
J A V A S C R I P T
I N T E R N E T S Y S T E M S

TOMASZ PAWLAK, PHD
MARCIN SZUBERT, PHD
INSTITUTE OF COMPUTING SCIENCE, POZNAN UNIVERSITY OF TECHNOLOGY

P R E S E N T A T I O N O U T L I N E

• What is JavaScript?

• Historical Perspective

• Basic JavaScript

• JavaScript: The Good Parts

• JavaScript: The Bad Parts

• Languages that compile to JavaScript

• ECMAScript 6

M O D E R N W E B A P P L I C A T I O N

SERVERDATABASE

HTML defines structure and content,

CSS sets the formatting and appearance,

JavaScript adds interactivity to a webpage
and allows to create rich web applications.

W H Y J A V A S C R I P T ?

• JavaScript is the language of the web browser — it is the
most widely deployed programming language in history

• At the same time, it is one of the most despised and
misunderstood programming languages in the world

• The amazing thing about JavaScript is that it is possible to
get work done with it without knowing much about the
language, or even knowing much about programming. It
is a language with enormous expressive power. It is even
better when you know what you’re doing

— J A V A S C R I P T : T H E G O O D P A R T S , D O U G L A S C R O C K F O R D

W H Y J A V A S C R I P T ?

• Q: If you had to start over, what are the technologies,
languages, paradigms and platforms I need to be up-
to-date and mastering in my new world of 2014?

• A: Learn one language you can build large systems
with AND also learn JavaScript.

• JavaScript is the language of the web. The web will
persist and the web will win. That's why I suggest you
learn JavaScript

— S C O T T H A N S E L M A N , 2 0 1 4

W H A T I S J A V A S C R I P T ?

• JavaScript is a cross-platform, object-oriented, functional,
lightweight, small scripting language.

• JavaScript contains a standard library of built-in objects, such
as Array and Math, and a core set of language elements such
as operators, control structures, and statements.

• Core JavaScript can be extended for a variety of purposes by
supplementing it with additional objects:
• Client-side JavaScript extends the core language by supplying objects

to control a browser and its Document Object Model (DOM).
• Server-side JavaScript extends the core language by supplying objects

relevant to running JavaScript on a server, e.g., file and database access.

D O C U M E N T O B J E C T M O D E L

• The Document Object Model (DOM) is a programming interface
for HTML, XML, and SVG documents.

• DOM provides a structured representation of the document
(a tree) and it defines a way that the structure can be accessed
from programs and scripts so that they can change the document
structure, style and content.

• All of the properties, methods, and events available for
manipulating and creating web pages are organized into objects
(e.g., the document object).

• Although DOM was designed to be language-independent, it is
usually accessed using JavaScript.

P R E S E N T A T I O N O U T L I N E

• What is JavaScript?

• Historical Perspective

• Basic JavaScript

• JavaScript: The Good Parts

• JavaScript: The Bad Parts

• Languages that compile to JavaScript

• ECMAScript 6

H I S T O R I C A L P E R S P E C T I V E

• 1995: JavaScript was created by Brendan Eich in 10 days during his
work for Netscape (before getting the license from Sun the language
was called Mocha and LiveScript).

• 1996: Microsoft implemented the same language, under the name
JScript, in Internet Explorer 3.0.

• 1996: Netscape submitted JavaScript to ECMA International for
consideration as an industry standard — the specification ECMA-262
standardizes the ECMAScript programming language.

• Q: Why the standard is not named JavaScript?

• 1997: The first edition of ECMA-262 specification; the current version
of the ECMAScript standard is 10 (released in 2019).

H I S T O R I C A L P E R S P E C T I V E

• 1995: JavaScript was created by Brendan Eich in 10 days during his
work for Netscape (before getting the license from Sun the language
was called Mocha and LiveScript).

• 1996: Microsoft implemented the same language, under the name
JScript, in Internet Explorer 3.0.

• 1996: Netscape submitted JavaScript to ECMA International for
consideration as an industry standard — the specification ECMA-262
standardizes the ECMAScript programming language.

• Q: Why the standard is not named JavaScript?

• A: JavaScript is a registered trademark of Oracle Corporation

• 1997: The first edition of ECMA-262 specification; the current version
of the ECMAScript standard is 10 (released in 2019).

H I S T O R I C A L P E R S P E C T I V E

• 1997: Dynamic HTML appeared first in Internet Explorer 4 and in
Netscape Navigator 4; it allows to dynamically change the content and
appearance of a web page by manipulating the DOM.

• 1999: XMLHttpRequest introduced in IE 5; this API lets a client-side script
send an HTTP request to a server and get back data, usually in a text
format (XML, JSON).

• 2001: Douglas Crockford named and documented JSON, whose main
idea is to use JavaScript syntax to store structured data in text format.

• 2005: Asynchronous Javascript and XML (AJAX) — a collection of
technologies (DOM, XML, JavaScript, XMLHttpRequest) that brings a level
of interactivity to web pages that rivals that of desktop applications.

• 2006: jQuery made DOM manipulation easier by abstracting over
browser differences and by providing a powerful fluent-style API for
querying and modifying the DOM.

H I S T O R I C A L P E R S P E C T I V E

• 2007: V8 JavaScript Engine developed by Google for Chrome:
• V8 compiles JavaScript to native machine code before execution
• V8 changed the perception of JavaScript as being slow and led to a speed

race with other browser vendors, from which we are still profiting.
• V8 can be used in a browser or as a standalone high-performance engine.

• 2009: Node.js — an open source, cross-platform runtime
environment for server-side applications written in JavaScript;
Node.js uses the Google V8 JavaScript engine to execute code.

• 2009: CommonJS — a project aimed at standardizing API for use
of JavaScript outside the browser was founded.

• 2015: ECMAScript 6 — the new version of the standard
revolutionized programming model and brought features from
other modern programming languages.

J A V A S C R I P T W A S I N F L U E N C E D B Y
S E V E R A L P R O G R A M M I N G L A N G U A G E S

N A T U R E O F J A V A S C R I P T

• Dynamic — many things can be changed at runtime: you can freely
add and remove properties of objects after they have been created.

• Dynamically typed — variables can always hold values of any type.

• Functional and object-oriented — JavaScript supports two
programming language paradigms.

• Deployed as source code — JavaScript is always deployed as
source code and compiled by JavaScript engines.

• Part of the Web Platform — JavaScript is such an essential part of
the web platform (HTML5 APIs, DOM, etc.) that it is easy to forget
that the former can also be used without the latter.

P R E S E N T A T I O N O U T L I N E

• What is JavaScript?

• Historical Perspective

• Basic JavaScript

• JavaScript: The Good Parts

• JavaScript: The Bad Parts

• Languages that compile to JavaScript

• ECMAScript 6

S Y N T A X

The JavaScript syntax should be immediately familiar to
anybody who has experience with C-family languages, such as
C++, Java, C#, and PHP.

var x; // declaring a variable (dynamic typing)

x = 3 + y; // assigning a value to the variable `x`

foo(x, y); // calling function `foo` with parameters `x` and `y`
obj.bar(3); // calling function `bar` of object `obj`

// A conditional statement
if (x == 0) { // Is `x` equal to zero?

x = 123;
}

// Defining function `baz` with parameters `a` and `b`
function baz(a, b) {

return a + b; // semicolons are optional in JavaScript.
}

V A R I A B L E S

• The names of variables, called identifiers, conform to certain
rules — an identifier must start with a letter, underscore, or
dollar sign; subsequent characters can also be digits.

• Variables can be declared:
• With the keyword var

• Functional scope: no matter where a variable is declared, it is available in whole
function

V A R I A B L E S

• The names of variables, called identifiers, conform to certain
rules — an identifier must start with a letter, underscore, or
dollar sign; subsequent characters can also be digits.

• Variables can be declared:
• With the keyword var

• Functional scope: no matter where a variable is declared, it is available in whole
function

• With the keyword let
• Block scope: variable is available in a current block delimited by curly brackets {}

V A R I A B L E S

• The names of variables, called identifiers, conform to certain
rules — an identifier must start with a letter, underscore, or
dollar sign; subsequent characters can also be digits.

• Variables can be declared:
• With the keyword var

• Functional scope: no matter where a variable is declared, it is available in whole
function

• With the keyword let
• Block scope: variable is available in a current block delimited by curly brackets {}

• By simply assigning it with a value, e.g., x=42 declares a global variable
• Both var and let can be used in global scope as well

V A R I A B L E S

• The names of variables, called identifiers, conform to certain
rules — an identifier must start with a letter, underscore, or
dollar sign; subsequent characters can also be digits.

