
C A S C A D I N G S T Y L E S H E E T S
I N T E R N E T S Y S T E M S

T O M A S Z P A W L A K , P H D
I N S T I T U T E O F C O M P U T I N G S C I E N C E , P O Z N A N U N I V E R S I T Y O F T E C H N O L O G Y

P R E S E N T A T I O N O U T L I N E

• Motivation and history

• CSS basics

• CSS details

M O T I V A T I O N A N D H I S T O R Y

M O T I V A T I O N

• In the original HTML (1.0/2.0) the content was mixed in a single document
with:
• Structural (but non-semantic) information
• Definition of presentation (style)

• E.g., colors, fonts, text-sizes

• Similarly formatted parts of the webpage have similar style definitions
• Low maintainability:

• A simple change in the style must be manually propagated to all usage places
• Redundancy:

• The same code fragments are copied multiple times across HTML document

• Redundant code significantly increases size of webpages → longer page load times
• Browser performance:

• Style calculation and drawing must be done for each HTML element separately
• Interoperability

• It is almost impossible to prepare a single page that adapts to different devices

• No support for dynamic style changes (e.g., high contrast for accessibility, skins…)

C A S C A D I N G S T Y L E S H E E T S (C S S)

• A language for styling HTML documents
• Format independent from HTML

• Applicable to XML, SVG, XUL

• CSS style definitions can be shared
• By multiple HTML elements
• By multiple HTML documents

• E.g., in separate *.css files

• Support for multiple output devices
• Screen

• Including adjustments for different screen sizes

• Printer
• Speech (screen readers)

C A S C A D I N G S T Y L E S H E E T S F E A T U R E S

• Separation of concerns
• Presentation and content

• Rule-based declarative language

• Inheritance and overriding
• Hence: “Cascading” in name

• Styling support
• Layout
• Colors
• Fonts
• Gradients
• Graphical transformations
• Animations
• Generated content
• Web fonts

H I S T O R Y

• 1994: Håkon Wium Lie (co-worker of Tim Berners-Lee) proposed CSS

• 1996: W3C published first CSS Recommendation (CSS level 1)
• Font properties, colors, alignment, margins, borders, paddings, unique ids,…

• 1996: Many poorly standardized alternatives in the market
• E.g., JavaScript Style Sheets (uses JS code to set styling information)

• 1996/97: Internet Explorer 3 and Netscape 4 have limited support for CSS

• 03.2000: The first browser with full CSS1 support:
• Internet Explorer 5 for Macintosh*

* source: https://www.w3.org/Style/CSS/software.en.html#w26

https://www.w3.org/Style/CSS/software.en.html#w26

H I S T O R Y – T O W A R D S M O D E R N C S S

• CSS1 has many issues and was imprecise – hence difficult to consistently implement in
browsers

• 1997: W3C Recommendation for CSS level 2

• 1998: W3C began work on CSS level 3

• 1999: W3C published CSS3 Working Draft

• 2004: W3C Candidate Recommendation for CSS level 2 revision 1
• Original CSS2 Recommendation was reverted to Candidate Recommendation

• 2005: CSS2.1 reverted to Working Draft

• 2007: CSS2.1 published again as Candidate Recommendation

• 2009: CSS2.1 updated, still in Candidate Recommendation

• 2010: CSS2.1 reverted to Working Draft

• 2011: CSS2.1 published as Proposed Recommendation, then as Recommendation

• 2011-2015: Several erratum published

• 12.04.2016: CSS2 revision 2 published as Working Draft

H I S T O R Y – T O W A R D S M O D E R N C S S

• The main difficulties in standardizing CSS2 come from organization of
standard: this one big document, but rarely changes were made for more
than one section

• CSS level 3
• A large collection of documents called “modules”
• Each module extends features defined in CSS2

• Over 130 modules are defined*

• CSS level 4 follows the modular model
• Each module extends features defined in the level 3 modules
• New modules that do not extend base ones are assigned with level 1

• E.g., flexbox

* Source: https://www.w3.org/Style/CSS/specs

https://www.w3.org/Style/CSS/specs

Source: https://commons.wikimedia.org/wiki/File:CSS3_taxonomy_and_status_by_Sergey_Mavrody.svg

https://commons.wikimedia.org/wiki/File:CSS3_taxonomy_and_status_by_Sergey_Mavrody.svg

B R O W S E R S U P P O R T

• All major browsers support currently:
• CSS2.1
• Some CSS3 and CSS4 specifications

• Details:
• https://caniuse.com/#compare=edge+81,firefox+75,chrome+81,safari+13.1,opera+6

