INTERNET SYSTEMS

NODE.JS

TOMASZ PAWLAK, PHD
MARCIN SZUBERT, PHD
INSTITUTE OF COMPUTING SCIENCE, POZNAN UNIVERSITY OF TECHNOLOGY

What is Node.js?

Design of Node.|s

Modules

Web frameworks for Node.js

Node tools for front-end developers

Node.js might be the most exciting single piece of
software in the current JavaScript universe — used
by LinkedIn, Groupon, PayPal, Walmart, etc.

Node.js is one of the most watched projects on

GitHub: it has more than million
modules in npm package manager. mn p im

Node.js combined with a client-side MV* framework,
a NoSQL database (such as MongoDB or CouchDB)

and JSON offers a unified
memgn

JavaScript development stack.

Node.js is a platform built on Chrome’s JavaScript V8
runtime for building scalable network applications.

Node.js uses an event-driven, non-blocking 1/0
model that makes it lightweight and efficient, perfect
for data-intensive real-time applications that run
across distributed devices. wWwWw.NODEJS.ORG

Node is a way of running JavaScript outside the
browser.

https://nodejs.org

Node.js allows the creation of web servers and
networking tools, using JavaScript and a collection
of modules that handle various core functionality.

Modules handle file system /O, networking, binary
data (buffers), cryptography functions, data streams,
etc.

Frameworks can be used to accelerate the
development of web applications; common
frameworks are Express.js, Koa, Sails.js, Total.js.

Node.js is not limited to the server-side — it
orovides a number of tools for frontend
development workflows.

JavaScript is a compilation target, and there are
a number of languages that compile to JavaScript
already.

JSON is a very popular data interchange format
today and is native to JavaScript.

JavaScript is the language used in various NoSQL
databases so interfacing with them is a natural fit.

V8 gives Node.js a huge boost in performance
because it prefers straight compilation into native
machine code over executing bytecode or using an
Interpreter.

What is Node.js?

Design of Node.js

Modules

Web frameworks for Node.js

Node tools for front-end developers

Ryan Dahl started the Node.js
project in 2009 out of frustration
with the current state of web
servers in the industry.

The core premise behind Node's design:

most web applications are Input/Output (I/O)
bound.

I/O-bound programs are constrained by data
access. These are programs where adding more
processing power or RAM often makes little
ditference — the bottleneck of their pertormance
is the latency of I/0O.

Operation
L1
W
RAM
DISK
NETWORK

CPU Cycles
3 cycles
14 cycles
250 cycles
41 000 000 cycles
240 000 000 cyles

HTTPS://NODEJS.ORG/JSCONF.PDF

https://nodejs.org/jsconf.pdf

BLOCKING /0O

In many programming languages I/O operations are
blocking — they block the progress of the program

while waiting on an I/O task such as reading from the
hard drive or making a network request.

route process format
request results response

l \ __/

*

query db or write to
web service log file

$result = mysql_query('SELECT *x FROM myTable');
print_r($result);

SCALING WITH THREADS

* If a program blocks on I/O, what does the server do
when there are more requests to handle?

» Atypical approach is to use multithreading —
employ one thread per connection and set up
a thread pool for those connections.

Handles up to 4 concurrent requests

thread | [

SCALING WITH THREADS

While this approach allows us to scale by adding
more threads, each thread still spends most of its
]time waiting for /O, not processing your application
ogic.

Unfortunately, continuing to add threads introduces
context switching overhead and uses considerable
memory to maintain execution stacks.

Handles up to 4 concurrent requests

thread | [

SCALING WITH NODE.JS

» Node.js employs a single thread, using? non-blocking I/0
. anK function performing I/O is handled asynchronously
and then triggers a callback.

db.query("select..", function (result) {
doSomething(result);

});
nextTask();

Handles many concurrent requests in one process/thread

process | |HHHHIRTRRTRTRNRNRRARREREITRTRRRR R R RN RN DDA

Thread Pool and Async |/O APls

By using a single thread with an event loop, instead of
threads, Node.js supports tens of thousancrs) of concurrent
connections without incurring the cost of thread context-
switching.