• Variables can be declared:
• With the keyword var

• Functional scope: no matter where a variable is declared, it is available in whole
function

• With the keyword let
• Block scope: variable is available in a current block delimited by curly brackets {}

• By simply assigning it with a value, e.g., x=42 declares a global variable
• Both var and let can be used in global scope as well

• Global variables are in fact properties of the global object. In
web pages the global object is window, so you can set and
access global variables using the window.variable syntax.

H O I S T I N G

• Hoisting means moving to the beginning of a scope.

• Function declarations are hoisted completely — it allows to
call a function before it has been declared.

• Variable declarations are hoisted partially, without
assignments made with them.

function foo() {
console.log(tmp);
if (false) {

var tmp = 3;
}

}

function foo() {
var tmp; // hoisted declaration
console.log(tmp);
if (false) {

tmp = 3; // assignment stays
}

}

V A L U E S

• JavaScript makes distinction between values:
• primitive values — immutable, compared by value

• booleans: true, false
• numbers: 1736, 1.351
• strings: 'abc', "abc"

• special values: undefined, null

• objects — mutable, compared by reference
• arrays: ['apple', 'banana', 'cherry']
• functions: function(x, y) { return x * y }
• regular expressions: /^a+b+$/
• plain objects: { firstName: 'Jane', lastName: 'Doe' }

• The three primitive types have corresponding constructors:
Boolean, Number, String for creating wrapper objects.

B O O L E A N S

• Wherever JavaScript expects a boolean you can provide
any value and it is automatically converted to boolean.

• Falsy values are automatically converted to false:
• undefined, null

• Boolean: false
• Number: 0, NaN
• String:''

• All other values — including all objects (even empty ones),
empty arrays, and new Boolean(false)— are truthy.

N U M B E R S

• JavaScript has a single type for all numbers: it treats all of
them as 64-bit floating-point numbers (like double in Java).

• Internally, most JavaScript engines optimize and distinguish
between floating-point numbers and integers (ECMAScript
specification features bitwise operators for integers).

• A large class of numeric type errors is avoided — for instance,
problems of overflow in short integers.

• Special numbers include:
• NaN — the result of an operation that cannot produce a normal result
• Infinity — represents all values greater than 1.79769313486231570e+308.

S T R I N G S

• Strings can be created directly via string literals delimited by
single or double quotes.

• Single characters are accessed via square brackets:

• The property length counts the number of characters

• Strings are concatenated via the plus (+) operator, which converts
the other operand to a string if one of the operands is a string.

> var str = 'abc';
> str[1]
'b'

> 'abc'.length
3

> var messageCount = 3;
> 'You have ' + messageCount + ' messages'
'You have 3 messages'

O B J E C T S

• An object is a container of properties, where a property has
a name and a value:
• a property name can be any string, including the empty string
• a property value can be any value

• A property's value can be a function, in which case the property
is known as a method; methods use this to refer to the object
that was used to call them (usually* — this can be redefined).

• Objects in JavaScript are class-free — objects do not have
classes, however from ES6 classes can be used to create objects
with the same properties and a constructor used to create an
object can be identified at runtime.

• JavaScript has a number of predefined objects. In addition,
you can create your own custom objects.

O B J E C T L I T E R A L S
• Object literals provide a convenient notation for creating new objects;

an object literal is a pair of curly brackets surrounding zero or more
properties (name/value pairs) separated by commas;

• The quotes around a name are optional if the name is a legal
identifier.

var flight = {
airline_number: "Oceanic",
"flight-number": 815,
departure: {

IATA: "SYD",
time: "2004-09-22 14:55",
city: "Sydney"

},
arrival: {

IATA: "LAX",
time: "2004-09-23 10:42",
city: "Los Angeles"

}
};

A C C E S S I N G O B J E C T P R O P E R T I E S

• The dot operator provides a compact syntax for
accessing properties whose keys are legal identifiers.

var jane = {
name: 'Jane',
describe: function() {

return 'Person named ' + this.name;
}

};

jane.name // get property `name` -> 'Jane'

jane.describe // get property `describe` -> [Function]

jane.unknownProperty // undefined

jane.describe() // call method `describe` -> 'Person named Jane'

jane.name = 'John'; // set property `name`

jane.describe() // 'Person named John'

jane.surname = "Watson" // augmenting the object

delete jane.name // delete property

jane.name // undefined

A C C E S S I N G O B J E C T P R O P E R T I E S

• If you want to read or write properties with arbitrary names, you
need to use the bracket operator.

• While the dot operator works with fixed property keys, the
bracket operator allows you to refer to a property via an
expression.
var obj = {

someProperty: 'abc',
'not an identifier': 123,
'6': 'bar',
myMethod: function() {

return true
}

};

obj['some' + 'Property'] // 'abc'
var propKey = 'someProperty';
obj[propKey] // 'abc'
obj['not an identifier'] //123
obj[3 + 3] // key: the string '6' -> 'bar'
obj['myMethod']() //true

A R R A Y S

• Arrays are sequences of elements that can be accessed via integer
indices starting at zero.

• Arrays can be very fast data structures. Unfortunately, JavaScript
does not have anything like this kind of array.

• Instead, JavaScript provides an object that acts as a map (dictionary)
from indices to values — arrays may not be contiguous.

• Arrays are still objects and can have object properties — those are
not considered array elements.

• Indices are numbers i in the range 0 ≤ i < 232−1. Indices that are
out of range are treated as normal property keys (strings!)

A R R A Y L I T E R A L S

• Array literals provide a very convenient notation for creating
new array values; an array literal is a pair of square brackets
surrounding zero or more values separated by commas.

var empty = [];
var numbers = [

'zero', 'one', 'two',
'three', 'four', 'five',
'six', 'seven', 'eight'

];

empty[1] // undefined
numbers[1] // 'one'
empty.length // 0
numbers.length // 9

var numbers_object = {
'0': 'zero',
'1': 'one',
'2': 'two',
'3': 'three',
'4': 'four',
'5': 'five',
'6': 'six',
'7': 'seven',
'8': 'eight'

};

A R R A Y M E T H O D S
> var arr = ['a', 'b', 'c'];
> arr.slice(1, 2) // copy elements
['b']

> arr.push('x') // append an element
4
> arr
['a', 'b', 'c', 'x']

> arr.pop() // remove last element
'x'
> arr
['a', 'b', 'c']

> arr.indexOf('b') // find the first index of an element
1 // use lastIndexOf to find the last index
> arr.indexOf('y')
-1

> arr.join('-') // all elements in a single string
'a-b-c'
> arr.join()
'a,b,c'

A R R A Y I T E R A T I O N

• In order to achieve the best performance when iterating
over arrays, it is best to use the classic for loop:

• Alternative iteration methods:

var list = [1, 2, 3, 4, 5,100000000];
for (var i = 0, l = list.length; i < l; i++) {

console.log(list[i]);
}

> [1, 2, 3].map(function(x) { return x * x })
[1, 4, 9]

> ['a', 'b', 'c'].forEach(
function(elem, index) {

console.log(index + '. ' + elem);
});

1. a
2. b
3. c

R E G U L A R E X P R E S S I O N S

• Regular expressions are patterns used to match character
combinations in strings. In JavaScript, regular expressions are
objects.

• General syntax to create RegExp object:

• /pattern/flags

• To check whether a pattern is found in a string, use the test method;
for more information (but slower execution) use the exec method.

• For instance

/^a+b+$/.test('aaab') // true
/^a+b+$/.test('aaa') // false
/a(b+)a/i.exec('_abBba_aba_') // ['abBba', 'bBb']

R E G U L A R E X P R E S S I O N S

• Flags
• g – global match; find all matches in a string (useful with

String.match())
• i – ignore case
• m – multiline; treat each line as separate input by boundary

characters
• u – unicode; treat pattern as a sequence of unicode code

points
• y – sticky; matches only from the index indicated by the

lastIndex property of this regular expression in the target
string

R E G U L A R E X P R E S S I O N P A T T E R N S
C H A R A C T E R S E T S & G R O U P S

Set Meaning
[xyz]
[a-c]

Matches any one of the enclosed characters. You can specify a range of characters by using a hyphen, but
if the hyphen appears as the first or last character enclosed in the square brackets it is taken as a literal
hyphen to be included in the character set as a normal character.