8,ios_saf+13.4,android+81,and_chr+81&compare_cats=CSS

https://caniuse.com/#compare=edge+81,firefox+75,chrome+81,safari+13.1,opera+68,ios_saf+13.4,android+81,and_chr+81&compare_cats=CSS

C S S B A S I C S

A S I M P L E C S S D O C U M E N T

• The CSS document consists of the CSS rules

• Each rule consists of
• Selector(s) – the conditional part

• Multiple selectors are treated as alternatives

• List of pairs of property and its value

selector1 {
/* comment */
property1: value;
property2: value;

}

selector2, selector3 {
property3: value;
property4: value;

}

C S S S E L E C T O R S

• A Selector points at an HTML element to which the rule applies the style
• Technically, the selector points at a particular DOM element
• Selectors may be recurrent

• CSS Selectors Level 3 is the latest W3C Candidate Recommendation
• Released as W3C Recommendation in 2011
• Reverted to W3C Candidate Recommendation in 2018
• Published again as W3C Recommendation in 2018

• CSS Selectors Level 4 is the latest W3C Working Draft (as of April 2020)

B A S I C C S S S E L E C T O R S
Selector Matches CSS Level

E an element of type E 1

E:link an E element being the source anchor of a hyperlink of which the target is not yet visited (:link) or already visited
(:visited)

1

E:active an E element during certain user actions 1

E::first-line the first formatted line of an E element 1

E::first-letter the first formatted letter of an E element 1

.myclass all elements with class="myclass" 1

#myid the element with id="myid" 1

E.warning an E element whose class is "warning" (the document language specifies how class is determined) 1

E#myid an E element with ID equal to "myid" 1

E F an F element descendant of an E element 1

* any element 2

E[foo] an E element with a "foo" attribute 2

E[foo="bar"] an E element whose "foo" attribute value is exactly equal to "bar" 2

E[foo~="bar"] an E element whose "foo" attribute value is a list of whitespace-separated values, one of which is exactly equal to
"bar"

2

E[foo|="en"] an E element whose "foo" attribute has a hyphen-separated list of values beginning (from the left) with "en" 2

E:first-child an E element, first child of its parent 2

E:lang(fr) an element of type E in language "fr" (the document language specifies how language is determined) 2

E::before generated content before an E element's content 2

E::after generated content after an E element's content 2

E > F an F element child of an E element 2

E + F an F element immediately preceded by an E element 2

Each time an element E is referenced, it is
meant as an element selected by selector E

(recurrence happens here)

B A S I C C S S P R O P E R T I E S : F O N T S
/* A comma separated list of fonts. A browser will use the first available font from the list. */
font-family: Arial, Helvetica, sans-serif;
/* Generic family names - defined in settings of a browser */
font-family: serif, sans-serif, monospace, cursive, fantasy;

/* A set of absolute size keywords based on the current default font size (which is medium).
xx-small, x-small, small, medium, large, x-large, xx-large */

font-size: large;
/* Larger or smaller than the font size of the parent element, by roughly the ratio used to separate the
absolute size keywords above. */
font-size: larger;
font-size: smaller;
/* <length> values */
font-size: 12px;
font-size: 0.8em;
/* <percentage> values */
font-size: 80%;

/* Font-styles */
font-style: normal;
font-style: italic;
font-style: oblique;

/* Font-weights */
font-weight: normal;
font-weight: bold;
/* Weight relative to the parent */
font-weight: lighter;
font-weight: bolder;
/* Fine-grained weight 100-900 by 100, normal is 500 */
font-weight: 500;

F O N T S – G O O D P R A C T I C E S

• Do not use proprietary fonts
• Your clients may not have them
• http://www.cssfontstack.com/

• Use the fonts with the symbols in the language of your site
• Use universal (Unicode) fonts for multilingual sites

• Be consistent – use at most three different fonts per site

http://www.cssfontstack.com/

F O N T S – G O O D P R A C T I C E S

• Do not assume any particular size of the rendered text
• The size of the rendered text depends on many conditions:

• Browser text rendering implementation

• Graphic card and drivers

• Text may render differently even on two screens attached to the same computer

• Operating system and version

• A pixel-based size is not accessible
• User cannot increase the size of text

• The text may render very small on high-density screens (e.g., smartphones)

• em and rem are recommended units for setting font size
• em specifies font size relatively to the font size of the parent element or the default size

unless set
• rem specifies font size relatively to the font size of the root element or the default size unless

set
• Calculate em/rem value by dividing the desired size in pixels by the parent/root font size in

pixels

• The font size should reflect the importance of the text in the page

B A S I C C S S P R O P E R T I E S : C O L O R S
/* A CSS Level 1 color

16 colors taken from the Windows VGA palette without
defined RGB values in CSS1 specification. */

color: red;

