
H T M L 5
I N T E R N E T S Y S T E M S

TOMASZ PAWLAK, PHD
MARCIN SZUBERT, PHD
POZNAN UNIVERSITY OF TECHNOLOGY, INSTITUTE OF COMPUTING SCIENCE

P R E S E N T A T I O N O U T L I N E

• History and Motivation

• HTML5 basics

• HTML5 features
• Semantics
• Connectivity
• Offline & Storage
• Multimedia
• 2D/3D Graphics & Effects
• Performance & Integration
• Device Access
• Styling

M O D E R N W E B A P P L I C A T I O N

SERVERDATABASE

H I S T O R I C A L P E R S P E C T I V E

• 1991 — HTML Tags, an informal CERN document

• 1993 — HTML Internet Draft published by the IETF

• 1995 — HTML 2.0 (RFC 1866) published by the IETF

• 1997 — HTML 3.2 published as a W3C Recommendation

• 1997 — HTML 4.0 published as a W3C Recommendation:
• Transitional, which allowed for deprecated elements
• Strict, which forbids deprecated elements
• Frameset, which allowed embedding multiple documents using frames

• 1998 — W3C decided to stop evolving HTML and instead begin
work on an XML-based equivalent, called XHTML

H I S T O R I C A L P E R S P E C T I V E — X H T M L

• 2000 — XHTML 1.0 published as W3C Recommendation:
• reformulation of HTML 4 as an application of XML 1.0, offering

stricter rules for writing and parsing markup: lower case tags, end
tags for all elements, quoting attributes, escaping ampersands

• new MIME type application/xhtml+xml enforces draconian
error handling in web browsers.

• combatibility guidelines: allowed serving pages as HTML
(text/html) to continue using forgiving error handling in HTML
parsers.

• 2002-2006 — W3C released working drafts of XHTML 2.0
which break backward compatibility.

• 2009 — W3C abandoned the work on XHTML 2.0.

H I S T O R I C A L P E R S P E C T I V E — W H A T W G

• 2004 — Opera, Mozilla and Apple formed Web Hypertext Application
Technology Working Group (WHATWG):
The group aims to develop specifications based on HTML and related technologies
to ease the deployment of interoperable Web Applications [...] for implementation
in mass-market Web browsers, in particular Safari, Mozilla, and Opera; [the group]
intends to ensure that all its specifications address backwards compatibility
concerns [...] and specify error handling behavior to ensure interoperability even
in the face of documents that do not comply to the letter of the specifications.

• 2006 — W3C created HTML Working Group to participate in the
development of the HTML5 specification:
Some things are clearer with hindsight of several years. It is necessary to evolve
HTML incrementally. The attempt to get the world to switch to XML, including
quotes around attribute values and slashes in empty tags and namespaces all at
once didn't work... The plan is to charter a completely new HTML group.

— T I M B E R N E R S - L E E

— I A N H I C K S O N , O N B E H A L F O F T H E W H A T W G M E M B E R S

W H A T W G P R I N C I P L E S

• Backwards compatibility — web application technologies
should be based on technologies authors are familiar with,
including HTML, CSS, DOM, and JavaScript.

• Well-defined error handling — error handling in Web
applications must be defined to a level of detail where User
Agents do not have to invent their own error handling
mechanisms or reverse engineer other User Agents’.

• Users should not be exposed to authoring errors —
specifications must specify exact error recovery behaviour for
each possible error scenario; error handling should for the
most part be defined in terms of graceful error recovery, rather
than obvious and catastrophic failure (as in XML).

W H A T W G P R I N C I P L E S

• Practical use — every feature that goes into the Web Applications
specifications must be justified by a practical use case; the reverse is
not necessarily true.

• Scripting is here to stay — but should be avoided where more
convenient declarative markup can be used. Scripting should be
device and presentation neutral.

• Device-specific profiling should be avoided — authors should be
able to depend on the same features being implemented in
desktop and mobile versions of the same UA.

• Open process — the Web has benefited from being developed in
an open environment. Web Applications will be core to the web,
and its development should also take place in the open.

H I S T O R I C A L P E R S P E C T I V E —
H T M L 5
• 2008 — First Public Working Draft of HTML5 for:

• web developers — how to use new features, write correct documents
and avoid bad habits.

• browser makers — how to parse HTML, ensure backward
compatibility, handle errors or obsolete elements.