[^xyz]
[^a-c]

A negated or complemented character set. It matches anything that is not enclosed in the brackets. You
can specify a range of characters by using a hyphen, but if the hyphen appears as the first or last character
enclosed in the square brackets it is taken as a literal hyphen to be included in the character set as a
normal character.

Group Meaning
(x) Matches x and remembers the match. These are called capturing groups.

The capturing groups are numbered according to the order of left parentheses of capturing groups,
starting from 1. The matched substring can be recalled from the resulting array's elements [1], ..., [n].

\n Where n is a positive integer. A back reference to the last substring matching the n parenthetical in the
regular expression (counting left parentheses).

(?:x) Matches x but does not remember the match. These are called non-capturing groups. The matched
substring can not be recalled from the resulting array's elements [1], ..., [n].

R E G U L A R E X P R E S S I O N P A T T E R N S
C H A R A C T E R C L A S S E S

Class Meaning
. Matches any single character except line terminators: \n, \r, \u2028 or \u2029.
\d Matches a digit character in the basic Latin alphabet. Equivalent to [0-9].
\D Matches any character that is not a digit in the basic Latin alphabet. Equivalent to [^0-9].
\w Matches any alphanumeric character from the basic Latin alphabet, including the underscore. Equivalent to

[A-Za-z0-9_].
\W Matches any character that is not a word character from the basic Latin alphabet. Equivalent to [^A-Za-z0-9_].
\s Matches a single white space character, including space, tab, form feed, line feed and other Unicode spaces.

Equivalent to [\f\n\r\t\v\u00a0\u1680\u180e\u2000-\u200a\u2028\u2029\u202f\u205f\u3000\ufeff].
\S Matches a single character other than white space. Equivalent to

[^ \f\n\r\t\v\u00a0\u1680\u180e\u2000-\u200a\u2028\u2029\u202f\u205f\u3000\ufeff].
\t Matches a horizontal tab.
\r Matches a carriage return.
\n Matches a linefeed.
\v Matches a vertical tab.
\f Matches a form-feed.
[\b] Matches a backspace. (Not to be confused with \b)
\0 Matches a NUL character. Do not follow this with another digit.
\xhh Matches the character with the code hh (two hexadecimal digits).
\uhhhh Matches a UTF-16 code-unit with the value hhhh (four hexadecimal digits).
\ Escape character, indicates that the next character is not special and should be interpreted literally.

R E G U L A R E X P R E S S I O N P A T T E R N S
Q U A N T I F I E R S
Quantifier Meaning
x* Matches the preceding item x 0 or more times.
x+ Matches the preceding item x 1 or more times. Equivalent to {1,}.
x? Matches the preceding item x 0 or 1 time.
x{n} Where n is a positive integer. Matches exactly n occurrences of the preceding item x.
x{n,} Where n is a positive integer. Matches at least n occurrences of the preceding item x.
x{n,m} Where n and m are positive integers. Matches at least n and at most m occurrences of the preceding

item x.
x*?
x+?
x??
x{n}?
x{n,}?
x{n,m}?

Matches the preceding item x like *, +, ?, and {...} from above, however the match is the smallest
possible match.

Quantifiers without ? are said to be greedy, since they select the largest range of matching
characters. Those with ? are called "non-greedy".

R E G U L A R E X P R E S S I O N P A T T E R N S
BOUNDARIES, ALTERNATION & ASSERTIONS
Boundary Meaning
^ Matches beginning of input. If the multiline flag is set to true, also matches immediately after a line

break character.
$ Matches end of input. If the multiline flag is set to true, also matches immediately before a line break

character.
\b Matches a word boundary. This is the position where a word character is not followed or preceded by

another word-character, such as between a letter and a space. Note that a matched word boundary is
not included in the match. In other words, the length of a matched word boundary is zero.

\B Matches a non-word boundary. This is a position where the previous and next character are of the
same type: Either both must be words, or both must be non-words. Such as between two letters or
between two spaces. The beginning and end of a string are considered non-words. Same as the
matched word boundary, the matched non-word boundary is also not included in the match.

Alternation Meaning
x|y Matches either x or y.

Assertion Meaning
x(?=y) Matches x only if x is followed by y.
x(?!y) Matches x only if x is not followed by y.

F U N C T I O N S

• Functions are one of the fundamental building blocks in
JavaScript — a function is a sequence of statements that
performs a task or calculates a value.

• JavaScript has first-class functions — functions are objects that
can be used like any other value:
• Functions can be stored in variables, objects, and arrays.
• Functions can be passed as arguments to functions, and functions can be

returned from functions.
• Functions can have properties and methods.

• To use a function, you must define it somewhere in the scope
from which you wish to call it.

D E F I N I N G F U N C T I O N S

• A function declaration consists of the function keyword, followed by:
• The optional name of the function,
• The optional list of comma-separated arguments to the function, enclosed in

parentheses,
• The JavaScript statements that define the function, enclosed in curly brackets.

• Functions can also be created by a function expression. Such a
function can be anonymous.

function square(number) {
return number * number;

}

var square = function(number) { return number * number };
var x = square(4) // x gets the value 16

F U N C T I O N E X P R E S S I O N S

• Function expressions are convenient when passing a function
as an argument to another function.

• The following example shows a map function being defined and
then called with an anonymous function as its first parameter:

function map(f, a) {
var result = [], i;
for (i = 0; i != a.length; i++) {

result[i] = f(a[i]);
}
return result;

}

map(function(x) {return x * x * x}, [0, 1, 2, 5, 10]);

F U N C T I O N P A R A M E T E R S

• Primitive parameters are passed to functions by value; if the function
changes the value of such a parameter, this change is not reflected outside.

• Objects parameters are passed by reference, they are never copied; if the
function changes the object's properties, that change is visible outside.

function myFunc(theObject) {
theObject.make = "Toyota";

}

var mycar = {
make: "Honda",
model: "Accord",
year: 1998

};

var x = mycar.make; // x gets the value "Honda"

myFunc(mycar);
var y = mycar.make; // y gets the value "Toyota"

A W A Y T O O V E R R I D E THIS

• apply() and call() are two special functions that
can be called on every function
• Both of them accept this object as the first argument
• The remaining arguments are the arguments for the function

to be called

• apply() accepts the arguments as an array

• call() accepts the arguments as comma-separated list

var A = {
name: 'a',
getName: function () {

return this.name;
}

};

var B = {
name: 'b'

};

A.getName.call(B); // b

P R O M I S E S

• Promise is a design pattern which is increasingly used in
JavaScript APIs.

• A promise object represents a future result of computation.

• A promise object has four states:
• Resolved – the computation already succeeded
• Rejected – the computation stopped with errors
• Pending – none of the above
• Settled – Resolved or Rejected

• It raises events when the state changes.

• A promise object supports chaining, i.e., resolving one promise
may create another. It also supports a single point of error
handling for a chain.

P R O M I S E S
A B A S I C E X A M P L E
• The Promise constructor takes a function that does computation,

possibly asynchronously.

• That function takes two callbacks as arguments:
• resolve – to be called when the function succeeds,
• reject – to be called when the function fails.

var promise = new Promise(function(resolve, reject) {

// do a thing, possibly async, then…

if (/* everything turned out fine */) {

resolve("Stuff worked!");

} else {

reject(Error("It broke"));

}

});

promise.then(function(result) {

console.log(result); // "Stuff worked!"

}).catch(function(err) {

console.log(err); // Error: "It broke"

});

P R O M I S E S
A C H A I N I N G E X A M P L E

asyncThing1().then(function() {

return asyncThing2();

}).then(function() {

return asyncThing3();

}).catch(function(err) {

return asyncRecovery1();

}).then(function() {

return asyncThing4();

}, function(err) {

return asyncRecovery2();

}).catch(function(err) {

console.log("Don't worry about it");

}).then(function() {

console.log("All done!");

})

P R E S E N T A T I O N O U T L I N E

• What is JavaScript?

• Historical Perspective

• Basic JavaScript

• JavaScript: The Good Parts

• JavaScript: The Bad Parts

• Languages that compile to JavaScript

• ECMAScript 6

• Most programming languages
contain good parts and bad
parts. I discovered that I could
be a better programmer by
using only the good parts and
avoiding the bad parts.

• JavaScript is a language with
more than its share of bad parts.
It went from non-existence to
global adoption in an alarmingly
short period of time. It never
had an interval in the lab
when it could be tried out and
polished.

J A V A S C R I P T : T H E G O O D P A R T S

B E A U T I F U L F E A T U R E S

• Fortunately, JavaScript has some extraordinarily good
parts.