/* The only color added in CSS Level 2 (Revision 1)
In CSS2.1 each color has assigned RGB values */

color: orange;

/* CSS Level 3 color, sometimes called a SVG or X11 color */
color: antiquewhite;

/* The color 'lime' with the 3-character dash notation;
each character refers to one channel in order: R, G, B;
duplicate each symbol to get equivalent 6-character notation */

color: #0f0;

/* The color 'lime' with the 6-character dash notation */
color: #00ff00;

/* A color using the available functional notations */
color: rgb(34, 12, 64);
color: rgba(34, 12, 64, 0.3);
color: hsl(40, 50%, 50%);
color: hsla(40, 50%, 50%, 0.4);

/* Use the color of the direct ancestor of this element */
color: inherit;

/* Use the value of the ‘color’ property in an other property */
-other-color-property: currentcolor;

https://commons.wikimedia.org/wiki/File:HSL_col
or_solid_cylinder_saturation_gray.png

https://commons.wikimedia.org/wiki/File:HSL_color_solid_cylinder_saturation_gray.png

B A S I C C S S P R O P E R T I E S : B A C K G R O U N D S
/* Hexadecimal value - the same values as for the "color" property are allowed */
background-color: #bbff00;
/* Background image */
background-image: none;
background-image: url(http://www.example.com/bck1.png);
/* Multiple values, successive backgrounds are stacked from top to bottom */
background-image: url(http://www.example.com/bck1.png), url(http://www.example.com/bck2.png);
/* Keyword values: top, bottom, left, right, center */
background-position: left;
/* <percentage> values */
background-position: 25% 75%;
/* <length> values */
background-position: 1cm 2cm;
/* Multiple values */
background-position: 0px 0px, center;
/* Background position */
/* One-value syntax: repeat-x, repeat-y, repeat, space, round, no-repeat */
background-repeat: repeat;
/* Two-value syntax: horizontal | vertical */
background-repeat: no-repeat repeat;
/* Background size */
background-size: cover;
background-size: contain;
/* One-value syntax: the width of the image (the height is set to 'auto') */
background-size: 50%;
background-size: 3em;
background-size: 12px;
/* Two-value syntax: the first value: width of the image, the second value: height */
background-size: 50% auto;
background-size: 3em 25%;
background-size: auto 6px;

C O L O R S A N D B A C K G R O U N D S – G O O D
P R A C T I C E S

• Use contrasting colors for text and background

• Pick different colors of similar intensity for backgrounds
• Use darker colors for text

• Use color to highlight important stuff

• Use colors that reflect purpose of messages:
• e.g., red for error, yellow for warning, blue for information

• Use tools that help finding sets of colors according to good practices
• Adobe Color CC
• http://paletton.com

https://color.adobe.com/
http://paletton.com/

S H O R T H A N D P R O P E R T I E S

• Many CSS properties have shorthand properties that aggregate the
simple ones,
• They enable us to shorten CSS code by setting multiple properties in just one rule
• Providing the values of the “simple” properties in the shorthand one is optional

• If we do not set a value for a simple property, it is implicitly set to its default value by the
shorthand property!

• It may break the intended inheritance

• Examples
• background is the shorthand for

• background-image, background-position, background-size, background-repeat,
background-origin, background-clip, background-attachment, background-color

• Font is the shorthand for

• font-style, font-variant, font-weight, font-stretch, font-size, line-height,
font-family

C S S D E T A I L S

S O U R C E S O F C S S R U L E S

• CSS rules may have various sources of different priorities, in order:
• Author – a CSS attached to document
• User – a custom user CSS
• User-agent – a default CSS of a browser

S T Y L E C O M P U T I N G A L G O R I T H M

• Cascade rules
• Filter the set of all rules for the rules applicable to a particular media type, a DOM

element, and a property.
• Take a set of indiscernible rules on the top of the ranking built in order:

• User important declarations (declared with !important annotation)

• Author important declarations (declared with !important annotation)

• Author normal declarations

• User normal declarations

• User-agent declarations

• Take a set of indiscernible rules on the top of the ranking built on rule specificity
• Take the last specified rule

• Imported style sheets are before the importing ones

• If cascading results in no rules, then inherit rules:
• If the element is not the document root, use the computed value for the parent element

• If inheritance results in no rules, then use the initial value of the property from
the specification