However, tasks in the event loop must execute quickly to avoid
blocking the queue — be careful with CPU intensive tasks.

Thread Pool
(gvent filesystem
uewe [/ N | eeecccaaaaa-
Y — Event ___. network .
1 SooIIoIIIlIIC
— Loop
1 process
1 e
other

Event-driven programming — a programming paradigm
in which the flow of the program is determined%y events
such as user actions, sensor outputs, or messages from
other programs.

The dominant paradigm used in graphical user interfaces
and applications (e.g. JavaScript web apps) that are
centered on performing certain actions in response to
user input.

Writing event-driven programs is easy if the programming
language provides high-level abstractions, such as closures.

JavaScriﬁt is an event-driven language — it has always
dealt with user interaction, employed an event loop to
listen for events, and callback functions to handle them.

Node.js brings event-driven programming to the server.

The fundamental design behind Node is that an application is
executed on a single thread, and all events are handled
asynchronously.

Node.js uses the event loop architecture to make programming
highly scalable servers both easy and safe.

ProHramming concurrency is hard — Node sidesteps this
challenge while still offering impressive performance.

To support the event-loop approach, Node supplies a set of
nonblocking I/O modules — these are interfaces to things such as
the filesystem or databases, which operate in an event-driven
way.

What is Node.js?

Design of Node.|s

Modules

Web frameworks for Node.js

Node tools for front-end developers

Modules are reusable software components that
form the building blocks of applications.

Modular programming is a software design
technigue that emphasizes separating the
functionality of a program into independent,
interchangeable modules such that each covers
only one aspect of the desired functionality.

Modules should be FIRST:

Focused.
Independent.
Reusable.
Small.
Testable.

Benefits of modular programming include:
easier understanding of your large system
simplified debugging
separation of concerns
an increase in maintainability
code reuse

Although ECMAScript 5 does not have built-in
support for modules, there are ways to define
modules in JavaScript:

the module pattern,
CommonJS modules (the inspiration for Node modules)

AMD (Asynchronous Module Definition)

MODULE PATTERN IN ECMASCRIPTS

var testModule = (function () {
var counter = 0;

return {
incrementCounter: function () {
return counter++;

¢

resetCounter: function () {
console. log("counter value prior to reset: " + counter);

counter = 0;

I
b
F)(O);
// Increment our counter
testModule. incrementCounter();

// Check the counter value and reset
testModule. resetCounter();

CommonJS is a project with the goal of specifying an ecosystem
for JavaScript outside the browser (for example, on the server)

CommondS provides specification for JavaScript environments
that attempts to make engine implementations more
compatible.

CommondS describes a simple syntax for JavaScript programs to
require (or import) other JavaScript programs into their context.

The Node module system is an implementation of the
CommonJS specification.

A Node module is a JavaScript Iibrar%that can be modularly
included in Node applications using the require() function.

COMMON.JS MODULES

//math.js
exports.add = function() {
var sum = @, i = @, args = arguments, 1l = args.length;

while (i < 1) {
sum += args[i++];
¥

return sum;

Y

//increment.js

var add = require('math').add;

exports.increment = function(val) {
return add(val, 1);

b

//program.js

var inc = require('increment').increment;
var a = 1;

console. log(inc(a)); // 2

MODULES IN NODE.JS

* Node core is made up of about two dozen
modules, some lower level ones like events and
stream, some higher level ones like http.

// Load the http module to create an http server.
var http = require('http');

// Configure our HTTP server to respond with Hello World

var server = http.createServer(function (request, response) {
response.writeHead (200, {"Content-Type": "text/plain"});

response.end("Hello World\n");

il

// Listen on port 8000, IP defaults to 127.0.0.1
server.listen(8000);

// Put a friendly message on the terminal
console. log("Server running at http://127.0.0.1:8000/");

http://127.0.0.1:8000/

Node core is supposed to be small, and the modules
in core should be tocused on providing tools for
working with common protocols and formats in a way
that is cross-platform.

For everythingrﬁelse there is npm; anyone can create a
node module that adds some functionality and publish
it to npm.

The idea of many small programs working together is
one of the foundations of Node.js.