• Functions as first-class objects with lexical scoping —
Javascript is the first mainstream lambda language.

• Dynamic objects with prototypal inheritance
• Objects are class-free.
• Objects can be dynamically extended with new members.
• An object can inherit members from another object.

• Object literals and array literals — a convenient notation
for creating new objects and arrays. JavaScript literals
were the inspiration for the JSON data interchange
format.

F U N C T I O N S

• The best thing about JavaScript is its implementation of
functions. It got almost everything right. But, as you should
expect with JavaScript, it didn’t get everything right.

• Functions in JavaScript are objects created with two
additional hidden properties: the function’s context and
the code that implements the behavior of the function.

• Functions in JavaScript are so powerful, in fact, that they
can completely replace the need for objects.

—D O U G L A S C R O C K F O R D

F U N C T I O N S

• Functions in JavaScript are first class objects — they can be
passed around like any other value; if a function is used as an
argument or return value from another function, it’s a
lambda.

• Higher-order functions are functions that consume or return
functions as data (lambdas).

• In JavaScript, lambdas are commonly used to:
• pass an anonymous function as a callback to another, possibly an

asynchronous function, to be executed when the function is complete.
• attach event handlers for DOM interactions.
• perform functional enumeration or transformation:

[5, 5, 5].forEach(function addTo(number) { result += number; });
[1, 0, 3, 0].filter(function (x) { return x !== 0 })

F U N C T I O N S C O P E

• Function Scope — variables defined inside a function
cannot be accessed from anywhere outside the function;
however, a function can access all variables and functions
defined inside the scope in which it is defined.

• Lexical scoping (static scoping) — the scope of a variable
is defined by its location within the source code.

function init() {
var name = "Mozilla"; // name is a local variable

function displayName() { // a nested function
alert(name);

}
displayName();

}
init();

C L O S U R E S

• Closures are one of the most powerful features of JavaScript.

• A closure is a special kind of object that combines two things:
a function, and the environment (context) in which that function
was created; the environment consists of any local variables that
were in-scope at the time that the closure was created.

function init() {
var name = "Mozilla";

function displayName() {
alert(name);

}
return displayName;

}

var myFunc = init();
myFunc();

P R A C T I C A L C L O S U R E S

• A closure allows associate some data (the environment) with a
function that operates on that data; this is similar to object
oriented programming, where objects allow us to associate
data (the object's properties) with one or more methods.

• Consequently, you can use a closure anywhere that you might
normally use an object with only a single method.

• Such situations are common on the web where much of the
code is event-based — we define some behavior, then attach it
to an event that is triggered by the user (such as a click or a
keypress).

• Closure is generally attached as a callback: a single function
which is executed in response to the event.

P R O T O T Y P A L I N H E R I T A N C E

• JavaScript (until ES6) does not use
a classical inheritance model; it is the only
widely used language that features
prototypal inheritance.

• Every object is linked to a prototype object
from which it can inherit properties.

• The prototype relationship is a dynamic
relationship — adding a new property to a
prototype, makes it visible in all of the
objects that are based on that prototype.

H T T P : / / S P E A K I N G J S . C O M

http://speakingjs.com

[[P R O T O T Y P E]] P R O P E R T Y

• Following the ECMAScript standard, the notation
someObject.[[Prototype]] is used to designate
the prototype of someObject

• Since ECMAScript 2015, the [[Prototype]] is
accessed using the accessors
Object.getPrototypeOf() and
Object.setPrototypeOf()

• This is equivalent to the JavaScript property
__proto__ which is non-standard but de-facto
implemented by many browsers.

I N H E R I T I N G P R O P E R T I E S
// Let's assume we have object o, with its own properties a and b:
// {a: 1, b: 2}
// o.[[Prototype]] has properties b and c:
// {b: 3, c: 4}
// Finally, o.[[Prototype]].[[Prototype]] is null.
// Thus, the full prototype chain looks like:
// {a:1, b:2} ---> {b:3, c:4} ---> null

console.log(o.a); // 1
// Is there an 'a' own property on o? Yes, and its value is 1.

console.log(o.b); // 2
// Is there a 'b' own property on o? Yes, and its value is 2.
// The prototype also has a 'b' property, but it's not visited.
// This is called "property shadowing"

console.log(o.c); // 4
// Is there a 'c' own property on o? No, check its prototype.
// Is there a 'c' own property on o.[[Prototype]]? Yes, its value is 4.

console.log(o.d); // undefined
// Is there a 'd' own property on o? No, check its prototype.
// Is there a 'd' own property on o.[[Prototype]]? No, check prototype.
// o.[[Prototype]].[[Prototype]] is null, stop searching,
// no property found, return undefined

C R E A T I N G N E W O B J E C T S
O B J E C T I N I T I A L I Z E R S

var o = {a: 1};
// The created object o has Object.prototype as its prototype
// Object.prototype has null as its prototype.
// o ---> Object.[[Prototype]] ---> null

var a = ["yo", "whadup", "?"];
// Arrays inherit from Array.prototype
// (which has methods like indexOf, forEach, etc.)
// The prototype chain looks like:
// a ---> Array.[[Prototype]] ---> Object.[[Prototype]] ---> null

function f(){
return 2;

}
// Functions inherit Function.prototype
// (which has methods like call, bind, etc.)
// f ---> Function.[[Prototype]] ---> Object.[[Prototype]] ---> null

C R E A T I N G N E W O B J E C T S
O B J E C T . C R E A T E ()

• Objects can also be created using the Object.create()
method which allows to choose the prototype object.

var a = {a: 1};
// a ---> Object.[[Prototype]] ---> null

var b = Object.create(a);
// b ---> a ---> Object.[[Prototype]] ---> null
console.log(b.a); // 1 (inherited)

var c = Object.create(b);
// c ---> b ---> a ---> Object.[[Prototype]] ---> null

var d = Object.create(null);
// d ---> null

var Animal = {
type: "Invertebrates", // Default value of properties
displayType : function(){ // Method which display the type

console.log(this.type);
}

}

var animal1 = Object.create(Animal);
animal1.displayType(); // Output:Invertebrates

var fish = Object.create(Animal);
fish.type = "Fishes";
fish.displayType(); // Output:Fishes

C R E A T I N G N E W O B J E C T S
O B J E C T . C R E A T E ()

• Objects can also be created using the Object.create()
method which allows to choose the prototype object.

C R E A T I N G N E W O B J E C T S
C O N S T R U C T O R S

• A constructor function (short: constructor) helps with producing
objects that are similar in some way (have a particular initial set of
properties and values).

• A constructor is a function that is invoked via the new operator —
constructors are thus a rough analog to classes in other languages.

• By convention, the names of constructors start with uppercase
letters, while the names of methods start with lowercase letters.

function Person(name) {
this.name = name;

}

var person1 = new Person("Alice");
var person2 = new Person("Bob");

C R E A T I N G N E W O B J E C T S
C O N S T R U C T O R S

• The prototype of the new object is set to the prototype of the
function object that was invoked as the constructor

• Person.[[Prototype]] should not be confused with
Person.prototype: The former specifies the prototype of the
function Person itself and the latter the prototype of all instances
created using function Person

C R E A T I N G N E W O B J E C T S
C O N S T R U C T O R S

• Methods are defined by assigning functions to a named
property of the constructor function's prototype property.

var Person = function (firstName) {
this.firstName = firstName;

};

Person.prototype.sayHello = function() {
console.log("Hello, I'm " + this.firstName);

};

var person1 = new Person("Alice");
var person2 = new Person("Bob");

// call the Person sayHello method.
person1.sayHello(); // logs "Hello, I'm Alice"
person2.sayHello(); // logs "Hello, I'm Bob"

C R E A T I N G N E W O B J E C T S
C O N S T R U C T O R S

function Student(firstName, subject) {
Person.call(this, firstName);
this.subject = subject;

};

// Create a Student.prototype object that inherits from Person.prototype.
// Note: A common error here is to use "new Person()" to create the
// Student.prototype. That's incorrect for several reasons, not least
// that we don't have anything to give Person for the "firstName" argument.
// The correct place to call Person is above, where we call it from Student.
Student.prototype = Object.create(Person.prototype);
Student.prototype.constructor = Student;

Student.prototype.sayHello = function(){
console.log("Hello, I'm " + this.firstName + ". I'm studying "

+ this.subject + ".");
};

Student.prototype.sayGoodBye = function(){
console.log("Goodbye!");

};

// Example usage:
var student1 = new Student("Janet", "Applied Physics");
student1.sayHello(); // "Hello, I'm Janet. I'm studying Applied Physics."
student1.sayGoodBye(); // "Goodbye!"

