0.00 0.35 ±0.13 13.53 ±6.14

Kj1 0.04 ±0.00 0.29 ±0.10 13.79 ±6.20

Kj4 0.04 ±0.00 0.41 ±0.16 12.21 ±4.94

Ng9 0.05 ±0.00 0.63 ±0.40 304.97 ±94.24

Ng12 0.05 ±0.00 1.08 ±0.60 309.63 ±94.93

Pg1 0.04 ±0.00 0.84 ±0.56 73.43 ±31.93

Vl1 0.05 ±0.00 1.04 ±0.63 92.61 ±39.80

Par5 0.06 ±0.01 0.28 ±0.01 4.21 ±0.20

Par6 0.05 ±0.00 0.26 ±0.01 4.21 ±0.22

Par7 0.05 ±0.00 0.25 ±0.01 4.31 ±0.20

Mux6 0.05 ±0.00 0.24 ±0.01 4.23 ±0.22

Mux11 0.04 ±0.00 0.55 ±0.01 20.32 ±1.11

Maj7 0.05 ±0.00 0.27 ±0.01 4.39 ±0.22

Maj8 0.04 ±0.00 0.27 ±0.01 5.60 ±0.24

Cmp6 0.05 ±0.00 0.24 ±0.01 4.32 ±0.23

Cmp8 0.04 ±0.00 0.26 ±0.01 5.61 ±0.29

Rank: 1.00 2.00 3.00

Table 9.13: Post-hoc analysis of Friedman’s test conducted on Table 9.12: p-values of incorrectly judging an
operator in a row as faster than an operator in a column. Significant (α = 0.05) p-values are in bold and
visualized as arcs in graph.

RHH SDI CI
RHH 0.008 0.000
SDI 0.008
CI

CI

SDI

OO

RHHoo

cc

on the set of instructions and fitness cases, e.g., for R* and Kj1 problems that share the same range
of inputs, the distribution is the same. Finally, CI is the only operator that depends also on the
target, and in consequence its distribution of program sizes varies across problems.

9.1.4 Computational costs
Table 9.12 shows average and 95% confidence interval of time required to initialize population of
size 1000 by RHH, SDI and CI, respectively. Time requirements for RHH are the lowest, SDI’s
ones are an order of magnitude higher, and CI’s ones two orders of magnitude higher.

These observations are confirmed by Friedman’s test that results in p-value of 1.20× 10−8, and
its post-hoc analysis presented in Table 9.13.

Notice two outlying observations for CI on Ng9 and Ng12 problems. We explain these high
times by the lowest range (and variance) of input variables among all considered problems (cf. Table
8.1). Low variance of inputs results in low variance of program output and makes it harder to
create semantically diversified programs. This may in turn hinder the ability to expand convex hull
of population, in which case CI repeats initialization routine multiple times until the convex hull
expands (see line 4 of Algorithm 7.1).

To verify whether obtained times of a particular operator correlate with the numbers of nodes
in produced programs (cf. Table 9.10) we calculate Spearman’s rank correlation coefficient of these
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Table 9.14: Spearman’s rank correlation coefficient of number of nodes in produced programs and time consumed
by an operator. Left: correlation of size and time over problems for each operator separately. Right: rankings of
operators from last rows of Tables 9.10 and 9.12, and correlation of them. P-values of t test of significance of
correlation, significant correlations (α = 0.05) are marked in bold.

Correlation P-value Size rank Time rank
RHH 0.281 0.129 1.06 1.00
SDI −0.907 0.000 1.94 2.00
CI −0.918 0.000 3.00 3.00

Correlation: 0.999
P-value: 0.000

variables over all problems, for each operator separately and present them together with p-values
of t test for significance of correlation in Table 9.14. We observe strong negative correlations for
SDI and CI and t test is conclusive at significance level α = 0.05 about the significance of these
correlations. That is, SDI and CI produce big programs in less time than the small ones. We
explain this by that both SDI and CI evaluate multiple candidates until they accept and produce
semantically unique one. If by chance they attempt to produce a big program, it is less likely to be
discarded, because the variety of programs’ semantics increases with the program size.

Right part of Table 9.14 consists of the rankings of all operators on program size and consumed
time took from Tables 9.10 and 9.12, and Spearman’s rank correlation coefficient of these rankings.
The coefficient is almost 1, hence we conclude that rankings are consistent. This may indicate that
even if SDI and CI use bigger programs than RHH to achieve effectiveness and lower computational
cost, they are unable to drop the cost below the RHH’s one.

9.2 Selection
This section is devoted to assess properties of mate selection operators and answer question 2 from
Section 8.1. We employ TS to select the first parent and one of two mate selection operators, STS
and CTS, to select the second one. The control setup uses TS to select both parents; this is to
verify whether STS and/or CTS favor effective and/or geometric selections

To minimize the impact of other factors and possibly approximate realistic working conditions,
we calculate the interesting characteristics on a set of randomly generated populations, either by
purely syntactic RHH or geometric effective CI.

9.2.1 Effectiveness and geometry
Table 9.15 presents empirical probability and 95% confidence interval of effective applications
(cf. Definition 4.6) of TS, STS and CTS, respectively. Only CTS provides 100% of effective
applications for all considered problems and in this is sense is the most reliable and accurate
operator. STS is the runner-up and provides 92.9%− 100% effective applications, depending on
problem and distribution of semantics. The last operator is TS with 69.2% − 99.7% effective
applications.

Effective characteristic of CTS seems to be independent on the distribution of programs in
the population: the 100% probability occurs for both RHH- and CI-initialized populations. The
probabilities for the remaining operators are higher for CI’s population than for the RHH’s one.
Our explanation is that all programs initialized by CI are semantically distinct, while RHH may
produce semantic duplicates that obviously increases the probability of selecting a duplicate.

To statistically confirm our observations, we conduct Friedman’s test on probability of effective
selections. The test results in p-value of 4.29× 10−12, hence at significance level α = 0.05 at least
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Table 9.15: Empirical probability and 95% confidence interval of effective selections conducted by TS, STS and
CTS (the highest in bold).

Problem RhhTs RhhSts RhhCts CiTs CiSts CiCts
R1 0.996 ±0.001 0.999 ±0.000 1.000 ±0.000 0.996 ±0.001 0.999 ±0.000 1.000 ±0.000

R2 0.995 ±0.001 0.999 ±0.000 1.000 ±0.000 0.996 ±0.001 0.999 ±0.000 1.000 ±0.000

R3 0.992 ±0.001 0.999 ±0.000 1.000 ±0.000 0.996 ±0.001 1.000 ±0.000 1.000 ±0.000

Kj1 0.992 ±0.001 0.999 ±0.000 1.000 ±0.000 0.996 ±0.001 1.000 ±0.000 1.000 ±0.000

Kj4 0.991 ±0.001 0.999 ±0.000 1.000 ±0.000 0.997 ±0.001 1.000 ±0.000 1.000 ±0.000

Ng9 0.995 ±0.001 0.999 ±0.000 1.000 ±0.000 0.996 ±0.001 0.999 ±0.000 1.000 ±0.000

Ng12 0.996 ±0.001 1.000 ±0.000 1.000 ±0.000 0.996 ±0.001 1.000 ±0.000 1.000 ±0.000

Pg1 0.996 ±0.001 0.999 ±0.000 1.000 ±0.000 0.995 ±0.001 0.999 ±0.000 1.000 ±0.000

Vl1 0.993 ±0.001 0.999 ±0.000 1.000 ±0.000 0.996 ±0.001 1.000 ±0.000 1.000 ±0.000

Par5 0.965 ±0.002 0.970 ±0.002 1.000 ±0.000 0.997 ±0.001 0.999 ±0.000 1.000 ±0.000

Par6 0.971 ±0.002 0.972 ±0.002 1.000 ±0.000 0.996 ±0.001 1.000 ±0.000 1.000 ±0.000

Par7 0.974 ±0.002 0.976 ±0.002 1.000 ±0.000 0.996 ±0.001 0.999 ±0.000 1.000 ±0.000

Mux6 0.692 ±0.005 0.929 ±0.003 1.000 ±0.000 0.995 ±0.001 0.999 ±0.000 1.000 ±0.000

Mux11 0.819 ±0.004 0.966 ±0.002 1.000 ±0.000 0.996 ±0.001 1.000 ±0.000 1.000 ±0.000

Maj7 0.991 ±0.001 0.998 ±0.000 1.000 ±0.000 0.997 ±0.001 1.000 ±0.000 1.000 ±0.000

Maj8 0.992 ±0.001 0.999 ±0.000 1.000 ±0.000 0.996 ±0.001 1.000 ±0.000 1.000 ±0.000

Cmp6 0.970 ±0.002 0.993 ±0.001 1.000 ±0.000 0.996 ±0.001 1.000 ±0.000 1.000 ±0.000

Cmp8 0.986 ±0.001 0.997 ±0.001 1.000 ±0.000 0.995 ±0.001 0.999 ±0.000 1.000 ±0.000

Rank: 5.889 4.278 1.500 4.778 3.056 1.500

Table 9.16: Post-hoc analysis of Friedman’s test conducted on Table 9.15: p-values of incorrectly judging
a setup in a row as selecting higher number of effective mate parents than a setup in a column. Significant
(α = 0.05) p-values are in bold and visualized as arcs in graph.

RhhTs RhhSts RhhCts CiTs CiSts CiCts
RhhTs

RhhSts 0.092 0.965
RhhCts 0.000 0.000 0.000 0.115

CiTs 0.461
CiSts 0.000 0.349 0.057
CiCts 0.000 0.000 1.000 0.000 0.115
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one pair of setups differs. Post-hoc analysis is presented in Table 9.16. Overall, CTS is the most
effective operator and there is no statistical difference between the outcomes for particular methods
of population initialization.

Table 9.17 shows empirical probability and 95% confidence interval of L1-geometric applications
(cf. Definition 5.5) of TS, STS and CTS in Boolean domain problems. The values depend on
population initialization: all operators achieve higher probabilities for the RHH-initialized popu-
lations than for the CI’s ones. The operators suffer from curse of dimensionality: probability of
geometric selection decreases with increasing dimensionality of semantic space for all problems. Our
explanation is twofold. Firstly, the volume of a segment connecting1 semantics of two parents may
become zero in higher dimensionality, in which case the likelihood of producing a program on such
a segment becomes very small. Secondly, the odds for existence of two programs in the population
that form a segment that incorporates the target drops rapidly with growing number of dimensions.

The highest probability of L1-geometric selections is achieved by CTS for all problems and for
each population initialization method. Differences between the two other operators seem to be
insignificant. We conduct Friedman’s test that results in conclusive p-value of 2.67 × 10−6 and

1A quantity of a space occupied by the segment.
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Table 9.17: Empirical probability and 95% confidence interval of L1-geometric selections conducted by TS,
STS and CTS (the highest in bold).

Problem RhhTs RhhSts RhhCts CiTs CiSts CiCts
Par5 0.047 ±0.002 0.044 ±0.002 0.214 ±0.005 0.004 ±0.001 0.006 ±0.001 0.012 ±0.001

Par6 0.037 ±0.002 0.032 ±0.002 0.165 ±0.004 0.003 ±0.001 0.003 ±0.001 0.006 ±0.001

Par7 0.028 ±0.002 0.026 ±0.002 0.137 ±0.004 0.001 ±0.000 0.001 ±0.000 0.002 ±0.000

Mux6 0.000 ±0.000 0.001 ±0.000 0.009 ±0.001 0.000 ±0.000 0.000 ±0.000 0.002 ±0.000

Mux11 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000

Maj7 0.002 ±0.001 0.002 ±0.001 0.035 ±0.002 0.001 ±0.000 0.001 ±0.000 0.004 ±0.001

Maj8 0.001 ±0.000 0.001 ±0.000 0.004 ±0.001 0.000 ±0.000 0.000 ±0.000 0.001 ±0.000

Cmp6 0.019 ±0.002 0.019 ±0.002 0.051 ±0.003 0.006 ±0.001 0.006 ±0.001 0.014 ±0.001

Cmp8 0.005 ±0.001 0.007 ±0.001 0.021 ±0.002 0.000 ±0.000 0.000 ±0.000 0.002 ±0.001

Rank: 2.667 3.222 1.000 5.556 5.333 3.222

Table 9.18: Post-hoc analysis of Friedman’s test conducted on Table 9.17: p-values of incorrectly judging
a setup in a row as selecting more L1-geometric mate parents than a setup in a column. Significant (α = 0.05)
p-values are in bold and visualized as arcs in the graph.

RhhTs RhhSts RhhCts CiTs CiSts CiCts
RhhTs 0.988 0.012 0.028 0.988

RhhSts 0.083 0.153
RhhCts 0.401 0.114 0.000 0.000 0.114

CiTs
CiSts 1.000
CiCts 1.000 0.083 0.153

RhhTs //

""

CiTs

RhhSts CiSts

RhhCts

EE

<<

CiCts

present post-hoc analysis in Table 9.18. The evidence is too weak to confirm dominance of CTS over
other operators at the significance level 0.05, however the obtained p-values only slightly exceed
the significance level. Our observation that there are no significant differences between ST and STS
within population initialization method is confirmed, and significant differences are only observed
across initialization methods.

The corresponding probabilities for symbolic regression and L2 metric are rather small for all
operators and not suitable to draw meaningful conclusions. This is because L2 segment has zero
volume. To overcome this, we present the same statistics for L1 metric in Table 9.19. The obtained
values are higher here because L1 segment often has non-zero volume.

Table 9.19: Empirical probability and 95% confidence interval of L1-geometric selections conducted by TS,
STS and CTS in regression problems (the highest in bold).

Problem RhhTs RhhSts RhhCts CiTs CiSts CiCts
R1 0.001 ±0.000 0.001 ±0.000 0.001 ±0.000 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000

R2 0.000 ±0.000 0.000 ±0.000 0.001 ±0.000 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000

R3 0.010 ±0.001 0.008 ±0.001 0.024 ±0.002 0.004 ±0.001 0.003 ±0.001 0.006 ±0.001

Kj1 0.008 ±0.001 0.008 ±0.001 0.018 ±0.002 0.002 ±0.001 0.001 ±0.000 0.003 ±0.001

Kj4 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000 0.001 ±0.000

Ng9 0.000 ±0.000 0.000 ±0.000 0.001 ±0.000 0.000 ±0.000 0.000 ±0.000 0.001 ±0.000

Ng12 0.002 ±0.001 0.002 ±0.000 0.004 ±0.001 0.001 ±0.000 0.001 ±0.000 0.001 ±0.000

Pg1 0.001 ±0.000 0.001 ±0.000 0.001 ±0.000 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000

Vl1 0.001 ±0.000 0.001 ±0.000 0.002 ±0.000 0.001 ±0.000 0.001 ±0.000 0.002 ±0.000

Rank: 2.833 3.722 1.556 4.778 5.000 3.111
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Table 9.20: Post-hoc analysis of Friedman’s test conducted on Table 9.19: p-values of incorrectly judging
a setup in a row as selecting more L1-geometric mate parents than a setup in a column. Significant (α = 0.05)
p-values are in bold and visualized as arcs in graph.

RhhTs RhhSts RhhCts CiTs CiSts CiCts
RhhTs 0.915 0.234 0.136 1.000

RhhSts 0.838 0.695
RhhCts 0.696 0.136 0.004 0.001 0.488

CiTs 1.000
CiSts
CiCts 0.983 0.406 0.264

RhhTs CiTs

RhhSts CiSts

RhhCts

EE

<<

CiCts

Table 9.21: Average and 95% confidence interval of time (milliseconds) consumed to select two parents from
population of size 1000 by TS, STS and CTS, respectively (the lowest in bold).

Problem RhhTs RhhSts RhhCts CiTs CiSts CiCts
R1 2.15 ±0.13 7.70 ±0.63 18.16 ±2.12 2.45 ±0.10 4.69 ±0.17 9.81 ±0.48

R2 2.22 ±0.09 9.54 ±0.66 19.04 ±1.76 2.36 ±0.12 4.88 ±0.24 9.54 ±0.44

R3 2.24 ±0.12 9.00 ±0.70 19.13 ±1.85 2.37 ±0.12 4.72 ±0.20 9.43 ±0.51

Kj1 2.24 ±0.12 9.81 ±1.06 16.70 ±1.31 2.47 ±0.09 4.74 ±0.22 9.83 ±0.43

Kj4 2.18 ±0.09 8.76 ±0.80 18.38 ±2.04 2.11 ±0.13 4.47 ±0.21 9.11 ±0.47

Ng9 1.61 ±0.06 9.67 ±0.22 19.37 ±0.76 1.70 ±0.05 5.89 ±0.20 10.37 ±0.31

Ng12 1.57 ±0.04 9.73 ±0.24 19.32 ±0.47 1.72 ±0.06 5.61 ±0.18 10.72 ±0.33

Pg1 1.53 ±0.05 9.64 ±0.26 18.95 ±0.68 1.82 ±0.07 5.81 ±0.20 11.32 ±0.78

Vl1 1.59 ±0.05 9.76 ±0.17 19.29 ±0.60 1.79 ±0.08 6.03 ±0.25 11.11 ±0.56

Par5 2.43 ±0.06 7.03 ±0.28 12.59 ±0.71 1.76 ±0.09 3.59 ±0.21 7.88 ±0.50

Par6 2.15 ±0.11 5.67 ±0.33 10.42 ±0.44 1.94 ±0.14 3.76 ±0.24 8.29 ±1.03

Par7 2.06 ±0.14 5.57 ±0.24 10.80 ±0.61 1.96 ±0.15 3.87 ±0.28 8.08 ±0.58

Mux6 2.30 ±0.12 5.80 ±0.36 10.45 ±0.58 1.96 ±0.18 3.58 ±0.25 7.54 ±0.55

Mux11 1.72 ±0.10 5.01 ±0.31 9.72 ±0.65 1.80 ±0.10 3.96 ±0.21 8.49 ±0.45

Maj7 2.38 ±0.14 6.01 ±0.36 10.35 ±0.61 1.87 ±0.15 3.62 ±0.24 7.68 ±0.53

Maj8 1.96 ±0.12 5.41 ±0.20 9.84 ±0.65 1.91 ±0.14 3.86 ±0.32 7.67 ±0.54

Cmp6 2.07 ±0.13 5.22 ±0.28 10.03 ±0.55 1.85 ±0.14 3.72 ±0.23 7.35 ±0.55

Cmp8 1.99 ±0.11 5.21 ±0.27 9.47 ±0.54 1.82 ±0.11 3.47 ±0.20 7.56 ±0.42

Rank: 1.50 4.00 6.00 1.50 3.00 5.00

Conclusions are similar to these in the Boolean domain. The values obtained for the RHH-
initialized populations are higher than the corresponding values for CI. CTS obtains the highest
probability for 8 out of 9 problems for RHH’s population and in 6 out of 9 problems for CI’s one.
Friedman’s test conducted on Table 9.19 results in conclusive p-value of 1.27× 10−3, and post-hoc
analysis in Table 9.20 for α = 0.05 indicates significant differences only between setups using
different initialization methods. CTS for RHH’s population has significantly more L1-geometric
applications than TS and STS for CI’s population.

