
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1

Semantic Backpropagation for Designing Search
Operators in Genetic Programming

Tomasz P. Pawlak, Bartosz Wieloch, Krzysztof Krawiec, Member, IEEE

Abstract—In genetic programming, a search algorithm is
expected to produce a program that achieves the desired fi-
nal computation state (desired output). To reach that state,
an executing program needs to traverse certain intermediate
computation states. An evolutionary search process is expected
to autonomously discover such states. This can be difficult
for nontrivial tasks that require long programs to be solved.
The semantic backpropagation algorithm proposed in this pa-
per heuristically inverts the execution of evolving programs
to determine the desired intermediate computation states. Two
search operators, Random Desired Operator and Approximately
Geometric Semantic Crossover, use the intermediate states de-
termined by semantic backpropagation to define subtasks of
the original programming task, which are then solved using
an exhaustive search. The operators outperform the standard
genetic search operators and other semantic-aware operators
when compared on a suite of symbolic regression and Boolean
benchmarks. This result and additional analysis conducted in
this study indicate that semantic backpropagation helps evolution
at identifying the desired intermediate computation states, and
makes the search process more efficient.

Index Terms—program synthesis, semantics, reversible com-
puting, problem decomposition, mutation, geometric crossover

I. INTRODUCTION

THE objective in an automated programming task is to
synthesize a program that exhibits certain desired behav-

ior. The desired behavior is typically defined by specifying the
desired program output as a function of program input. This
can be done either explicitly, by enumerating all relevant input-
output pairs (or a sample thereof), or implicitly, by defining
an objective that program responses have to optimize.

Apart from the trivial cases, the desired input-output be-
havior cannot be attained by applying a single instruction to
the input data. A combination of instructions is necessary:
a sequence, tree, or graph, depending on the programming
paradigm. The combinations of instructions (syntax) determine
program behavior (semantics) in a complex manner. This
characteristic, known as ruggedness of the fitness landscape [1]
or low causality [2], makes it hard to design automatic
programming algorithms that scale well with task complexity.

A convenient approach to solving programming tasks is
to pose them as search problems: a search algorithm runs

The authors are with the Institute of Computing Science, Poznan Uni-
versity of Technology, Poznań, Poland, e-mails: tpawlak@cs.put.poznan.pl,
bwieloch@cs.put.poznan.pl, krawiec@cs.put.poznan.pl.
Copyright (c) 2014 IEEE. Personal use of this material is permitted. However,
permission to use this material for any other purposes must be obtained from
the IEEE by sending a request to pubs-permissions@ieee.org.

programs, observes how they behave, and uses that information
to direct the search process. In genetic programming (GP) this
process involves the bio-inspired mechanisms of variation and
selection, and a fitness function that quantifies the degree to
which the actual program output matches the desired output
(the target in the following).

Conventionally in GP, fitness depends only on the ultimate
effect of program execution; the intermediate effects, like the
values calculated by the subtrees of a program tree, or the
transient states of registers in linear GP, are ignored. This
selectivity is commonly accepted: in the end, it is only the final
outcome that determines whether the programming task has
been solved or not (or how well a program approximates the
desired output). This remains however in stark contrast to the
process of programming as exercised by humans. When faced
with a nontrivial task, programmers split it into subtasks and
attempt to solve them independently or semi-independently.
This strategy often proves effective, because human program-
mers often know in advance which intermediate execution
states are desired and which are not. For instance, for a pro-
gramming task ‘design an algorithm that calculates the median
of an array of numbers’, such a desired intermediate is the
input array sorted in ascending or descending order.

The ability to decompose tasks allows human programmers
to excel on tasks that automatic programming methods still
struggle to solve. It is then highly desirable to equip the GP
algorithms with an analogous capability, which we postulated
in our previous studies [3], [4], [5].

In this paper, we propose a method that determines which
intermediate computation states are desirable when solving
a given programming task. The method exploits the fact that
program execution can be to some extent reversed: for any
computation state (e.g., the state of working memory or other
executing environment), the number of other states it can be
achieved from by executing a single instruction is limited
(although potentially large). It is therefore possible to revert
(albeit in some cases ambiguously) the effects of execution
of an instruction sequence for a given output. This process
of semantic backpropagation allows us to determine a desired
intermediate memory state (subtarget), which in turn defines
a specific programming subtask. The space of programs that
need to be considered to solve a subtask is a subspace of the
original search space, and can be thus searched more efficiently.

The main contribution of this paper is the demonstration
how this idea (presented in Sections III and IV) can be utilized
in mutation and crossover operators (Sec. V). Compared to
[6], [7] where we originally proposed these operators, here
we present a generalized version of semantic backpropa-

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TEVC.2014.2321259

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

mailto:tpawlak@cs.put.poznan.pl
mailto:bwieloch@cs.put.poznan.pl
mailto:krawiec@cs.put.poznan.pl

2 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

gation, embed the search operators into a common formal
framework, and examine them in detail on a wide range of
benchmarks (Sec. VI).

II. RELATED WORK

This paper focuses on program behavior, reflecting growing
interest in semantic GP. Rather than focusing on programs,
semantic GP focuses on investigating the effects of program
execution, and on using knowledge about such effects to
designing more effective GP search algorithms. Besides the
fundamental analytical studies conducted by Langdon [8],
McPhee et al. were to our knowledge the first to study the
impact of crossover on program semantics and semantic
building blocks [9]. They defined the semantic properties of
components that form offspring in tree-swapping crossover,
i.e., subtrees and contexts (partial trees with a hanging branch),
and observed how they change with evolution for Boolean
problems. In another early study, Beadle and Johnson [10]
proposed a semantically driven crossover operator for Boolean
problems that guarantees the offspring to be semantically
distinct from both parents. In [11] Jackson analyzed semantic
diversity in the initial population. More recently, Galvan-Lopez
et al. came up with a tournament selection that discouraged
semantic duplicates [12].

Nguyen et al. [13] considered two semantic crossover oper-
ators for symbolic regression, one that permits crossover only
if the subtrees to be exchanged in the parents are semantically
more distant than a given lower limit (a parameter of the
method), and another with an additional upper limit on the
distance. Later, Nguyen et al. [14] proposed an operator that
from a set of valid pairs of subtrees to be exchanged in the
parents, chooses the pair with the smallest but over the lower
limit distance, dropping so the upper limit parameter. The rep-
resentation of semantics adopted there, i.e., a vector of num-
bers returned by a program for all training examples (fitness
cases), is currently the most widely used one in semantic GP
and employed also in this paper. Driven by similar intentions,
though without explicitly referring to program semantics, Day
and Nandi used binary strings to characterize how individuals
in a population cope with particular fitness cases, and designed
a mating strategy that exploits that information [15].

The recent works by Moraglio et al. [16], [17] follows
a qualitatively different approach. The key observation that
underpins their approach is that the fitness function in GP
is typically defined as the distance between the program’s
semantics and a predefined target semantics. This turns the
set of semantics into a metric space that has certain geometric
properties which can be exploited to make the search process
more efficient. The authors proposed two search operators that
rely on this principle, including an exact geometric crossover
that is guaranteed to produce offspring which are semantically
intermediate with respect to their parents (i.e., combines their
behaviors). This is achieved by merging the parent programs
into an offspring using an additional syntactic structure.
In an analogous endeavor, Krawiec and Pawlak [18] proposed
a crossover operator designed to be approximately geometric.
Some of these geometric operators serve as control methods

in Section VI. In the context of these studies, the methods
proposed in this paper remain original in attempting problem
decomposition on the semantic level.

As it will become clear in Section IV, semantic back-
propagation uses concepts similar to those of reversible
computing [19], a paradigm which assumes that the effects
of computation can be always reversed. In that framework,
every instruction must implement a transition function that
transforms the current state of the execution environment
(e.g., registers, memory) to the other state in a one-to-one way,
i.e. injectively. No wonder it became an area of interest for
many researchers in quantum computing, and was also studied
in genetic programming. Langdon in [20] analyzed the fitness
distribution of reversible programs and found it to be normal.
In [21], Multi Expression Programming [22] and Fredkin gate
have been employed to solve even-parity problems.

Unfortunately, reversible computing is mainly a theoretical
domain, because it assumes a strong, injective notion of
reversibility, while the conventional programming languages
abound in instructions that are irreversible. For this reason we
proposed here a more relaxed notion of program inversion,
which allows the instructions to implement many-to-one map-
pings (surjections).

III. BACKGROUND

A. Program semantics

As mentioned in the Introduction, when solving a program-
ming task we are primarily interested in program behavior
(what programs ‘do’). Prior to formally defining a program-
ming task, one must thus specify first what program behavior
is. To this aim, we introduce the concept of program semantics.

Let p ∈ P be a program, i.e., a sequence (or other structure)
of symbols from a given programming language P . When
applied to an input in ∈ I , a program p produces1 certain
output p(in). In this way, a program realizes certain mapping
from the set of inputs I into the set of outputs O, which
we denote as p : I → O.

Definition 1. Semantic mapping is a function s : P → S
mapping any program from P to the semantic space S, which
has the following property:

s(p1) = s(p2) ⇐⇒ ∀in ∈ I : p1(in) = p2(in)

Let us summarize the properties of semantics that result
from this definition. Firstly, every program has exactly one
semantics. Secondly, two or more programs can have the
same semantics. Thirdly, programs that behave differently
(i.e., produce different outputs for one or more inputs) have
different semantics.

The semantic space S enumerates all possible behaviors of
programs for all considered inputs. The mapping s implicitly
partitions the programs into semantic equivalence classes, so
that every element in S corresponds one-to-one to a unique
combination of outputs generated by programs. In this sense,
semantics is complete in capturing the entire information on

1We consider only programs that halt for all inputs in ∈ I .

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TEVC.2014.2321259

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

TOMASZ P. PAWLAK et al.: SEMANTIC BACKPROPAGATION FOR DESIGNING SEARCH OPERATORS IN GENETIC PROGRAMMING 3

program behavior: when s(p) is known, nothing more is
needed to determine p’s behavior.

Definition 1 does not specify how semantics is represented.
It can be any formal object that meets the conditions specified
there, including the denotational semantics or operational
semantics used in the theories of formal languages. Note that,
the code of a program (i.e., a sequence of symbols) cannot be
considered as its semantics, unless the semantic mapping is
bijective (which it never is in practice).