C R E A T I N G N E W O B J E C T S
C O N S T R U C T O R S

function Student(firstName, subject) {
Person.call(this, firstName);
this.subject = subject;

};

// Create a Student.prototype object that inherits from Person.prototype.
// Note: A common error here is to use "new Person()" to create the
// Student.prototype. That's incorrect for several reasons, not least
// that we don't have anything to give Person for the "firstName" argument.
// The correct place to call Person is above, where we call it from Student.
Student.prototype = Object.create(Person.prototype);
Student.prototype.constructor = Student;

Student.prototype.sayHello = function(){
console.log("Hello, I'm " + this.firstName + ". I'm studying "

+ this.subject + ".");
};

Student.prototype.sayGoodBye = function(){
console.log("Goodbye!");

};

// Example usage:
var student1 = new Student("Janet", "Applied Physics");
student1.sayHello(); // "Hello, I'm Janet. I'm studying Applied Physics."
student1.sayGoodBye(); // "Goodbye!"

Why setting constructor explicitly?
http://stackoverflow.com/questions/8453887/why-is-it-necessary-to-set-the-prototype-constructor

http://stackoverflow.com/questions/8453887/why-is-it-necessary-to-set-the-prototype-constructor

P R E S E N T A T I O N O U T L I N E

• What is JavaScript?

• Historical Perspective

• Basic JavaScript

• JavaScript: The Good Parts

• JavaScript: The Bad Parts

• Languages that compile to JavaScript

• ECMAScript 6

B A D P A R T S
G L O B A L V A R I A B L E S

• A global variable is a variable that is visible in every scope.

• JavaScript does not have a linker. All compilation units are
loaded into a common global object.

• Because global variables can be changed by any part of
the program at any time, they can significantly
complicate the behavior of the program.

• Use of global variables degrades the reliability of the
programs that use them.

B A D P A R T S
G L O B A L V A R I A B L E S

• There are three ways to define global variables:
• place a var statement outside of any function,
• add a property directly to the global object; the global object is the

container of all global variables, e.g. window in browsers,
• implied global — use a variable without declaring it.

• Implied globals were intended as a convenience to beginners
by making it unnecessary to declare variables.

• Unfortunately, forgetting to declare a variable is a very
common mistake. JavaScript’s policy of making forgotten
variables global creates bugs that can be very difficult to find.

B A D P A R T S
S C O P E

• Most mainstream languages are block-scoped — variables
declared in a block are not visible outside of the block, e.g. in Java:

• JavaScript uses the block syntax, but variables are function-
scoped: only functions introduce new scopes; blocks are ignored
when it comes to scoping.

public static void main(String[] args) {
{ // block starts

int foo = 4;
} // block ends
System.out.println(foo); // Error: cannot find symbol

}

var foo = "1";
(function () {

if (!foo) { var foo = "2"; }
console.log(foo); // ???

}());

I N T R O D U C I N G A N E W S C O P E
T H E I I F E P A T T E R N

• Sometimes you want to introduce a new variable scope —
for example, to prevent a variable from becoming global.

• In JavaScript (ES5), you can’t use a block to do so; you must use a
function. But there is a pattern for using a function in a block-like
manner — it is called IIFE (immediately invoked function
expression):

• An IIFE is a function expression that is called immediately after
you define it. Inside the function, a new scope exists, preventing
tmp from becoming global.

(function () { // open IIFE
var tmp = ...; // not a global variable

}()); // close IIFE

B A D P A R T S
E Q U A L I T Y A N D C O M P A R I S O N S

• JavaScript has two ways of checking if two values are equal.

• Normal (or lenient) equality (==) and inequality (!=) tries to
convert values of different types before comparing them.

B A D P A R T S
E Q U A L I T Y A N D C O M P A R I S O N S

• JavaScript has two ways of checking if two values are equal.

• Normal (or lenient) equality (==) and inequality (!=) tries to
convert values of different types before comparing them.
"" == "0" // false

B A D P A R T S
E Q U A L I T Y A N D C O M P A R I S O N S

• JavaScript has two ways of checking if two values are equal.

• Normal (or lenient) equality (==) and inequality (!=) tries to
convert values of different types before comparing them.
"" == "0" // false
0 == "" // true

B A D P A R T S
E Q U A L I T Y A N D C O M P A R I S O N S

• JavaScript has two ways of checking if two values are equal.

• Normal (or lenient) equality (==) and inequality (!=) tries to
convert values of different types before comparing them.
"" == "0" // false
0 == "" // true
0 == "0" // true

B A D P A R T S
E Q U A L I T Y A N D C O M P A R I S O N S

• JavaScript has two ways of checking if two values are equal.

• Normal (or lenient) equality (==) and inequality (!=) tries to
convert values of different types before comparing them.
"" == "0" // false
0 == "" // true
0 == "0" // true
false == "false" // false

B A D P A R T S
E Q U A L I T Y A N D C O M P A R I S O N S

• JavaScript has two ways of checking if two values are equal.

• Normal (or lenient) equality (==) and inequality (!=) tries to
convert values of different types before comparing them.
"" == "0" // false
0 == "" // true
0 == "0" // true
false == "false" // false
false == "0" // true

B A D P A R T S
E Q U A L I T Y A N D C O M P A R I S O N S

• JavaScript has two ways of checking if two values are equal.

• Normal (or lenient) equality (==) and inequality (!=) tries to
convert values of different types before comparing them.
"" == "0" // false
0 == "" // true
0 == "0" // true
false == "false" // false
false == "0" // true
false == 0 // true

B A D P A R T S
E Q U A L I T Y A N D C O M P A R I S O N S

• JavaScript has two ways of checking if two values are equal.

• Normal (or lenient) equality (==) and inequality (!=) tries to
convert values of different types before comparing them.
"" == "0" // false
0 == "" // true
0 == "0" // true
false == "false" // false
false == "0" // true
false == 0 // true
false == undefined // false

B A D P A R T S
E Q U A L I T Y A N D C O M P A R I S O N S

• JavaScript has two ways of checking if two values are equal.

• Normal (or lenient) equality (==) and inequality (!=) tries to
convert values of different types before comparing them.
"" == "0" // false
0 == "" // true
0 == "0" // true
false == "false" // false
false == "0" // true
false == 0 // true
false == undefined // false
false == null // false

B A D P A R T S
E Q U A L I T Y A N D C O M P A R I S O N S

• JavaScript has two ways of checking if two values are equal.

• Normal (or lenient) equality (==) and inequality (!=) tries to
convert values of different types before comparing them.
"" == "0" // false
0 == "" // true
0 == "0" // true
false == "false" // false
false == "0" // true
false == 0 // true
false == undefined // false
false == null // false
null == undefined // true

B A D P A R T S
E Q U A L I T Y A N D C O M P A R I S O N S

• JavaScript has two ways of checking if two values are equal.

• Normal (or lenient) equality (==) and inequality (!=) tries to
convert values of different types before comparing them.
"" == "0" // false
0 == "" // true
0 == "0" // true
false == "false" // false
false == "0" // true
false == 0 // true
false == undefined // false
false == null // false
null == undefined // true
" \t\r\n" == 0 // true

B A D P A R T S
E Q U A L I T Y A N D C O M P A R I S O N S

• JavaScript has two ways of checking if two values are equal.

• Normal (or lenient) equality (==) and inequality (!=) tries to
convert values of different types before comparing them.

"" == "0" // false
0 == "" // true
0 == "0" // true
false == "false" // false
false == "0" // true
false == 0 // true
false == undefined // false
false == null // false
null == undefined // true
" \t\r\n" == 0 // true
" \t\r\n" == false // true

B A D P A R T S
E Q U A L I T Y A N D C O M P A R I S O N S

• JavaScript has two ways of checking if two values are equal.

• Normal (or lenient) equality (==) and inequality (!=) tries to
convert values of different types before comparing them.

"" == "0" // false
0 == "" // true
0 == "0" // true
false == "false" // false
false == "0" // true
false == 0 // true
false == undefined // false
false == null // false
null == undefined // true
" \t\r\n" == 0 // true
" \t\r\n" == false // true

" \t\r\n" ? true : false // true
" \t\r\n" == true ? true : false // false
" \t\r\n" == false ? true : false // true

"" ? true : false // false
"" == true ? true : false // false
"" == false ? true : false // true

but…

B A D P A R T S
E Q U A L I T Y A N D C O M P A R I S O N S

• JavaScript has two ways of checking if two values are equal.