9.2.2 Computational Costs
Table 9.21 presents average and 95% confidence interval of CPU time consumed to select two
parents: one using TS and one using TS, STS or CTS, respectively.

TS is the quickest operator, STS requires three to five times more time than TS, and CTS
roughly two times more than STS. The times for TS seem to be unaffected by distribution of
programs in population. The times for STS and CTS are about 30%−50% lower for CI’s population
than for the RHH’s one.
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Table 9.22: Post-hoc analysis of Friedman’s test conducted on Table 9.21: p-values of incorrectly judging
a setup in a row as faster than a setup in a column. Significant (α = 0.05) p-values are in bold and visualized as
arcs in graph.

RhhTs RhhSts RhhCts CiTs CiSts CiCts
RhhTs 0.001 0.000 0.154 0.000

RhhSts 0.017 0.596
RhhCts

CiTs 1.000 0.001 0.000 0.154 0.000
CiSts 0.596 0.000 0.017
CiCts 0.596

RhhTs

��

�� ��

CiTs

||

�� ��

RhhSts

��

CiSts

|| ��
RhhCts CiCts

Given that neither STS nor CTS feature computationally-heavy branches of code in their algo-
rithms, both of them perform a fixed number of iterations µ, and population size and dimensionality
of semantic space are constant, we did not see algorithmic reasons for this state of affairs and
sought to technical aspects of hardware. We conduct an extra experiment that shows that the
speedup is an effect of varying performance of floating point arithmetic. If an argument or outcome
of a floating point operation is subnormal (denormal) value, infinity or NaN [72], the operation
may consume even hundreds of times more CPU cycles than the same operation for normal values
[95, 43]. Subnormal values may occur in fitness function, semantic distance and/or candidate
selection criterion in CTS.

To statistically verify differences between operators, we conduct Friedman’s test that results
in conclusive p-value of 1.96× 10−12. Post-hoc analysis shown in Table 9.22 chiefly confirms our
previous observations: TS is the quickest operator, STS is slower than TS, and CTS is slower than
STS. There are no significant differences in time w.r.t. initialization method.

9.3 Mutation
This section is intended to answer research question 3 by running full evolutionary setups employed
with respectively TM, SDM and CTM, and collecting statistics of training and test-set fitness,
effectiveness, geometry, size of produced programs and consumed time. Moreover to verify whether
starting conditions imposed by CI have impact on the evolutionary search we double each setup,
i.e., run it once with population initialized by CI, once by RHH. Since mutations take only one
parent, we do not involve mate selection operators and remain with TS. Namely we compare
eight setups: RhhTsTm, RhhTsSdm, RhhTsSgm, RhhTsCm, CiTsTm, CiTsSdm, CiTsSgm,
CiTsCm.

9.3.1 Fitness-based performance
In Figure 9.2 we present average and 95% confidence interval of the best of generation fitness and
in Table 9.23 of the best of run fitness. CM achieves better fitness and converges much quicker
than the other operators, and the fitness achieved by CM as of 30− 50 generation, depending on
a problem, remains unbeatable by all other operators for the rest of run. One exception is relatively
simple problem Maj8 that is solved also by SDM and SGM with almost the same success. Although
other operators can be ordered from better to worse for most of the problems, differences of their
fitness are relatively low, confidence intervals overlap and the orderings are not consistent across
problems. Hence it is difficult to unambiguously determine a runner up.

In 13 out of 18 problems CM starting from RHH’s population achieves better and in 3 out of 18
equal best of run fitness to CM starting from CI’s population. TM with RHH achieves better fitness
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Figure 9.2: Average and 95% confidence interval of the best of generation fitness.



Table 9.23: Average and 95% confidence interval of the best of run fitness (the best in bold).

Prob. RhhTsTm RhhTsSdm RhhTsSgm RhhTsCm CiTsTm CiTsSdm CiTsSgm CiTsCm
R1 0.17 ±0.05 0.17 ±0.05 0.18 ±0.05 0.02 ±0.00 0.32 ±0.15 0.22 ±0.07 0.32 ±0.08 0.03 ±0.01

R2 0.19 ±0.03 0.17 ±0.03 0.18 ±0.03 0.01 ±0.00 0.20 ±0.08 0.24 ±0.10 0.19 ±0.06 0.04 ±0.05

R3 0.03 ±0.00 0.02 ±0.00 0.03 ±0.01 0.00 ±0.00 0.04 ±0.02 0.03 ±0.01 0.04 ±0.01 0.01 ±0.00

Kj1 0.05 ±0.02 0.06 ±0.02 0.14 ±0.04 0.01 ±0.01 0.08 ±0.02 0.08 ±0.02 0.08 ±0.01 0.05 ±0.02

Kj4 0.19 ±0.03 0.16 ±0.03 0.17 ±0.03 0.03 ±0.01 0.21 ±0.05 0.25 ±0.05 0.24 ±0.05 0.15 ±0.04

Ng9 0.19 ±0.05 0.16 ±0.05 0.35 ±0.09 0.00 ±0.00 0.30 ±0.10 0.34 ±0.09 0.35 ±0.10 0.01 ±0.01

Ng12 0.29 ±0.04 0.30 ±0.05 0.41 ±0.05 0.12 ±0.04 0.24 ±0.03 0.24 ±0.03 0.32 ±0.10 0.10 ±0.03

Pg1 0.20 ±0.08 0.23 ±0.09 0.71 ±0.37 0.08 ±0.06 0.39 ±0.11 0.41 ±0.12 0.73 ±0.28 0.25 ±0.19

Vl1 0.32 ±0.08 0.32 ±0.09 0.79 ±0.12 0.22 ±0.12 0.26 ±0.04 0.30 ±0.05 0.35 ±0.10 0.19 ±0.07

Par5 3.83 ±0.65 4.00 ±0.64 3.43 ±0.64 0.07 ±0.09 3.73 ±0.54 3.73 ±0.64 4.37 ±0.56 0.07 ±0.09

Par6 15.10 ±1.30 14.67 ±1.34 15.30 ±1.34 1.40 ±0.74 14.87 ±0.96 15.53 ±0.86 14.83 ±0.69 3.00 ±0.77

Par7 42.90 ±1.83 40.70 ±1.88 41.70 ±1.70 8.30 ±1.88 43.33 ±1.57 43.93 ±1.27 43.20 ±1.44 14.73 ±1.66

Mux6 4.10 ±0.74 3.90 ±0.73 3.73 ±0.71 0.00 ±0.00 3.20 ±0.71 3.60 ±0.75 3.77 ±0.83 0.47 ±0.40

Mux11 119.53 ±8.71 114.20 ±8.67 119.40 ±7.04 27.47 ±8.35 125.93 ±14.63 104.07 ±10.21 115.27 ±10.45 46.40 ±10.35

Maj7 1.80 ±0.73 1.77 ±0.48 1.23 ±0.49 0.00 ±0.00 5.83 ±0.99 5.60 ±1.30 5.37 ±0.76 0.10 ±0.19

Maj8 0.17 ±0.16 0.27 ±0.16 0.40 ±0.22 0.00 ±0.00 2.20 ±0.68 1.87 ±0.62 2.13 ±0.61 0.07 ±0.09

Cmp6 0.73 ±0.32 1.13 ±0.37 0.87 ±0.33 0.00 ±0.00 1.37 ±0.60 1.47 ±0.65 1.07 ±0.32 0.00 ±0.00

Cmp8 8.93 ±0.80 7.80 ±0.86 9.67 ±1.31 0.00 ±0.00 14.90 ±3.54 11.77 ±2.69 11.87 ±1.78 0.00 ±0.00

Rank: 4.67 4.22 5.56 1.19 5.97 6.03 6.44 1.92

Table 9.24: Post-hoc analysis of Friedman’s test conducted on Table 9.23: p-values of incorrectly judging
a setup in a row as outranking a setup in a column. Significant (α = 0.05) p-values are in bold and visualized as
arcs in graph.

RhhTsTm RhhTsSdm RhhTsSgm RhhTsCm CiTsTm CiTsSdm CiTsSgm CiTsCm
RhhTsTm 0.959 0.750 0.707 0.363

RhhTsSdm 0.999 0.729 0.385 0.344 0.115
RhhTsSgm 1.000 0.999 0.959
RhhTsCm 0.001 0.005 0.000 0.000 0.000 0.000 0.987

CiTsTm 1.000 0.999
CiTsSdm 1.000
CiTsSgm
CiTsCm 0.017 0.088 0.000 0.000 0.000 0.000

RhhTsSdm RhhTsSgm
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than with CI in 12 out of 18 problems, SDM in 13 out of 18, SGM in 12 out of 18, in remaining
problems CI leads to not worse results.

In 14 out of 18 problems RhhTsCx is characterized by the narrowest confidence intervals, hence
the lowest variance of the best of run fitness. In this sense RhhTsCx is the most stable and reliable
setup.

To statistically verify whether CM is better than the remaining operators and initialization
method influences the best of run fitness, we conduct Friedman’s test. The test results in p-value
of 2.49× 10−9 and at significance level α = 0.05 there is at least one significant difference between
setups. Post-hoc analysis in Table 9.24 confirms our findings about outstanding performance of CM.
The evidence is too weak to show that initializing using RHH leads to better results than using CI.

Table 9.25 shows empirical probability accompanied with 95% confidence interval of finding
an optimal program p∗, i.e., s(p∗) = t within 100 generations (known as success rate in GP).2 For
a half of problems none of the operators found the optimal program in any run, where 8 out of
9 unsolved problems are symbolic regression ones. On the other hand for 5 out of 18 problems
there exists at least one operator that solves the problem in every run. The highest probability of
solving each problem belongs to CM. In case CM starts from RHH-initialized population, it solves
in every run 5 out of 18 problems, with total of 9 problems having non-zero probability of being
solved. To compare, CiTsCm perfectly solves 2 out of 18 problems, and has non-zero probability
for 8 problems. From other operators, each solves at least one problem at least once, however there
is no clear runner up.

Friedman’s test conducted on probability of success results in conclusive p-value of 1.10× 10−5

and post-hoc analysis in Table 9.26 confirms our above findings.

9.3.2 Generalization abilities

Figure 9.3 presents median and 95% confidence interval of test-set fitness achieved by the best of
generation program during the course of evolution and Table 9.27 shows the same data for the best
of run program on training-set. We use median to overcome bias coming from outlying values that
are common in our data due to, e.g., overfitting to the training-set.

For all problems except Pg1 CM achieves the best test-set fitness, where in 7 out of 8 problems
by the setup that involves RHH and in one problem CI. Note that confidence intervals of both
CM setups overlap, thus it is difficult to tell that RHH leads to significantly better performance of
CM than CI. For Pg1 problem test-set fitness of both CM setups are in the tail of the ranking,
however all operators achieve similar fitness here. It is difficult to differentiate remaining operators,
since all of them achieve similar fitness for each problem and the ordering of operators varies across
problems.

Note that in Kj1, Kj4, Pg1 and Vl1 problems, test-set fitness is deteriorating in later generations
for most setups, hence we conclude that arithmetic expressions behind these problems are difficult
to be rebuilt from data and most setups suffer from overfitting there. For the remaining problems
we do not notice overfitting for any setup.

To compare setup, we conduct Friedman’s test on Table 9.27. The test is conclusive with p-value
of 2.93 × 10−3, thus we carry out post-hoc analysis in Table 9.28. CM beginning from RHH’s
population achieves significantly better test-set fitness than SGM for both ways of initialization
and SDM and TM for CI initialization.



Table 9.25: Empirical probability and 95% confidence interval of finding the optimal solution in 100 generations
(the best in bold).

Problem RhhTsTm RhhTsSdm RhhTsSgm RhhTsCm CiTsTm CiTsSdm CiTsSgm CiTsCm
R1 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

R2 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

R3 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

Kj1 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

Kj4 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

Ng9 0.07 ±0.09 0.13 ±0.12 0.17 ±0.13 0.90 ±0.11 0.00 ±0.00 0.03 ±0.06 0.03 ±0.06 0.43 ±0.18

Ng12 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

Pg1 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

Vl1 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

Par5 0.03 ±0.06 0.03 ±0.06 0.10 ±0.11 0.93 ±0.09 0.00 ±0.00 0.03 ±0.06 0.03 ±0.06 0.93 ±0.09

Par6 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.37 ±0.17 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.03 ±0.06

Par7 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.03 ±0.06 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

Mux6 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 1.00 ±0.00 0.03 ±0.06 0.03 ±0.06 0.03 ±0.06 0.83 ±0.13

Mux11 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

Maj7 0.23 ±0.15 0.20 ±0.14 0.30 ±0.16 1.00 ±0.00 0.00 ±0.00 0.03 ±0.06 0.00 ±0.00 0.97 ±0.06

Maj8 0.87 ±0.12 0.73 ±0.16 0.67 ±0.17 1.00 ±0.00 0.17 ±0.13 0.17 ±0.13 0.17 ±0.13 0.93 ±0.09

Cmp6 0.50 ±0.18 0.33 ±0.17 0.40 ±0.18 1.00 ±0.00 0.33 ±0.17 0.33 ±0.17 0.27 ±0.16 1.00 ±0.00

Cmp8 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 1.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.03 ±0.06 1.00 ±0.00

Rank: 4.69 4.92 4.56 2.83 5.42 5.11 5.14 3.33

Table 9.26: Post-hoc analysis of Friedman’s test conducted on Table 9.25: p-values of incorrectly judging
a setup in a row as outranking a setup in a column. Significant (α = 0.05) p-values are in bold and visualized as
arcs in graph.
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Table 9.29: Empirical probability and 95% confidence interval of effective mutations until 100 generation (the
highest in bold).

Prob. RhhTsTm RhhTsSdm RhhTsSgm RhhTsCm CiTsTm CiTsSdm CiTsSgm CiTsCm
R1 0.883 ±0.002 1.000 ±0.000 1.000 ±0.000 0.930 ±0.001 0.895 ±0.002 1.000 ±0.000 1.000 ±0.000 0.926 ±0.001

R2 0.882 ±0.002 1.000 ±0.000 1.000 ±0.000 0.922 ±0.001 0.879 ±0.002 1.000 ±0.000 1.000 ±0.000 0.926 ±0.001

R3 0.872 ±0.002 1.000 ±0.000 1.000 ±0.000 0.941 ±0.001 0.894 ±0.002 1.000 ±0.000 1.000 ±0.000 0.941 ±0.001

Kj1 0.886 ±0.002 1.000 ±0.000 1.000 ±0.000 0.921 ±0.001 0.899 ±0.001 1.000 ±0.000 1.000 ±0.000 0.949 ±0.001

Kj4 0.858 ±0.002 1.000 ±0.000 1.000 ±0.000 0.954 ±0.001 0.909 ±0.001 1.000 ±0.000 1.000 ±0.000 0.977 ±0.001

Ng9 0.906 ±0.001 1.000 ±0.000 1.000 ±0.000 0.956 ±0.003 0.903 ±0.001 1.000 ±0.000 1.000 ±0.000 0.929 ±0.002

Ng12 0.921 ±0.001 1.000 ±0.000 1.000 ±0.000 0.947 ±0.001 0.890 ±0.002 1.000 ±0.000 1.000 ±0.000 0.943 ±0.001

Pg1 0.898 ±0.001 1.000 ±0.000 1.000 ±0.000 0.908 ±0.001 0.903 ±0.001 1.000 ±0.000 1.000 ±0.000 0.926 ±0.001

Vl1 0.903 ±0.001 1.000 ±0.000 1.000 ±0.000 0.944 ±0.001 0.912 ±0.001 1.000 ±0.000 1.000 ±0.000 0.969 ±0.001

Par5 0.453 ±0.002 0.997 ±0.000 0.906 ±0.001 0.440 ±0.004 0.375 ±0.002 0.997 ±0.000 0.908 ±0.001 0.385 ±0.004

Par6 0.479 ±0.002 0.998 ±0.000 0.915 ±0.001 0.471 ±0.003 0.443 ±0.002 0.998 ±0.000 0.923 ±0.001 0.438 ±0.002

Par7 0.535 ±0.002 0.999 ±0.000 0.929 ±0.001 0.526 ±0.002 0.475 ±0.002 0.999 ±0.000 0.929 ±0.001 0.495 ±0.002

Mux6 0.242 ±0.002 0.962 ±0.001 0.899 ±0.001 0.371 ±0.005 0.248 ±0.002 0.974 ±0.001 0.906 ±0.001 0.288 ±0.003

Mux11 0.222 ±0.002 0.958 ±0.001 0.922 ±0.001 0.316 ±0.002 0.256 ±0.002 0.975 ±0.001 0.922 ±0.001 0.300 ±0.002

Maj7 0.538 ±0.003 0.999 ±0.000 0.935 ±0.001 0.610 ±0.006 0.486 ±0.002 0.999 ±0.000 0.936 ±0.001 0.443 ±0.004

Maj8 0.615 ±0.003 1.000 ±0.000 0.940 ±0.002 0.685 ±0.005 0.500 ±0.003 0.999 ±0.000 0.942 ±0.001 0.508 ±0.004

Cmp6 0.399 ±0.003 0.992 ±0.000 0.919 ±0.001 0.619 ±0.008 0.362 ±0.003 0.993 ±0.000 0.920 ±0.001 0.376 ±0.006

Cmp8 0.487 ±0.002 0.997 ±0.000 0.939 ±0.001 0.545 ±0.004 0.465 ±0.002 0.997 ±0.000 0.939 ±0.001 0.438 ±0.004

Rank: 6.889 2.444 2.750 5.500 7.389 2.333 2.472 6.222

Table 9.30: Post-hoc analysis of Friedman’s test conducted on Table 9.29: p-values of incorrectly judging
a setup in a row as conducting more effective applications than a setup in a column. Significant (α = 0.05)
p-values are in bold and visualized as arcs in graph.