In this paper, we adopt the convention that is common in
GP and assume that a programming task is specified by a finite
training sample of fitness cases, each being a pair consisting of
program input and the corresponding desired program output.
A fitness case is then a pair from I ×O. We also assume that
I contains only the inputs present in the given set of fitness
cases, conforming to the learning-from-examples paradigm of
machine learning, where the learner has no access to other
(testing) examples. Given these assumptions, we can define
the semantics more concretely:

Definition 2. Semantics s(p) of a program p is the vector2 of
values from O obtained by running p on all inputs from I:

s(p) = [p(in)]in∈I = [p(in1), . . . , p(inl)] (1)

where l = |I| is the number of fitness cases.

This representation of semantics, prevailing in the earlier
studies on semantics in GP [23], [16], [13], [18], [7] conforms
to Def. 1. In particular, it is complete in the above sense:
because s(p) explicitly enumerates program behavior for all
inputs, it allows us to trivially determine program output for
any element from in ∈ I by simply selecting the appropriate
element from the vector.

B. Programming tasks
The properties of semantic space, in particular the relations

between its elements, are essential for the approach proposed
in this paper. The key observation that propels the recent
developments in semantic GP is that the semantic space is
inherently endowed with a structure. This structure is imposed
on S by the programming task itself, more specifically by the
fitness function that gauges the discrepancy between the actual
program behavior and the desired one.

Definition 3. Given a set of programs P (defined implicitly by
programming language), a programming task (task for short)
consists in finding a program p ∈ P that minimizes

f(p) = d(s(p), t) (2)

where t ∈ S is the target semantics (target for short) that
describes the desired behavior of a program, and d : S×S →
R is a metric, called semantic distance. For a program p such
that f(p) = 0 we say that it solves the task t.

From now on, we use the terms ‘target’ and ‘programming
task’ interchangeably, because, other things being equal, a tar-
get uniquely identifies the programming task.

2We use the terms ‘vector’ and ‘tuple’ exchangeably, depending on the
context. In both cases, the ith element of vector/tuple corresponds to ith test
(fitness case).

As an illustration, let us consider the class of univariate
symbolic regression tasks, where programs are real-valued
functions of a single real independent variable, i.e., I ⊂ R
and O ⊂ R. The task is specified by l = |I| fitness cases
(ini, ti) from I × O, where ini ∈ I is program input and
ti defines the corresponding desired output3. The semantics
s(p) of a program p is a vector of l real numbers obtained
by applying p to the elements of I . The minimized fitness
of a program is defined by, e.g., the Euclidean or Manhattan
distance d between program’s semantics and the target t.

Most of programming tasks considered in GP are defined
similarly in terms of fitness cases and semantic distance.
Exceptions are the tasks for which the target is not explic-
itly specified, like evolving controllers (e.g., pole balancing,
artificial ant, robotics). For such tasks, fitness assessment is
implicit, e.g., based on results of simulations, and semantic
methods that refer to target cannot be directly applied. Of
two operators introduced in this paper, one (RDO, Section
V-B) requires the knowledge of target, while the other (AGX,
Section V-C) does not, so the approach presented here can be
applied to a wide range of GP tasks.

IV. INVERSION OF PROGRAM EXECUTION

A. The rationale for inversion

Programming tasks (Def. 3) are in general difficult to solve,
because the mapping from the combinatorial program space to
the semantic space is usually very complex. However, when
semantics is a vector of outputs produced by a program for
particular fitness cases (Eq. 1), the semantic mapping s : P →
S ceases to be a black-box monolith. In such a case, each
component of the vector that forms the semantics is a result
of a sequential process, where particular program instructions
process the outcomes of their predecessors, and execution of
the last instruction completes the calculation of semantics (for
a single fitness case). The decomposability of this process is
the key to the methods presented in this paper.

We assume that any program p can be decomposed into its
prefix p(1) and suffix p(2), which in terms of Reverse Polish
Notation that we adopt here will be written as

p = [p(1) p(2)]

Execution of such a compound program for an input datum in
involves applying the suffix p(2) to the outcome produced by
the prefix p(1), i.e., p(in) = p(2)(p(1)(in)). In this formulation,
we abstract from program representation. For sequences of
instructions, prefixes and suffixes take the form of sequences
as well. For tree programs without side effects (which we limit
our attention to in this paper), a prefix is any subtree of a pro-
gram, while a suffix is a program tree with a single subtree
removed (termed context in [9]). Regardless of representation,
we assume that prefix is a well-formed (sub)program that can
be executed. Therefore, every prefix will also have a specific
semantics as described in Def. 1.

3The set I contains only the inputs that occur in the training set. This
however does not prevent the evolved programs to be applicable to other
inputs (from R \ I) to, e.g., assess program’s generalization capability.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TEVC.2014.2321259

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

4 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

If the considered task t is solvable, there exists a program
p∗ such that s(p∗) = t. Let p∗(1) be a prefix of p∗ and p∗(2)
the corresponding suffix. The key observation is that p∗(1)
determines the semantics s(p∗(1)) that can be treated as a target
for another programming task. We say that p∗(1) determines
a subtarget t′ = s(p∗(1)). Any program ps that solves the
subtask defined by subtarget t′ can be used as a substitute for
p∗(1) in p∗. Formally, if s(ps) = t′, then the program [ps p

∗
(2)]

solves task t, i.e., s([ps p∗(2)]) = t.
Similarly, the suffix p∗(2) can be said to determine a set of

subtasks, i.e., a set of such semantics t′′ that s([t′′ p∗(2)]) = t.
The subtask t′ determined by the prefix is one of them, but
there can be more such subtasks t′′ because of the many-to-one
operation of program instructions. We formalize this concept
as desired semantics in Section IV-B.

Because every solution to a subtask forms a prefix of at
least one solution to the original task, and any (proper) prefix
is shorter than the program it is part of, it is reasonable to
hypothesize that a subtask can be easier to solve than the
original task. Assuming that the computational cost of solving
a programming task is a monotonically increasing function of
the length of the shortest solution4, solving a subtask instead
of the original task may bring substantial savings.

However, the subtasks above were derived from a given
optimal program, i.e., a program that is already known to solve
the original task. The practical question is: can we define a
subtask of a task without solving the latter one in the first place?

We argue that useful subtask candidates can be derived
even from non-optimal programs. Consider the population
of an evolutionary process (or any other incremental search
algorithm). It is likely that some programs in such a population
include subsequences of instructions that occur in the sought
optimal program. In particular, some of such ‘correct’ subse-
quences may form the suffixes of programs. It is worth noting
here that already early studies on semantic GP, particularly by
McPhee et al. [9], emphasized the importance of identifying
correct program suffixes.

Let p be a program with a correct suffix, i.e., a suffix that is
a part of one of optimal programs p∗, i.e., p = [p(1) p

∗
(2)]. Let

us assume that we can invert the execution of p∗(2), i.e., directly
calculate any subtarget5 t′′ such that s([t′′ p∗(2)]) = t. Then, t′′

would define a subtask that could be easier to solve for the
reason given above.

The semantic backpropagation presented in the next sections
is an effective heuristic for finding such subtasks.

B. Semantic backpropagation

The semantic backpropagation algorithm finds the subtar-
gets for a given target and a suffix of a program represented

4Consider a brute force algorithm that attempts to solve a programming
task by generating all programs, starting from the shortest ones and gradually
increasing their length. Given two programming tasks having the shortest
solutions p and [p p′] respectively, such algorithm will find a solution for the
former task earlier. In this sense a subtask can be expected to be easier to
solve than the entire task. Obviously, this argument will not always be valid
for more sophisticating search algorithms like GP.

5There are in general many such subtargets.

Algorithm 1 Semantic backpropagation algorithm for tree
programs. Parameters: t: target semantics, p: program tree,
n: the node in p to be reached by the backpropagation.
CHILD(a, n) returns the child of node a on the path leading
from a to n and POS(a, n) returns the child’s position in the
list of arguments of node a. INVERT(a, k, o) returns the set
of the desired values for kth argument of node a and desired
output o, as specified in Table I.

1: function SEMANTICBACKPROPAGATION(t, p, n)
2: for all ti ∈ t do . For each fitness case
3: Di ← {ti}
4: a← p
5: while a 6= n ∧Di 6= ∅ ∧ ∗ 6∈ Di do
6: k ← POS(a, n)
7: D′ ← ∅
8: for all o ∈ Di do
9: D′ ← D′ ∪ INVERT(a, k, o)

10: Di ← D′

11: a← CHILD(a, n)

12: return (D1, D2, . . .)
13: end function

as a tree. To attain this goal, it inverts the execution of the
suffix for the desired output specified by the target.

Because in general there may be infinitely many subtargets
t′′ such that s([t′′ p∗(2)]) = t, the algorithm does not guarantee
to determine all of them, but only a subset thereof. To
efficiently represent such a subset, we use desired semantics.

Definition 4. The desired semantics for a programming task t
and suffix p(2) is a tuple D = (Di) of sets Di corresponding
to particular components of t, where each Di contains the
desired values defined by the suffix p(2) for the ith fitness
case, i.e.:

Di = {x : p(2)(x) = ti} (3)

In other words, Di contains a set of values x that cause the
suffix to reach the target on the ith fitness case. Such values
form the desired output for the ith fitness case of subtargets
defined by p(2) for t. Di can contain any set of such outputs
that fulfill Eq. 3, not necessarily all of them.

Algorithm 1 presents the SEMANTICBACKPROPAGATION
procedure which heuristically calculates a desired semantics
determined by a given suffix. Although the inversion process
requires only the program suffix, we assume for convenience
that the arguments of the procedure are a program tree p and
a node n in that tree. The node n unambiguously identifies
the suffix (see Fig. 1).

For a given target t, SEMANTICBACKPROPAGATION(t, p, n)
computes the desired semantics associated with the suffix
determined by p and n. For each fitness case ti independently,
it carries out traversal over the nodes on the path from the
root of p to n. It starts by propagating the ith component
of the original target, ti, through the instruction located at
the root node. The inversion of the consecutive instructions on
the path is carried out by the loop in lines 5–11. For every o in
the working set of desired values Di, the call of the INVERT

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TEVC.2014.2321259

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

TOMASZ P. PAWLAK et al.: SEMANTIC BACKPROPAGATION FOR DESIGNING SEARCH OPERATORS IN GENETIC PROGRAMMING 5

Table I: Definition of INVERT(a, k, o) used in our experiments
for the symbolic regression and the Boolean domain. For
a subtree a (an instruction node with one or two children
that returned c1 and c2) the formulae determine the desired
value for the first (k = 1, center column) and second (k = 2,
right column) argument, given the desired value of the whole
subtree a.