P R I O R I T I E S O F C S S R U L E S – E X A M P L E 1
/*

Media type: all
Source: Website
Specificity: 0.0.0.1

*/
p {

color: black !important;
}

/*
Media type: all
Source: Website
Specificity: 0.0.0.1

*/
p {

color: white !important;
}

/*
Media type: all
Source: Website
Specificity: 0.0.0.1

*/
p {

color: orange;
}

1. Filter the rules applicable to the
screen media type, the
paragraph p, and the color
property

2. Filter the rules w.r.t. sources
3. Filter the rules w.r.t. specificity
4. Take the last specified rule

P R I O R I T I E S O F C S S R U L E S – E X A M P L E 2
/*

Media type: print
Source: Website
Specificity: 0.0.0.1

*/
@media print {

p {
color: black;

}
}

/*
Media type: all
Source: Website
Specificity: 0.0.0.1

*/
p {

color: white;
}

/*
Media type: all
Source: Website
Specificity: 0.0.0.2

*/
body p {

color: blue;
}

1. Filter the rules applicable to the
screen media type, the
paragraph p, and the color
property

2. Filter the rules w.r.t. sources
3. Filter the rules w.r.t. specificity

P R I O R I T I E S O F C S S R U L E S – E X A M P L E 3
/*

Media type: all
Source: Website
Specificity: 0.0.1.1

*/
a:link {

color: black;
}

/*
Media type: all
Source: Website
Specificity: 0.0.1.1

*/
a:hover {

color: gray;
}

/*
Media type: all
Source: Website
Specificity: 0.0.0.1

*/
body {

color: orange;
}

1. Filter the rules applicable to the
screen media type, the
paragraph p, and the color
property

2. Inherit value from the parent
element (body)

H O W T O A T T A C H C S S T O H T M L D O C U M E N T

• CSS documents are typically attached in the <head/> section but this is
rather a good practice than a rule

<head>
<!-- Attach CSS file to HTML document -->
<link href="style.css" rel="stylesheet" type="text/css" />

<!-- Attach CSS file to HTML document only when printing -->
<link href="print.css" rel="stylesheet" type="text/css" media="print" />

<!-- Embed CSS inside HTML document -->
<style>

body {
color: black;

}
</style>

</head>

S E L E C T O R S P E C I F I C I T Y

• Specificity is an ordered tuple of integers
• Each integer is a number of specific terms in a selector, in order:

• Style attribute

• IDs

• Classes, pseudo-classes (:), attributes

• Elements, pseudo-elements (::)

S E L E C T O R S P E C I F I C I T Y

S E L E C T O R S P E C I F I C I T Y

S E L E C T O R S P E C I F I C I T Y

:not() is not counted as pseudo-class
universal selector (*) is not counted

S E L E C T O R S P E C I F I C I T Y

S E L E C T O R S P E C I F I C I T Y

::first-letter and ::first-line
are as pseudo-elements

T H E !important E X C E P T I O N

• !important can be considered as one additional integer to the left of
specificity tuple

• From the rule computing algorithm, if two rules with !important are
applicable, the one with higher specificity is applied

• Usage of !important is a bad practice because it makes debugging
difficult by breaking the natural cascading of styles

• Some rules of thumb from Mozilla:
• Always look for a way to use specificity before even considering !important
• Only use !important on page-specific CSS that overrides site-wide or foreign CSS

(from external libraries).
• Never use !important when you're writing a plugin/library.
• Never use !important on site-wide CSS.

Source: https://developer.mozilla.org/en-US/docs/Web/CSS/Specificity

https://developer.mozilla.org/en-US/docs/Web/CSS/Specificity

I N H E R I T A N C E A N D O V E R R I D I N G

• Some properties are inheritable from ancestor to descendant node in
DOM
• Most of the text-related properties are inheritable (color, font-*,…)
• Most of the box-related properties are not inheritable (border, display, width,

height,…)
• See the reference for the details whether a certain property is inheritable

• https://developer.mozilla.org/en-US/docs/Web/CSS/Reference

• Advantages
• Inheritance prevents web developers from repeating code for nested tags
• Less-rules = quicker page load (transfer) and more responsive UI

• To override inherited rules just define a separate rule specific to a nested
element

https://developer.mozilla.org/en-US/docs/Web/CSS/Reference

W H I T E S P A C E A N D V A L I D C H A R A C T E R S

• Whitespace
• Between properties and rules is ignored
• In property values or selectors is significant

• However successive white characters are treated as one

• Valid names
• Case-insensitive in ASCII range (a-z)

• Exception: ids, classes, font name and URIs
• Valid characters

• 0-9, a-z, _, -

• ISO-10646 characters U+00A0 and higher

• Characters U+0100 and higher must be escaped using \, their hex code and a space, e.g., \26 B
for &B