RhhTsTm RhhTsSdm RhhTsSgm RhhTsCm CiTsTm CiTsSdm CiTsSgm CiTsCm
RhhTsTm 0.999

RhhTsSdm 0.000 1.000 0.004 0.000 1.000 0.000
RhhTsSgm 0.000 0.016 0.000 0.000
RhhTsCm 0.679 0.277 0.987

CiTsTm
CiTsSdm 0.000 1.000 1.000 0.002 0.000 1.000 0.000
CiTsSgm 0.000 1.000 0.005 0.000 0.000
CiTsCm 0.992 0.839
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Figure 9.3: Median and 95% confidence interval of test-set fitness of the best of generation program on
training-set.

9.3.3 Effectiveness and geometry
Figure 9.4 presents empirical probability and 95% confidence interval of mutations being effective
(cf. Definition 4.7) over generations and Table 9.29 presents the same numbers for entire 100-
generation runs.

The highest probability of almost 1.0 for all symbolic regression problems belongs SGM and
for all Boolean problems to SDM. The second most effective operator in symbolic regression is
SDM with values over 0.99 for the most part of runs and SGM in Boolean domain with values
over 0.9. The least effective operator is TM in all regression problems and 2 out of 9 Boolean
problems, for Maj7 CM is least effective. For the remaining Boolean problems both CM setups
are in between TM setups for most part of the run. The imperfect effectiveness of CM may be
a cause of a technical implementation of Invert(·, ·, ·) function from Table 7.1 that returns at most
two values, even if there are more inversions of parent semantics (s(p) in Algorithm 7.4) available.
Thus, forbidden semantics (Dø in that algorithm) may not contain all values that prevent from
producing neutral offspring.

Only SDM maintains roughly constant probability of effective mutations for entire run. For
SGM and CM in the first few generations we see rapid fluctuations of the probability for some
of the problems and the value stabilizes after approximately 20 generations. The fluctuations are
also observed for an average number of unique semantics in population in Figure 9.5. They may

2We use similarity threshold, see Table 8.2.
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Figure 9.4: Empirical probability and 95% confidence interval of effective mutations per generation.
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Figure 9.5: Average and 95% confidence interval of unique semantics in population of size 1000 over generations.
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Figure 9.6: Median and 95% confidence interval of L1 distance of offspring to parent over generations.

be an effect of dynamic changes in distribution of programs and semantics in population in early
generations, when the operator transforms the distribution from the initial random one to a biased
in an operator specific way. TM tends to slightly decrease probability of effective mutations over
time. Decreasing number of distinct semantics over generations for all operators in Figure 9.5
clearly indicate convergence to a (local) optimum. However SGM and SDM are the only operators
that maintain high probability of effective mutations even for converging populations.

Although SGM is characterized by over 90% of effective mutations, it also leads to the least
diverse populations for 6 out of 9 symbolic regression problems. This phenomenon is not observed
for Boolean domain. Given that SGM in symbolic regression only moves program semantics by
a vector (cf. Section 6.2.1), we hypothesize that drop of diversity may be caused by suppressing
mutations that move program semantics back to the location where it was a few generations earlier.
Thus effectiveness of SGM from the perspective of multiple subsequent applications to the same
program may be questionable.

We carry out Friedman’s test to statistically verify differences between operators on the total
probability of effective mutations. The test results in conclusive p-value of 4.05× 10−9, thus we
conduct post-hoc analysis in Table 9.30. Our observations that SDM and SGM are the most
effective operators are confirmed: both SDM and both SGM setups outperform all TM and CM
setups.

Figure 9.6 and Table 9.31 present median and 95% confidence interval of L1 semantic distance
of offspring to its parent over generations and in the entire run, respectively, for Boolean problems.
Figure 9.7 and Table 9.8 consist of the same values for L2 distance and symbolic regression.
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Figure 9.7: Median and 95% confidence interval of L2 distance of offspring to parent over generations.

It is difficult to judge whether higher or lower distances are better from the perspective of the
overall progress of evolution, and the optimal distance of an offspring to a parent is dependent on
a distance of the parent to the target. Moreover we do not explicitly set radius of mutation for any
operator. Thus we assume that an operator that keeps distance of the offspring to the parent below
a certain threshold better matches principles of geometric mutation (cf. Definition 5.6).

SGM is the only operator that maintains roughly constant distance from the offspring to the
parent during evolutionary run. In Boolean domain median distance is clearly dependent on number
of fitness cases and approximately amounts to 2|F |−2, while in symbolic regression it is about 1.1
and 2.5 for 20 and 100 fitness cases, respectively. This indicates that SGM is blind to a state of
population and does not adapt its search strategy between exploration and exploitation. In contrast
median distance between an offspring and a parent for remaining operators decreases over time and
the drop is steeper in early generations. In other words the remaining operators seem to gradually
(and implicitly) adjust their strategies from exploration to exploitation over time.

The lowest statistics are achieved by CiTsCm for all Boolean problems except Par7 and CiTsTm
for all Boolean problems except Maj7. In contrast in 7 out of 9 symbolic regression problems the
lowest values belong to RhhTsCm and in two problems for CiTsCm. The highest values in both
domains belong to either SGM or SDM, depending on a problem. By juxtaposing this observation
with high effectiveness of SDM and SDM, it becomes clear that both operators, although effective,
are unbiased and their search strategies are virtually random.

To statistically compare differences between operators we conduct two Friedman’s tests, sep-
arately for each domain. The tests result in conclusive p-values of 4.48× 10−5 and 1.83× 10−5,
respectively for Boolean and symbolic regression domains. Corresponding post-hoc analyses are
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presented in Tables 9.7 and 9.9. In Boolean domain indeed both SGM setups produce offspring in
much higher distance to parent than all other operators except SDM. In turn TM and CM with CI
carry out shorter steps than RhhTsSdm. In symbolic regression both SGM and both SDM setups
produce more distant offspring to parent than both CM setups.

9.3.4 Program size
Average and 95% confidence interval of number of nodes in the best of generation program is shown
in Figure 9.8 and in the best of run program in Table 9.35.

First, we observe that the size increases linearly in number of generations for both CM setups in
symbolic regression, and logarithmically in the Boolean domain, finally resulting in bigger programs
than of the remaining operators. Second, although RHH initializes smaller programs than CI, in 6
out of 9 symbolic regression problems CM accompanied with RHH finally produces bigger programs
than with CI at the end of run. In contrast the same occurs only for 2 out of 9 Boolean problems.

The sizes of programs produced by TM, SDM and SGM for most of the problems are roughly
the same and can be divided into two groups depending on the way of initialization: setups that
employ RHH typically produce smaller programs than the corresponding setups with CI, however
the gap between corresponding setups decreases over time. The smallest programs are produced by
RhhTsSgm in 12 out of 18 problems.

To statistically verify differences between setups we conduct Friedman’s test that results in
conclusive p-value of 2.41× 10−12. Post-hoc analysis is presented in Table 9.36 and confirms that
all setups except CiTsSdm produce smaller programs than both CM setups. The analysis also
reveals that RhhTsSgm produces smaller programs than CiTsTm and CiTsSdm.

9.3.5 Computational costs
Figure 9.9 presents average and 95% confidence interval of the total CPU time consumed by each
setup over generations and Table 9.37 presents the same numbers at the end of run.

First, initialization times have major impact on total execution times. In symbolic regression,
the setups that use CI require more time to initialize than the corresponding setups with RHH
require for entire run. An exception is CM in problems with 20 fitness cases, where RhhTsCm
reaches initialization time of CiTsCm after approximately 80 generations. In Boolean domain CI
time is comparable with times consumed by about 20 − 40 generations of corresponding setups
with RHH. For all problems, at any stage of evolution, each setup with RHH requires no more time
than the corresponding setup with CI.

Within a group of RHH initialization clearly the lowest time is consumed by SGM for 15 out of
18 problems, three times CM is quicker. We attribute this phenomenon to the fact that all runs of
CM quickly find optimums for these three problems, hence the evolution terminates earlier there.
For CI initialization, again SGM is the quickest in 11 out of 18 problems, in six problems TM and
once CM are the quickest. Note that differences in time between SGM, TM and SDM are rather
low, however between CM and other operators are moderate.

To statistically assess these differences we carry out Friedman’s test on total times. The test
results in conclusive p-value of 7.55× 10−15, thus we conduct post-hoc analysis in Table 9.38. Each
setup with RHH is statistically faster than at least one setup with CI. RhhTsSgm is the fastest
setup that outperforms 5 out of 7 other setups. Runner up is RhhTsTm that outperforms three
other setups. The setup outperformed the most number of times (five) is CiTsCm, hence it can be
considered the slowest one.

To verify whether computational costs of a particular setup correlate with a size of produced
programs, we calculate Spearman’s rank correlation coefficient of these two variables over problems
for each setup separately and present the values together with p-values of t test for significance
of correlation in left part of Table 9.39. Only for three setups, RhhTsTm, RhhTsSdm and
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Figure 9.8: Average and 95% confidence interval of number of nodes in the best of generation program.



Table 9.35: Average and 95% confidence interval of number of nodes in the best of run program (the lowest in
bold).

Prob. RhhTsTm RhhTsSdm RhhTsSgm RhhTsCm CiTsTm CiTsSdm CiTsSgm CiTsCm
R1 118.90 ±16.66 116.87 ±15.06 92.33 ±11.26 294.43 ±45.25 119.77 ±18.79 127.63 ±26.94 91.53 ±11.91 239.10 ±35.25

R2 89.30 ±16.48 92.73 ±16.19 54.50 ±9.49 261.63 ±40.09 103.90 ±14.43 105.53 ±13.90 103.37 ±27.22 313.90 ±41.04

R3 156.57 ±16.76 142.67 ±16.09 130.53 ±17.43 278.57 ±47.39 152.23 ±19.31 158.53 ±22.41 160.90 ±23.83 246.40 ±33.75

Kj1 143.13 ±14.19 151.50 ±17.43 98.67 ±18.28 236.63 ±38.14 183.93 ±23.05 163.23 ±23.69 128.40 ±23.79 208.10 ±40.65

Kj4 171.57 ±20.92 161.53 ±12.91 148.13 ±16.40 284.73 ±39.15 215.00 ±29.31 196.93 ±20.18 197.90 ±25.43 228.57 ±27.36

Ng9 86.00 ±13.40 81.00 ±17.05 48.17 ±21.20 43.37 ±39.63 92.40 ±12.55 95.33 ±14.65 80.03 ±15.34 169.23 ±59.87

Ng12 70.67 ±17.52 67.63 ±17.03 47.17 ±14.32 212.10 ±38.54 85.33 ±15.40 95.17 ±16.95 82.13 ±13.60 192.53 ±27.24

Pg1 93.93 ±12.81 98.77 ±12.53 66.90 ±10.43 179.07 ±33.52 71.13 ±10.19 76.73 ±12.56 73.87 ±11.69 135.87 ±32.34

Vl1 126.27 ±15.10 121.67 ±18.62 112.23 ±19.55 160.20 ±27.84 137.57 ±18.43 128.43 ±16.78 138.63 ±17.43 172.10 ±21.88

Par5 435.00 ±40.62 461.73 ±37.03 382.33 ±36.11 962.40 ±96.16 646.27 ±73.23 648.73 ±59.22 566.57 ±46.82 1317.73 ±120.58

Par6 471.00 ±42.08 527.33 ±58.17 425.73 ±37.99 1701.27 ±111.13 657.13 ±69.11 644.27 ±76.62 603.77 ±81.35 1675.93 ±106.48

Par7 488.60 ±46.56 518.40 ±36.86 448.17 ±37.21 2562.20 ±185.87 605.07 ±63.38 605.73 ±55.41 588.30 ±60.59 2162.20 ±178.97

Mux6 256.13 ±45.87 259.20 ±40.62 206.70 ±28.06 316.60 ±56.34 284.47 ±40.62 294.33 ±42.45 275.03 ±42.16 488.20 ±66.06

Mux11 179.27 ±33.51 206.87 ±35.87 191.53 ±36.31 518.00 ±107.85 236.73 ±37.42 239.60 ±30.73 202.43 ±33.37 378.00 ±63.56

Maj7 521.73 ±45.20 490.20 ±43.57 479.03 ±32.93 748.73 ±76.47 373.33 ±37.64 405.47 ±26.39 404.60 ±48.18 1101.73 ±101.66

Maj8 363.93 ±42.14 358.13 ±32.71 371.03 ±32.87 622.40 ±54.79 390.20 ±26.59 413.47 ±38.86 380.43 ±36.31 910.80 ±76.69

Cmp6 314.60 ±36.93 298.87 ±32.14 288.70 ±32.01 338.13 ±39.60 293.07 ±41.72 335.93 ±39.89 311.87 ±52.67 654.27 ±77.71

Cmp8 339.73 ±37.55 340.93 ±36.85 296.90 ±31.99 740.33 ±53.44 288.87 ±35.06 274.27 ±33.92 280.33 ±31.29 771.67 ±90.80

Rank: 3.28 3.28 1.61 7.17 4.44 5.11 3.61 7.50

Table 9.36: Post-hoc analysis of Friedman’s test conducted on Table 9.35: p-values of incorrectly judging
a setup in a row as producing smaller programs than a setup in a column. Significant (α = 0.05) p-values are in
bold and visualized as arcs in graph.

RhhTsTm RhhTsSdm RhhTsSgm RhhTsCm CiTsTm CiTsSdm CiTsSgm CiTsCm
RhhTsTm 0.000 0.844 0.325 1.000 0.000

RhhTsSdm 1.000 0.000 0.844 0.325 1.000 0.000
RhhTsSgm 0.454 0.454 0.000 0.012 0.000 0.218 0.000
RhhTsCm 1.000

CiTsTm 0.020 0.992 0.005
CiTsSdm 0.188 0.068
CiTsSgm 0.000 0.972 0.595 0.000
CiTsCm
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Figure 9.9: Average and 95% confidence interval of total execution time w.r.t. number of generations.



Table 9.37: Average and 95% confidence interval of total execution time spent to finish run (the lowest in bold).

Prob. RhhTsTm RhhTsSdm RhhTsSgm RhhTsCm CiTsTm CiTsSdm CiTsSgm CiTsCm
R1 6.52 ±0.76 7.07 ±0.82 5.07 ±0.57 30.40 ±2.78 22.29 ±6.25 23.39 ±6.40 20.85 ±6.69 42.60 ±7.64

R2 4.15 ±0.68 4.56 ±0.70 2.75 ±0.39 30.45 ±2.82 19.80 ±6.27 21.51 ±6.18 21.11 ±6.53 50.92 ±7.75

R3 6.92 ±0.74 7.18 ±0.73 6.28 ±0.68 33.53 ±3.92 24.75 ±6.57 25.15 ±6.45 25.16 ±6.40 47.51 ±7.75

Kj1 7.21 ±0.65 7.23 ±0.70 4.54 ±0.79 32.85 ±3.53 25.72 ±6.22 26.14 ±6.39 23.68 ±6.89 45.24 ±6.23

Kj4 8.95 ±0.81 9.04 ±0.77 7.35 ±0.82 34.76 ±3.83 26.93 ±5.69 26.20 ±5.22 25.66 ±5.73 49.24 ±6.99

Ng9 7.92 ±1.36 6.75 ±1.30 3.46 ±1.16 9.96 ±10.04 325.83 ±98.50 371.34 ±115.82 325.06 ±101.13 394.26 ±111.60

Ng12 6.74 ±1.61 7.07 ±1.48 4.84 ±1.20 62.42 ±7.43 318.94 ±93.35 325.84 ±96.73 307.53 ±94.68 393.74 ±95.28

Pg1 12.56 ±1.33 14.04 ±1.51 7.37 ±1.07 75.35 ±11.31 84.66 ±28.05 88.14 ±28.65 87.35 ±28.52 145.16 ±36.25

Vl1 14.20 ±1.62 14.99 ±2.04 11.00 ±1.44 52.56 ±5.96 123.14 ±45.57 143.64 ±60.79 139.22 ±60.43 165.14 ±42.54

Par5 20.78 ±1.30 23.22 ±1.73 17.12 ±1.23 23.16 ±8.73 48.81 ±6.57 47.21 ±4.88 38.81 ±4.28 56.77 ±13.25

Par6 28.62 ±2.55 32.01 ±2.60 24.51 ±1.95 227.34 ±30.34 61.56 ±6.92 59.09 ±7.68 50.59 ±6.55 300.63 ±20.99

Par7 41.80 ±3.73 40.92 ±2.74 34.04 ±2.88 421.76 ±37.16 74.88 ±8.56 67.35 ±6.51 59.11 ±6.19 398.49 ±35.84

Mux6 18.64 ±1.56 16.19 ±1.47 12.08 ±0.97 12.82 ±7.34 30.25 ±4.01 25.60 ±3.14 23.08 ±2.70 44.29 ±12.45

Mux11 150.25 ±14.00 171.88 ±16.25 124.15 ±9.23 469.56 ±86.15 215.21 ±24.95 230.23 ±29.99 203.78 ±29.97 434.58 ±50.90

Maj7 37.82 ±3.93 38.65 ±3.72 31.49 ±3.43 12.15 ±1.42 39.78 ±3.52 41.94 ±3.01 36.99 ±3.23 76.64 ±15.64

Maj8 21.99 ±5.01 26.70 ±6.40 26.19 ±7.81 18.15 ±2.46 56.38 ±4.45 59.17 ±6.34 57.12 ±5.77 104.68 ±34.70

Cmp6 13.94 ±2.66 16.67 ±2.77 13.83 ±2.06 2.33 ±0.23 23.16 ±3.66 24.47 ±4.03 22.35 ±3.22 17.03 ±3.21

Cmp8 34.10 ±3.86 40.62 ±3.65 31.20 ±3.51 34.41 ±7.42 36.54 ±3.83 39.78 ±3.65 36.95 ±3.69 75.14 ±17.06

Rank: 2.39 3.39 1.22 4.72 5.50 6.22 4.83 7.72

Table 9.38: Post-hoc analysis of Friedman’s test conducted on Table 9.37: p-values of incorrectly judging
a setup in a row as faster than a setup in a column. Significant (α = 0.05) p-values are in bold and visualized as
arcs in graph.