Subtree a INVERT(a, 1, o) INVERT(a, 2, o)
Symbolic regression domain

c1 + c2 o− c2 o− c1
c1 − c2 o+ c2 c1 − o

c1 × c2

o/c2 c2 6= 0

∗ c2 = 0 ∧ o = 0

∅ c2 = 0 ∧ o 6= 0

o/c1 c1 6= 0

∗ c1 = 0 ∧ o = 0

∅ c1 = 0 ∧ o 6= 0

c1/c2

o× c2 c2 6= ±∞
∗ c2 = ±∞∧ o = 0

∅ c2 = ±∞∧ o 6= 0

c1/o c1 6= 0

∗ c1 = 0 ∧ o = 0

∅ c1 = 0 ∧ o 6= 0

exp(c1)

{
log o o ≥ 0

∅ otherwise
—

log |c1| {−eo, eo} —

sin c1

{
{arcsin o− 2π, arcsin o} |o| ≤ 1

∅ otherwise

cos c1

{
{arccos o− 2π, arccos o} |o| ≤ 1

∅ otherwise

Boolean domain

c1 and c2

o c2
∗ not c2 and not o

∅ not c2 and o

o c1
∗ not c1 and not o

∅ not c1 and o

c1 or c2

o not c2
∗ c2 and o

∅ c2 and not o

o not c1
∗ c1 and o

∅ c1 and not o

c1 nand c2

not o c2
∗ not c2 and o

∅ not c2 and not o

not o c1
∗ not c1 and o

∅ not c1 and not o

c1 nor c2

not o not c2
∗ c2 and not o

∅ c2 and o

not o not c1
∗ c1 and not o

∅ c1 and o

function determines the desired values for the kth child of the
current node a, where the child is the next node on the path.

Let us illustrate this procedure with an example, where
SEMANTICBACKPROPAGATION is called for target t =
[−2, 0, 0], program p shown in Fig. 1, and n being the node
marked in blue. The semantics of subtrees in p are shown in
black boxes. Let us consider the first fitness case, the desired
output for which is −2. The algorithm starts at the root node.
Because n is in the right subtree of the root, the algorithm
will determine the set D1 for the right argument of the root
instruction (‘−’). Currently, that node calculates 1−(−1) = 2.
The algorithm attempts to find out what should be the value of
the right argument (say, x) to make the outcome meet the target
−2, i.e., 1−x = −2. This can be obtained by inverting that cal-
culation, and so the algorithm ends up with x = 1−(−2) = 3.
This value becomes the first element of the desired semantics
propagated to the right child of the root node (blue dotted
box), together with the values calculated independently for the
remaining two fitness cases. The resulting desired semantics
(3, 2, 3) becomes the starting point for the subsequent step of
backpropagation (instruction×).

Figure 1: Semantic backpropagation example. Black vectors
are the actual semantics at each program node (i.e., the se-
mantics of the corresponding subtree). The desired semantics
(the blue dotted vector) is propagated from the root node to
the blue noden.

The function INVERT, defined in Table I, carries out the
inversion of the execution of a single instruction at a root of
the subtree a with respect of its kth argument for the specific
context formed by all the remaining arguments. If a has two
or more arguments, the result of INVERT depends not only on
the output of a, but also on the values supplied by the other
arguments of a (the context). For instance, INVERT applied to
the first fitness case and the root node of the program shown
in Fig. 1, i.e., INVERT(c1 − c2, 2, o), operates on c1 = 1 and
o = −2. Accordingly to the second row of Table I, it returns
INVERT(1− c2, 2,−2), i.e., c1 − o = 1− (−2) = 3.

For such bijective instructions, inversion is unambiguous,
i.e., INVERT(a, k, o) returns a single value. Otherwise, INVERT
can be ambiguous in returning more than one desired value.
For instance, INVERT returns two values for log | · |. The
periodic functions can be inverted in infinitely many ways,
so for sin and cos we limit the set of desired values to two
arbitrarily chosen ones.

Another form of ambiguity results from ineffective code.
Consider the program c1×c2 where c2 = 0. No matter what we
substitute for c1, the output of the program does not change.
If the desired output equals zero, the set of desired values
comprises all real numbers. In such cases, INVERT returns the
special symbol ‘∗’.

INVERT(a, k, o) returns an empty set if no value passed as
the kth argument to a can make it return o. For instance, the
exponential function cannot produce negative values.

In these two cases (INVERT()=∅ or {∗}), further propagation
cannot change the contents of Di, so SEMANTICBACKPROP-
AGATION stops the traversal of the path (line 5 in Alg. 1) and
the algorithm proceeds to the next fitness case. Finally, the
algorithm gathers into a tuple the sets Di of desired values
computed for each fitness case, and returns that tuple as the
desired semantics.

C. Impact of program inversion on fitness landscape

Technically, semantic backpropagation propagates only the
specific desired values derived from the target (i.e., certain
points in the semantic space). However, the resulting desired
semantics becomes a subtarget for a separate search process
using the search operators we define in the next section.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TEVC.2014.2321259

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

6 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

−π

0

π

−π 0 π
y1

y 2

(a)

−π

0

π

−π 0 π
y′1

y′
2

(b)

−π

0

π

−π 0 π
y″1

y″
2

(c)

Figure 2: Inverse transformation of the original fitness land-
scape (left) by the program [x sin cos]. Instructions are con-
sidered in reverse order: cos−1 (b) and [cos−1 sin−1] (c).
Heatmaps present the fitness of the entire program as a
function of semantics at a particular point of execution. White
is the best fitness, darker (red) area is the worst. Crosses mark
the target of the original task in (a) and the subtargets in (b).

That search process will be driven by semantic distance from
the subtarget. It is then essential to understand how the
semantic distance from the target and the semantic distance
from a subtarget relate to each other.

To provide such insight, we consider an example of a uni-
variate symbolic regression problem with the fitness function
(Eq. 2) being the Euclidean distance. For the sake of simplicity,
we consider only two fitness cases and assume the target
t = (0, 0). Consistently with Section III-A, the semantic space
here is R2 and the fitness landscape hovering over it is an
‘upside-down’ Euclidean cone in three dimensions, with apex
at point (0, 0). This fitness landscape is presented as a heatmap
in Fig. 2a. The coordinates of every point in this heatmap
correspond to the outputs (y1, y2) returned by a hypothetical
program for the two fitness cases, and the color of the point
reflects program’s fitness.

We will demonstrate now how, by transforming the desired
outputs, semantic backpropagation also implicitly transforms
the entire fitness landscape (i.e., not only the points in Fig. 2a,
but also the corresponding fitness values). Consider the pro-
gram suffix cos. For every point (y1, y2) in the heatmap in
Fig. 2a, we can find all points (y′1, y

′
2) ∈ R2 such that

cos(y′1) = y1 and cos(y′2) = y2, and label them with the
same fitness (color) as (y1, y2). The resulting heatmap, shown
in Fig. 2b, is the transformed fitness landscape as seen by the
programs prepended to the suffix cos. For any program p, the
color of the point s(p) ∈ R2 in Fig. 2b reflects the fitness of
the compound program [p cos]. That landscape has multiple
subtargets (marked by crosses), since cosine is periodic.

This backpropagation of the fitness landscape continues as
SEMANTICBACKPROPAGATION proceeds on the path from the
tree root to the selected node n (Alg. 1). Given the heatmap
shown in Fig. 2b, we can perform an analogous calculation
for, e.g., instruction sin, considering so the program suffix
[sin cos]. The fitness landscape of the subtask defined by this
suffix is shown in Fig. 2c. However, this time the subtargets
do not propagate from Fig. 2b to Fig. 2c: the global optima
disappear, since @y′′ : cos(sin(y′′)) = 0. Thus, no program of
the form [p sin cos], where p is an arbitrary subprogram, can
be a solution to this programming task.

As the example illustrates, the number of subtargets can
grow with suffix length (one target in Fig. 2a, many subtargets
in Fig. 2b). That growth can be exponential in function
of the number of fitness cases and suffix length. However,
the desired semantics, by storing the desired output for
each fitness case independently, can capture the subtargets
in a memory-efficient way; the 16 subtargets in Fig. 2b
require only eight values in the desired semantics: D =
({− 3π

2 ,−
π
2 ,

π
2 ,

3π
2 }, {−

3π
2 ,−

π
2 ,

π
2 ,

3π
2 }).

The key observation following from the above example is
that semantic backpropagation transforms the entire fitness
landscape. Given a program p with semantics located some-
where in Fig. 2b, by modifying that program so that its seman-
tics becomes closer to any of the subtargets, we cause the se-
mantics of the complete program [p cos] to approach the origi-
nal target t in Fig. 2a. This is the main motivation for designing
search operators that employ semantic backpropagation.

V. SEMANTIC BACKPROPAGATION IN SEARCH OPERATORS

A. Common working principle

We propose two genetic search operators that employ se-
mantic backpropagation: a unary Random Desired Operator
(RDO) that can be considered as a form of mutation, and
Approximately Geometric Semantic Crossover (AGX). Both
start with selecting a random node n in the parent program
p, which divides p into a prefix and suffix. Then, they call
SEMANTICBACKPROPAGATION to determine a subtask. Next,
the operators attempt to solve the subtask by an exhaustive
search of a library of programs described in Section V-D. The
best program found in this way replaces the corresponding
prefix in p, yielding the offspring.

The main difference between RDO and AGX lies
in what they set as the starting semantics in the
backpropagation process, i.e., the argument t in the
SEMANTICBACKPROPAGATION(t, p, n) call. RDO uses
the original target provided by a task. AGX employs
a ‘synthetic’ target, and so can be applied to tasks for which
the original target is not explicitly known.

B. Random Desired Operator

The Random Desired Operator (RDO), presented in Alg. 2,
which we first proposed in [7], follows the above work-
ing principle. A random node n is first selected in the
parent program p. Next, SEMANTICBACKPROPAGATION de-
termines the desired semantics D associated with the se-
lected node. D stores a set of subtargets and thus defines
a programming subtask. The subtask is solved in line 4 by
calling LIBRARYSEARCH(L,D) described in Section V-D.
LIBRARYSEARCH(L,D) returns a program from the library
that is the closest to the desired semantics D in terms of the
measure adopted there. Due to the limited size of the library,
LIBRARYSEARCH is not guaranteed to actually solve the sub-
problem D, i.e., to find a program in L that exactly matchesD.