• Normal (or lenient) equality (==) and inequality (!=) tries to
convert values of different types before comparing them.

• The above table shows the results of the type coercion which can
introduce bugs due to its complicated conversion rules.

"" == "0" // false
0 == "" // true
0 == "0" // true
false == "false" // false
false == "0" // true
false == 0 // true
false == undefined // false
false == null // false
null == undefined // true
" \t\r\n" == 0 // true
" \t\r\n" == false // true

" \t\r\n" ? true : false // true
" \t\r\n" == true ? true : false // false
" \t\r\n" == false ? true : false // true

"" ? true : false // false
"" == true ? true : false // false
"" == false ? true : false // true

but…

B A D P A R T S
E Q U A L I T Y A N D C O M P A R I S O N S

• Strict equality (===) and strict inequality (!==) consider
only values that have the same type to be equal.

• The above results are a lot clearer —
always use strict equality and avoid lenient equality.

"" === "0" // false
0 === "" // false
0 === "0" // false
false === "false" // false
false === "0" // false
false === undefined // false
false === null // false
null === undefined // false
" \t\r\n" === 0 // false

B A D P A R T S
R E S E R V E D K E Y W O R D S

• The following words are reserved in JavaScript:

• Most of these words are not used in the language.

• They cannot be used in variable and function names. The reserved
words can be used as keys in object literals:

abstract boolean break byte case catch char class const continue
debugger default delete do double else enum export extends false
final finally float for function goto if implements import in
instanceof int interface long native new null package private
protected public return short static super switch synchronized this
throw throws transient true try typeof var volatile void while with

object = {case: value}; // ok
object = {'case': value}; // ok
object.case = value; // ok
object['case'] = value; // ok
var case = value; // illegal
function case() {}; // illegal

B A D P A R T S
+ O P E R A T O R

• The + operator can add or concatenate:
• If either operand is an empty string, it produces the other

operand converted to a string.
• If both operands are numbers or booleans, it produces the

sum.
• Otherwise, it converts both operands to strings and

concatenates them.

• This complicated behavior is a common source of bugs.

• If you intend + to add, make sure that both operands
are numbers.

B A D P A R T S
F A L S Y V A L U E S

• JavaScript has a surprisingly large set of falsy values:
• undefined, null

• Boolean: false
• Number: 0, NaN
• String:''

• These values are all falsy, but they are not interchangeable:

undefined is the value of missing members, but the snippet is
testing for null.

• Also, undefined and NaN are not constants. They are global
variables, and in legacy browsers you can change their values,
even that ES5 specifies that they are non-writable.

value = myObject[name];
if (value === null) {

alert(name + ' not found.');
}

B A D P A R T S
W R A P P E R O B J E C T S

• The three primitive types boolean, number, and string have
corresponding constructors: Boolean, Number, String.

• Their instances (so-called wrapper objects) contain (wrap)
primitive values; for example:

• This turns out to be completely unnecessary and confusing.

• Don’t use new Boolean or new Number or new String.

• Also avoid new Object and new Array. Use {} and []
instead — prefer literals over constructors.

new Boolean(false)

B A D P A R T S
A U T O M A T I C S E M I C O L O N I N S E R T I O N

• ES5 defines rules governing automatic semicolon insertion

• Missing semicolon is automatically placed before line
terminator, closing brace, end of stream

• Thus, white space can change meaning:

function plus1(a, b) {
return a + b

}

function plus2(a, b) {
return
a + b

}

console.log(plus1(1, 2)); // 3
console.log(plus2(1, 2)); // undefined

S T R I C T M O D E – A W A Y T O H A N D L E
B A D P A R T S

• Strict mode is a special mode of script execution,
where semantics of some JavaScript constructs and
functions changes

• To invoke strict mode for current scope (function or
entire script) put "use strict"; before any other
code in this scope

M O T I V A T I O N F O R S T R I C T M O D E

• JavaScript was designed to be easy for novice
developers, and it gives operations which should be
errors non-error semantics. Sometimes this fixes the
immediate problem, but sometimes this creates worse
problems in the future. Strict mode treats these
mistakes as errors so that they're discovered and
promptly fixed.

C H A N G E S I N S T R I C T M O D E

• Differences between modes

• And many more:
https://developer.mozilla.org/en-
US/docs/Web/JavaScript/Reference/Strict_mode

Functionality Sloppy mode Strict mode
Use of an undeclared variable The variable becomes global ReferenceError: assignment to undeclared

variable x
Assignment to a read-only property Silently ignored TypeError: "undefined" is read-only
Deletion of undeletable properties Silently ignored TypeError: property "prototype" is non-

configurable and can't be deleted
Duplicated names of function
arguments

Last argument hides previous duplicates SyntaxError: duplicate formal argument x

Octal syntax (e.g., 015) Leading 0 changes number interpretation
to octal

SyntaxError: octal literals and octal escape
sequences are deprecated

Setting properties on primitives Silently ignored TypeError: can't assign to properties of
(new Boolean(false)): not an object

New variables introduced by eval Included in scope, where eval is executed Limited to scope of eval arguments
Deleting of variables Silently ignored SyntaxError: applying the 'delete' operator

to an unqualified name is deprecated
Names of variables: eval and
arguments

Allowed, hides language-variables SyntaxError: can't assign to eval in strict
mode

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode

C H A N G E S I N S T R I C T M O D E
S I M P L I F I E S U S E O F V A R I A B L E

• Many compiler optimizations rely on the ability to say
that variable X is stored in that location: this is critical
to fully optimize JavaScript code.

• JavaScript sometimes makes this basic mapping of
name to variable definition in the code impossible to
perform until runtime. Strict mode removes most cases
where this happens, so the compiler can better
optimize strict mode code.

P R E S E N T A T I O N O U T L I N E

• What is JavaScript?

• Historical Perspective

• Basic JavaScript

• JavaScript: The Good Parts

• JavaScript: The Bad Parts

• Languages that compile to JavaScript

• ECMAScript 6

C O F F E E S C R I P T

• CoffeeScript is a little language that transcompiles to
JavaScript (http://coffeescript.org):
• the code compiles one-to-one into the equivalent JavaScript.
• the code can be integrated seamlessly with any JavaScript library.
• the compiled output will work in every JavaScript runtime.

• CoffeeScript adds syntactic sugar inspired by Ruby, Python
and Haskell to enhance JavaScript's brevity and readability

• CoffeeScript is one of the first attempts to expose the
good parts of JavaScript in a simple way.

http://coffeescript.org

T Y P E S C R I P T

• TypeScript is a free and open source programming language
(developed by Microsoft) which transcompiles to JavaScript.

• It is a strict superset of JavaScript — any existing JavaScript
programs are also valid TypeScript programs.

• TypeScript adds features not normally available in JavaScript:
• optional static typing
• class-based object-oriented programming
• arrow syntax for anonymous functions

• TypeScript may be used to develop JavaScript applications for
client-side or server-side execution.

T Y P E S C R I P T
T Y P E A N N O T A T I O N S

• TypeScript provides static typing through type annotations to
enable type checking at compile time. This is optional and can be
ignored to use the regular dynamic typing of JavaScript.

• The TypeScript compiler makes use of type inference to infer types
when types are not given.

• For example, the add method in the code above would be inferred as
returning a number even if no return type annotation had been
provided. If no type can be inferred because of lack of declarations
then it will default to the dynamic any type.

function add(left: number, right: number): number {
return left + right;

}

T Y P E S C R I P T
C L A S S - B A S E D O O P

• Traditional JavaScript focuses on functions and prototype-based
inheritance as the basic means of building up reusable components

• Programmers are often more comfortable with a class-based
object-oriented approach, where classes inherit functionality and
objects are built from these classes.

• Starting with ECMAScript 6, JavaScript programmers are able to
build their applications using classes.

• TypeScript allows to use these techniques too, and compile them
down to ES5 that works across all major browsers and platforms.