RhhTsTm RhhTsSdm RhhTsSgm RhhTsCm CiTsTm CiTsSdm CiTsSgm CiTsCm
RhhTsTm 0.925 0.081 0.003 0.000 0.056 0.000

RhhTsSdm 0.730 0.161 0.012 0.641 0.000
RhhTsSgm 0.844 0.137 0.001 0.000 0.000 0.000 0.000
RhhTsCm 0.981 0.595 1.000 0.006

CiTsTm 0.987 0.116
CiTsSdm 0.595
CiTsSgm 0.992 0.687 0.010
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Table 9.39: Spearman’s rank correlation coefficient of number of nodes in produced programs and computational
time consumed by a setup. Left: correlation over problems for each setup separately. Right: rankings of setups
from last rows of Tables 9.35 and 9.37, and correlation of them. P-values of t test of significance of correlation,
significant correlations (α = 0.05) are marked in bold.

Correlation P-value Size rank Time rank
RhhTsTm 0.810 0.000 3.28 2.39
RhhTsSdm 0.847 0.000 3.28 3.39
RhhTsSgm 0.853 0.000 1.61 1.22
RhhTsCm 0.065 0.399 7.17 4.72
CiTsTm −0.082 0.374 4.44 5.50
CiTsSdm −0.106 0.337 5.11 6.22
CiTsSgm −0.088 0.365 3.61 4.83
CiTsCm 0.020 0.469 7.50 7.72

Correlation: 0.819
P-value: 0.006

Table 9.40: Exemplary analysis for time budget of 15 seconds for Kj4 problem. The highest generation and the
lowest statistics are in bold.

Generation Fitness Test-set fitness Program size
RhhTsTm 100 0.19 ±0.03 0.62 ≤ 1.38 ≤ 2.49 171.57 ±20.92

RhhTsSdm 100 0.19 ±0.04 1.02 ≤ 1.78 ≤ 2.94 167.70 ±18.11

RhhTsSgm 100 0.17 ±0.03 0.95 ≤ 1.50 ≤ 2.48 148.13 ±16.40

RhhTsCm 58 0.05 ±0.02 0.31 ≤ 0.57 ≤ 1.60 203.03 ±28.31

CiTsTm 23 0.31 ±0.05 2.18 ≤ 2.88 ≤ 5.82 163.13 ±29.26

CiTsSdm 22 0.39 ±0.05 2.05 ≤ 2.35 ≤ 3.22 133.13 ±19.81

CiTsSgm 22 0.37 ±0.05 2.19 ≤ 2.45 ≤ 3.30 155.23 ±24.38

CiTsCm 9 0.43 ±0.05 2.06 ≤ 2.23 ≤ 3.01 138.53 ±28.46

RhhTsSgm, we observe strong positive correlation (> 81%). Therefore by enforcing limits on
program size for these setups the computational costs would decrease. For the remaining operators
there are clearly other factors than program size that influence computational costs.

Right part of Table 9.39 consists of rankings of all setups on the final number of nodes and total
computational time took from Tables 9.35 and 9.37. The correlation between rankings is strong,
hence in general a setup that leads to bigger programs would also be slower than then a setup that
leads to small programs.

In practical applications we often impose a time budget that when exceeded causes the algorithm
to terminate prematurely. Given a high enough budget, all of the considered setups can terminate
normally, however for very strict budget we may obtain substantially different final results than
presented in the previous sections. To simulate this case we encourage the reader to mark in a plot
in Figure 9.9 the assumed time budget using horizontal line, for each trial read the number of
generation where it crosses the line3 and compare interested statistics, e.g., training-set and test-set
fitness or program size achieved up to these generations.

For instance we assume time budget of 15 seconds for Kj4 problem. Average generation and
corresponding statistics are presented in Table 9.40. The analysis shows that although RhhTsTm,
RhhTsSdm, RhhTsSgm are ex aequo the fastest setups, the best training-set and test-set fitness
are achieved by RhhTsCm in the same time and in only 58 generations. In addition the smallest
programs are produced by CiTsSdm, however it reaches only 22 generations, hence it may not
converged yet and its results are far from the final.

3Use 1 or 100 if the trial is above or below the line, respectively.
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This example shows that although CM is the slowest operator, CM can achieve better results
than faster operators within the same time budget in less number of generations.

9.4 Crossover
This section is aimed to answer research question 4 on characteristics of crossover operators.
Similarly to the question regarding mutation, we execute separate runs with CX, TX, SDX and
SGX to compare them in terms of training-set and test-set fitness, degree of effectiveness and
geometry, size of produced programs and computational costs. We double each setup to measure
impact of use of CI and CTS as replacements for canonical RHH and TS, respectively. To sum up
there are eight setups: RhhTsTx, RhhTsSdx, RhhTsSgx, RhhTsCx, CiCtsTx, CiCtsSdx,
CiCtsSgx, CiCtsCx.

9.4.1 Fitness-based performance
We present average and 95% confidence interval of the best of generation fitness achieved by the
considered setups in Figure 9.10 and the best of run fitness in Table 9.41.

SGX clearly suffers from premature convergence in symbolic regression, in few early generations
its fitness rapidly falls down, then it sticks to a value far from the optimum for the rest of run. In
contrast in Boolean domain SGX converges to the optimum in less number of generations than any
other operator. One exception is Mux11 problem that remains unsolved by all setups and for which
TX and SDX achieve a bit better fitness than SGX.

CX gradually improves the fitness, where the curve of improvement is steeper in early generations
than in the later ones. For symbolic regression problems CX achieves the best fitness of all operators
for almost entire runs, while in Boolean problems it is outperformed by SGX and becomes a runner
up in 8 out of 9 problems. In Mux11 CX takes position in the tail of the ranking.

The company of CI and CTS seems to not have an impact on performance of CX in regression
domain, since both trials of CX overlap in 6 out of 9 problems and once CiCtsCx is better than
RhhTsCx. In Boolean domain CiCtsCx achieves better fitness than RhhTsCx in 6 out of 9
problems, once their results are exact the same, and two times RhhTsCx is slightly better. The
pair of CI and CTS also helps SGX in 4 out of 9 symbolic regression problems and 3 out of 9 Boolean
problems. For remaining regression problems RhhTsSgx is better, while for Boolean ones there is
no noticeably difference between both SGX setups. Thus it is difficult to draw clear conclusions on
impact of CI and CTS on SGX. The duet of CI and CTS helps also blind to geometry TX and SDX,
respectively in 4 and 5 out of 9 symbolic regression and in 5 out of 9 Boolean problems, however
evidence is too weak to draw meaningful conclusions.

Performance of CX is quite stable over problems and domains. In 7 out of 18 problems CiCtsCx
and in 6 problems RhhTsCx are characterized by the narrowest confidence intervals (thus variance
too) of the final average fitness. Hence CX can be considered very stable and reliable in terms of
the expected results.

To statistically assess differences between the operators we conduct Friedman’s test on the
average of the best of run fitness. The resulting p-value of 1.26×10−9 is conclusive at the significance
level α = 0.05, hence we carry out post-hoc analysis in Table 9.42. The analysis reveals outranking
of CX over TX irrelevantly to initialization and selection methods, and of CiCtsCx over both
SGX setups.

In Table 9.43 we present empirical probability, i.e., success rate, and 95% confidence interval of
solving the benchmark problems optimally, i.e., by finding program p∗ : s(p∗) = t.4

Eight out of nine symbolic regression problems remain unsolved for each run of each setup.
In contrary only Mux11 is unsolved by all operators in Boolean domain. Both SGX setups solve

4We use similarity threshold, see Table 8.2.
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Figure 9.10: Average and 95% confidence interval of the best of generation fitness.



Table 9.41: Average and 95% confidence interval of the best of run fitness (the best in bold).

Prob. RhhTsTx RhhTsSdx RhhTsSgx RhhTsCx CiCtsTx CiCtsSdx CiCtsSgx CiCtsCx
R1 0.22 ±0.05 0.10 ±0.04 2.68 ±0.21 0.01 ±0.01 0.18 ±0.05 0.12 ±0.04 4.02 ±0.76 0.01 ±0.00

R2 0.21 ±0.03 0.09 ±0.02 0.55 ±0.06 0.01 ±0.00 0.13 ±0.05 0.08 ±0.02 0.77 ±0.13 0.00 ±0.00

R3 0.03 ±0.01 0.02 ±0.00 0.18 ±0.02 0.00 ±0.00 0.02 ±0.01 0.02 ±0.00 0.08 ±0.01 0.00 ±0.00

Kj1 0.10 ±0.04 0.04 ±0.01 0.34 ±0.02 0.01 ±0.01 0.06 ±0.02 0.06 ±0.02 0.15 ±0.02 0.00 ±0.00

Kj4 0.17 ±0.03 0.17 ±0.03 0.96 ±0.03 0.04 ±0.01 0.18 ±0.02 0.16 ±0.02 0.67 ±0.04 0.06 ±0.02

Ng9 0.18 ±0.07 0.08 ±0.04 0.59 ±0.05 0.01 ±0.01 0.17 ±0.05 0.08 ±0.03 1.36 ±0.16 0.01 ±0.00

Ng12 0.42 ±0.04 0.22 ±0.04 0.38 ±0.02 0.12 ±0.05 0.21 ±0.03 0.17 ±0.03 0.58 ±0.10 0.09 ±0.12

Pg1 0.33 ±0.19 0.12 ±0.04 1.27 ±0.07 0.14 ±0.05 0.56 ±0.24 0.41 ±0.25 2.04 ±0.21 0.17 ±0.20

Vl1 0.66 ±0.15 0.43 ±0.13 1.03 ±0.02 0.32 ±0.13 0.34 ±0.10 0.23 ±0.04 0.96 ±0.04 0.12 ±0.08

Par5 3.60 ±0.75 1.50 ±0.50 0.00 ±0.00 0.47 ±0.27 3.07 ±0.47 0.77 ±0.41 0.00 ±0.00 0.00 ±0.00

Par6 15.23 ±1.33 8.73 ±1.05 0.00 ±0.00 5.67 ±1.30 15.27 ±1.11 9.53 ±0.87 0.00 ±0.00 1.97 ±0.34

Par7 43.00 ±1.95 31.80 ±1.09 0.17 ±0.16 28.23 ±1.99 44.63 ±0.98 36.40 ±1.02 0.00 ±0.00 16.90 ±1.26

Mux6 4.50 ±0.80 4.73 ±0.90 1.33 ±0.31 4.47 ±0.86 0.57 ±0.49 0.60 ±0.36 0.03 ±0.06 0.10 ±0.14

Mux11 109.93 ±11.35 125.93 ±2.06 122.27 ±9.09 118.47 ±7.20 62.33 ±11.30 69.20 ±8.07 82.27 ±8.93 109.87 ±11.10

Maj7 1.93 ±0.61 0.07 ±0.09 0.00 ±0.00 0.00 ±0.00 4.23 ±1.00 0.37 ±0.27 0.00 ±0.00 0.03 ±0.06

Maj8 0.60 ±0.63 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 3.73 ±1.07 0.33 ±0.31 0.07 ±0.09 0.30 ±0.21

Cmp6 1.23 ±0.40 0.30 ±0.19 0.00 ±0.00 0.00 ±0.00 0.13 ±0.12 0.07 ±0.09 0.00 ±0.00 0.00 ±0.00

Cmp8 11.03 ±1.60 5.00 ±0.91 0.00 ±0.00 2.00 ±1.06 7.87 ±1.85 3.10 ±0.74 0.00 ±0.00 0.27 ±0.33

Rank: 6.44 4.67 5.08 2.86 5.61 4.22 4.81 2.31

Table 9.42: Post-hoc analysis of Friedman’s test conducted on Table 9.41: p-values of incorrectly judging
a setup in a row as outranking a setup in a column. Significant (α = 0.05) p-values are in bold and visualized as
arcs in graph.

RhhTsTx RhhTsSdx RhhTsSgx RhhTsCx CiCtsTx CiCtsSdx CiCtsSgx CiCtsCx
RhhTsTx

RhhTsSdx 0.355 1.000 0.941 1.000
RhhTsSgx 0.700 0.998
RhhTsCx 0.000 0.334 0.110 0.016 0.700 0.241
CiCtsTx 0.970

CiCtsSdx 0.110 0.999 0.964 0.678 0.996
CiCtsSgx 0.466 1.000 0.975
CiCtsCx 0.000 0.070 0.014 0.997 0.001 0.258 0.042
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Table 9.43: Empirical probability and 95% confidence interval of finding the optimal program (the highest in
bold).

Problem RhhTsTx RhhTsSdx RhhTsSgx RhhTsCx CiCtsTx CiCtsSdx CiCtsSgx CiCtsCx
R1 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

R2 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

R3 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

Kj1 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

Kj4 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

Ng9 0.23 ±0.15 0.13 ±0.12 0.00 ±0.00 0.50 ±0.18 0.13 ±0.12 0.13 ±0.12 0.00 ±0.00 0.10 ±0.11

Ng12 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

Pg1 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

Vl1 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

Par5 0.03 ±0.06 0.33 ±0.17 1.00 ±0.00 0.67 ±0.17 0.00 ±0.00 0.53 ±0.18 1.00 ±0.00 1.00 ±0.00

Par6 0.00 ±0.00 0.00 ±0.00 1.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 1.00 ±0.00 0.00 ±0.00

Par7 0.00 ±0.00 0.00 ±0.00 0.87 ±0.12 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 1.00 ±0.00 0.00 ±0.00

Mux6 0.03 ±0.06 0.07 ±0.09 0.10 ±0.11 0.03 ±0.06 0.73 ±0.16 0.67 ±0.17 0.97 ±0.06 0.93 ±0.09

Mux11 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

Maj7 0.27 ±0.16 0.93 ±0.09 1.00 ±0.00 1.00 ±0.00 0.07 ±0.09 0.77 ±0.15 1.00 ±0.00 0.97 ±0.06

Maj8 0.80 ±0.14 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 0.07 ±0.09 0.83 ±0.13 0.93 ±0.09 0.77 ±0.15

Cmp6 0.30 ±0.16 0.73 ±0.16 1.00 ±0.00 1.00 ±0.00 0.87 ±0.12 0.93 ±0.09 1.00 ±0.00 1.00 ±0.00

Cmp8 0.00 ±0.00 0.00 ±0.00 1.00 ±0.00 0.47 ±0.18 0.00 ±0.00 0.13 ±0.12 1.00 ±0.00 0.87 ±0.12

Rank: 5.33 4.92 3.69 4.14 5.31 4.75 3.53 4.33

Table 9.44: Post-hoc analysis of Friedman’s test conducted on Table 9.43: p-values of incorrectly judging
a setup in a row as outranking a setup in a column. Significant (α = 0.05) p-values are in bold and visualized as
arcs in graph.

RhhTsTx RhhTsSdx RhhTsSgx RhhTsCx CiCtsTx CiCtsSdx CiCtsSgx CiCtsCx
RhhTsTx

RhhTsSdx 0.994 0.996
RhhTsSgx 0.047 0.305 0.992 0.054 0.503 0.935
RhhTsCx 0.334 0.834 0.366 0.948 1.000
CiCtsTx 1.000

CiCtsSdx 0.960 1.000 0.969
CiCtsSgx 0.017 0.159 1.000 0.948 0.021 0.305 0.807
CiCtsCx 0.575 0.960 0.611 0.994

RhhTsSdx RhhTsSgx

uu
RhhTsTx RhhTsCx

CiCtsTx CiCtsCx

CiCtsSdx CiCtsSgx
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Figure 9.11: Median and 95% confidence interval of test-set fitness of the best of generation program on
training-set.

in all runs 6 out of 9 Boolean problems. In remaining ones, except Mux11, they feature non-zero
probability of success. The runner up is CX, whose both setups solve at least once 6 out of 9
Boolean problems and one regression problem. Canonical setup RhhTsTx seems to be the worst
one, since it achieves the lowest probability for 14 out of 18 problems.

We carry out Friedman’s test to verify whether there are significant differences in probability
of solving problems between setups. The test results in conclusive p-value of 1.71 × 10−2, thus
we conduct post-hoc analysis presented in Table 9.44. The analysis shows outranking of both
SGX setups over RhhTsTx and of CiCtsSgx over CiCtsTx. The main reason for that must be
prominent performance of SGX on Boolean problems.

9.4.2 Generalization abilities
Figure 9.11 shows median and 95% confidence interval of test-set fitness of the best of generation
program on training-set and Table 9.45 presents the same values for the best of run program.
We switched to median to work around outlying observations.

In all nine problems the worst test-set fitness is achieved by SGX. SGX is deteriorating its
test-set fitness in the first ten generations while it improves the training-set one, then SGX converges
on both sets. This clearly indicates major overfitting combined with premature convergence.
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The situation is quite different for other operators that typically improve their test-set fitness
over generations. In 6 out of 9 problems, the best test-set fitness is obtained by CX. We also do
not notice any signs of overfitting of neither CX, nor TX or SDX. For the remaining problems,
namely Kj4, Pg1 and Vl1, CX is being improving test-set fitness in early generations, then the
fitness becomes oscillating with a slight bias towards deterioration. In all nine problems CiCtsSdx
is better than CiCtsTx and in seven problems RhhTsSdx is better than RhhTsTx.

It is not clear how use of CI and CTS influences test-set fitness or overfitting, however we
observe a slight bias toward better fitness in CiCts* setups, e.g., in 6 out of 9 problems for CX and
TX, 5 out of 9 for SGX and 4 out of 9 for SDX.

To statistically assess our observations, we carry out Friedman’s test on Table 9.45. The test is
conclusive with p-value of 2.04× 10−4 . Post-hoc analysis presented in Table 9.46 leaves no doubts
that both CX and both SDX setups outrank both SGX setups.

9.4.3 Effectiveness and geometry
Figure 9.12 and Table 9.47 present empirical probability and 95% confidence interval of effective
crossover applications (cf. Definition 4.7) over generations and in the entire 100-generation run,
respectively.