Note that RDO does not check whether D contains empty
sets and searches the library also in such cases. This may seem
futile, as no program (whether from library or not) can match
such a D perfectly. However, in such cases LIBRARYSEARCH

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TEVC.2014.2321259

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

TOMASZ P. PAWLAK et al.: SEMANTIC BACKPROPAGATION FOR DESIGNING SEARCH OPERATORS IN GENETIC PROGRAMMING 7

Algorithm 2 RDO search operator. Parameters: t: tar-
get semantics, p: parent tree, L: library of programs.
REPLACE(p, n, p′) replaces the subtree rooted in node n in
tree p with the tree p′.

1: function RDO(t, p, L)
2: n← SELECTRANDOMNODE(p)
3: D ← SEMANTICBACKPROPAGATION(t, p, n)
4: p′ ← LIBRARYSEARCH(L,D)
5: o← REPLACE(p, n, p′)
6: return o
7: end function

Algorithm 3 AGX crossover operator. Parameters: p1, p2:
parent programs (trees), L: library of programs.

1: function AGX(p1, p2, L)
2: m← MIDPOINT(s(p1), s(p2))
3: o1 ← RDO(m, p1, L)
4: o2 ← RDO(m, p2, L)
5: return {o1, o2}
6: end function

will find a program p′ that matches D as well as possible on
the other fitness cases, and RDO will paste it into the offspring.
Behavior on the non-matched fitness cases can hopefully be
fixed by RDO mutations in the subsequent generations.

C. Approximately Geometric Semantic Crossover
RDO uses as its goal the original target of the search pro-

cess, t. This is particularly useful in domains where the desired
program outcome is explicitly given as a part of task formula-
tion (which we assumed to this point of the paper, particularly
in Eq. 2). The typical formulation of symbolic regression and
Boolean function synthesis belong to this category.

However, there are tasks in which the target is not explicitly
known to the search algorithm, and the fitness function is
a black-box that can only be queried for particular programs.
For instance, it may be the case that the target contains confi-
dential information and cannot be revealed to the experimenter.

At first sight, the reasoning presented so far is not applicable
to such tasks. Indeed, RDO(t, p, L) cannot be called because
t is not known to the search algorithm and thus cannot
be propagated back through p. However, a distance-based
fitness function (Eq. 2) induces a conic fitness landscape no
matter whether the location of the cone apex is known to the
algorithm or not. Such fitness landscapes, unimodal and devoid
of plateaus, are in general easy to search.

In particular, geometric crossover operators [24] have been
demonstrated to perform particularly well on this kind of
problem. A recombination operator is a geometric crossover
under metric d if its offspring are in the d-metric segment
between its parents. Geometric crossover can be easily adopted
in semantic GP because, with program semantics represented
as a vector of outputs, the semantic space is naturally a vector
space. For some metric, geometric crossover offers attractive
convergence properties. E.g., for the Euclidean metric, the
offspring on the segment cannot be worse than the worst of
the parents (see [25] for a more thorough explanation).

The Approximately Geometric Semantic Crossover (AGX),
which we originally proposed in [6], is an operator that
combines semantic backpropagation with geometric crossover.
Presented in Algorithm 3, AGX chooses a point m on the
segment connecting the semantics of the parents, and attempts
to produce a program that matches m by applying RDO
to each of the parents, with the target set to m. In other
words, uninformed about the true target, AGX uses a point on
a segment between parents’ semantics as a surrogate target.

Finding a midpoint m of the segment spanning the
semantics of parent programs p1 and p2 is domain-
dependent. For numeric semantics and Euclidean metric,
MIDPOINT(s(p1), s(p2)) returns m = (s(p1) + s(p2))/2.
For binary vectors and Hamming metric, MIDPOINT returns
an arbitrarily chosen point m that is (i) located on the
segment (i.e. d(s(p1),m) + d(m, s(p2)) = d(s(p1), s(p2)))
and (ii) possibly equidistant to the endpoints of the segment
(i.e., |d(s(p1),m)− d(m, s(p2))| ≤ 1).

D. Solving subtasks by library search

RDO and AGX use the parent individuals to derive the
subtasks from the original programming task. In Section
IV-A, we provided evidence that subtask solutions can be
shorter than solutions to the original task. Therefore, to solve
a subtask, rather than using a sophisticated heuristic like GP,
we resort to simpler means and perform exhaustive search in
a set of programs with precomputed semantics, which we term
a library. This process hides under the LIBRARYSEARCH call
in Algorithm 2. Given a library L and a desired semantics D,
LIBRARYSEARCH(L,D) calculates the best match between
the components of D and the semantics of every program in
the library, i.e., finds a program p in L that minimizes:

argmin
p∈L

min
y∈D1×...×Dl

d (y, s(p)) (4)

When minimizing this expression, we discard from the
Cartesian product all sets Di such that Di = ∅ or ∗ ∈ Di.
In consequence, the distance d(y, s(p)) is calculated only on
the remaining (well-defined) components of semantics s(p).

Note that posing a programming subtask in this way
is different from the formulation of the original program-
ming task (Def. 3), where the target of the search process
was a single vector (combination of desired output values).
Here, a program that minimizes the distance to any of
the subtargets inD is sought.

After finding the program in L that minimizes Formula 4,
we verify whether a constant semantics would give an even
better match. By doing so, we not only expect to sometimes
find a constant that reduces the matching distance d, but also
provide the population with an additional influx of potentially
useful constants (ERCs) and reduce bloat. We calculate the
constant that minimizes the overall divergence from the desired
values on all fitness cases by solving the following special case
of Formula 4:

argmin
c

min
y∈D1×...×Dn

d(y, [c]) (5)

where [c] denotes a vector of l components, all set to c. As
in Formula 4, the Cartesian product involves only the well

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TEVC.2014.2321259

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

8 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

defined Di components. This expression is minimized over c
varying in the domain characteristic for the problem (R for
symbolic regression, and {0, 1} for the Boolean problems).
If value of (5) is smaller than value of (4), LIBRARYSEARCH
returns c, otherwise it returns the program found in the library.

We solve both these problems by separate minimization
in each dimension of Formula 4, which can be done in
a polynomial time thanks to the properties of Minkowsky
distance. The details are presented in the Appendix6.

We consider two sources of programs for libraries. A static
library L is filled up with all program trees up to certain
height7 limit and does not change during evolutionary search.
A dynamic library contains all subtrees collected from all
individuals in the current population and thus varies along the
search process.

A library, whether static or dynamic, stores only the seman-
tically unique programs. If two candidate programs have the
same semantics, only the shorter one is included in the library.
Note that the verification of semantic uniqueness, intended
to keep the library size at bay and reduce program bloat,
is done without any threshold8. Albeit that, this is the main
computational cost of library generation. Thus, maintaining
a dynamic library is typically more time consuming.

VI. THE EXPERIMENT

A. Setup

To assess the benefits of semantic backpropagation, we
compare the performance of RDO (Sec. V-B) and AGX
(Sec. V-C) to the following reference search algorithms:

GPX: GP using standard subtree crossover (90%) and
subtree mutation (10%) by Koza [26]. Standard crossover pro-
duces offspring by swapping two randomly selected subtrees
in parent programs. Mutation replaces a randomly selected
subtree in the parent with a randomly generated one. We
use mutation to improve GPX’s results and make it a more
challenging opponent (GP without mutation achieved notably
worse results in a preliminary series of runs).

LGX: GP using only the Locally Geometric Seman-
tic Crossover [18]. Given two parent trees, LGX draws
a crossover locus only from their structurally homologous
region, like the one-point crossover by Langdon [27]. Next,
it calculates the midpoint of the segment connecting the
semantics of the subtrees rooted at the chosen locus in both
parents. Then it calls LIBRARYSEARCH to find the program
that is semantically most similar to the midpoint, and pastes
that program into parents at the selected locus (see [18] for
more details). We chose LGX as a control approach because
its design is motivated by the same geometric properties that
found AGX, and it also uses a library of programs. Moreover,
in [18] we compared LGX with Semantic Aware Crossover
and Semantic Similarity Crossover by Nguyen et al. [13], so

6Available as supplementary material online.
7Typically, albeit incorrectly, referred as ‘tree depth’ in GP literature.
8If there is no threshold, semantic uniqueness of the candidate program can

be determined in O(1) time, e.g. using hashtable. In contrary threshold forces
us to take into account distribution of semantics of programs already present
in the library. Thus it can be done, using e.g. binary tree, in O(log |L|) time,
where |L| is size of the library.

Table II: Benchmarks used in the experiment. For symbolic
regression training set contains 20 fitness cases selected
equidistantly from the given range, whereas test set contains
20 uniformly drawn points from the same range.

Symbolic regression benchmarks
Problem Definition (formula) Range
Septic x7 − 2x6 + x5 − x4 + x3 − 2x2 + x [−1, 1]
Nonic

∑9
i=1 x

i [−1, 1]
R1 (x+ 1)3/(x2 − x+ 1) [−1, 1]
R2 (x5 − 3x3 + 1)/(x2 + 1) [−1, 1]
R3 (x6 + x5)/(x4 + x3 + x2 + x+ 1) [−1, 1]

Nguyen-6 sin(x) + sin(x+ x2) [−1, 1]
Nguyen-7 log(x+ 1) + log(x2 + 1) [0, 2]
Keijzer-1 0.3x sin(2πx) [−1, 1]
Keijzer-4 x3e−x cos(x) sin(x)(sin2(x) cos(x)− 1) [0, 10]

Boolean benchmarks
Problem Instance Bits Fitness cases

even parity
Parity-5 5 32
Parity-6 6 64
Parity-7 7 128

multiplexer Multiplexer-6 6 64
Multiplexer-11 11 2048

majority Majority-6 6 64
Majority-7 7 128

comparator Comparator-6 6 64
Comparator-8 8 256

Table III: Evolutionary parameters.