• Name must not start with
• Number

• Two hyphens

• Hyphen followed by digit

P A G E R E N D E R I N G A L G O R I T H M

• Page rendering algorithm has five stages
• JavaScript execution – execute any pending scripts, because they can change CSS
• Style calculation – inherit CSS rules and calculate rules that apply for particular DOM

elements
• Layout – calculate positions and sizes of DOM elements w.r.t. CSS rules (e.g.,

margins, sizes,…)
• Painting – draw graphics w.r.t. CSS rules (e.g., colors, backgrounds,…)
• Compositing – merge layers of page into one, removing possible overlapping

P A G E R E N D E R I N G A L G O R I T H M

• Each time a CSS property is changed, a part of the page rendering
algorithm must be executed

• Reflow – process of recalculating layout for a part of DOM that is
affected by change of a layout property
• Reflow may trigger repaint:

• Repaint – process of redrawing a part of DOM that is affected by change
of a paint-only property
• Repaint may trigger composite:

• Composite – process of merging layers of page into one

T I P S F O R F A S T P A G E R E N D E R I N G

• Remove unnecessary rules
• Especially remove vendor-specific rules for widely supported properties
• Use CSS features like inheritance

• Use highly selective selectors
• If many DOM elements match a rule, consider splitting the rule into two
• This is especially important for the last term of the selector: Browsers keep a hash

table of selectors, where the key is the last term of the selector

• Do not use the universal selector *
• Use inheritance instead

• Do not use the attribute selectors unless really needed
• They are slow to evaluate

• Use classes and ids to narrow range of matching DOM elements

T I P S F O R F A S T P A G E R E N D E R I N G

• Change the class for a DOM element instead of changing associated CSS
rules
• Browsers keep precomputed data structures associated with CSS, changes in CSS

require rebuilding these structures

• Do not change page-wide rules unless really needed
• Browsers are optimized to redraw only parts of pages that are needed

• Change a set of rules at once, instead of changing rules one-by-one
• Browsers aggregate successive changes before redrawing page

• In scripts do not interleave read of the calculated layout properties with
setting CSS rules
• Reading of a calculated layout property requires reflow if CSS is modified

• Use CSS features instead of scripts if possible
• E.g., for animations, hovering etc.

T I P S F O R F A S T P A G E R E N D E R I N G

• And, what is the most important:

• Verify rendering bottleneck of your web page and gains from your
improvements in a web page profiler
• Currently all major browsers have profilers in their developer tools, e.g.,:

T I P S F O R F A S T P A G E R E N D E R I N G

• And, what is the most important:

• Verify rendering bottleneck of your web page and gains from your
improvements in web page profiler
• Currently all major browsers have profilers in their developer tools, e.g.,:

DISPLAY P R O P E R T Y

• display property specifies how lay out and paint an DOM element

• Default value: inline
• Overridden by HTML specification and browser styles for some elements
• E.g., div → block

DISPLAY P R O P E R T Y V A L U E S
CSS
level

Value Meaning

1 none No display, element not included in layout
calculation

1 inline The element generates one or more inline element
boxes

1 block The element generates a block element box.

1 list-item The element generates a block box for the content
and a separate list-item inline box.

2.1 inline-block The element generates a block element box that
will be flowed with surrounding content as if it were

a single inline box

2.1 table, inline-table, table-caption, table-cell, table-
column, table-column-group, table-footer-group,
table-header-group, table-row, table-row-group

Represent layout behavior of HTML tables, but can
be applied to other elements than tables

1
flexbox

flex The element behaves like a block element and lays
out its content according to the flexbox model.

1
flexbox

inline-flex The element behaves like an inline element and
lays out its content according to the flexbox model.

1
grid

grid The element behaves like a block element and lays
out its content according to the grid model.

1
grid

inline-grid The element behaves like an inline element and
lays out its content according to the grid model.

VISIBILITY P R O P E R T Y

• visibility property controls whether an element is painted
• The element is always laid out

• Values
• visible – the element is drawn
• hidden – the element is not drawn. Descendants of the element are visible if they

have visibility: visible
• collapse – for table rows, columns, column groups, and row groups the row(s) or

column(s) are hidden and the space they would have occupied is removed. However,
the size of other rows and columns is still calculated as though the cells in the
collapsed row(s) or column(s) are present. This was designed for fast removal of
a row/column from a table without having to recalculate widths and heights for every
portion of the table.