The obtained probabilities are noticeably higher for symbolic regression than for the Boolean
domain. This a natural consequence of virtually infinite and continuous semantic space in real
domain, in contrast to discrete and finite space in Boolean domain.

In all regression problems and in 6 out of 9 Boolean problems the highest values that amount
to 100% and > 82.8%, respectively, are reported for CiCtsSgx. Second most effective setup is
RhhTsSgx that achieves > 99.8% and > 59.8%, respectively for the same problems. In two Mux
problems we observe deviation from the norm, where SGX achieves much lower probabilities than in
other problems. This phenomenon is especially visible for RhhTsSgx for which the probabilities are
< 5.5%. The plot shows that effectiveness of SGX there decreases from the initial of approximately
50% to almost zero in less than 20 generations.

In turn both SDX setups achieve slightly lower probabilities than SGX and higher than other
operators.

In symbolic regression TX and CX feature nearly equal total probability of effective crossovers,
however the value for both CX setups typically decreases in early generations, while for RhhTsTx
it increases and for CiCtsTx is roughly constant. For both operators higher values are observed for
CiCts* variant, probably due to effectiveness of CI and CTS. In Boolean domain both CX setups
start from different probabilities of effective crossovers, then in first 20 generations the probabilities
are equalizing. For TX there is no such a clear trend, however in 6 out of 9 Boolean problems
RhhTsTx leads to higher probabilities than CiCtsTx.

The imperfect effectiveness of CX may be a cause of a technical implementation of Invert(·, ·, ·)
function from Table 7.1 that returns at most two values, even if there are more inversions of parents’
semantics (s(p1) and s(p2) in Algorithm 7.5) available. Thus, forbidden semantics (D1

ø and D2
ø in

that algorithm) may not contain all values that prevent from producing neutral offspring.
To statistically verify ordering of the operators we conduct Friedman’s test on Table 9.47.

P-value of the test is 4.29× 10−9, thus there is difference in at least one pair of setups and post-hoc
analysis, presented in Table 9.48 is conducted. The analysis mainly confirms our observations: both
SGX and SDX setups provide higher probabilities of effective applications than both TX and CX
setups. There is no other significant difference.

We also verify how effectiveness of particular operators influences semantic diversity of entire
population. Figure 9.13 presents average and 95% confidence interval of number of semantically
unique programs in population of size 1000.

Similarly like in Figure 9.12, the values are higher for symbolic regression than for Boolean
domain, what we also attribute to the infinite and continuous structure of semantic space. For
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Figure 9.12: Empirical probability and 95% confidence interval of effective crossovers per generation.



Table 9.47: Empirical probability and 95% confidence interval of effective crossovers until 100 generation (the
highest in bold).

Prob. RhhTsTx RhhTsSdx RhhTsSgx RhhTsCx CiCtsTx CiCtsSdx CiCtsSgx CiCtsCx
R1 0.948 ±0.000 0.997 ±0.000 0.999 ±0.000 0.912 ±0.000 0.942 ±0.000 0.993 ±0.000 1.000 ±0.000 0.924 ±0.000

R2 0.887 ±0.000 0.990 ±0.000 0.999 ±0.000 0.904 ±0.000 0.936 ±0.000 0.988 ±0.000 1.000 ±0.000 0.916 ±0.000

R3 0.929 ±0.000 0.997 ±0.000 0.998 ±0.000 0.920 ±0.000 0.933 ±0.000 0.994 ±0.000 1.000 ±0.000 0.937 ±0.000

Kj1 0.892 ±0.000 0.992 ±0.000 0.998 ±0.000 0.913 ±0.000 0.931 ±0.000 0.990 ±0.000 1.000 ±0.000 0.924 ±0.000

Kj4 0.917 ±0.000 0.995 ±0.000 0.998 ±0.000 0.935 ±0.000 0.934 ±0.000 0.991 ±0.000 1.000 ±0.000 0.960 ±0.000

Ng9 0.883 ±0.000 0.993 ±0.000 1.000 ±0.000 0.909 ±0.000 0.950 ±0.000 0.995 ±0.000 1.000 ±0.000 0.912 ±0.000

Ng12 0.844 ±0.000 0.982 ±0.000 0.999 ±0.000 0.908 ±0.000 0.960 ±0.000 0.981 ±0.000 1.000 ±0.000 0.920 ±0.000

Pg1 0.940 ±0.000 0.993 ±0.000 1.000 ±0.000 0.897 ±0.000 0.940 ±0.000 0.986 ±0.000 1.000 ±0.000 0.924 ±0.000

Vl1 0.849 ±0.000 0.983 ±0.000 0.999 ±0.000 0.932 ±0.000 0.955 ±0.000 0.992 ±0.000 1.000 ±0.000 0.940 ±0.000

Par5 0.470 ±0.001 0.723 ±0.001 0.790 ±0.002 0.420 ±0.001 0.387 ±0.001 0.629 ±0.001 0.819 ±0.002 0.389 ±0.001

Par6 0.509 ±0.001 0.761 ±0.000 0.832 ±0.001 0.466 ±0.001 0.430 ±0.001 0.679 ±0.001 0.847 ±0.001 0.458 ±0.001

Par7 0.544 ±0.001 0.818 ±0.000 0.598 ±0.001 0.490 ±0.001 0.468 ±0.001 0.721 ±0.001 0.868 ±0.001 0.495 ±0.001

Mux6 0.223 ±0.001 0.457 ±0.001 0.025 ±0.000 0.346 ±0.001 0.328 ±0.001 0.538 ±0.001 0.521 ±0.002 0.323 ±0.001

Mux11 0.223 ±0.001 0.399 ±0.001 0.055 ±0.000 0.368 ±0.001 0.357 ±0.001 0.540 ±0.001 0.493 ±0.001 0.391 ±0.001

Maj7 0.544 ±0.001 0.811 ±0.001 0.854 ±0.001 0.535 ±0.001 0.482 ±0.001 0.696 ±0.001 0.865 ±0.001 0.426 ±0.001

Maj8 0.598 ±0.001 0.933 ±0.001 0.878 ±0.001 0.608 ±0.001 0.458 ±0.001 0.729 ±0.001 0.854 ±0.001 0.463 ±0.001

Cmp6 0.381 ±0.001 0.694 ±0.001 0.698 ±0.002 0.512 ±0.002 0.371 ±0.001 0.622 ±0.001 0.828 ±0.002 0.367 ±0.001

Cmp8 0.446 ±0.001 0.695 ±0.001 0.820 ±0.001 0.447 ±0.001 0.447 ±0.001 0.657 ±0.001 0.876 ±0.001 0.422 ±0.001

Rank: 6.556 2.944 2.778 6.333 6.278 3.500 1.222 6.389

Table 9.48: Post-hoc analysis of Friedman’s test conducted on Table 9.47: p-values of incorrectly judging
a setup in a row as carrying out more effective applications than a setup in a column. Significant (α = 0.05)
p-values are in bold and visualized as arcs in graph.

RhhTsTx RhhTsSdx RhhTsSgx RhhTsCx CiCtsTx CiCtsSdx CiCtsSgx CiCtsCx
RhhTsTx

RhhTsSdx 0.000 0.001 0.001 0.998 0.001
RhhTsSgx 0.000 1.000 0.000 0.000 0.988 0.000
RhhTsCx 1.000 1.000
CiCtsTx 1.000 1.000 1.000

CiCtsSdx 0.005 0.012 0.015 0.009
CiCtsSgx 0.000 0.409 0.547 0.000 0.000 0.098 0.000
CiCtsCx 1.000
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Figure 9.13: Average and 95% confidence interval of semantically unique programs in population of size 1000
over generations.
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Figure 9.14: Empirical probability and 95% confidence interval of L1 geometric effective crossovers per
generation.

all regression problems all setups that employ CI and CTS achieve higher diversity than the
corresponding setups with RHH and TS. Both SGX and SDX setups maintain nearly 1000 unique
programs in the population for the entire runs and third place is taken by CX. Diversities for
RhhTsTx are the lowest for entire runs and noticeably lower than for CiCtsTx.

In turn in Boolean domain SGX in first few generations slightly increases the number of unique
programs to almost 1000, then a rapid fall of this value begins, which ends when either all runs
finds the optimum or the number falls down to 1. Because of superior performance of SGX in
Boolean domain, we observe actual drop to 1 only in difficult to SGX problems, i.e.,Mux*. Due
to inability to select semantically distinct parents in low diverse populations, SGX is unable to
produce simultaneously geometric and effective offspring, which explains the drop of probability of
effective applications observed in Figure 9.12 for Mux* problems.

In turn diversity in populations maintained by TX, SDX and CX slowly falls down in early
generations then stays at roughly constant levels. For all of them noticeably higher values are seen
for CiCts* variants than for RhhTs* ones.

Figure 9.14 and Table 9.49 present empirical probability and 95% confidence interval of L1
geometric applications (cf. Definition 5.7) of crossover in Boolean problems, respectively over
generations and total in 100-generational run. Figure 9.15 and Table 9.51 present the same values
for L2 metric and symbolic regression problems. Since neutral applications are geometric by
definition, we exclude them from statistics to not obfuscate the results.



Table 9.49: Empirical probability and 95% confidence interval of L1 geometric crossovers until 100 generation
(the highest in bold).

Prob. RhhTsTx RhhTsSdx RhhTsSgx RhhTsCx CiCtsTx CiCtsSdx CiCtsSgx CiCtsCx
Par5 0.018 ±0.000 0.043 ±0.000 0.790 ±0.002 0.079 ±0.000 0.040 ±0.000 0.054 ±0.000 0.819 ±0.002 0.201 ±0.001

Par6 0.020 ±0.000 0.047 ±0.000 0.832 ±0.001 0.071 ±0.000 0.062 ±0.000 0.066 ±0.000 0.847 ±0.001 0.176 ±0.000

Par7 0.023 ±0.000 0.057 ±0.000 0.598 ±0.001 0.090 ±0.000 0.082 ±0.000 0.080 ±0.000 0.868 ±0.001 0.240 ±0.000

Mux6 0.004 ±0.000 0.010 ±0.000 0.025 ±0.000 0.018 ±0.000 0.030 ±0.000 0.048 ±0.000 0.521 ±0.002 0.136 ±0.001

Mux11 0.004 ±0.000 0.013 ±0.000 0.055 ±0.000 0.042 ±0.000 0.033 ±0.000 0.054 ±0.000 0.493 ±0.001 0.302 ±0.001

Maj7 0.017 ±0.000 0.077 ±0.000 0.854 ±0.001 0.267 ±0.001 0.028 ±0.000 0.048 ±0.000 0.865 ±0.001 0.174 ±0.001

Maj8 0.035 ±0.000 0.122 ±0.001 0.878 ±0.001 0.359 ±0.001 0.054 ±0.000 0.075 ±0.000 0.854 ±0.001 0.290 ±0.001

Cmp6 0.011 ±0.000 0.045 ±0.000 0.698 ±0.002 0.315 ±0.002 0.024 ±0.000 0.066 ±0.000 0.828 ±0.002 0.249 ±0.001

Cmp8 0.013 ±0.000 0.031 ±0.000 0.820 ±0.001 0.104 ±0.000 0.029 ±0.000 0.049 ±0.000 0.876 ±0.001 0.208 ±0.001

Rank: 8.000 6.222 2.333 4.000 6.222 5.000 1.111 3.111

Table 9.50: Post-hoc analysis of Friedman’s test conducted on Table 9.49: p-values of incorrectly judging
a setup in a row as carrying out more L1 geometric applications than a setup in a column. Significant (α = 0.05)
p-values are in bold and visualized as arcs in graph.

RhhTsTx RhhTsSdx RhhTsSgx RhhTsCx CiCtsTx CiCtsSdx CiCtsSgx CiCtsCx
RhhTsTx

RhhTsSdx 0.786
RhhTsSgx 0.000 0.017 0.837 0.017 0.289 0.998
RhhTsCx 0.012 0.534 0.534 0.989
CiCtsTx 0.786 1.000

CiCtsSdx 0.156 0.965 0.965
CiCtsSgx 0.000 0.000 0.965 0.195 0.000 0.017 0.666
CiCtsCx 0.001 0.125 0.995 0.124 0.728
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Table 9.51: Empirical probability and 95% confidence interval of L2 geometric crossovers until 100 generation
(the highest in bold).

Prob. RhhTsTx RhhTsSdx RhhTsSgx RhhTsCx CiCtsTx CiCtsSdx CiCtsSgx CiCtsCx
R1 0.000 ±0.000 0.000 ±0.000 0.967 ±0.000 0.001 ±0.000 0.000 ±0.000 0.000 ±0.000 0.960 ±0.000 0.000 ±0.000

R2 0.000 ±0.000 0.000 ±0.000 0.990 ±0.000 0.003 ±0.000 0.000 ±0.000 0.000 ±0.000 0.982 ±0.000 0.000 ±0.000

R3 0.001 ±0.000 0.001 ±0.000 0.994 ±0.000 0.007 ±0.000 0.000 ±0.000 0.000 ±0.000 0.989 ±0.000 0.003 ±0.000

Kj1 0.002 ±0.000 0.004 ±0.000 0.994 ±0.000 0.019 ±0.000 0.000 ±0.000 0.000 ±0.000 0.990 ±0.000 0.005 ±0.000

Kj4 0.001 ±0.000 0.003 ±0.000 0.993 ±0.000 0.016 ±0.000 0.000 ±0.000 0.000 ±0.000 0.987 ±0.000 0.002 ±0.000

Ng9 0.000 ±0.000 0.000 ±0.000 0.974 ±0.000 0.003 ±0.000 0.000 ±0.000 0.000 ±0.000 0.963 ±0.000 0.000 ±0.000

Ng12 0.000 ±0.000 0.001 ±0.000 0.979 ±0.000 0.006 ±0.000 0.000 ±0.000 0.000 ±0.000 0.968 ±0.000 0.002 ±0.000

Pg1 0.000 ±0.000 0.000 ±0.000 0.961 ±0.000 0.009 ±0.000 0.000 ±0.000 0.000 ±0.000 0.953 ±0.000 0.004 ±0.000

Vl1 0.001 ±0.000 0.003 ±0.000 0.981 ±0.000 0.021 ±0.000 0.000 ±0.000 0.000 ±0.000 0.968 ±0.000 0.010 ±0.000

Rank: 5.556 5.000 1.000 3.000 7.000 8.000 2.000 4.444

Table 9.52: Post-hoc analysis of Friedman’s test conducted on Table 9.51: p-values of incorrectly judging
a setup in a row as carrying out more L2 geometric applications than a setup in a column. Significant (α = 0.05)
p-values are in bold and visualized as arcs in graph.

RhhTsTx RhhTsSdx RhhTsSgx RhhTsCx CiCtsTx CiCtsSdx CiCtsSgx CiCtsCx
RhhTsTx 0.916 0.404

RhhTsSdx 1.000 0.666 0.156
RhhTsSgx 0.002 0.012 0.666 0.000 0.000 0.989 0.057
RhhTsCx 0.344 0.667 0.013 0.000 0.916
CiCtsTx 0.989

CiCtsSdx
CiCtsSgx 0.043 0.156 0.989 0.000 0.000 0.404
CiCtsCx 0.980 1.000 0.343 0.043
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Figure 9.15: Empirical probability and 95% confidence interval of L2 geometric effective crossovers per
generation.

In all Boolean problems CiCtsSgx maintains the highest probability of L1 geometric applications
and RhhTsSgx is the second most geometric for all problems except Mux*, for which the probability
rapidly falls down to zero in first few generations. We attribute this to the drop of diversity in
population observed earlier in Figure 9.13, thus inability to provide effective geometric applications.
Second most geometric operator is CX, for which CiCtsCx setup is characterized by noticeably
higher probability of geometric applications than RhhTsCx in 6 out of 9 problems. For the
remaining operators the probability of geometric applications is less than 12.2% and is slightly
higher for SDX than SDM. This should not be surprising since both operators are blind to geometry
of search space and SDX maintains higher probability of effective applications than TX.

In all symbolic regression problems both SGX setups maintain nearly the same probability of
L2 geometric effective applications of over 95.3% applications. In turn the probability for all other
operators is much lower and at the level of 10− 20% in first 10 generations, then drops down to
almost zero. Total values in Table 9.51 indicate that RhhTsCx is the third most geometric setup
with average probability of geometric effective applications of approximately 1%. CiCtsTx and
CiCtsSdx are least geometric setups with the probabilities of almost zero. For all operators the
probabilities in problems with 100 fitness cases are slightly lower, than with 20 fitness cases, which
may be an effect of complex construction of segment in high dimensional spaces.
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The probabilities for SGX are not 100% for all problems due to floating point arithmetic errors
or neutral applications, which we excluded from statistics and which constitute the complement
probability.

To statistically support our observations, we carry out Friedman’s tests on final probabilities
separately for Boolean and real geometry. The tests result in conclusive p-values of 3.31× 10−8

and 1.82× 10−8, respectively, thus we conduct separate post-hoc analyzes in Tables 9.50 and 9.52,
respectively. The analysis for Boolean domain shows that both SGX setups are significantly more
geometric than both TX and both SDX setups. In addition CX is considered more geometric
than TX within each pair of initialization and selection. In real domain both SGX setups provide
significantly more geometric applications than both TX setups and CiCtsSdx, and RhhTsSgx
provides more geometric applications than RhhTsSdx. Additionally both CX setups are more
geometric than CiCtsSdx.

9.4.4 Program size
Figure 9.16 presents average and 95% confidence interval of number of nodes in the best of generation
program and Table 9.53 presents the same values for the best of run program.

This experiment confirms our remark from Section 6.2.1 on size of programs produced by SGX
that is exponential in number of generations and reach millions of nodes in less than 20 generations
for all problems. The observed growth halts only when all SGX runs find the optimum, i.e., all runs
terminate. Hence SGX is the most bloating of all considered operators.

Second biggest programs are produced by CX, however their final sizes are typically of few
hundreds nodes and only for six problems the size grows over one thousand nodes. In turn SDX
and TX produce smaller programs than CX in all problems except Mux*, where RhhTsCx results
in the smallest programs. Programs produced by TX are smaller than the programs produced by
SDX accompanied with the same initialization and selection in 15 out of 18 problems. What is
more use of CI and CTS for all operators leads to programs not smaller than programs produced
with support of RHH and TS.