• 2011 — W3C and WHATWG diverged:
• WHATWG updates the Living Standard — whatwg.org/html
• W3C uses traditional versioning — http://www.w3.org/TR/html/

• 2014 — HTML 5.0 specification released as a stable W3C
Recommendation

• 2016 & 2017 — HTML 5.1 & 5.2 released as W3C
Recommendation

• HTML 5.3 is under development as of 2020

http://whatwg.org/html
http://www.w3.org/TR/html/

F I V E T H I N G S Y O U S H O U L D K N O W
A B O U T H T M L 5

1. It’s not one big thing — it is a collection of individual
features.

2. You don’t need to throw anything away — applications
that worked yesterday in HTML 4 will still work today in
HTML5.

3. It’s easy to get started — upgrading to HTML5 can be as
simple as changing your doctype.

4. It already works — HTML5 is already well-supported by
most modern browsers.

5. It’s here to stay — HTML5 is the future of web standards.
— D I V E I N T O H T M L 5 , M A R K P I L G R I M

H T M L 5 I S N O T O N E B I G T H I N G

• The term HTML5 represents two different concepts:
• a new version of the language HTML, with new elements,

attributes, and behaviors;
• a larger set of technologies that allows more diverse and

powerful Web sites and applications. This set is sometimes
called HTML5 & friends and often shortened to just HTML5.

• HTML5 is basically an attempt to evolve the Web to
meet the demands of the way we use it today — Open
Web Platform, New Exciting Web Technologies.

H T M L 5 F E A T U R E S

Semantics — allows to describe more precisely
what the content is.

Connectivity — allows to communicate with the
server in innovative and efficient ways.

Offline & Storage — allows webpages to store
data on the client-side and operate offline.

Multimedia — making video and audio first-class
citizens in the web.

H T M L 5 F E A T U R E S

2D/3D Graphics & Effects — allows a much
more diverse range of presentation options.

Performance & Integration — providing speed
optimization and better usage of hardware.

Device Access — allows the usage of various
input and output devices.

Styling — allows authors to write more
sophisticated themes.

H T M L 5 I S E A S Y T O G E T S T A R T E D

1 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

1 <!doctype html>
2 <html lang="en">
3 <head>
4 <meta charset="UTF-8">
5 <title>Example document</title>
6 </head>
7 <body>
8 <p>Example paragraph</p>
9 </body>
10 </html>

D O C T Y P E S W I T C H I N G

• The Document Type Definition is used for two things:
• Web browsers use it to determine which rendering mode they should use

(quirks, standard, almost standard).
• Markup validators look at the doctype to determine which rules they

should check the document against.

• New doctype <!DOCTYPE html>
• triggers standards mode in all current and relevant legacy browsers.
• intentionally contains no language version identifier so it will remain usable

for all future revisions of HTML
• is short and memorable to encourage its use.

• Upgrading to the HTML5 doctype won’t break your existing
markup, because obsolete elements will still render in HTML5;
but it will allow you to use and validate new elements.

C H A R A C T E R E N C O D I N G

• Web developers are required to declare the
character encoding. There are three ways to do that:
• at the transport level; for instance, by using the HTTP header

• using a Unicode Byte Order Mark (BOM) character at the start
of the file. This character provides a signature for the encoding
used.

• using a meta element with a charset attribute that specifies
the encoding, for instance:
replaces the older syntax:

<meta charset="UTF-8">

<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

G O O D H T M L 5 S T Y L E

• Including the optional <html>, <body>, and <head> elements.
The <html> element is a handy place to define the page’s
natural language; and the <body> and <head> elements help
to keep page content separate from the other page details.

• Using lowercase tags (like <p> instead of <P>). They’re not
necessary, but they’re far more common and easier to type.

• Using quotation marks around attribute values. The quotation
marks are there for a reason — to protect you from mistakes
that are all too easy to make. Without quotation marks, one
invalid character (>, = or a space) can break your whole page.

H T M L 5 A L R E A D Y W O R K S

• You can’t detect HTML5 support, but you can detect support
for individual features, like canvas, video, or geolocation.

• Before you commit to HTML5, you need to know how well it
works with the browsers your visitors are likely to use.

• http://caniuse.com

• http://html5readiness.com

• http://gs.statcounter.com

• http://ranking.pl

http://caniuse.com
http://html5readiness.com
http://gs.statcounter.com/
http://ranking.pl/pl/rankings/web-browsers.html

D E A L I N G W I T H O L D B R O W S E R S

• For the next few years, some of your visitors’ browsers
won’t support all the HTML5 features you want to use.