Parameter Value
Stopping condition 100 generations or optimal solution found
Population size 1024
Fitness function Symbolic regression: Mean of absolute errors

Boolean domain: Hamming distance
Initialization method Ramped Half-and-Half algorithm, height range 2− 6
Duplicate retries 100 (until accepting a syntactic duplicated individual)
Selection method Tournament selection, tournament size 7
Max program height 17
Node selection RDO, AGX: Equal depth probabilitya

LGX: Homologous selection
GPX: Koza-I (90% nonterminal nodes, 10% leafs) [26]

Instructions Symbolic regression: x, +, −, ×, /b, sin, cos, exp,
logb, ERC
Boolean domain: D1...D11 (inputs depend on
a problem instance), and, or, nand, nor, ERC

Number of runs 30

aSELECTRANDOMNODE(p) in Alg. 2 draws with uniform probability
a random number r from the interval [1, height(p)], picks at random a node
in p at depth r and returns it. We found that this selector leads to less bloat
than the conventional Koza-style selectors.

blog and / are protected. log is defined as log |x|; / returns 0 if divisor is 0.

by using LGX as a reference we can also indirectly compare
RDO and AGX to those operators.

We apply these two control setups and GP running RDO
and AGX to 18 commonly used benchmarks that represent two
groups: symbolic regression tasks and Boolean function syn-
thesis tasks (Table II). The symbolic regression benchmarks
come from [26], [28], while the Boolean benchmarks are taken
from [26], [29].

Instruction sets used in symbolic regression and Boolean
benchmarks are listed in Table III. For GPX, ERCs in sym-
bolic regression are random constants drawn from the interval
[−1, 1]. For RDO, AGX and LGX, constants are generated by
algorithm LIBRARYSEARCH described in Section V-D. On the
other hand for Boolean benchmarks, to maintain consistency
with the symbolic regression setup, we allow the programs to

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TEVC.2014.2321259

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

TOMASZ P. PAWLAK et al.: SEMANTIC BACKPROPAGATION FOR DESIGNING SEARCH OPERATORS IN GENETIC PROGRAMMING 9

Table IV: Cardinality of static libraries of trees up to height 3,
depending on the number of inputs in the Boolean task.

of inputs 5 6 7 8 9 10 11
Cardinality 1072 2524 5126 9370 15836 25192 38194

Figure 3: Distribution of program semantics in the static
library (h = 4) for the symbolic regression domain. The
coordinates of points have been determined by transforming
the original 20-dimensional space (20 fitness cases, x evenly
distributed in [−5, 5]) using principal component analysis
and discarding all but the two first components. Dots reflect
program size: red for the smallest programs (a single node),
blue for the largest programs in the library (2h−1 = 15 nodes).

use the constants true and false.
RDO, AGX and LGX use the same libraries of programs.

We consider static libraries and population-based (dynamic)
libraries (Section V-D). A static library contains all program
trees up to height h. That limit is marked by a subscript,
e.g. RDO3 refers to a static library for h = 3, while RDOp
refers to the population-based (dynamic) library.

Program semantics is a vector of length 20 for all regression
benchmarks, as this is the number of fitness cases available in
the training set (Table II). Because there is only one terminal
symbol x, the number of programs grows moderately with
tree height. This allows us to consider two libraries for the
regression problems, a small one (h = 3) and a large one
(h = 4), which hold 289 and 111458 semantically unique
programs, respectively. In the following, the terms small and
large refer to static libraries only.

For the Boolean problems, the training set comprises all
input combinations, so the length of semantics can be even
two orders of magnitude greater than for regression problems
(see the last column of Table II). Also, depending on the
benchmark, there are between five and eleven input terminals.
This makes the large (h = 4) static library technically
infeasible, so we use only the small library for the Boolean
domain. Table IV presents the sizes of static libraries used in
the Boolean tasks.

Larger libraries are desirable, as they offer richer semantic
diversity. The distribution of program semantics converges
with growing program size to a strongly non-uniform dis-
tribution (see demonstration for the Boolean domain in [8],
[30]). However, with the small programs in the libraries
considered here, we are far from that convergence, which

we verified experimentally. Figure 3 visualizes the two first
principal components of semantics of the programs in the large
library (symbolic regression) and marks program size with
color. The small programs clearly group around the origin of
the coordinate system, while the larger ones spread further
from it. Thus, the large library for the regression domain is
semantically more diverse. However, the price paid for greater
semantic diversity is the library size and, consequently, more
costly library search.

Other parameters of the evolutionary algorithm can be
found in Table III. Among them is the upper limit on tree
height (17), observed by all methods. For RDO, AGX and
LGX this implies that LIBRARYSEARCH receives an extra
argument which specifies what is the maximum height of
programs that can be inserted at the selected locus in the
parent program (e.g., if the locus is at depth 7, that argument
is 10). LIBRARYSEARCH ignores the programs in the library
that would violate this constraint.

The Java source code of our implementation of Semantic
Backpropagation, RDO, AGX, LGX and GPX is available at
www.cs.put.poznan.pl/tpawlak/link/?IEEESemanticBackprop.

B. Performance of the operators

Figure 4 presents the mean (minimized) fitness of the
best-of-generation individuals for the symbolic regression and
Boolean benchmarks. The curves plot the averages of 30 runs
per method with 0.95-confidence intervals.

For all symbolic regression benchmarks, RDO4 is the un-
questionable winner in terms of best-of-run fitness and speed
of convergence. The second place belongs to AGX4 or RDOp,
depending on the task, however RDOp converges noticeably
quicker than AGX4. AGX4 performs better than its main
competitor, LGX4. GPX, the only non-semantic operator, fares
worse than most of the other methods.

In almost all cases, a method equipped with the large library
is better than the same method equipped with the small library
(except for LGX in Nguyen-6 problem). This is not surprising,
since the large library provides a more diversified choice of
matches for desired semantics. The operators that use the
dynamic library typically fare in between.

For Boolean benchmarks, RDO again achieves the best
fitness, however this time with the dynamic library (RDOp).
For each benchmark, the second place is occupied by RDO3.
The performance of AGX is strongly problem-dependent.
It converges quickly, leaving behind LGX and GPX, however
later it is usually caught up or overtaken by LGX (except
for the multiplexer problems where LGX takes precedence of
AGX from the beginning). GPX is usually in the second half
of method ranking at the end of runs.

C. Generalization

The ability to generalize beyond the training data is a de-
sirable property of a GP system and can be investigated using
the tools borrowed from traditional machine learning [31]. To
assess the generalization performance, we applied the best-
of-run individuals to the test sets defined in Table II. The
medians of errors committed by those individuals are presented

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TEVC.2014.2321259

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://www.cs.put.poznan.pl/tpawlak/link/?IEEESemanticBackprop

10 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

F
it
n
es
s

Septic

0 20 40 60 80 100
0

0.02

0.04

0.06 R1

0 20 40 60 80 100
0

0.01

0.02
Nguyen− 6

0 20 40 60 80 100
0

0.02

0.04

0.06

F
it
n
es
s

Nonic

0 20 40 60 80 100
0

0.02

0.04

0.06 R2

0 20 40 60 80 100
0

0.01

0.02
Nguyen− 7

0 20 40 60 80 100
0

0.01

0.02

0.03

F
it
n
es
s

Keijzer − 1

0 20 40 60 80 100
0

0.01

0.02

0.03
R3

0 20 40 60 80 100
0

0.02

0.04

0.06

0.08

0.1
Keijzer − 4

0 20 40 60 80 100
0

2

4

6

8

10

F
it
n
es
s

Parity − 5

0 20 40 60 80 100
0

0.5

1

1.5

2
Majority − 6

0 20 40 60 80 100
0

1

2

3

4
Comparator − 6

0 20 40 60 80 100
0

10

20

30

F
it
n
es
s

Parity − 6

0 20 40 60 80 100
0

5

10 Majority − 7

0 20 40 60 80 100
0

10

20
Comparator − 8

0 20 40 60 80 100
0

20

40

60

Generation

F
it
n
es
s

Parity − 7

0 20 40 60 80 100
0

2

4

6

8

Generation

Multiplexer − 6

0 20 40 60 80 100
0

50

100

150

200

Generation

Multiplexer − 11

AGX3 AGX4 AGXp GPX LGX3 LGX4 LGXp RDO3 RDO4 RDOp

1

Figure 4: Average fitness and 0.95 confidence interval of the best-of-generation individuals.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TEVC.2014.2321259

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

TOMASZ P. PAWLAK et al.: SEMANTIC BACKPROPAGATION FOR DESIGNING SEARCH OPERATORS IN GENETIC PROGRAMMING 11

Table V: Median error committed by the best-of-run individu-
als on the test set (cf. Table II). Bold values refer to the lowest
error achieved on the problem (a row).

Problem AGX3 AGX4 AGXp GPX LGX3 LGX4 LGXp RDO3 RDO4 RDOp

Septic .0117 .0018 .0055 .0364 .0105 .0048 .0039 .0095 .0009 .0017
Nonic .0235 .0023 .0031 .0101 .0245 .0061 .0031 .0097 .0009 .0053
R1 .0110 .0011 .0023 .0270 .0151 .0075 .0007 .0071 .0003 .0017
R2 .0091 .0007 .0012 .0393 .0259 .0021 .0100 .0030 .0000 .0012
R3 .0108 .0002 .0016 .0068 .0107 .0024 .0017 .0055 .0000 .0025
Nguyen-6 .0000 .0003 .0002 .0018 .0000 .0002 .0003 .0000 .0000 .0000
Nguyen-7 .0016 .0002 .0002 .0026 .0006 .0006 .0005 .0011 .0001 .0005
Keijzer-1 .0059 .0004 .0007 .0181 .0080 .0024 .0023 .0022 .0002 .0008
Keijzer-4 .0371 .0127 .0662 .0803 .0450 .0400 .0431 .0239 .0000 .0207

Figure 5: The results of post-hoc analysis of Friedman’s test
visualized as outranking graphs. A→ B indicates that A out-
ranks B in a significant manner (p < 0.05 in Table VI).
For symbolic regression (a), gray, dashed, and black arrows
represent outranking that holds for, respectively, training sets
only, test sets only, and all sets. For the Boolean tasks (b), there
are no test sets and the arrows pertain to the training sets.

(a)

RDO4
//

++

&&

""����

LGX3 AGXp

tt

oo

yy
GPX AGX4

oo

jj

tt
AGX3 RDOp

jj

oo

RDO3 LGX4 LGXp

(b)

GPX

RDO3

44

//

**
AGXp

RDOp

99

44

//

**
AGX3

LGXp LGX3

in Table V. This test was conducted only for the symbolic
regression benchmarks, since in the Boolean benchmarks the
training sets enumerate all possible program inputs.