To statistically compare final program sizes, we employ Friedman’s test that results in conclusive
p-value of 1.42× 10−14. We conduct post-hoc analysis presented in Table 9.54. Both TX and both
SDX setups produce significantly smaller programs than both SGX setups. RhhTsCx produces
significantly smaller programs than both SGX setups. RhhTsTx produces smaller programs than
both CX setups and CiCtsTx produces smaller programs than CiCtsCx.

9.4.5 Computational costs
Figure 9.17 and Table 9.55 present average and 95% confidence interval of total CPU time consumed
by the considered operators over generations and until 100 generation, respectively.

First, we observe noticeably impact of the choice of initialization method on the total computation
time: from all setups, these that involve CI require more total time than the corresponding setups
that employ RHH. Second, CX in symbolic regression is the most time-demanding operator and
SDX is the second. The fastest operator is TX and SGX is slightly slower than TX. The situation
is quite different in Boolean domain, where in 6 out of 9 problems CiCtsSdx is the slowest setup
and RhhTsSdx is only slightly faster. In the remaining problems CiCtsCx is the slowest one. In
turn the fastest setup is RhhTsSgx in all but Mux* problems, where RhhTsTx is the fastest.
We explain this phenomenon by the fact that Mux* problems are the only Boolean ones that are
challenging for SGX to solve, hence it requires more time to find the optimum.

We conduct Friedman’s test to assess significance of differences between obtained total com-
putation times. The test outputs conclusive p-value of 1.47× 10−12, thus we carry out post-hoc
analysis in Table 9.56. Indeed the times consumed by both CX setups are greater than both SGX
setups and RhhTsTx. Additionally RhhTsTx is faster than both SDX setups and CiCtsTx,
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Figure 9.16: Average and 95% confidence interval of numbers of nodes in the best of generation program.



Table 9.53: Average and 95% confidence interval of number of nodes in the best of run program (the lowest in
bold). For values greater than 104 we left only an order of magnitude.

Prob. RhhTsTx RhhTsSdx RhhTsSgx RhhTsCx CiCtsTx CiCtsSdx CiCtsSgx CiCtsCx
R1 106.40 ±18.44 106.73 ±13.75 1017 ±1016 490.13 ±74.07 114.40 ±13.97 154.00 ±24.55 1017 ±1016 569.33 ±68.11

R2 57.33 ±11.49 122.20 ±16.03 1017 ±1016 552.53 ±60.59 106.10 ±12.27 144.87 ±21.49 1017 ±1016 654.67 ±82.84

R3 131.07 ±19.11 190.03 ±20.83 1017 ±1016 692.77 ±76.50 153.20 ±23.92 206.77 ±33.29 1017 ±1016 664.00 ±77.81

Kj1 148.00 ±24.42 185.83 ±21.32 1017 ±1016 572.60 ±72.84 144.60 ±17.99 222.73 ±33.41 1017 ±1016 582.57 ±88.00

Kj4 158.90 ±15.82 199.43 ±21.73 1017 ±1016 735.33 ±79.46 236.80 ±30.05 270.30 ±50.54 1017 ±1016 622.27 ±64.47

Ng9 63.37 ±17.09 101.97 ±20.18 1017 ±1016 312.53 ±123.12 93.07 ±19.07 100.63 ±18.11 1017 ±1016 569.57 ±108.27

Ng12 42.23 ±15.31 139.37 ±23.20 1017 ±1016 473.13 ±72.78 91.10 ±18.66 136.00 ±20.35 1017 ±1016 503.70 ±85.67

Pg1 69.17 ±7.77 93.10 ±9.74 1017 ±1016 328.07 ±59.97 86.43 ±10.97 109.27 ±17.85 1017 ±1017 392.13 ±88.47

Vl1 134.03 ±23.07 170.37 ±20.89 1017 ±1016 527.53 ±66.34 135.50 ±14.95 156.60 ±26.41 1017 ±1016 463.03 ±45.41

Par5 471.13 ±45.90 1049.73 ±90.35 104 ±1048.14 1210.93 ±111.24 681.40 ±69.58 1576.00 ±181.99 105 ±7071.28 1551.87 ±143.66

Par6 479.73 ±42.97 1311.93 ±108.54 106 ±105 1959.07 ±189.07 717.13 ±90.83 1685.53 ±159.96 107 ±106 2045.47 ±163.67

Par7 516.07 ±44.49 1418.80 ±125.01 1016 ±1016 2304.00 ±242.46 629.20 ±49.63 1764.47 ±161.41 109 ±108 2965.20 ±185.99

Mux6 250.87 ±33.93 221.07 ±43.17 1017 ±1016 97.00 ±35.03 319.07 ±38.26 631.40 ±116.76 1016 ±1016 635.00 ±118.69

Mux11 190.20 ±32.60 224.53 ±38.53 1017 ±1016 73.07 ±31.48 226.07 ±23.75 459.13 ±65.74 1017 ±1016 588.60 ±181.63

Maj7 469.27 ±40.04 987.13 ±82.95 105 ±104 1172.80 ±86.83 476.80 ±37.23 1085.93 ±99.46 106 ±105 1706.40 ±142.99

Maj8 409.07 ±46.61 715.93 ±88.36 105 ±6436.94 952.60 ±82.00 393.33 ±41.13 899.60 ±105.93 1016 ±1016 2043.80 ±159.88

Cmp6 332.13 ±44.97 475.33 ±50.34 2317.63 ±340.26 626.00 ±58.71 368.13 ±50.34 747.20 ±80.18 104 ±5394.53 886.07 ±98.91

Cmp8 317.53 ±36.20 650.53 ±63.66 105 ±105 1169.33 ±122.68 346.47 ±43.91 798.13 ±76.09 107 ±106 1476.73 ±134.48

Rank: 1.28 3.00 7.28 4.61 2.22 4.11 7.72 5.78

Table 9.54: Post-hoc analysis of Friedman’s test conducted on Table 9.53: p-values of incorrectly judging
a setup in a row as producing smaller programs than a setup in a column. Significant (α = 0.05) p-values are in
bold and visualized as arcs in graph.

RhhTsTx RhhTsSdx RhhTsSgx RhhTsCx CiCtsTx CiCtsSdx CiCtsSgx CiCtsCx
RhhTsTx 0.409 0.000 0.001 0.944 0.012 0.000 0.000

RhhTsSdx 0.000 0.500 0.875 0.000 0.016
RhhTsSgx 0.999
RhhTsCx 0.024 0.003 0.844
CiCtsTx 0.981 0.000 0.067 0.286 0.000 0.000

CiCtsSdx 0.003 0.999 0.000 0.454
CiCtsSgx
CiCtsCx 0.594 0.251
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Figure 9.17: Average and 95% confidence interval of total execution time w.r.t. number of generations.



Table 9.55: Average and 95% confidence interval of total execution time spent to finish run (the lowest in bold).

Prob. RhhTsTx RhhTsSdx RhhTsSgx RhhTsCx CiCtsTx CiCtsSdx CiCtsSgx CiCtsCx
R1 1.02 ±0.11 17.98 ±1.89 2.42 ±0.07 411.56 ±40.60 16.25 ±6.15 48.00 ±7.44 17.59 ±6.35 549.09 ±40.57

R2 0.72 ±0.07 23.36 ±3.06 2.57 ±0.09 442.11 ±28.48 15.53 ±3.84 47.25 ±7.73 17.72 ±6.31 617.22 ±35.49

R3 1.16 ±0.10 26.43 ±2.94 2.76 ±0.09 514.26 ±41.22 16.29 ±6.13 57.83 ±9.57 17.76 ±6.33 616.08 ±36.44

Kj1 1.24 ±0.15 30.37 ±3.63 2.68 ±0.07 569.83 ±45.47 16.18 ±6.05 60.58 ±6.62 17.62 ±6.32 675.85 ±51.20

Kj4 1.34 ±0.09 32.92 ±3.62 2.62 ±0.09 548.34 ±40.79 15.07 ±5.03 78.78 ±10.93 15.02 ±4.93 671.80 ±35.91

Ng9 0.56 ±0.11 33.94 ±6.27 2.88 ±0.07 851.11 ±323.91 318.34 ±93.47 370.06 ±99.45 340.84 ±102.38 2074.41 ±279.46

Ng12 0.50 ±0.07 51.03 ±6.24 2.88 ±0.05 1496.03 ±160.57 344.59 ±103.00 376.97 ±98.58 330.34 ±102.60 2274.75 ±181.16

Pg1 0.71 ±0.05 52.29 ±6.29 3.15 ±0.12 2133.81 ±382.98 90.62 ±39.57 158.06 ±42.93 79.93 ±29.42 2426.83 ±356.24

Vl1 1.06 ±0.12 71.02 ±10.38 3.08 ±0.10 1546.61 ±157.72 117.10 ±58.28 217.26 ±59.55 104.66 ±43.47 1756.09 ±95.06

Par5 3.36 ±0.27 367.31 ±59.37 0.24 ±0.01 116.62 ±30.87 11.68 ±0.90 656.40 ±90.67 4.40 ±0.26 62.89 ±7.09

Par6 3.37 ±0.24 630.13 ±57.08 0.34 ±0.01 578.36 ±42.12 12.70 ±0.96 956.57 ±73.57 4.97 ±0.31 661.82 ±30.88

Par7 3.85 ±0.36 807.16 ±79.93 0.65 ±0.21 977.58 ±70.13 11.93 ±0.66 1186.17 ±103.28 4.97 ±0.28 1224.72 ±62.87

Mux6 2.05 ±0.21 134.10 ±20.74 2.49 ±0.28 67.39 ±15.83 7.59 ±0.56 245.35 ±60.86 4.66 ±0.34 107.99 ±26.61

Mux11 1.74 ±0.10 1728.24 ±218.04 3.43 ±0.10 1046.10 ±282.24 24.19 ±1.45 3678.56 ±510.84 24.77 ±1.57 4522.62 ±406.16

Maj7 3.38 ±0.30 200.77 ±84.52 0.29 ±0.01 79.38 ±14.06 8.78 ±0.30 637.29 ±92.74 4.94 ±0.27 349.82 ±70.29

Maj8 1.66 ±0.47 61.06 ±10.37 0.28 ±0.01 109.36 ±24.25 10.10 ±0.56 663.88 ±115.51 6.88 ±0.54 1079.50 ±171.16

Cmp6 2.25 ±0.30 120.32 ±47.84 0.22 ±0.01 16.85 ±1.49 7.32 ±0.49 140.06 ±42.01 4.62 ±0.24 38.86 ±2.32

Cmp8 2.19 ±0.17 651.44 ±55.43 0.27 ±0.01 640.75 ±105.10 8.69 ±0.56 869.91 ±67.22 6.00 ±0.44 614.00 ±124.29

Rank: 1.39 5.17 1.61 6.22 3.89 6.83 3.56 7.33

Table 9.56: Post-hoc analysis of Friedman’s test conducted on Table 9.55: p-values of incorrectly judging
a setup in a row as faster than a setup in a column. Significant (α = 0.05) p-values are in bold and visualized as
arcs in graph.

RhhTsTx RhhTsSdx RhhTsSgx RhhTsCx CiCtsTx CiCtsSdx CiCtsSgx CiCtsCx
RhhTsTx 0.000 1.000 0.000 0.045 0.000 0.137 0.000

RhhTsSdx 0.902 0.454 0.137
RhhTsSgx 0.000 0.000 0.097 0.000 0.250 0.000
RhhTsCx 0.995 0.875
CiCtsTx 0.771 0.081 0.008 0.001

CiCtsSdx 0.999
CiCtsSgx 0.500 0.024 1.000 0.002 0.000
CiCtsCx
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Table 9.57: Spearman’s rank correlation coefficient of number of nodes in produced programs and computational
time consumed by a setup. Left: correlation over problems for each setup separately. Right: rankings of setups
from last rows of Tables 9.53 and 9.55, and correlation of them. P-values of t test of significance of correlation,
significant correlations (α = 0.05) are marked in bold.

Correlation P-value Size rank Time rank
RhhTsTx 0.965 0.000 1.28 1.39
RhhTsSdx 0.748 0.000 3.00 5.17
RhhTsSgx 0.872 0.000 7.28 1.61
RhhTsCx −0.255 0.154 4.61 6.22
CiCtsTx −0.765 0.000 2.22 3.89
CiCtsSdx 0.620 0.003 4.11 6.83
CiCtsSgx 0.938 0.000 7.72 3.56
CiCtsCx −0.461 0.027 5.78 7.33

Correlation: 0.061
P-value: 0.443

Table 9.58: Exemplary analysis for time budget of 60 seconds for Kj4 problem. The highest generation and the
lowest statistics are in bold.

Generation Fitness Test-set fitness Program size
RhhTsTx 100 0.17 ±0.03 0.63 ≤ 1.14 ≤ 3.39 158.90 ±15.82

RhhTsSdx 100 0.17 ±0.03 1.43 ≤ 2.23 ≤ 3.89 199.43 ±21.73

RhhTsSgx 100 0.96 ±0.03 2.19 ≤ 2.23 ≤ 2.29 1017
±1016

RhhTsCx 22 0.21 ±0.04 0.89 ≤ 1.67 ≤ 3.11 187.63 ±16.91

CiCtsTx 100 0.18 ±0.02 1.65 ≤ 2.52 ≤ 6.71 236.80 ±30.05

CiCtsSdx 76 0.18 ±0.02 1.98 ≤ 2.36 ≤ 2.88 248.17 ±41.28

CiCtsSgx 100 0.67 ±0.04 2.35 ≤ 2.38 ≤ 2.45 1017
±10

16

CiCtsCx 12 0.67 ±0.04 1.79 ≤ 2.25 ≤ 3.06 201.43 ±37.26

where the latter one is faster than CiCtsSdx. Hence we consider canonical setup RhhTsTx as
the fastest one and ex aequo CiCtsCx and CiCtsSdx as the slowest ones.

We verify if computational costs of a particular setup and size of the produced programs from
Table 9.53 are correlated by calculating Spearman’s rank correlation coefficients. The coefficients
are presented with p-values of t test for significance of correlation in left part of Table 9.57. For both
SDX and both SGX setups we observe strong positive correlation between size and computational
costs, hence enforcement of limits on program size would decrease computational costs of a setup.
Note that by definition of SGX, the application of a limit on size would effectively mean termination
of the evolutionary run, since SGX is able to produce only bigger programs than the given parents. In
turn the correlation for CiCtsTx is strongly negative. We hypothesize that this is an anomaly that
comes from high computational costs of CI that constitute a major part of the total computational
costs and as such may disturb the results. Negative but lower correlation is observed also for both
CX setups, for which probably exists other factor than program size that explain computational
costs.

Right part of Table 9.57 presents aggregated rankings of all setups took from Tables 9.53 and
9.55, Spearman’s rank correlation coefficient and p-value of t test for significance of correlation.
Unlike in similar analysis for mutation, there is no correlation between orderings of the operators in
program size and computational costs. For instance SGX that produces oversized programs has one
of the lowest computational costs. The obvious reason is that SGX only combines given parents
and does not penetrate their structures like the other operators do.

However CX and SDX are characterized by higher computational costs than the remaining
operators, we argue that given a limited computational time budget they may still achieve prominent
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results. To give a sight on the comparison of crossover operators in environment with limited time
budget, similarly like in Section 9.3.5 we recommend to put a horizontal line in a plot in Figure 9.17
that reflects the budget, next read number of generations reached by each setup, finally compare
the interested statistics from the previous sections in that generations.

Particular time budget is dependent on, e.g.,methodological, technical and project schedule
aspects, thus we leave to the reader a detailed analysis and present only an example of time budget
of 60 seconds for Kj4 problem. Table 9.58 shows generation reached on average by each setup
within 60 seconds and corresponding statistics of training and test-set fitness and size of produced
programs. Both TX setups, both SGX setups and RhhTsSdx finished in the time limit. The slowest
setup is CiCtsCx that reaches only 12 generations. RhhTsTx achieves the best training and
test-set fitness and produces the smallest programs, however the training-set fitness of RhhTsSdx
is indiscernible with RhhTsTx. What is more confidence intervals of all statistics of the best setup
have non-empty intersections with confidence intervals for both SDX setups and RhhTsCx. This
clearly indicates that even if computational costs of semantic operators are higher their results in
limited time may be as good as of the canonical operators, however given more time, semantic
operators are able to overcome the canonical ones.

9.5 Conclusions
The evidence gathered in the conducted experiments allows us to answer the research questions
1− 4 from Section 8.1.

The answer to research question 1 on superior effectiveness and geometry of CI to SDI and
RHH is yes.

CI initializes populations without semantic duplicates, more diverse than RHH and equally diverse
as SDI. CI also builds geometric population in fewer applications than SDI and RHH. What is more
CI provides smoother fitness distribution than the other operators, which may indicate a more
uniform distribution of semantics. Admittedly both SDI and CI pay a price in a program size and
computational costs for effectiveness and, in case of CI also for geometry. While the increase of
computational cost resulting from SDI’s attempts to conduct an effective application seems to be
low, the cost for performing a geometric application by CI is up to two orders of magnitude higher.

Note that both SDI and CI build programs incrementally, starting from single nodes and
combining them gradually into larger and larger ones. Thus the more times the operator is applied
the bigger programs it produces on average. Limiting size of the population would result in smaller
average size of programs. This may be tempting, especially for CI, which requires less applications,
i.e., smaller population, than the remaining operators to conduct the first geometric application.

The answer to research question 2 on superior effectiveness and geometry of CTS to TS and
STS is yes.

CTS selects effective and geometric parents more frequently than TS and STS, however the
gain in probability of geometric selection is too low to draw statistically significant conclusions.
Unfortunately these features of CTS are burdened with higher computation costs of this operator
than the remaining ones, however the absolute times are rather low.

The distribution of semantics in population biases the characteristics of the selection operators.
CI-initialized population facilitates selection of distinct parents for all operators and lowers execution
time of STS and CTS, while it also hinders selection of geometric parents. In general case, where
the population may not be diverse (like, e.g., the RHH’s one), it seems to be a better choice to
employ CTS than an other selection operator.
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The answer to research question 3 on superior characteristics of CM to TM, SDM, SGM,
and on positive impact of use of CI in place of RHH is partially positive and depends on
problem domain.