C L A S S E S I N E C M A S C R I P T 6
class Polygon {

constructor(height, width) {
this.height = height;
this.width = width;

}
}

class Square extends Polygon {
constructor(sideLength) {
super(sideLength, sideLength);

}
get area() {
return this.height * this.width;

}
set sideLength(newLength) {
this.height = newLength;
this.width = newLength;

}
}

var square = new Square(2);
square.sideLength = 3
var a = square.area // 9

C L A S S E S I N T Y P E S C R I P T
class Animal {

private name:string;
constructor(theName: string) { this.name = theName; }
move(meters: number) {

alert(this.name + " moved " + meters + "m.");
}

}
class Snake extends Animal {

constructor(name: string) { super(name); }
move(meters = 5) {

alert("Slithering...");
super.move(meters);

}
}
class Horse extends Animal {

constructor(name: string) { super(name); }
move(meters = 45) {

alert("Galloping...");
super.move(meters);

}
}

var sam = new Snake("Sammy the Python");
var tom: Animal = new Horse("Tommy the Palomino");
sam.move();
tom.move(34);

D A R T

• Dart is an open-source, class-based, object-oriented, statically
typed programming language developed by Google for building
structured HTML5 web apps (https://www.dartlang.org)

• Dart provides not only a new language, but libraries, an editor, a
virtual machine (VM), a browser that can run Dart apps natively,
and a compiler to JavaScript.

• Dart aims to help in two main ways:
• Better performance — a more structured language is easier to optimize,

and a fresh VM enables improvements such as faster startup.
• Better productivity — libraries and packages helps you work with other

developers and easily reuse code from other projects; types can make APIs
clearer and easier to use; tools help you refactor, navigate, and debug code.

https://www.dartlang.org

D A R T E X A M P L E
// Create a class for Point.
class Point {

// Final variables cannot be changed once they are assigned.
// Create two instance variables.
final num x, y;

// A constructor, with syntactic sugar for setting instance variables.
Point(this.x, this.y);

// A named constructor with an initializer list.
Point.origin()

: x = 0,
y = 0;

// A method.
num distanceTo(Point other) {

var dx = x - other.x;
var dy = y - other.y;
return math.sqrt(dx * dx + dy * dy);

}

// Example of Operator Overloading
Point operator +(Point other) => new Point(x + other.x, y + other.y);

}

D A R T U S A G E

• Compiled as JavaScript — the Dart code pre-compiled to JavaScript
using the dart2js compiler is compatible with all major browsers.
Through optimization of the compiled output, code written in Dart can
run faster than equivalent code hand-written using JavaScript idioms.

• Dartium Browser — the Dart SDK ships with a version of the
Chromium web browser modified to include a Dart virtual machine.
This browser can run Dart code directly without compilation to
JavaScript. It is intended as a development tool for Dart applications,
rather than as a general purpose web browser.

• Stand-alone — the Dart SDK ships with a stand-alone Dart VM,
allowing dart code to run in a command-line environment. Dart ships
with a complete standard library allowing users to write fully
functional system apps, such as custom web servers.

W H Y D A R T ?

• Dart is easy to learn — Dart is new, yet familiar. It’s an object-oriented
language with classes, single inheritance, lexical scope, top-level functions,
and a familiar syntax (https://www.dartlang.org).

• Dart compiles to JavaScript. Dart has been designed from the start to
compile to JavaScript, so that Dart apps can run across the entire modern
web. Every feature considered for the language must somehow be
translated to performant JavaScript before it is added.

• Dart runs in the client and on the server. The Dart VM can be integrated
into a browser, but it can also run standalone on the command line.

• Dart comes with a lightweight editor. You can use Dart Editor to write,
launch, and debug Dart apps. The editor can help you with code
completion, detecting potential bugs, debugging both command-line and
web apps, and even refactoring.

https://www.dartlang.org

W H Y D A R T ?

• Dart has a wide array of built-in libraries (https://www.dartlang.org)
• The core library supports fundamental features such as collections, dates, and regular

expressions.
• Web apps can use the HTML library — think DOM programming, but optimized for Dart.
• Command-line apps can use the I/O library to work with files, directories, sockets, and

servers.

• Dart supports safe, simple concurrency with isolates. Traditional shared-
memory threads are difficult to debug and can lead to deadlocks. Dart’s
isolates, inspired by Erlang, provide an easier to understand model for
running isolated, but concurrent, portions of your code.

• Dart supports types, without requiring them. Dart’s optional types are
static type annotations that act as documentation, clearly expressing your
intent. Using types means that fewer comments are required to document
the code, and tools can give better warnings and error messages.

https://www.dartlang.org

L A N G U A G E I N T E R E S T O V E R T I M E

P R E S E N T A T I O N O U T L I N E

• What is JavaScript?

• Historical Perspective

• Basic JavaScript

• JavaScript: The Good Parts

• JavaScript: The Bad Parts

• Languages that compile to JavaScript

• ECMAScript 6

E C M A S C R I P T 6 (E S 6 / E S 2 0 1 5)

• ECMAScript 6 is the version of the standard released in June
2015.

• ES2015 is a significant update to the language, and the first
update to the language since ES5 was standardized in 2009.

• ES2015 introduces some new JavaScipt language features
similar to CoffeeScript and TypeScript.

• Implementation of these features in major JavaScript engines is
almost done: http://kangax.github.io/compat-table/es6/

• Transpilers like Babel.js or Traceur allow to use features from
the future (ES6 and other experimental ones) today.

http://kangax.github.io/compat-table/es6/

N E W F E A T U R E S I N E S 6
B L O C K S C O P I N G W I T H L E T

• The let keyword allows to declare variables that are limited in scope to
the block, statement, or expression on which it is used. This is unlike the
var keyword, which defines a variable globally, or locally to an entire
function regardless of block scope.

function varTest() {
var x = 31;
if (true) {

var x = 71; // same variable!
console.log(x); // 71

}
console.log(x); // 71

}
function letTest() {
let x = 31;
if (true) {

let x = 71; // different variable
console.log(x); // 71

}
console.log(x); // 31

}

N E W F E A T U R E S I N E S 6
C O N S T A N T D E F I N I T I O N S

• Constant definitions are possible with const. let and const
behave similarly in the sense that both are block scoped.
// define my_fav as a constant and give it the value 7
const my_fav = 7;

// trying to redeclare a constant throws an error
const my_fav = 20;

// the name is reserved for constant above, so this will also fail
var my_fav = 20;

// const requires an initializer
const foo; // SyntaxError: missing = in const declaration

// const also works on objects
const myObject = {"key": "value"};

// However, object attributes are not protected,
// so the following statement is executed without problems
myObject.key = "otherValue";

N E W F E A T U R E S I N E S 6
D E F A U L T F U N C T I O N P A R A M E T E R S

• Default function parameters allow formal parameters to be initialized with
default values if no value or undefined is passed.

• In JavaScript, parameters of functions default to undefined.

• The syntax for default parameters in ES6 is extremely intuitive. The default
parameters are defined when the functions are defined.

function multiply(a, b) {
b = typeof b !== 'undefined' ? b : 1;
// or below; but be aware how type coercion works here
b = b || 1;

return a*b;
}
multiply(5); // 5

function multiply(a, b = 1) {
return a*b;

}
multiply(5); // 5

N E W F E A T U R E S I N E S 6
E F F I C I E N T D A T A S T R U C T U R E S

• ES6 offers new data structures previously not available in
JavaScript — sets and maps.

• Sets allow you to easily create a collection of unique values
(objects or primitives) without worrying about type coercion.

var items = new Set();
items.add(5);
items.add("5");
items.add(5); // oops, duplicate - this is ignored

console.log(items.size); // 2
console.log(items.has(5)); // true
console.log(items.has(6)); // false

items.delete(5)
console.log(items.has(5)); // false

N E W F E A T U R E S I N E S 6
E F F I C I E N T D A T A S T R U C T U R E S

• In JavaScript, developers have traditionally used regular objects
as maps — JSON is based on the premise that objects represent
key-value pairs.