RDO4 clearly generalizes best on all benchmarks. AGX3,
LGX3, RDO3, RDOp match its performance only on the rel-
atively easy Nguyen-6 problem. The results of all library-
backed operators are markedly related to library size: the
operators equipped with the large library generalize better. The
ranking of methods on the test set is usually consistent with the
end-of-run results for the training sets (Fig. 4). This suggests
that the methods based on semantic backpropagation, in partic-
ular RDO, are quite resistant to overfitting. This holds also for
the large library, which, by offering greater semantic diversity,
allows a search operator to fit the training data more tightly.

D. Statistical significance

To draw qualitative conclusions about methods’ comparative
performance, we carried out Friedman’s test for multiple
achievements of multiple subjects [32]. Compared to ANOVA,
this procedure does not require the distributions of variables
in question to be normal. Because the Boolean tasks are
fundamentally different in having no test set, we consider
the domains and the training and test sets separately. In all
cases the test concludes that there is at least one pair of op-
erators with statistically significant difference of performance
(α = 0.05; the particular p-values are presented in the headers
of Tables VIa-c).

To determine for which pairs of operators the difference is
significant, we conducted a post-hoc analysis using symmetry

Table VI: Post-hoc analysis of Friedman’s test using symmetry
test conducted on average and median errors of the best-of-run
individuals applied to training and test set, respectively. Every
cell gives the probability of erroneously judging the method in
a row as being better than the method in a column. Significant
values marked in bold (α = 0.05).

(a) Symbolic regression, training set (Friedman’s p-value = 3.45× 10−7).

AGX3 AGX4 AGXp GPX LGX3 LGX4 LGXp RDO3 RDO4 RDOp

AGX3 1.000 1.000
AGX4 0.012 1.000 0.001 0.051 0.637 0.690 0.365
AGXp 0.003 0.000 0.014 0.364 0.417 0.163

GPX 0.994
LGX3

LGX4 0.831 0.470 0.971 1.000 1.000
LGXp 0.788 0.416 0.957 1.000
RDO3 0.965 0.741 0.998
RDO4 0.000 0.885 0.982 0.000 0.000 0.019 0.024 0.005 0.850
RDOp 0.016 1.000 1.000 0.002 0.065 0.690 0.741 0.416

(b) Symbolic regression, test set (Friedman’s p-value = 6.94× 10−8).

AGX3 AGX4 AGXp GPX LGX3 LGX4 LGXp RDO3 RDO4 RDOp

AGX3 0.924 1.000
AGX4 0.033 0.955 0.000 0.015 0.407 0.825 0.515 0.999
AGXp 0.600 0.022 0.433

GPX
LGX3 0.976
LGX4 0.991 0.993 0.308 0.963
LGXp 0.825 1.000 0.068 0.682 1.000
RDO3 0.976 0.998 0.223 0.924 1.000 1.000
RDO4 0.000 0.976 0.285 0.000 0.000 0.020 0.129 0.034 0.655
RDOp 0.243 1.000 0.003 0.142 0.881 0.996 0.936

(c) Boolean tasks, training set (Friedman’s p-value = 3.37× 10−4).

AGX3 AGXp GPX LGX3 LGXp RDO3 RDOp

AGX3 1.000
AGXp

GPX 1.000 0.999
LGX3 0.993 0.999 0.968
LGXp 0.291 0.430 0.181 0.738
RDO3 0.006 0.013 0.002 0.056 0.805
RDOp 0.001 0.002 0.000 0.013 0.507 0.999

test [33], shown in Table VI. In Fig. 5 we visualize the statis-
tically significant part of these results as outranking graphs.

For the symbolic regression domain, the graph shows that
RDO4 outranks five out of nine other setups on both training
and test sets, and one setup (LGXp) on the training set only.
No other method is equally superior. The other semantic
backpropagation-backed method, AGX4, is also quite success-
ful, outranking two other setups on both sets, and a single other
setup on the test set only.

The behaviors of both RDO and AGX indicate that using the
large static library (h = 4) significantly improves performance
when compared to the small static library (h = 3).

In the Boolean domain the superior setup is RDOp (recall
that the large static library is absent here). It outranks four out
of six other setups. RDO3 outranks three methods.

E. Bloat analysis

Contrary to GPX that generates replacing subtrees at ran-
dom, RDO and AGX choose them from a relatively small
library in a semantically biased manner. We expect this to
impact the distribution of sizes of replacing subtrees, and

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TEVC.2014.2321259

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

12 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

Table VII: Average program size in the last generation (max-
ima in bold).

Problem AGX3 AGX4 AGXp GPXLGX3 LGX4 LGXp RDO3 RDO4 RDOp

Septic 60 302 1051 124 26 169 459 81 338 1922
Nonic 45 309 989 100 29 216 432 85 344 1125
R1 56 313 944 104 29 112 332 78 303 1519
R2 70 307 926 72 22 69 291 88 270 1238
R3 62 266 934 75 31 154 328 87 300 1200
Nguyen-6 16 220 905 73 13 95 276 25 16 482
Nguyen-7 67 262 862 74 33 223 327 73 279 981
Keijzer-1 77 307 905 145 34 97 452 101 315 800
Keijzer-4 84 287 878 160 86 302 630 97 22 878
Parity-5 133 — 2060 427 182 — 1506 101 — 484
Parity-6 148 — 2601 474 170 — 1448 163 — 1601
Parity-7 171 — 2665 484 190 — 1402 241 — 3584
Majority-6 23 — 196 97 29 — 145 21 — 123
Majority-7 126 — 1541 502 168 — 1171 76 — 360
Comparator-6 62 — 1189 308 100 — 907 35 — 185
Comparator-8 118 — 2390 306 124 — 1105 62 — 538
Multiplexer-6 26 — 3457 215 85 — 1144 32 — 215
Multiplexer-11 15 — 3484 198 56 — 1131 128 — 3063

indirectly of programs in the population (even given that the
corresponding evolutionary runs of particular methods start
here from identical initial populations).

Table VII presents the average program size (number of
tree nodes) in the last generation. The most bloating are
the methods equipped with the dynamic library, especially
RDOp for regression and AGXp for Boolean benchmarks.
Clearly, this is due to the size of library programs. The average
program size in a dynamic library is not only typically greater
than for the static library, but also will increase as soon as
population starts to suffer from bloat. However, the method
performing best on symbolic regression (RDO4) does not
generate the largest trees, although they are still greater than
the ones produced by GPX. On the other hand RDOp, the best
performing method on the Boolean problems, does not bloat
very much in this domain, generating substantially bigger trees
than GPX’s only in three benchmarks. Note that the programs
yielded by RDO3 are even smaller than those produced by
GPX, while their fitness is noticeably better.

F. Analysis of RDO

The results presented above demonstrate that RDO and
AGX outperform the standard GP search and the semantic-
aware LGX on a representative suite of benchmarks. One can
suppose that they owe this superiority to semantic backprop-
agation, which correctly identifies the desired semantics, and
to library search that finds subprograms that closely match
the desired semantics. However, the above experiment does
not prove that directly. The dynamics of evolutionary search
is very complex and other causes could potentially be behind
this result.

To verify the above supposition, we carry out an experiment
that examines the behavior of the simpler of the two operators,
RDO, on a population of random programs. For symbolic
regression and Boolean domain independently, we generate
a sample of 10, 000 random programs according to the setup in
Table III. Next, we apply RDO to each program, independently
for each of the target semantics of the nine benchmarks, which
results in 90, 000 applications of RDO. For every application

of RDO, we note two pieces of information. Firstly, we
record whether the semantic distance between the desired
semantics D (Algorithm 2) and the program p′ found by
LIBRARYSEARCH is greater than, equal to, or smaller than
the distance between D and the subtree being replaced, i.e.,n.
Secondly, we check whether the fitness of the offspring o
resulting from RDO is worse than, equal to, or better than the
fitness of the parent p. Technically we used equality threshold
10−10, to handle floating point errors. Table VIII presents the
statistics gathered in this way from the runs for all benchmarks,
separately for the static and dynamic libraries and for the
symbolic regression domain and the Boolean domain.

Do the data in Table VIII confirm that LIBRARYSEARCH
finds programs that are better than the subtrees being replaced?
The three qualitative outcomes of LIBRARYSEARCH corre-
spond to table rows and are summarized in the last column of
each table. Of these three possibilities, the first one is the least
desired (the program found by LIBRARYSEARCH is a worse
match for D than the ‘old’ subtree n), and the third is the one
we are most interested in. The figures clearly show that the
fraction of LIBRARYSEARCH failures is very low, even for the
small library. Most often, LIBRARYSEARCH manages to find
a program that is a better match for the desired semantics. The
fraction of neutral cases (i.e., when the two compared semantic
distances are equal) is substantial, but much lower. Expectedly,
it is higher in the Boolean domain where the discrete nature
of the Hamming distance makes ties more likely.

This result is promising, however it only character-
izes the internal operation of RDO. Do the programs found
by LIBRARYSEARCH cause the offspring to be more fit than
the parent?

This question can be answered positively by examining the
columns of Tables VIIIa–e. Most applications of RDO produce
an offspring that outperforms the parent. The distributions are
not as extreme as for the rows, because lowering the subtree’s
semantic distance to D does not guarantee lowering the entire
program’s semantic distance to the target t. The numbers in the
lower left cells indicate that distortions of fitness landscape,
often resulting from inversions of multiple instructions and
thus very complex (cf. Table I and Figs. 2a–2c), can cause the
offspring to be sometimes worse than the parent, even if the
subprogram found by LIBRARYSEARCH matches the desired
semantics better than the old subprogram. Nevertheless, this
is infrequent compared to improvements.

For the Boolean problems, large numbers clearly group
on the diagonals, suggesting strong causality between the
qualitative outcome of library search and the performance of
offspring. For symbolic regression this is not so prominent,
therefore we apply the χ2 interdependence test to each table
in Table VIII separately and report the results in Table VIIIf.
χ2 yields positive outcome (p� 0.001) for all tables. The two
considered random variables are significantly interdependent
for every library, which allows us to conclude that RDO’s
performance is due to the outcomes of LIBRARYSEARCH.