CM on average achieves better training-set fitness than TM, SDM and SGM, and if accompanied
with RHH, also better median test-set fitness than TM, SDM and SGM. CM provides lower
probability of effective mutations than SDM and SGM, however the probability is still relatively
high (0.9) and higher than for TM. In turn CM maintains greater numbers of semantically distinct
programs in a population than SGM during the course of evolution for most of the considered
benchmarks. CM also keeps the smallest distance of an offspring to a parent of all operators.
Unfortunately CM pays for these beneficial statistics in size of produced programs and in high
computational cost.

From the perspective of fitness-based performance, the choice of initialization operator between
RHH and CI is of little importance for both training and test sets. We only observe a small bias
toward RHH that causes CM to achieve slightly better fitness. The initialization method also does
not have statistically significant impact on probability of producing effective offspring, the distance
of a parent to an offspring, or size of final programs produced by CM. The choice of CI negatively
impacts only a computational cost.

Although programs evolved by CM are bigger than evolved by other mutation operators, they
still generalize well and achieve better fitness on test-set. CM usually finds in 30− 50 generations
a program with better fitness than any other mutation operator within 100 generations. What is
more, the average sizes of a program produced by CM in 30 generation and a one produced by an
other operator at the end of run are roughly the same. This remark also addresses computational
costs: CM achieves better fitness in fewer generations and with the same time budget like other
operators.

The answer to research question 4 on superior characteristics of CX to TX, SDX, SGX, and
on positive impact of use of CI and CTS in place of RHH and TS is partially positive and
depends on problem domain.

CX achieves superior training-set fitness to TX, SDX and SGX in symbolic regression domain, and
is the second best after SGX in synthesis of Boolean expressions. Although SGX converges to an
optimum very quickly, it roughly doubles sizes of given parents in offspring. This characteristic in
turn may be considered as a source of major overfitting of SGX and calls its practical applicability
into the question. CX is free of above mentioned disadvantages, it outperforms SGX in terms of
test-set fitness and average size of produced programs. TX and SDX still produce smaller programs
than CX, however the gap in program size between them and CX is lower than for CX and SGX.
From the perspective of features that motivated the design of CX, CX maintains high ratio of
effective applications for entire evolutionary run, however SGX and SDX are characterized by
slightly higher ratios. CX maintains the second highest probability of producing geometric offspring,
giving the way only to exact geometric SGX. This demonstrates that the design goals are achieved.
Unfortunately, CX pays for its features in computational cost comparable with the cost of SDX
and higher than the costs of TX and SGX. Nevertheless, given even a strict time budget, CX is
still able to provide competitive results.

The support of CI and CTS in general helps CX achieve better fitness than the use of RHH
and TS. However the gain in fitness is noticeable, it is too weak to be confirmed statistically. The
choice of initialization and selection method seems to have even lower impact on the fitness achieved
by the remaining crossover operators. CI and CTS clearly support effectiveness of all operators,
diversity in population and geometry of crossover applications, however causes increase of overall
computational cost. Therefore, we recommend use of CI and CTS together with CX.



Chapter 10

Evaluation of combinations of
Competent Algorithms for operators

In the previous chapter, we investigated characteristics of competent algorithms in isolation. In this
chapter, we use them together, investigate how well they cooperate with each other, and determine
the most efficient proportions of crossover and mutation, answering so the research question 5.
We compare fitness-based performance on training and test-set, size of produced programs and
computational costs.

In all setups we use CI and CTS as initialization and selection operators, respectively. We use
three mixed setups with different proportions of CX crossover from Section 7.6 and CM mutation
from Section 7.5, respectively: 75% : 25%, 50% : 50% and 25% : 75%. There are two reference
setups that act as baselines of pure crossover and pure mutation setups: one employs CX and
one CM as the only variation operator. The reference setups were used in experimental analysis
in Sections 9.4 and 9.3, respectively. This allows us to compare the mixed setups with the ones
presented previously. In total, there are five experimental setups: CiCtsCx, CiCtsCx75Cm,
CiCtsCx50Cm, CiCtsCx25Cm, CiTsCm (see Section 8.3 for explanation on naming convention).

10.1 Fitness-based Performance
Figure 10.1 presents average and 95% confidence interval of fitness of the best of generation program.
Table 10.1 presents the same data for the best of run program.

The characteristics of setups are close, and the trials of the mixed setups are even more tightly
related. The performance of the reference setups is noticeably worse than the performance of
the mixed setups for 15 out of 18 problems, however it is difficult to clearly determine whether
CiCtsCx or CiTsCm is worse. CiCtsCx75Cm and CiCtsCx25Cm ex aequo achieve the lowest
best of run fitness for 10 out of 18 problems. The former leads in 4 regression and 6 Boolean
problems, and the latter in 3 and 7 problems, respectively. CiCtsCx50Cm achieves the best fitness
in 8 out of 9 Boolean problems and none of symbolic regression problems. CiTsCm achieves the
best fitness in only two problems, which is the worst result.

We carry out Friedman’s test on the averages of the best of run fitness to determine whether
there are significant differences between the setups. The test results in p-value of 7.52 × 10−6

at significance level α = 0.05, so at least two setups differ significantly. The post-hoc analysis
presented in Table 10.2 confirms that CiTsCm is significantly worse than all mixed setups and
CiCtsCx is worse than CiCtsCx25Cm. Therefore CiCtsCx25Cm has the highest number of
outrankings and can be considered as the best setup.

To estimate the probability of solving benchmark problems by each setup we count the number
of runs that found an optimal program p∗, i.e., s(p∗) = t, divide the result by number of all runs,
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Figure 10.1: Average and 95% confidence interval of the best of generation fitness.
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Table 10.1: Average and 95% confidence interval of the best of run fitness (the best in bold).

Problem CiCtsCx CiCtsCx75Cm CiCtsCx50Cm CiCtsCx25Cm CiTsCm
R1 0.007 ±0.002 0.002 ±0.001 0.002 ±0.001 0.002 ±0.001 0.032 ±0.010

R2 0.002 ±0.001 0.002 ±0.001 0.002 ±0.001 0.002 ±0.001 0.041 ±0.051

R3 0.001 ±0.001 0.002 ±0.002 0.002 ±0.002 0.002 ±0.002 0.009 ±0.003

Kj1 0.003 ±0.002 0.001 ±0.000 0.001 ±0.001 0.001 ±0.000 0.052 ±0.020

Kj4 0.065 ±0.020 0.048 ±0.019 0.051 ±0.020 0.047 ±0.019 0.152 ±0.037

Ng9 0.011 ±0.004 0.009 ±0.004 0.012 ±0.006 0.009 ±0.004 0.014 ±0.007

Ng12 0.092 ±0.115 0.035 ±0.024 0.040 ±0.025 0.036 ±0.024 0.104 ±0.029

Pg1 0.168 ±0.196 0.124 ±0.183 0.220 ±0.254 0.221 ±0.253 0.250 ±0.189

Vl1 0.115 ±0.079 0.087 ±0.065 0.090 ±0.064 0.060 ±0.018 0.191 ±0.066

Par5 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000 0.067 ±0.089

Par6 1.967 ±0.339 0.500 ±0.303 0.500 ±0.303 0.367 ±0.269 3.000 ±0.767

Par7 16.900 ±1.258 8.133 ±1.179 7.500 ±0.994 7.867 ±1.108 14.733 ±1.660

Mux6 0.100 ±0.142 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000 0.467 ±0.400

Mux11 109.867 ±11.099 48.933 ±13.718 45.200 ±12.708 46.267 ±13.714 46.400 ±10.347

Maj7 0.033 ±0.064 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000 0.100 ±0.193

Maj8 0.300 ±0.210 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000 0.067 ±0.089

Cmp6 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000

Cmp8 0.267 ±0.332 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000 0.000 ±0.000

Rank: 3.583 2.306 2.472 2.111 4.528

Table 10.2: Post-hoc analysis of Friedman’s test conducted on Table 10.1: p-values of incorrectly judging
a setup in a row as outranking a setup in a column. Significant (α = 0.05) p-values are in bold and visualized as
arcs in graph.

CiCtsCx CiCtsCx75Cm CiCtsCx50Cm CiCtsCx25Cm CiTsCm
CiCtsCx 0.296

CiCtsCx75Cm 0.066 0.997 0.000
CiCtsCx50Cm 0.150 0.000
CiCtsCx25Cm 0.021 0.995 0.947 0.000

CiTsCm
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and present the probabilities (i.e., success rate) in Table 10.3.1 Unfortunately 8 out of 9 regression
problems and 2 out of 9 Boolean problems remain unsolved in all runs of all setups. In 7 out of solved
problems, the highest probabilities are achieved by CiCtsCx25Cm, where all seven problems are
Boolean ones. What is more CiCtsCx25Cm solves six of these problems in every run. The runners
up are ex aequo CiCtsCx75Cm and CiCtsCx50Cm that solve with the highest probability of 1
six Boolean problems. In turn the only solved regression problem, Ng9, is solved with the highest
probability by CiTsCm.

To statistically verify the differences among setups, we conduct Friedman’s test on the prob-
abilities. Given α = 0.05, the test results in p-value of 1.47 × 10−2 thus we carry out post-hoc
analysis in Table 10.4. The analysis reveals that CiCtsCx is outranked by CiCtsCx50Cm and
CiCtsCx25Cm, what makes CiCtsCx the worst setup.



Table 10.3: Empirical probability and 95% confidence interval of solving problems (the highest in bold).

Problem CiCtsCx CiCtsCx75Cm CiCtsCx50Cm CiCtsCx25Cm CiTsCm
R1 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

R2 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

R3 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

Kj1 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

Kj4 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

Ng9 0.10 ±0.11 0.10 ±0.11 0.13 ±0.12 0.13 ±0.12 0.43 ±0.18

Ng12 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

Pg1 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

Vl1 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

Par5 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 0.93 ±0.09

Par6 0.00 ±0.00 0.70 ±0.16 0.70 ±0.16 0.77 ±0.15 0.03 ±0.06

Par7 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

Mux6 0.93 ±0.09 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 0.83 ±0.13

Mux11 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00 0.00 ±0.00

Maj7 0.97 ±0.06 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 0.97 ±0.06

Maj8 0.77 ±0.15 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 0.93 ±0.09

Cmp6 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00

Cmp8 0.87 ±0.12 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00 1.00 ±0.00

Rank: 3.53 2.83 2.72 2.64 3.28

Table 10.4: Post-hoc analysis of Friedman’s test conducted on Table 10.3: p-values of incorrectly judging
a setup in a row as outranking a setup in a column. Significant (α = 0.05) p-values are in bold and visualized as
arcs in graph.

CiCtsCx CiCtsCx75Cm CiCtsCx50Cm CiCtsCx25Cm CiTsCm
CiCtsCx
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CiCtsCx25Cm 0.015 0.959 0.998 0.160
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Table 10.5: Median and 95% confidence interval of test-set fitness of the best of run program on training-set
(the best in bold).

Problem CiCtsCx CiCtsCx75Cm CiCtsCx50Cm CiCtsCx25Cm CiTsCm
R1 0.01 ≤ 0.02 ≤ 0.09 0.01 ≤ 0.06 ≤ 0.23 0.01 ≤ 0.09 ≤ 0.31 0.01 ≤ 0.09 ≤ 0.33 0.02 ≤ 0.04 ≤ 0.18

R2 0.01 ≤ 0.04 ≤ 0.15 0.01 ≤ 0.03 ≤ 0.14 0.01 ≤ 0.03 ≤ 0.06 0.01 ≤ 0.03 ≤ 0.14 0.02 ≤ 0.04 ≤ 0.07

R3 0.01 ≤ 0.02 ≤ 0.08 0.01 ≤ 0.03 ≤ 0.65 0.01 ≤ 0.01 ≤ 0.63 0.01 ≤ 0.02 ≤ 0.63 0.00 ≤ 0.01 ≤ 0.02

Kj1 0.03 ≤ 0.06 ≤ 0.20 0.02 ≤ 0.05 ≤ 0.09 0.02 ≤ 0.05 ≤ 0.45 0.02 ≤ 0.05 ≤ 0.45 0.09 ≤ 0.14 ≤ 0.28

Kj4 1.48 ≤ 1.81 ≤ 2.71 1.03 ≤ 1.76 ≤ 3.26 1.06 ≤ 2.03 ≤ 2.88 1.30 ≤ 2.09 ≤ 3.32 1.05 ≤ 2.19 ≤ 2.67

Ng9 0.01 ≤ 0.02 ≤ 0.03 0.01 ≤ 0.01 ≤ 0.02 0.00 ≤ 0.01 ≤ 0.02 0.01 ≤ 0.01 ≤ 0.02 0.00 ≤ 0.00 ≤ 0.02

Ng12 0.02 ≤ 0.03 ≤ 0.04 0.01 ≤ 0.02 ≤ 0.06 0.02 ≤ 0.03 ≤ 0.08 0.02 ≤ 0.02 ≤ 0.05 0.05 ≤ 0.07 ≤ 0.11

Pg1 3.65 ≤ 5.14 ≤ 6.78 4.78 ≤ 5.39 ≤ 8.40 4.19 ≤ 5.28 ≤ 8.40 4.96 ≤ 5.61 ≤ 8.40 3.84 ≤ 4.72 ≤ 5.41

Vl1 0.47 ≤ 0.98 ≤ 2.44 0.45 ≤ 0.96 ≤ 2.77 0.46 ≤ 0.90 ≤ 2.24 0.52 ≤ 0.86 ≤ 1.96 0.78 ≤ 1.31 ≤ 1.68

Rank: 3.44 2.50 2.89 2.94 3.22
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Figure 10.2: Median and 95% confidence interval of test-set fitness of the best of generation program on
training-set.

10.2 Generalization abilities
To verify how well the evolved programs generalize, we calculate for each setup the median fitness
on test-set of the best of generation program on training set, and present them in Figure 10.2.
Table 10.5 presents the same values for the best of run program.

We do not observe noticeable differences between series presented in plots. Although in three
problems CiTsCm achieves the worst test-set fitness for almost entire run, in most problems it is
difficult to clearly separate series from each other. Concerning the best of run performance, in 4
out of 9 problems CiCtsCx75Cm achieves the best results and CiCtsCx25Cm is runner up with
only two best results.

Friedman’s test conducted on the median of test-set fitness of the best of run program on
training-set results in p-value of 0.701, thus we accept at significance level α = 0.05 hypothesis
on lack of differences between operators. Thus, we conclude that there is no significant difference
between the considered setups, however CiCtsCx75Cm might turn out to be better than the rest
given more benchmarks.

Figure 10.2 reveals signs of overfitting to training-set. For all setups in Kj4 and Pg1 problems
after 30− 50 generations test-set fitness tends to deteriorate. Note that Figure 10.1 proves that the
training-set one improves in an almost monotone way. Similar observation holds for the reference
setups in Vl1 problem, but not for the mixed ones. Thus, the mixed setups seem to be slightly less

1We use similarity threshold, see Table 8.2.
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Table 10.6: Average and 95% confidence interval of number of nodes in the best of run program (the lowest in
bold).

Problem CiCtsCx CiCtsCx75Cm CiCtsCx50Cm CiCtsCx25Cm CiTsCm
R1 569.33 ±68.11 644.40 ±74.68 626.50 ±68.66 643.30 ±70.46 239.10 ±35.25

R2 654.67 ±82.84 642.77 ±68.05 648.60 ±70.07 650.97 ±71.08 313.90 ±41.04

R3 664.00 ±77.81 641.30 ±78.91 654.03 ±78.52 642.33 ±77.65 246.40 ±33.75

Kj1 582.57 ±88.00 568.80 ±113.22 576.17 ±114.18 530.53 ±102.26 208.10 ±40.65

Kj4 622.27 ±64.47 636.53 ±61.55 633.60 ±65.37 645.40 ±67.45 228.57 ±27.36

Ng9 569.57 ±108.27 501.53 ±103.86 513.43 ±103.25 473.80 ±102.09 169.23 ±59.87

Ng12 503.70 ±85.67 494.67 ±64.31 483.53 ±58.49 466.30 ±55.34 192.53 ±27.24

Pg1 392.13 ±88.47 360.87 ±67.39 367.33 ±77.03 358.63 ±69.44 135.87 ±32.34

Vl1 463.03 ±45.41 483.23 ±51.19 499.93 ±46.18 501.03 ±42.74 172.10 ±21.88

Par5 1551.87 ±143.66 1654.60 ±123.68 1711.67 ±116.60 1713.33 ±116.93 1317.73 ±120.58

Par6 2045.47 ±163.67 2350.20 ±182.88 2330.53 ±187.81 2324.07 ±185.14 1675.93 ±106.48

Par7 2965.20 ±185.99 3253.13 ±198.58 3335.73 ±202.45 3339.73 ±212.85 2162.20 ±178.97

Mux6 635.00 ±118.69 808.07 ±101.73 808.07 ±101.73 811.67 ±100.93 488.20 ±66.06

Mux11 588.60 ±181.63 490.00 ±135.87 510.87 ±138.04 509.07 ±138.69 378.00 ±63.56

Maj7 1706.40 ±142.99 1696.53 ±143.29 1682.93 ±133.18 1688.47 ±132.54 1101.73 ±101.66

Maj8 2043.80 ±159.88 1620.80 ±172.47 1608.13 ±174.17 1623.67 ±160.94 910.80 ±76.69

Cmp6 886.07 ±98.91 858.53 ±89.95 883.87 ±90.14 857.80 ±90.92 654.27 ±77.71

Cmp8 1476.73 ±134.48 1363.80 ±134.01 1385.53 ±147.53 1415.00 ±147.01 771.67 ±90.80

Rank: 3.83 3.19 3.47 3.50 1.00

Table 10.7: Post-hoc analysis of Friedman’s test conducted on Table 10.6: p-values of incorrectly judging
a setup in a row as producing smaller programs than a setup in a column. Significant (α = 0.05) p-values are in
bold and visualized as arcs in graph.

CiCtsCx CiCtsCx75Cm CiCtsCx50Cm CiCtsCx25Cm CiTsCm
CiCtsCx

CiCtsCx75Cm 0.743 0.985 0.978
CiCtsCx50Cm 0.960 1.000
CiCtsCx25Cm 0.970

CiTsCm 0.000 0.000 0.000 0.000

CiCtsCx CiCtsCx75Cm

CiCtsCx50Cm

CiTsCm

OO <<

55

??CiCtsCx25Cm

prone to overfitting than the reference ones at least in Vl1 problem. Overfitting is not evident for
the remaining problems.