• In ES6, the key can be any JavaScript value (even an object) and
not just a string.

var map = new Map();
map.set("name", "Nicholas");
map.set(document.getElementById("my-div"), { flagged: false });

var name = map.get("name"),
meta = map.get(document.getElementById("my-div"));

var map = {};

if (!map[key]) {
map[key] = value;

}

N E W F E A T U R E S I N E S 6
(S T R O N G L Y) T Y P E D A R R A Y S (E S 6)

• Typed array is an object intended to store fixed
amount of raw binary data
• This acts more or less as an ordinary array in most

programming languages:
• No dynamic expanding or shrinking
• Index-based access

• Note that the typed array is not an array in the sense
of JavaScript, i.e.: Array.isArray() called on the
typed array yields false

(S T R O N G L Y) T Y P E D A R R A Y S :
B U F F E R S A N D V I E W S
• ArrayBuffer is an object that represents

a continuous region of memory to store data but it
gives no access to the data

• View is a mechanism that puts ArrayBuffer into
a context that allow reading or writing data to the
buffer
• E.g., multiple views enable us to interpret the same data

differently:

(S T R O N G L Y) T Y P E D A R R A Y S
E X A M P L E
// Declare a buffer of 16 bytes
var buffer = new ArrayBuffer(16);

// Create an int32 view on the buffer
var int32View = new Int32Array(buffer);

// Write data to the buffer as int32
for (var i = 0; i < int32View.length; i++) {

int32View[i] = i * 2;
}

// Create an int16 view on the buffer
var int16View = new Int16Array(buffer);

// Read data from the buffer as int16
for (var i = 0; i < int16View.length; i++) {

console.log("Entry " + i + ": " + int16View[i]);
}

/* Output:
Entry 0: 0
Entry 1: 0
Entry 2: 2
Entry 3: 0
Entry 4: 4
Entry 5: 0
Entry 6: 6
Entry 7: 0
*/

N E W F E A T U R E S I N E S 6
F O R - O F L O O P

• The for...of statement creates a loop Iterating over iterable objects
(including Array, Map and Set), invoking a custom iteration hook with
statements to be executed for the value of each distinct property.
let arr = [3, 5, 7];
arr.foo = "hello";

for (let i in arr) {
console.log(i); // logs "0", "1", "2", "foo"

}
for (let i of arr) {

console.log(i); // logs "3", "5", "7"
}

var es6 = new Map();
es6.set("edition", 6);
es6.set("committee", "TC39");
es6.set("standard", "ECMA-262");
for (var [name, value] of es6) {
console.log(name + ": " + value);

}

N E W F E A T U R E S I N E S 6
A R R O W F U N C T I O N S

• Arrow functions are function shorthand using the => syntax.
They are syntactically similar to the related feature in C#,
Java 8 and CoffeeScript.
(param1, param2, paramN) => { statements }
(param1, param2, paramN) => expression
// equivalent to: => { return expression; }

// Parentheses around the single argument are not required:
singleParam => { statements }
singleParam => expression

// Function with no arguments requires parentheses:
() => { statements }

nums.forEach(v => {
if (v % 5 === 0)
fives.push(v);

});

var PageHandler = {
init: function() {

document.addEventListener("click", function(event) {
this.doSomething(event.type);

}, false);
},

doSomething: function(type) {
console.log("Handling " + type + " for " + this.id);

}
};

N E W F E A T U R E S I N E S 6
A R R O W F U N C T I O N S

• Unlike regular functions, arrow functions share the same lexical this as
their surrounding code.

• The binding of this inside of functions is one of the most common
source of errors in JavaScript. Since the value of this can change inside
of a single function depending on the context in which it’s called, it’s
possible to mistakenly affect one object when you meant to affect another.

var PageHandler = {
init: function() {

document.addEventListener("click", (function(event) {
this.doSomething(event.type);

}).bind(this), false);
},

doSomething: function(type) {
console.log("Handling " + type + " for " + this.id);

}
};

N E W F E A T U R E S I N E S 6
A R R O W F U N C T I O N S

• Unlike regular functions, arrow functions share the same lexical this as
their surrounding code.

• The binding of this inside of functions is one of the most common
source of errors in JavaScript. Since the value of this can change inside
of a single function depending on the context in which it’s called, it’s
possible to mistakenly affect one object when you meant to affect another.

N E W F E A T U R E S I N E S 6
A R R O W F U N C T I O N S

• Unlike regular functions, arrow functions share the same lexical this as
their surrounding code.

• The binding of this inside of functions is one of the most common
source of errors in JavaScript. Since the value of this can change inside
of a single function depending on the context in which it’s called, it’s
possible to mistakenly affect one object when you meant to affect another.

var PageHandler = {
init: function() {

document.addEventListener("click",
event => this.doSomething(event.type), false);

},

doSomething: function(type) {
console.log("Handling " + type + " for " + this.id);

}
};

N E W F E A T U R E S I N E S 6
A R R A Y C O M P R E H E N S I O N

• The array comprehension syntax is a JavaScript expression
which allows you to quickly assemble a new array based
on an existing one.

[for (x of iterable) x]
[for (x of iterable) if (condition) x]
[for (x of iterable) for (y of iterable) x + y]

var abc = ["A", "B", "C"];
[for (letters of abc) letters.toLowerCase()]; // ["a", "b", "c"]

var years = [1954, 1974, 1990, 2006, 2010, 2014];
[for (year of years) if (year > 2000) year]; // [2006, 2010, 2014]

var numbers = [1, 2, 3];
var letters = ["a", "b", "c"];
var cross = [for (i of numbers) for (j of letters) i+j];
// ["1a", "1b", "1c", "2a", "2b", "2c", "3a", "3b", "3c"]

C O N C L U S I O N S

• It would be nice if programming languages were designed to have
only good parts.

• The best nature of JavaScript is so effectively hidden that for many
years the prevailing opinion of JavaScript was that it was an unsightly,
incompetent toy.

• With the combination of prototypal inheritance, dynamic object
extension, and closures, JavaScript has one of the most flexible and
expressive object systems available in any programing language.

• The age of JavaScript is truly upon us — not only has it become
completely ubiquitous on the client side, but its use as a server-side
language has finally taken off too, thanks to Node.js.

C O N C L U S I O N S

• There is an important tradeoff between the computational power of a language
and the ability to determine what a program in that language is doing.

• Computer Science spent the last forty years making languages which were as
powerful as possible. Nowadays we have to appreciate the reasons for picking
not the most powerful solution but the least powerful. Expressing constraints,
relationships and processing instructions in less powerful languages increases the
flexibility with which information can be reused: the less powerful the language,
the more you can do with the data stored in that language.

— T H E R U L E O F L E A S T P O W E R , T I M B E R N E R S - L E E , 2 0 0 6

C O N C L U S I O N S

• There is an important tradeoff between the computational power of a language
and the ability to determine what a program in that language is doing.

• Computer Science spent the last forty years making languages which were as
powerful as possible. Nowadays we have to appreciate the reasons for picking
not the most powerful solution but the least powerful. Expressing constraints,
relationships and processing instructions in less powerful languages increases the
flexibility with which information can be reused: the less powerful the language,
the more you can do with the data stored in that language.

• The Rule of Least Power: Use the least powerful language suitable for
expressing information, constraints or programs on the World Wide Web.
Powerful languages inhibit information reuse.

— T H E R U L E O F L E A S T P O W E R , T I M B E R N E R S - L E E , 2 0 0 6

C O N C L U S I O N S

• There is an important tradeoff between the computational power of a language
and the ability to determine what a program in that language is doing.

• Computer Science spent the last forty years making languages which were as
powerful as possible. Nowadays we have to appreciate the reasons for picking
not the most powerful solution but the least powerful. Expressing constraints,
relationships and processing instructions in less powerful languages increases the
flexibility with which information can be reused: the less powerful the language,
the more you can do with the data stored in that language.

• The Rule of Least Power: Use the least powerful language suitable for
expressing information, constraints or programs on the World Wide Web.
Powerful languages inhibit information reuse.

• Atwood's Law: any application that can be written in JavaScript, will eventually
be written in JavaScript.

— T H E R U L E O F L E A S T P O W E R , T I M B E R N E R S - L E E , 2 0 0 6

R E F E R E N C E S
• Programming JavaScript Applications — Eric Elliott,

O’Reilly Media, Inc., 2014, available online at:
http://chimera.labs.oreilly.com/books/1234000000262

• Speaking JavaScript — Axel Rauschmayer, O’Reilly Media, Inc., 2014
http://speakingjs.com

• JavaScript: The Good Parts — Douglas Crockford, O’Reilly Media Inc., 2008

• JavaScript Guide at Mozilla Developer Network
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide

• Expressions at Mozilla Developer Network
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions

• http://jsbooks.revolunet.com

• http://javascript.crockford.com

• JavaScript typed arrays, Mozilla Developer Network
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Typed_arrays

• Jake Archibald – JavaScript promises: an Introduction
https://developers.google.com/web/fundamentals/primers/promises

http://chimera.labs.oreilly.com/books/1234000000262
http://speakingjs.com
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions
http://jsbooks.revolunet.com
http://javascript.crockford.com
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Typed_arrays
https://developers.google.com/web/fundamentals/primers/promises