In every call, LIBRARYSEARCH does not only find a sub-
program in a library, but also determines the constant se-
mantics that matches best the desired semantics D. If such
a constant has smaller semantic distance from D, LIBRARY-

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TEVC.2014.2321259

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

TOMASZ P. PAWLAK et al.: SEMANTIC BACKPROPAGATION FOR DESIGNING SEARCH OPERATORS IN GENETIC PROGRAMMING 13

Table VIII: Joint statistics of the change of semantic distance to desired semantics (rows) and the change of fitness (columns)
for RDO applied to 10, 000 random individuals for each benchmark (nine in each domain). Rows marked ‘Worse’ count how
many times d(s(p′), D) > d(s(n), D) in Alg. 2; ‘Same’ and ‘Better’ for ‘=’ and ‘<’, respectively (assuming 10−10 tolerance).
Columns correspond to d(s(o), t) > d(s(p), t) in Alg. 2, and ‘=’ and ‘<’, respectively. Table (f) presents Cramer’s V [34],
the measure of association ranging in [0, 1], for Tables (a) – (e) (χ2 test was conclusive for p� 0.001 for every table). Empty
rows in (a) – (e) were excluded from tests.

(a) RDO3, symbolic regression.

Offspring’s fitness vs. parent’s
Worse Same Better Sum

L
IB

R
A

R
Y

S
E

A
R

C
H Worse 50 6 16 72

Same 2043 5431 1689 9163
Better 8469 5443 66853 80765
Sum 10562 10880 68558 90000

(b) RDO4, symbolic regression.

Offspring’s fitness vs. parent’s
Worse Same Better Sum

L
IB

R
A

R
Y

S
E

A
R

C
H Worse 0 0 0 0

Same 1996 4889 1515 8400
Better 8679 5656 67265 81600
Sum 10675 10545 68780 90000

(c) RDOp, symbolic regression.

Offspring’s fitness vs. parent’s
Worse Same Better Sum

L
IB

R
A

R
Y

S
E

A
R

C
H Worse 0 0 0 0

Same 4326 3506 481 8313
Better 8363 5396 67928 81687
Sum 12689 8902 68409 90000

(d) RDO3, Boolean domain.

Offspring’s fitness vs. parent’s
Worse Same Better Sum

L
IB

R
A

R
Y

S
E

A
R

C
H Worse 288 0 2 290

Same 2 24158 25 24185
Better 133 440 64952 65525
Sum 423 24598 64979 90000

(e) RDOp, Boolean domain.

Offspring’s fitness vs. parent’s
Worse Same Better Sum

L
IB

R
A

R
Y

S
E

A
R

C
H Worse 0 0 0 0

Same 0 14122 0 14122
Better 31 318 75529 75878
Sum 31 14440 75529 90000

(f) Interdependence tests on Tables (a) – (e).

Domain
Library Regression Boolean

Static small (h = 3) 0.37 0.90
Static large (h = 4) 0.49 —

Dynamic 0.54 0.86

Table IX: Empirical probability that LIBRARYSEARCH returns
a constant for each library and domain.

Library Symbolic regression Boolean domain
Static small (h = 3) 0.209 0.311
Static large (h = 4) 0.051 —

Dynamic 0.039 0.000

SEARCH returns it rather than a program from the library. This
justifies posing the following question: does RDO perform
so well because the libraries contain the needed programs
and LIBRARYSEARCH manages to find them, or because
LIBRARYSEARCH resorts to constants?

To verify this, when collecting the data reported in Ta-
ble VIII, we counted also how many times LIBRARYSEARCH
returned constants. These statistics, presented in Table IX,
show that LIBRARYSEARCH resorts to constants relatively
infrequently for the large library and for the dynamic libraries.
For the small library, where the choice of programs is much
smaller, this is more common. Nevertheless, comparing these
numbers with the data in Table VIII allows us to conclude
that neither the desired behavior of LIBRARYSEARCH, nor
the improvements elaborated by RDO, can be explained by
constants alone.

All above statistics have been gathered from samples of
random individuals, so they characterize the behavior of RDO
in the first generations of evolutionary runs. It can be expected
that with run progress, getting closer to search targets becomes
harder, and the frequency of improvements decreases (which
is however typical for all search operators). Indeed, this is
clearly visible in many fitness graphs in Fig. 4. Nevertheless,
the capability of making quick progress in the early phase of
the search compensates for this deficiency.

The conclusions formulated above can be to a certain extent
extrapolated to AGX, because it calls RDO to modify the
offspring (Alg. 3). However, a separate analysis, which we
skip here for brevity, would be necessary to answer analogous
questions for AGX.

VII. DISCUSSION

The experiments demonstrate that RDO operates as ex-
pected (Sec. VI-F) and outperforms all other operators in both
considered domains, while AGX proves useful only in the
regression domain (Sec. VI-B). What are the causes of these
differences?

RDO’s performance results from the explicit use of the most
informative part of problem specification: the target. By using
target as a goal of semantic backpropagation, RDO aims at
solving the problem directly, i.e., without the ‘intention’ of
gradually approaching the target. With a little luck, it can
choose the right suffix already from the programs available in
the initial population, and find a perfectly matching program in
the library, thus solving the problem in the first generation. For
an analogous thing to happen for AGX, the surrogate target
determined by MIDPOINT has to coincide with the true target,
which is unlikely, particularly in continuous semantic spaces.
Thus, AGX is by design unable to converge faster than RDO.

How is it then possible that AGX fares quite well in the
symbolic regression domain? The geometric properties of the
semantic space mentioned in Sec. V-C play the key role here.
For the continuous semantic space and Euclidean metric d, the
fitness landscape forms a Euclidean cone hovering over the
semantic space (an example of which was shown in Fig. 2a).
The fitness of a point in the semantic space can be obtained
by projecting it on the cone and measuring the distance to
that projection (the ‘height’, depicted by color in Fig. 2a). For
a pair of parents’ semantics s(p1) and s(p2), the MIDPOINT
procedure appoints as AGX’s surrogate target the midpoint
m on the segment between s(p1) and s(p2) (Algorithm 3).
By cone’s definition, the image of m projected on the cone
cannot be higher than the height of both projections of s(p1)
and s(p2). Thus, provided that AGX manages to produce
a program that matches m (which is not guaranteed, due to
imperfect nature of program inversion and library search), that
program cannot be worse than the worse of the parents. In

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TEVC.2014.2321259

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

14 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

particular, when s(p1) and s(p2) happen to be located on the
opposite sides of the original target t (and thus their images
on the opposites slopes of the cone), the offspring can be more
fit (its image lower on the cone) than the fitter of the parents.

This geometric property causes AGX converge faster than
GPX and LGX for symbolic regression benchmarks. In the
Boolean domain however AGX fares much worse (Fig. 4).
The possible cause for this is the structure of the semantic
space and fitness landscape which are fundamentally different
here from that of the continuous symbolic regression domain.
Though segments are well-defined in the Hamming space,
the midpoint of a segment is non-unique in general: for two
Boolean semantics that differ on n bits, there are roughly9(
n
n/2

)
such midpoints. Contrary to the Euclidean space, such

a midpoint can can be less fit than both parents.10 In the
Boolean space AGX can appoint a surrogate target m that
pulls the search away from the original target t.

Given this, does AGX have any other virtues that make it
potentially useful given RDO’s much better performance? We
claim it does, because, as signaled in Section V, application
areas of RDO and AGX are to a certain extent complemen-
tary. The advantage of RDO is that it does not require the
semantic distance d to be a norm: it is sufficient for d to be
a metric. AGX, to the contrary, requires the semantic space
to be a normed vector space, because it needs to construct
a midpoint between the parents’ semantics. However, AGX
offers in exchange the advantage of being ignorant about the
search target t; it does not need to explicitly know what is the
desired program output. Thanks to that, it can conduct search
with fitness values as the only information (apart from the
programming language) about the problem being solved. This
makes it a convenient method of choice when the target cannot
be explicitly revealed to the search algorithm, for instance
because of confidentiality issues, or when the target is simply
not known, which is the case in control problems (like an
artificial ant or pole balancing). We suppose that AGX can
perform well also in the latter case, despite the fact that such
tasks are in general not unimodal (i.e. there may be more than
one target). In a broader perspective, it is interesting to note
that the concept of desired semantics introduced here can be
used as a generalization of target for multimodal tasks. The
algorithms introduced here equal target with a vector mostly
because of the convention widespread in GP; many of them (in
particular SEMANTICBACKPROPAGATION and RDO) would
work equally well given task’s desired semantics as an input.

Throughout this paper, we considered the ambiguous, one-
to-many nature of program inversion as a challenge, because
it potentially leads to exponentially many subtargets being
derived from the original target (or even infinitely many subtar-
gets for the periodic functions like sin). There is however a flip
side to this problem. An ideal solution to the subtask is a pro-
gram that returns any combination of desired outputs from the

9
(n
n/2

)
for even n; for odd n, there are no equidistant points on the segment,

and n
(n−1
(n−1)/2

)
points where distances from the segment ends differ by one.

10Let s(p1) = 000 and s(p2) = 011. The point m = 001 is a midpoint on
the Hamming segment between these points, but it is further from the target
t = 110 (distance 3) than either parent (distance 2), and thus has worse fitness.

desired semantics11. In general, finding such a program is eas-
ier than finding a program that produces a specific combination
of outputs, which one does when solving the original problem
with the single original target. This is an interesting aspect of
semantic backpropagation that deserves future investigation.

More generally, semantic backpropagation uses the suffixes
of programs in a population to generate a different task that
is expected to be easier to solve than the original program-
ming task. To solve the derived subtask, we used here an
exhaustive search in a library, mainly because it is conceptually
straightforward and reasonably fast, particularly for the small
libraries. Other search algorithms, like GP, could be used for
that purpose as well. GP could potentially find better programs
than those found by LIBRARYSEARCH, given that its search
space is much larger than the sizes of the considered libraries.

However, investing substantial computational effort into
solving any subtask bears certain risk. A subtask can, but is not
guaranteed, to be easier to solve than the original task. In the
worst case, it may have no solution in the considered search
space. Therefore, rather than appointing a single subtask (or
a small sample thereof) and devoting a large amount of search
effort to solving it, the algorithms presented here attempt
to solve a large number of subtasks (each created by an
application of RDO/AGX to parent individual(s)) by means of
exhaustive search in a limited library. The tradeoff between the
number of considered subtasks and the computational effort
devoted to solving them resembles the famous multi-armed
bandit paradigm, and is an interesting future research topic.