P O S I T I O N I N G O F E L E M E N T S

• CSS2.1 and its extensions (CSS3) define several ways of positioning
a DOM element
• Static positioning
• Absolute and relative positioning
• Fixed positioning
• Float positioning
• Flexbox positioning
• Grid positioning

• position property allows us to choose positioning mode between
• static (default)
• absolute

• relative

• fixed

position: static

• Inline items are treated like letters in word in text
• Items are placed one after another until there is no available space left
• Then a new line starts
• Size of the inline item cannot be set absolutely, it depends on the content

• Block items stack vertically, like paragraphs
• By default the block items occupy whole width of the parent container
• Size of the block items can be set by width and height properties

position: absolute A N D
position: relative

• Absolute positioning is used to place an element absolutely w.r.t. the
position of the nearest ancestor element with position not static
• Use properties left, top, bottom, right to set position

• Relative positioning is used to place an element relatively to its position
as it would be in static positioning
• Use properties left, top, bottom, right to set offset from normal position
• Relative positioning does not change layout, thus the space occupied by normal

position of an element would remain blank

POSITION: FIXED

• Elements are positioned relative to viewport (usually a browser window)
• Use properties left, top, bottom, right to set offset from viewport

• This means that if page is scrolled, the element will remain in the same
location in the screen

F L O A T I N G P O S I T I O N I N G

• In floating positioning, an element is moved (floated) to the leftmost or
the rightmost position in its container
• Without overlapping any other floated content
• Possibly with overlapping other content

• Use float property to set mode of float positioning to
• none (default)
• left

• right

• Floated elements are treated as it would be display: block set on
them

• Use clear property to indicate that an element must be wrapped to the
next line of successive float elements
• none (default)
• left – for left floats
• right – for right floats
• both – for all floats

F L E X B O X P O S I T I O N I N G
• Flexbox positioning is a flexible positioning mechanism that adjusts layout to

the size of the viewport and allows us to, e.g.:
• Center an element inside the middle of a page
• Put a set of elements in a vertical flow
• Create a row of elements that collapses vertically on small screen

• To create flexbox container use div element and set:

• Set on each child element flex property:

div.myflex {
display: flex;
/* Set direction of flow: row or column */
flex-flow: row;
/* Set if elements may wrap (wrap, nowrap, wrap-reverse) */
flex-wrap: nowrap;

}

div.myflex div {
/* Use original size of this element */
flex: none;
/* Use a specific size for layout calculation */
flex: 0 0 60px;
/* Distribute space using proportions: flex-grow | flex-shrink | flex-basis */
flex: 1 2 10%;
/* Fill available space, share space equally between elements of the same type */
flex: auto;

}

G R I D P O S I T I O N I N G

• Grid layout enables an author to align elements into columns and rows

• A grid container's child elements could position themselves so they
actually overlap and layer, similar to CSS positioned elements.

<div class="wrapper">
<div class="one">One</div>
<div class="two">Two</div>
<div class="three">Three</div>
<div class="four">Four</div>
<div class="five">Five</div>
<div class="six">Six</div>

</div>

.wrapper {
display: grid;
grid-template-columns: repeat(3, 1fr);
grid-gap: 10px;
grid-auto-rows: minmax(100px, auto);

}
.one { grid-column: 1 / 3; grid-row: 1; }
.two { grid-column: 2 / 4; grid-row: 1 / 3; }
.three { grid-column: 1; grid-row: 2 / 5; }
.four { grid-column: 3; grid-row: 3; }
.five { grid-column: 2; grid-row: 4; }
.six { grid-column: 3; grid-row: 4; }

Source: https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout

https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Grid_Layout

A T - R U L E S

• At-rules (or @-rules) are a special type of rules that do not directly
influence layout nor painting of the page, instead they control
interpretation of a CSS file

• Examples
@charset "UTF-8";

/* Import other CSS file here */
@import "custom.css";
/* Import other CSS file for media type: print */
@import url("print.css") print;

/* Namespaces for XML content */
/* Default namespace */
@namespace "XML-namespace-URL";
/* Prefixed namespace */
@namespace prefix "XML-namespace-URL";

@FONT-FACE A T - R U L E

• A way to specify a server-provided font to display text in a web browser

• Eliminates dependence on the limited number of fonts installed in the
user’s computer

/* Definition of a font */
@font-face {

font-family: "Custom name of font";
src: local("Custom-font-name-bold"), url(custom.woff), url(custom.ttf);
/* Remaining properties are optional */
font-variant: small-caps;
font-stretch: normal;
font-weight: normal;
font-style: normal;

}

p {
/* Use of the font defined above in paragraphs */
font-family: 'Custom name of font';

}

W E B O P E N F O N T F O R M A T (W O F F)

• Developed by Mozilla and other organizations
• v1 & v2 are W3C Recommendations

• WOFF has all features of TrueType, OpenType and Open Font Format
fonts

• Additional features
• Compression
• Metadata and private vendor-specific data
• Predefined fields to put licensing information