This helps us steer clear of large monolithic libraries
such as jQuery — libraries of that size would be split
up into smaller modules, allowing the user to use only
what they require.

npm makes it easy for JavaScript developers to share
and reuse code in the form of modules.

npm comes preinstalled with Node distributions.
npm runs through the command line and allows to

retrieve modules from the public package registry
maintained on http://npmijs.org

It is the fastest growing package manager:
http://www.modulecounts.com

http://npmjs.org/
http://www.modulecounts.com/

A package is a folder containing a program described by
a package.json file — a package descriptor.

A package descriptor is used to store all metadata
about the module, such as name, version, description,
author etc.

This file is a manifest of your Node project and should
be placed at your project root to allow:

]tc‘.eilr(\jstalling your dependencies by defining a dependencies
ield;

publishing your module to npm by defining the name and
version fields,

storing common scripts related to the package by defining the
scripts object.

What is Node.js?

Design of Node.|s

Modules

Web frameworks for Node.js

Node tools for front-end developers

Express.js is the most popular Node.js web
application framework used today.

Express.js is a minimal yet flexible and
powerful web development framework
iInspired by Sinatra.

Features of Express.js include:
Robust routing
Focus on high performance
View system supporting several template engines
Content negotiation
Executable for generating applications quickly

EXPRESS.JS

var express = require('express');
var app = express();

app.get('/', function (req, res) {
res.send('Hello World!"');
});

var server = app.listen(3000, function () {

server.address().address;
server.address().port;

var host
var port

console.log('Listening at http://%s:%s', host, port);

});

Restify is a Node.js module built specifically to enable
you to build correct / strict REST web services that
are maintanable and observable.

It intentionally borrows heavily from express as that is
more or less the de facto API for writing web
applications on top of node.js.

Express' use case is targeted at browser applications
and contains a lot of functionality, such as templating
and rendering, to support that. Restify does not.

Restify gives control over interactions with HTTP and
full observability into the latency and the other
characteristics of the applications — automatic DTrace
support for all your handlers.

sails

Sails is the most popular MVC framework for Node.js built
on top of Express and inspired by Ruby on Rails.

Sails.js APl scaffolding (blueprints) allows to automatically
build RESTful JSON API for your models.

Sails bundles a powerful ORM, Waterline, which provides
a simple data access layer that just works, no matter what
database you're using.

Sails supports WebSockets with no additional code — Sails
translates incoming socket messages for you, they're
automatically compatible with every route in your Sails app.

Koa is a next-generation web framework
designed by the team behind Express, which
aims to be a smaller, more expressive, and
more robust foundation for web applications

and APls.

Koa employs generators, a feature that's
a part of the ECMAScript 6 specification,

Koa aims to save developers from the
spaghetti of callbacks, making it less error-
prone and thus more manageable.

The function* declaration defines a generator
function:

x name([param[, param[, ... paramll]l) {
statements

}

Generators are functions which can be exited
and later re-entered. Their context (variable
bindings) will be saved across re-entrances.

Calling a generator function does not execute
its body immediately; an iterator object for the
function is returned instead.

GENERATORS IN ECMASCRIPT 6

* When the iterator's next () method is called, the generator
function's body is executed until the first yie ld expression.

» The next () method returns an object with a value property
containing the yielded value and a done property which indicates
whether the generator has yielded its last value.

functionx idMaker(){
var index = 0;
while(index < 3)
yield index++;
}

var gen = idMaker();

console. log(gen.next().)
console. log(gen.next().)
console. log(gen.next().value);

() .)

console. log(gen.next (ndefined

What is Node.js?

Design of Node.|s

Modules

Web frameworks for Node.js

Node tools for front-end developers

A common misconception about Node and npm is that

they can only be used for server side JavaScript
modules.

Node.js is not limited to the server-side — the npm
modules themselves can be whatever you want.

The cutting-edge tools for the latest versions of HTML
and JavaScript are developed in the Node universe:

package managers
task runners
generators

npm is the gateway to other tools.

browserify

Browserify is a build tool that lets you use Node's
CommonJS module system for frontend JavaScript
development.

Browserity tries to convert any Node module into code
that can be run in browsers — it brings modularity to
the browser.