10.3 Program size
Figure 10.3 and Table 10.6 present average and 95% of confidence interval of the number of nodes
in the best of generation and the best of run program, respectively.

The smallest programs are produced by CiTsCm for all problems. The average size varies
from few hundreds up to over two thousand depending on a problem. For this setup, average
program size at the end of run is roughly two times greater than in the initial population. CiCtsCx
produces noticeably greater programs in 7 out of 18 problems. The mixed setups generate the
largest programs with no clear ranking of them. Series that saturate involve runs that found the
optimum before 100 generation and, as such, constitute a constant factor in averages of subsequent
generations.

Concerning the best of run program size, Friedman’s test conducted on average number of
nodes in the best of run program is conclusive at the significance level of α = 0.05 with p-value of
5.51× 10−7. Post-hoc analysis presented in Table 10.7 leaves no doubts that CiTsCm is the least
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Figure 10.3: Average and 95% confidence interval of numbers of nodes in the best of generation program.
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Table 10.8: Average and 95% confidence interval of total execution time spent to finish run (the lowest in bold).

Problem CiCtsCx CiCtsCx75Cm CiCtsCx50Cm CiCtsCx25Cm CiTsCm
R1 549.09 ±40.57 595.88 ±47.09 586.37 ±32.88 576.84 ±30.44 42.60 ±7.64

R2 617.22 ±35.49 636.71 ±50.40 644.59 ±52.43 627.48 ±48.05 50.92 ±7.75

R3 616.08 ±36.44 629.78 ±43.18 642.97 ±42.95 632.96 ±42.29 47.51 ±7.75

Kj1 675.85 ±51.20 634.85 ±57.73 611.38 ±51.78 600.03 ±53.95 45.24 ±6.23

Kj4 671.80 ±35.91 678.35 ±41.99 677.16 ±44.05 653.88 ±43.79 49.24 ±6.99

Ng9 2074.41 ±279.46 2397.03 ±315.37 2351.62 ±369.22 2220.60 ±320.12 394.26 ±111.60

Ng12 2274.75 ±181.16 2581.34 ±241.31 2498.71 ±237.41 2516.86 ±220.24 393.74 ±95.28

Pg1 2426.83 ±356.24 2216.00 ±375.08 2143.71 ±330.77 2262.93 ±354.82 145.16 ±36.25

Vl1 1756.09 ±95.06 1866.99 ±167.66 1954.77 ±162.98 2075.71 ±184.67 165.14 ±42.54

Par5 62.89 ±7.09 53.22 ±4.18 56.38 ±4.11 56.11 ±3.59 56.77 ±13.25

Par6 661.82 ±30.88 488.61 ±60.45 486.83 ±59.13 464.45 ±59.83 300.63 ±20.99

Par7 1224.72 ±62.87 1348.50 ±58.30 1387.84 ±63.33 1400.60 ±60.39 398.49 ±35.84

Mux6 107.99 ±26.61 52.73 ±9.50 52.41 ±9.06 51.65 ±8.30 44.29 ±12.45

Mux11 4522.62 ±406.16 3642.13 ±402.38 3673.27 ±397.12 3712.15 ±391.21 434.58 ±50.90

Maj7 349.82 ±70.29 164.03 ±10.88 162.39 ±12.36 160.25 ±11.91 76.64 ±15.64

Maj8 1079.50 ±171.16 455.06 ±69.61 442.94 ±66.30 437.58 ±70.58 104.68 ±34.70

Cmp6 38.86 ±2.32 29.06 ±2.37 29.42 ±2.24 28.61 ±1.98 17.03 ±3.21

Cmp8 614.00 ±124.29 236.63 ±25.18 239.73 ±24.84 242.67 ±25.29 75.14 ±17.06

Rank: 3.72 3.56 3.50 3.06 1.17

Table 10.9: Post-hoc analysis of Friedman’s test conducted on Table 10.8: p-values of incorrectly judging
a setup in a row as faster than a setup in a column. Significant (α = 0.05) p-values are in bold and visualized as
arcs in graph.

CiCtsCx CiCtsCx75Cm CiCtsCx50Cm CiCtsCx25Cm CiTsCm
CiCtsCx

CiCtsCx75Cm 0.998
CiCtsCx50Cm 0.993 1.000
CiCtsCx25Cm 0.713 0.878 0.917

CiTsCm 0.000 0.000 0.000 0.003

CiCtsCx CiCtsCx75Cm

CiCtsCx50Cm

CiTsCm

OO <<

55

??CiCtsCx25Cm

bloating setup, however the remaining setups are indiscernible. Therefore even a small amount of
CX added to a setup causes substantial increase in size of the produced programs.

10.4 Computational costs
Figure 10.4 shows average and 95% confidence interval of CPU time consumed by each setup over
generations and Table 10.8 presents the same values for the entire run.

Undoubtedly CiTsCm has the lowest time requirements of all considered setups. All the
remaining setups in symbolic regression use similar amount of computational resources, however
in synthesis of Boolean programs CiCtsCx is the slowest, noticeably slower than the mixed
setups. Series that saturate involve runs that found the optimum before 100 generation and do not
contribute to the growth of the time.

To assess statistical differences between setups we conduct Friedman’s test on the average total
execution time. The test results in p-value of 1.07× 10−5, thus at significance level α = 0.05 there
is at least one pair of significantly different setups. The results of post-hoc analysis are shown in
Table 10.9. The analysis confirms that CiTsCm is faster than all other setups, and there are no
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Figure 10.4: Average and 95% confidence interval of total execution time w.r.t. number of generations.
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Table 10.10: Spearman’s rank correlation coefficient of the number of nodes in produced programs and
computational time consumed by a setup. Left: correlation over problems for each setup separately. Right:
aggregated rankings of setups from last rows of Tables 10.6 and 10.8, and correlation of them. P-values of t test
of significance of correlation, significant correlations (α = 0.05) are marked in bold.

Correlation P-value Size rank Time rank
CiCtsCx −0.461 0.027 3.83 3.72
CiCtsCx75Cm −0.701 0.001 3.19 3.56
CiCtsCx50Cm −0.686 0.001 3.47 3.50
CiCtsCx25Cm −0.695 0.001 3.50 3.06
CiTsCm 0.020 0.469 1.00 1.17

Correlation: 0.965
P-value: 0.004

Table 10.11: Exemplary analysis for time budget of 300 seconds for Vl1 problem. The highest generation and
the lowest statistics are in bold.

Generation Fitness Test-set fitness Program size
CiCtsCx 21 0.112 ±0.037 0.911 ≤ 1.141 ≤ 2.002 129.93 ±17.23

CiCtsCx75Cm 21 0.055 ±0.012 0.764 ≤ 0.898 ≤ 1.621 139.90 ±15.61

CiCtsCx50Cm 19 0.067 ±0.013 0.706 ≤ 0.948 ≤ 1.962 136.93 ±17.51

CiCtsCx25Cm 19 0.064 ±0.014 0.713 ≤ 1.005 ≤ 1.986 139.43 ±18.02

CiTsCm 100 0.191 ±0.066 0.919 ≤ 1.297 ≤ 1.680 172.10 ±21.88

other significant outrankings. Hence use of any amount of crossover in a setup increases noticeably
overall computation time.

The runtime of a GP algorithm is at least in part determined by the size of programs being
evolved. To verify whether computational time is correlated with the size, we carry out two analyses.
First, for each setup separately we calculate Spearman’s rank correlation coefficient of the size
and the time over problems. The coefficients together with p-values of t test for significance of
correlation are presented in the left part of Table 10.10. For each setup that engages crossover we
observe moderate to strong negative correlation of size and time, thus the bigger programs the setup
produces the less time it takes. Since this observation does not hold for CiTsCm setup which does
not employ crossover, we hypothesize that there must a factor inherent to CX that increases the
computational time and simultaneously reduces or limits size of produced programs. For instance
it may be implicit simplification of program structure that preserves semantics, however the true
reason requires further investigation.

In the second analysis, we consider rankings of all setups with respect to the size and the time
took from Tables 10.6 and 10.8, respectively. Juxtaposition of the rankings reveals strong positive
correlation, what is confirmed by t test for significance of correlation, all of them presented in right
part of Table 10.10. Therefore setups that tend to produce bigger programs, also tend to work
longer.

Finally, we concern the assessment of the considered setups under limited time budget. To
simulate this case, we use Vl1 problem and 300 seconds limit of CPU time. The numbers of
generations reached within the limit by particular setups and the corresponding average training
and median test-set fitness and average program sizes are presented in Table 10.11. Undoubtedly
CiTsCm is the quickest setup that reaches 100 generations. Proportions of crossover and mutation
seem to have a minor impact on speed. The best training and test-set fitness are achieved by
CiCtsCx75Cm and the smallest programs are produced by CiCtsCx, however confidence intervals
of all setups that involve CX overlap. This shows that even if CM is faster than CX, using a mixture
of them (or even CX alone) may lead to better results than the use of CM solely.
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10.5 Conclusions
We compared five setups of competent algorithms with different mixture of CX and CM to answer
research question 5 from Section 8.1 on the optimal proportions of CX and CM in an evolutionary
setup. In all characteristics except program size and computational time, the mixed setups achieve
better results than the reference ones. In terms of program size and time, CiTsCm is the best.
Nevertheless we showed that even under a limited time budget the mixed setups achieve better
fitness and lower program size than CiTsCm. In most comparisons the mixed setups are statistically
indiscernible from each other, however for the most important characteristics, i.e., the average best
of run fitness and the probability of solving problems, CiCtsCx25Cm is slightly better than the
rest. In conclusion, we recommend to use CX and CM in proportions of 25% : 75%.

In the context of building block hypothesis (cf. Section 2.3.3), crossover is often considered as
the key ingredient of evolutionary algorithms due to its capability to exchange large fragments of
solutions (here: program fragments) and so performing long-distance leaps in solution space. Our
explanation for the low proportion of CX in the recommended setup concerns the design of CM
and CX. CM strives to produce a program, which semantics is the target one, i.e., performs a direct
search. In contrast CX only combines semantics of the given parents, thus performs indirect search.
It is natural to expect that the direct search of semantic space results in quicker convergence to the
optimum than the indirect one. However due to imperfections of the library backing both operators
CM may be unable to achieve its goal, thus a support of CX may reveal an other way to build
a solution.





Chapter 11

The closing conclusions

11.1 Summary
In this thesis, we presented the problem of program induction from samples of desired behavior,
a common way of solving that problem using genetic programming. We also introduced recent
variant of semantic genetic programming that involves semantics in program induction process.
Within the SGP framework, we defined semantic distance, neutrality and effectiveness of genetic
operators. We showed that when fitness function is a metric, fitness landscape is a cone. We also
defined geometric genetic operators that utilize this fact and demonstrated their useful properties.
We developed a suite of competent operator algorithms for program initialization, parent selection,
crossover and mutation that share features of geometric and effective operators (Chapter 7). The
competent operators alleviate many drawbacks of exact geometric operators and are characterized
by superior performance over the remaining operators compared empirically in this thesis, including
the effective ones. We achieved all research goals that we set off with in Section 1.3.

11.2 Original contributions
Below we summarize the most important original contributions of this thesis:

• Introduction of properties of semantic neutrality and effectiveness for all operators typically
involved in GP: population initialization, parent selection, mutation and crossover, and
verification of these properties for the state of the art operators.
[Chapter 4]
• Demonstration that if fitness function is a metric, a fitness landscape that spans over space of
programs and is proxied by semantics has a conic shape with the target in the apex.
[Section 5.2]
• Definition of geometric operators for all operators involved in GP and theoretical derivation
of their properties under multiple combinations of fitness functions and semantic distance
metrics, e.g., bounds and properties of progress.
[Sections 5.3 – 5.6]
• Demonstration that if parents lie in a sphere centered in the target, geometric n ≥ 2-ary
variation operators produce offspring not worse than the best parent. This is a clear hint to
designers of future geometric mate selection operators.
[Section 5.5, Theorem 5.16]
• Comprehensive survey of methods in semantic genetic programming.
[Chapter 6]
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• Introduction of desired semantics, semantic distance for desired semantics and an algorithm
of backpropagation of semantics through program structure.
[Section 7.4]

• Proposition of a complete suite of competent algorithms for operators that embrace population
initialization, parent selection, crossover and mutation, all approximately geometric and
effective by design. These beneficial properties are reflected in ability of the competent
algorithms to solve difficult program induction problems, quickly (i.e., the best fitness in the
lowest number of generations), reliably (low variance of performance), and accurately (the
highest probability of success; see definition of ‘competent’ in Section 1.4).
[Chapter 7]

• Extensive experimental analysis in which 28 different experimental setups were applied to
18 benchmark problems in a total of 15120 experimental runs that took almost 55 days.
Operators were assessed individually and in various combinations. The analysis showed that
the competent operators are indeed approximately geometric, effective, and less affected by
bloating and poor generalization than the exact geometric operators. In terms of fitness and
generalization performance, the competent algorithms are second to none across problems
and domains.
[Chapter 9]

• Experimental findings on the optimal proportions of competent crossover and competent
mutation with respect to training and test set fitness, program size and computational costs
for the Boolean and symbolic regression domains.
[Chapter 10]

• Software implementation of all the competent operators as well as the state-of-the-art corre-
sponding operators. The implementation is optimized to minimize the runtime and equipped
with a module that collects statistics in a hierarchically structured database and offers versatile
statistical functionality. The Java source code of the software is available at
http://www.cs.put.poznan.pl/tpawlak/link/?PhD.
[Section 8.4]

11.3 Key conclusions

The author finds the following overall conclusions and observations of this work particularly
important and/or promising:

• Importance of effectiveness, i.e., non-neutrality. Caring for effectiveness is conceptually
straightforward and its computational cost in most cases pays off in improved performance of
search.

• Rationale for exploiting the tradeoff between the degree of geometry and program size. The
inexact operators may converge slower, but produce reasonably sized programs.

• Importance of maintaining the target semantics in the convex hull of a population during
entire evolutionary run using proper initialization, selection and variation operators.

• Impact of selection of fitness function and semantic distance on properties of geometric
(e.g., competent) operators and efficiency of search.

http://www.cs.put.poznan.pl/tpawlak/link/?PhD
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11.4 Future work
During the work we identified several areas of research that particularly seem to deserve further
investigation. Below we enumerate the most important of them.

• Geometric n ≥ 2-ary variation operators are strongly progressive only under certain conditions
(cf. Theorem 5.16), which is a consequence of construction of convex hull of parents’ semantics.
However, strong progress can be guaranteed by allowing offspring to be produced only in
a certain a part of the convex hull of parents’ semantics. This deserves further research to
define the appropriate desirable properties of such operators and develop proper algorithms.
• Under certain conditions, a geometric n ≥ 2-ary variation operator is unable to return offspring
with better fitness than the best parent. This can be avoided by replacing convex hull in
Definition 5.7 with an affine hull. This extension opens a way to a new class of operators
with possibly different properties and characteristics.
• The competent operators produce programs of sizes in between other approximately geometric

operators and the exact geometric operators. It is tempting to integrate program simplification
procedures into the competent operators. This may increase computational costs, thus an
additional analysis is required to determine whether such a modification pays off, i.e., whether
the gains resulting from simplified programs evaluating faster are not offset by the time
required for simplification.
• Concerning accuracy of the competent operators, although the probabilities of success for
them in Sections 9.3.1, 9.4.1 and 10.1 are superior to other operators, they are still below
100%, thus there is a place for improvement and accuracy remains an open issue.
• The negative correlation of size of produced programs and run time of competent crossover
(Sections 9.4.5 and 10.4) remains unexplained and requires further investigation.
• The experimental verification conducted in this thesis focused on the Boolean and symbolic
regression domains. A natural follow-up is applying the competent operators beyond these
domains, e.g., to categorical domain where a task is to induce an algebraic form that fulfills
certain constraints, see e.g., [163, 88].
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evolutionary programming, 22
evolutionary strategies, 23
extended compact genetic programming, 38

fitness case, 43
fitness function, 18

fitness landscape, 49, 81
full initialization, 31

generation, 18
genetic algorithm, 24
genetic programming, GP, 29
genotype, 17
genotype-phenotype mapping, 17, 38, 44
geometric initialization, 50
geometric mate selection, 50
geometric mutation, 51
geometric semantic genetic programming, GSGP,

50
geometric variation operator, 51
grammatical evolution, 36
grow initialization, 31

hyper-heuristics, 40

inductive programming, 13
initialization, 20
intron, 39

Krawiec and Lichocki crossover, KLX, 68

library, 79
linear genetic programming, 34
locally geometric semantic crossover, LGX, 67

mean absolute error, MAE, 48
metaheuristic, 19
Minkowski metric, 47
mutation, 21

neutrality, 44
non-terminal, 29

parsimony pressure, 40
phenotype, 17
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population, 18
potentially progressive, 53
probabilistic incremental program evolution, 37
program inversion, 74, 81
PushGP, 35

ramped half and half, RHH, 32
random desired operator, RDO, 77, 81
reduced ordered binary decision diagram, ROBDD,

59
reproduction, 21, 34
root mean square error, RMSE, 48

sampling semantics, 43
selection, 20
selection pressure, 20
semantic aware crossover, SAX, 63
semantic aware mutation, SAM, 62
semantic backpropagation, 75
semantic control crossover, SCX, 64
semantic distance, 44, 74
semantic genetic programming, SGP, 43
semantic geometric crossover, SGX, 65
semantic geometric mutation, SGM, 65
semantic similarity based crossover, SSX, 63
semantic similarity-based mutation, SSM, 62
semantic tournament selection, STS, 61
semantically driven crossover, SDX, 62
semantically driven initialization, SDI, 60
semantically driven mutation, SDM, 61
semantics, 43
steady-state, 20
stochasticism, 19
strongly progressive, 53
sufficiency, 31

target, 44
taxicab metric, 47
terminal, 29
termination condition, 22
the most semantic similarity-based crossover, MSSX,

63
tournament selection, TS, 21
tree mutation, TM, 33
tree swapping crossover, TX, 32

variation operator, 21

weakly progressive, 53
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