• Browser support
• V1 & v2: all major browsers

• A web fonts repository:
• https://fonts.google.com/

https://fonts.google.com/

M E D I A Q U E R I E S

• @media rule is used to indicate that a fragment of a CSS document
applies only to:
• A certain media

• all – all suitable devices

• print – for paged material and for documents viewed on screen in print preview mode

• screen – for color computer screens

• speech – for speech synthesizers

• Other media types are deprecated as of CSS4 Media Queries

• Under certain conditions

• width – viewport width

• height – viewport height

• aspect-ratio – width-to-height aspect ratio of the viewport

• orientation – orientation of the viewport

• resolution – pixel density of the output device

• color – number of bits per color component of the output device, or zero if the device is not color

• scripting – the output device supports scripting (e.g., JavaScript)

M E D I A Q U E R I E S
/* Print only rule */
@media print {

body {
background: #fff;
color: #000;

}
}

/* And condition */
@media print and (min-width: 20cm) and (orientation: landscape) {

body {
font-size: larger;

}
}

/* Or condition */
@media (max-width: 700px), screen and (orientation: landscape) {

.menu {
height: 100px;

}
}

/* Negation of whole condition ("not" refers to (all and (monochrome)))) */
@media not all and (monochrome) {

body {
background: url('rainbow.png');

}
}

C S S T R A N S F O R M S

• CSS transform is a property that changes coordinates of painting of an
DOM element without actually changing its layout

• Available transforms are
• Rotation – rotate(angle), rotate3d(x, y, z, angle)
• Skewing – skew(anglex, angley)
• Scaling – scale(factorx, factory), scale3d(factorx, factory, factorz)

• Translation – translate(deltax, deltay), translate3d(x, y, z)
• All in 2D and 3D

• Typical usage involves two properties
• transform – a space-separated list of transforms to apply
• transform-origin – defines the origin of the coordinate system relative to the current

element, by default it is center

/* Rotates all images by 90deg clockwise around bottom left corner */
img {

transform: rotate(90deg);
transform-origin: bottom left;

}

C S S T R A N S F O R M S

• CSS transforms can be combined, in which case they are evaluated from
left to right, e.g.,
HTML:

CSS:
<div>Transformed element</div>

div {
border: solid red;
transform: translate(30px, 20px) rotate(20deg);
width: 140px;
height: 60px;

}

Source: https://developer.mozilla.org/en-US/docs/Web/CSS/transform

https://developer.mozilla.org/en-US/docs/Web/CSS/transform

C S S A N I M A T I O N S

• CSS animations enable smooth transitions between many CSS rule sets

• Each animation contains two components
• A style describing the CSS animation
• A set of keyframes that indicate the start, the end, and the intermediate animation states

• To apply an animation to an element, use the animation shorthand property
or one of the simple properties:
• animation-delay – the delay between loading an element and beginning the animation
• animation-direction – sets whether the animation alternates direction on each run or

resets to the start point and repeat itself
• animation-duration – sets how long the animation should take to complete one cycle
• animation-iteration-count – sets the number of times the animation repeats or

infinite

• animation-name – specifies name of @keyframes rule
• animation-play-state – lets you pause and resume the animation sequence
• animation-timing-function – sets how the animation transitions through keyframes
• animation-fill-mode – sets what values are applied before and after the animation

D E F I N I N G K E Y F R A M E S

• Use @keyframes at-rule
• At least one keyframe must be defined

• If starting or ending keyframes are not defined, browser uses computed styles as fallback

• Browser performs smooth transitions between keyframes

• Keyframes are specified by
• Percentage of animation, e.g.,

• 0%, 50%, 100%

• from and to are aliases for 0% and 100%, respectively

• Set of CSS rules to be applied at this keyframe

C S S A N I M A T I O N E X A M P L E

<p>
The Caterpillar and Alice looked at each other for some time in silence:
at last the Caterpillar took the hookah out of its mouth, and addressed
her in a languid, sleepy voice.

</p>

p {
animation-duration: 3s;
animation-name: slidein;
animation-iteration-count: infinite;
animation-direction: alternate;

}

@keyframes slidein {
from {

margin-left: 100%;
width: 300%;

}

to {
margin-left: 0%;
width: 100%;

}
}

C S S A N I M A T I O N E X A M P L E

C O N T E N T G E N E R A T I O N

• The content CSS property replaces an element with a generated value.
Objects inserted using the content property are anonymous replaced
elements.

• ::before and ::after pseudo-elements are the first and the last child
of the selected element, respectively. They are often used to add
cosmetic content to an element with the content property. They are inline
by default.