't integrates seamlessly with npm, and you can use the
same npm workflow for installing and publish modules.

Browserity also opens up the possibility of code reuse
between the server and the client.

browserify

Browserify starts at the entry point files that you give it and
searches for any require() calls it finds using static
analysis of the source code's abstract syntax tree.

For every require(), browserify resolves those modules to
file paths and then searches those paths for require() calls
recursively until the entire dependency graph is visited.

Each file is concatenated into a single javascript bundle file.

This means that the bundle you generate is completely self-
contained and has everything your application needs to
work.

Q)X

 ad

Bower is to the web browser what npm is to Node.js.

't is a package manager built by Twitter for your
front-end development libraries like jQuery,
Bootstrap etc.

Bower is optimized for the front-end. Bower uses
a flat dependency tree, requiring only one copy for
each package, reducing page load to a minimum.

It works similarly to npm, using bower.json file and
oroviding command line interface with bower
install, bower init and bower search
commands.

Ve

U

v)

Grunt is the JavaScript Task Runner which allows to
automate repetitive tasks like minification, compilation,
unit testing, end-to-end testing, linting, etc.

Grunt and Grunt plugins are installed and managed via
npm.

Once installed, we can execute grunt on the command
line. This tells Grunt to look for a Gruntfile.js file which
tyfpically resides next to package.json in the root directory
of the project.

Gruntfile is the entry point to our build, which can define
tasks inline, load tasks from external files and configure
these tasks.

Ve

// Every Gruntfile defines the "wrapper" function
module.exports = function(grunt) {

// Project and tasks configuration ‘\Wf
grunt.initConfig({
pkg: grunt.file.readJSON('package.json'),
jshint: {
files: ['Gruntfile.js', 'src/xkx/x.js', 'test/xkx/*.js'l]

by
watch: {
files: ['<%= jshint.files %>'],
tasks: ['jshint']
s
});

// Loading Grunt plugins and tasks.
grunt. loadNpmTasks('grunt-contrib-jshint"');
grunt. loadNpmTasks('grunt—-contrib-watch');

// A very basic default custom task.
grunt.registerTask('default', 'Log some stuff.', function() {
grunt.log.write('Logging some stuff...').ok();

ik

=

™

Yeoman has become the de-tacto standard
scaffolding toolkit for creating modern JavaScript
applications.

Yeoman is build around generators for particular
types of projects and provides the infrastructure for
running them.

Yeoman heIEs you kickstart new projects,
prescribing best practices and tools to help you
stay productive.

Yeoman as well as its generators are distributed as
a Node modules.

The Yeoman workflow comprises three types
of tools for improving your productivity when
building a web app:

the scaffolding tool (yo),

the build tool (Grunt, Gulp, etc)

the package manager (like Bower and npm).

CREATE A NEW HANDLE PREVIEW,
WEBAPP DEPENDENCIES TEST, BUILD
= DY
yo webapp bower search grunt serve
yo angular grunt test

bower install
YO express grunt

The fundamental design behind Node is that an
application is executed on a single thread, and all
events are handled asynchronously.

_ike any technology, Node is not a silver bullet. It just
nelps you tackle certain problems and opens new
oossibilities.

Node is extremely extensible, with a large volume
of community modules that have been built in the
relatively short time since the project’s release.

Among modules there are many tools that can
improve also client-side web development.

REFERENCES

Node: Up and Running — Tom Hughes-Croucher, Mike Wilson
O'Reilly Media, Inc., 2012, available online at:
http://chimera.labs.oreilly.com/books/1234000001808

Speaking JavaScript — Axel Rauschmayer, O'Reilly Media, Inc., 2014
http://speakingjs.com

Node.js in Action — Alex Young, Bradley Meck, and Mike Cantelon
with Tim Oxley, Marc Harter, T.J. Holowaychuk, and Nathan Rajlich,
Manning Publications, 2017

JavaScript Guide at Mozilla Developer Network
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide

http://jsbooks.revolunet.com

http://javascript.crockford.com

http://chimera.labs.oreilly.com/books/1234000001808
http://speakingjs.com/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
http://jsbooks.revolunet.com/
http://javascript.crockford.com/