When applied to a program, RDO temporarily freezes its
suffix and manipulates its prefix, so that the modified prefix
fulfills the ‘expectations’ of the suffix (the desired semantics)
as close as possible. A hypothetical alternative search operator
could swap the roles of prefixes and suffixes, and freeze the
prefix while manipulating suffixes. However, this would have
at least one practical downside: the entire modified program
would have to be executed to calculate its fitness. In RDO,
programs in the library can be precomputed, because their be-
havior depends only on program input provided by the fitness
cases, which come with the programming task and remain fixed.

The overall computational cost of RDO and AGX is higher
than for the conventional GP operators. The main cause is the
library search, which can take substantial time, particularly
when applied to large libraries. In our previous study [18] we
managed to speed up the search using kd-trees [35]. However,
such indexing structures can be used only when the object
sought for is a single vector of numbers (a point), while our
desired semantics represents a set of points in general. The
conventional indexing techniques need to be extended to meet
this requirement and make these search operators more time-
efficient. The second, albeit minor factor that influences the
computational cost of RDO and AGX is tree size. Similarly
to standard GP, programs built by RDO and AGX tend to grow
with the time of evolution, which we reported in Section VI-E.
We hypothesize that this problem can be addressed using
generic bloat prevention techniques, like for instance those

11Example: for desired semantics [{0,1},{2,3}] all programs with the
following semantics are perfect matches: (0,2), (0,3), (1,2), (1,3).

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TEVC.2014.2321259

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

TOMASZ P. PAWLAK et al.: SEMANTIC BACKPROPAGATION FOR DESIGNING SEARCH OPERATORS IN GENETIC PROGRAMMING 15

that do it implicitly, using spatial population structure [36].

VIII. CONCLUSIONS

We demonstrated that inversion of program execution can
generate subtasks from the original programming task, and
that such subtasks can be solved using exhaustive search
in a constrained set of programs (a library). Although pro-
gram inversion is by nature imperfect due to the many-to-
one operation of instructions, the two GP search operators
that employ this approach outperform the standard GP and
other semantic-aware operators. Conceptually, this working
principle can be applied in other domains and programming
languages. Program inversion can be thus a feasible avenue for
equipping the automatic programming algorithms, including
GP algorithms, with the capability of problem decomposition.

Acknowledgments. Work supported by National Science
Centre, T. Pawlak grant no. DEC-2012/07/N/ST6/03066 and
K. Krawiec grant no. DEC-2011/01/B/ST6/07318.

REFERENCES

[1] W. B. Langdon and R. Poli, “Why ants are hard” in GP’98, pp. 193–201,
Morgan Kaufmann, 1998.

[2] J. Rosca and D. H. Ballard, “Causality in genetic programming” in
ICGA’95, pp. 256–263, Morgan Kaufmann, 1995.

[3] K. Krawiec and B. Wieloch, “Analysis of semantic modularity for ge-
netic programming” Foundations of Computing and Decision Sciences,
vol. 34, no. 4, pp. 265–285, 2009.

[4] K. Krawiec, “On relationships between semantic diversity, complexity
and modularity of programming tasks” in GECCO’12, 2012.

[5] K. Krawiec and J. Swan, “Pattern-guided genetic programming” in
GECCO’13, ACM, 2013.

[6] K. Krawiec and T. Pawlak, “Approximating geometric crossover by
semantic backpropagation” in GECCO’13, ACM, 2013.

[7] B. Wieloch and K. Krawiec, “Running programs backwards: Instruction
inversion for effective search in semantic spaces” in GECCO’13, 2013.

[8] W. B. Langdon, “How many good programs are there? How long are
they?” in FOGA’02, pp. 183–202, Morgan Kaufmann, 2002.

[9] N. F. McPhee, B. Ohs, and T. Hutchison, “Semantic building blocks in
genetic programming” in EuroGP’08, pp. 134–145, 2008.

[10] L. Beadle and C. Johnson, “Semantically driven crossover in genetic
programming” in WCCI’08, pp. 111–116, IEEE Press, 2008.

[11] D. Jackson, “Phenotypic diversity in initial genetic programming popu-
lations” in EuroGP’10, vol. 6021 of LNCS, pp. 98–109, Springer, 2010.

[12] E. Galvan-Lopez, B. Cody-Kenny, L. Trujillo, and A. Kattan, “Using
semantics in the selection mechanism in genetic programming: a simple
method for promoting semantic diversity” in CEC’13, 2013.

[13] N. Q. Uy, N. X. Hoai, M. O’Neill, R. I. McKay, and E. Galvan-Lopez,
“Semantically-based crossover in genetic programming: application to
real-valued symbolic regression” Genetic Programming and Evolvable
Machines, vol. 12, pp. 91–119, June 2011.

[14] N. Q. Uy, N. X. Hoai, M. O’Neill, R. I. McKay, and D. N. Phong, “On
the roles of semantic locality of crossover in genetic programming”
Information Sciences, vol. 235, pp. 195–213, 20 June 2013.

[15] P. Day and A. K. Nandi, “Binary string fitness characterization and com-
parative partner selection in genetic programming” IEEE Transactions
on Evolutionary Computation, vol. 12, pp. 724–735, Dec. 2008.

[16] A. Moraglio, K. Krawiec, and C. G. Johnson, “Geometric semantic
genetic programming” in PPSN’12, vol. 7491 of LNCS, pp. 21–31, 2012.

[17] A. Moraglio and A. Mambrini, “Runtime analysis of mutation-based
geometric semantic genetic programming for basis functions regression”
in GECCO’13, pp. 989–996, ACM, 2013.

[18] K. Krawiec and T. Pawlak, “Locally geometric semantic crossover:
a study on the roles of semantics and homology in recombination
operators” Genetic Programming and Evolvable Machines, vol. 14,
no. 1, pp. 31–63, 2013.

[19] T. Toffoli, “Reversible computing” in ICALP, pp. 632–644, 1980.
[20] W. B. Langdon, “The distribution of reversible functions is Normal” in

Genetic Programming Theory and Practice, pp. 173–187, Kluwer, 2003.

[21] M. Oltean, “Evolving reversible circuits for the even-parity problem” in
Applications of Evolutionary Computing, pp. 225–234, 2005.

[22] M. Oltean and C. Grosan, “Evolving digital circuits using multi expres-
sion programming” in EH-2004, pp. 87–97, IEEE Press, 2004.

[23] K. Krawiec and P. Lichocki, “Approximating geometric crossover in
semantic space” in GECCO’09, pp. 987–994, ACM, 2009.

[24] A. Moraglio, “Abstract convex evolutionary search” in FOGA’11,
pp. 151–162, ACM, 2011.

[25] K. Krawiec, “Medial crossovers for genetic programming” in Eu-
roGP’12, vol. 7244 of LNCS, pp. 61–72, Springer Verlag, 2012.

[26] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. Cambridge, MA, USA: MIT Press, 1992.

[27] R. Poli and W. B. Langdon, “A new schema theory for genetic program-
ming with one-point crossover and point mutation” in GP’97, pp. 278–
285, Morgan Kaufmann, 1997.

[28] J. McDermott, D. R. White, S. Luke, L. Manzoni, M. Castelli,
L. Vanneschi, W. Jaskowski, K. Krawiec, R. Harper, K. De Jong, and
U.-M. O’Reilly, “Genetic programming needs better benchmarks” in
GECCO’12, pp. 791–798, ACM, 2012.

[29] J. A. Walker and J. F. Miller, “Investigating the performance of module
acquisition in cartesian genetic programming” in GECCO’05, vol. 2,
pp. 1649–1656, ACM, 2005.

[30] W. B. Langdon and R. Poli, Foundations of Genetic Programming.
Springer-Verlag, 2002.

[31] I. Kushchu, “Genetic programming and evolutionary generalization”
IEEE Transactions on Evolutionary Computation, vol. 6, no. 5, pp. 431–
442, 2002.

[32] G. Kanji, 100 Statistical Tests. SAGE Publications, 1999.
[33] M. Hollander and D. Wolfe, Nonparametric Statistical Methods. Wiley,

1999.
[34] H. Cramér, Mathematical Methods of Statistics. Almqvist & Wiksells

Akademiska Handböcker, Princeton University Press, 1946.
[35] Bentley, “Multidimensional binary search trees used for associative

searching” CACM: Communications of the ACM, vol. 18, 1975.
[36] P. A. Whigham and G. Dick, “Implicitly controlling bloat in genetic pro-

gramming” IEEE Transactions on Evolutionary Computation, vol. 14,
no. 2, pp. 173–190, 2010.

Tomasz Pawlak received M.Sc. degree in Computer
Science from Poznan University of Technology in
2011. He is a Ph.D. student at Poznan University
of Technology, and works mainly on topics related
to evolutionary computation, genetic programming
and health informatics. His recent work focuses on
semantics and program behavior in genetic program-
ming, design of genetic operators and use of seman-
tics in other parts of genetic programming algorithm.
More details at www.cs.put.poznan.pl/tpawlak.

Bartosz Wieloch received B.Eng, M.Sc. and Ph.D.
degrees in computing science from Poznan Univer-
sity of Technology, Poland, in 2004, 2006 and 2013,
where he is currently an assistant professor in the
Laboratory of Intelligent Decision Support Systems.
His main research interests include semantics, prob-
lem decomposition and program behavior analysis
in genetic programming and program synthesis. His
work involves also pattern recognition in image anal-
ysis like object recognition or medical diagnosis.

Krzysztof Krawiec (M’06) received Ph.D. and Ha-
bilitation degrees from Poznan University of Tech-
nology, Poland, in 2000 and 2004, where he is
currently an associate professor. His recent work
includes: semantics and program behavior in genetic
programming; coevolutionary algorithms and test-
based problems; evolutionary computation for ma-
chine learning, primarily for learning game strategies
and for synthesis of pattern recognition systems;
and modeling of complex phenomena using genetic
programming. Dr. Krawiec is the author of over

100 publications on the above and related topics, including Evolutionary
Synthesis of Pattern Recognition Systems (2005), an associate editor of Genetic
Programming and Evolvable Machines, and the president of the Polish Chapter
of IEEE Computational Intelligence Society for the term 2013–2014. More
details at www.cs.put.poznan.pl/kkrawiec.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TEVC.2014.2321259

Copyright (c) 2014 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://www.cs.put.poznan.pl/tpawlak
http://www.cs.put.poznan.pl/kkrawiec