C O N T E N T G E N E R A T I O N

• HTML:

• CSS:

<h1>5</h1>
<p>According to Sir Tim Berners-Lee,
<q cite="http://www.w3.org/People/Berners-Lee/FAQ.html#Internet">I was lucky
enough to invent the Web at the time when the Internet already existed - and had
for a decade and a half.</q> We must understand that there is nothing
fundamentally wrong with building on the contributions of others.</p>
<h1>6</h1>
<p>According to the Mozilla Manifesto,
<q cite="http://www.mozilla.org/en-US/about/manifesto/">Individuals must have the
ability to shape the Internet and their own experiences on the Internet.</q>
Therefore, we can infer that contributing to the open web can protect our own
individual experiences on it.</p>

q { color: blue; }
q::before { content: open-quote; }
q::after { content: close-quote; }
h1::before { content: "Chapter ";
/*The trailing space creates separation
between the added content and the rest
of the content*/ }

Source: https://developer.mozilla.org/en-US/docs/Web/CSS/content

https://developer.mozilla.org/en-US/docs/Web/CSS/content

R E F E R H T M L A T T R I B U T E S I N C S S

• It is possible to refer attributes of DOM elements matched by a CSS
selector in a value of a CSS property using attr() function:

• Unfortunately, as of May 2020 this works only in the content property,
although the CSS Values and Units Module Level 3 specification that
allows for the use of attr() in any property is in Candidate
Recommendation state

<p data-foo="hello">world</p>

[data-foo]::before {
content: attr(data-foo) " ";

}

R E N D E R I N G H T M L T O A N I M A G E

• With element() function it is possible to render a DOM element to an
image and use this image in any image property of CSS
<div style="width:400px; height:400px; background:-moz-element(#myBackground1) no-repeat;">

<p>This box uses the element with the #myBackground1 ID as its background!</p>
</div>
<div style="overflow:hidden; height:0;">

<div id="myBackground1"
style="width:1024px; height:1024px;

background-image: linear-gradient(to right, red, orange, yellow, white);">
<p style="transform-origin:0 0; transform: rotate(45deg); color:white;">

This text is part of the background. Cool, huh?
</p>

</div>
</div>

Source: https://developer.mozilla.org/en-US/docs/Web/CSS/element

https://developer.mozilla.org/en-US/docs/Web/CSS/element

C O N C L U S I O N S

• Cascading Style Sheets are powerful technology for describing
presentation of documents
• CSS is primarily designed for use with HTML
• However, it was adopted in other XML-related technologies, like SVG

• CSS supports
• Different output devices and media: screen, print, speech
• Layout and painting
• Static and dynamic content

• CSS is still under active development
• CSS2.1 specification is done
• CSS2.2 specification is Working Draft
• Many CSS3 and some CSS4 specifications are done

• Nowadays, when W3C publishes a Recommendation, it is usually already
supported by all major browsers, due to active participation of browser
developers in the process of establishing standards

R E F E R E N C E S

• CSS reference, Mozilla Developer Network
https://developer.mozilla.org/en-US/docs/Web/CSS/Reference

• Using media queries, Mozilla Developer Network
https://developer.mozilla.org/en-US/docs/Web/CSS/Media_Queries/Using_media_queries

• Using CSS animations, Mozilla Developer Network
https://developer.mozilla.org/en-
US/docs/Web/CSS/CSS_Animations/Using_CSS_animations

• Specifics on CSS Specificity https://css-tricks.com/specifics-on-css-specificity/

• Cascading Style Sheets, Wikipedia, the free Encyclopedia,
https://en.wikipedia.org/wiki/Cascading_Style_Sheets

• Rendering Performance, Google Developers
https://developers.google.com/web/fundamentals/performance/rendering/

• Matt Ryall, CSS layout fundamentals, part 4: positioning
http://mattryall.net/blog/2008/08/css-layout-fundamentals-positioning

• Matt Ryall, CSS layout fundamentals, part 5: floats
http://mattryall.net/blog/2008/09/css-layout-fundamentals-floats

https://developer.mozilla.org/en-US/docs/Web/CSS/Reference
https://developer.mozilla.org/en-US/docs/Web/CSS/Media_Queries/Using_media_queries
https://developer.mozilla.org/en-US/docs/Web/CSS/CSS_Animations/Using_CSS_animations
https://css-tricks.com/specifics-on-css-specificity/
https://en.wikipedia.org/wiki/Cascading_Style_Sheets
https://developers.google.com/web/fundamentals/performance/rendering/
http://mattryall.net/blog/2008/08/css-layout-fundamentals-positioning
http://mattryall.net/blog/2008/09/css-layout-fundamentals-floats