• But it doesn’t need to prevent you from using HTML5
features (see also http://html5please.com):
• degrade gracefully by ignoring nonessential frills, like some of the

web form features (like placeholder text) and some of the formatting
properties from CSS3 (like rounded corners and drop shadows).

• use fallback mechanism — when a feature doesn’t work supply
another solution for older browsers, e.g., HTML5’s new <video>
element allows to supply an alternative video player that uses Flash.

• use JavaScript workarounds (polyfills) — many of HTML5 new
features can be replicated by using a good JavaScript library.

http://html5please.com

D E A L I N G W I T H O L D B R O W S E R S

• Feature detection with modernizr.com — an open-source,
MIT-Licensed JavaScript library that checks which native
HTML5 features are available in the current browser.

• Modernizr allows you to progressively enhance your pages
with a granular level of control over the experience.

• Modernizr pairs extremely well with polyfills — scripts that
replicate the standard API for older browsers, when native
support is lacking.

• Just because you can use a polyfill doesn’t mean you should!

http://modernizr.com/

S E M A N T I C S

P A G E S T R U C T U R E I N H T M L 4

• Most of the structure is entirely
unknown to a browser.

• Only one HTML element used for all
these important page landmarks.

• Semantically neutral <div> —
a generic mechanism for adding
structure to documents.

• It’s a straightforward, all-purpose
container that can be used to apply
formatting anywhere.

div id="header"

div class="post"

div class="post"

div id="footer"

div id=
"side-
bar"

S E M A N T I C S

• http://w3c.github.io/html-reference/elements.html

• The majority of new elements are semantic elements —
these elements do not change anything besides giving
extra meaning to the content they enclose.

• Semantics are all about adding meaning to your markup,
and there are several types of information you can inject.

• How the semantic elements were chosen?
https://web.archive.org/web/20160721214418/https://dev
elopers.google.com/webmasters/state-of-the-web/

http://w3c.github.io/html-reference/elements.html
https://developers.google.com/webmasters/state-of-the-web/2005/classes

C L A S S N A M E S I D N A M E S

P A G E S T R U C T U R E I N H T M L 5

• HTML5 gives us new semantic
elements that unambiguously
denote landmarks in a page.

• Most of semantic elements behave
exactly like <div> elements.

• They group a block of markup, they
don’t do anything on their own, and
let you apply formatting (using CSS).

• What happens in older browsers that
don't understand these elements?

header

article

article

footer

nav

S T R U C T U R A L E L E M E N T S

• <header> — typically contains the headings for a section
(or the whole page) along with content such as
introductory material or navigational aids for the section.

• <section> — represents a section of a document or
a group of documents; an all-purpose container with
a single rule: the content it holds should begin with
a heading. Use it only if the other semantic elements don’t
apply.

• <footer> — represents the footer at the bottom of the
page. This is a tiny chunk of content that may include small
print, a copyright notice, and a brief set of links (for
example, “About Us” or “Get Support”).

S T R U C T U R A L E L E M E N T S

• <nav> — represents a section of a document that links to
other documents or to parts within the document itself,
i.e., a section of navigation links.

• <article> — represents whatever you think of as an
article; a section of self-contained content like
a newspaper article, a forum post, or a blog entry; the
content it holds should begin with a heading.

• <aside> — represents a complete chunk of content
that’s separate from the main page content. For example,
it makes sense to use <aside> to create a sidebar with
related content or links next to a main article.

S T R U C T U R I N G E X A M P L E

1 <div class="post">
2 <h2>Post title</h2>
3 <small>January 24th, 2010</small>
4
5 <div class="entry">
6 <p>Blog post text</p>
7 </div>
8
9 <p class="postmetadata">No Comments</p>

10 </div>

S T R U C T U R I N G E X A M P L E
1 <article class="post">
2 <header>
3 <h2>Post title</h2>
4 <time datetime="2010-01-24">
5 <small>January 24th, 2010</small>
6 </time>
7 </header>
8
9 <div class="entry">

10 <p>Blog post text</p>
11 </div>
12
13 <footer class="postmetadata">
14 No Comments
15 </footer>
16 </article>

Article text

<article>

heading

<time> (just date)

<footer> (metadata)

<header>

S T R U C T U R I N G E X A M P L E

• When article elements are nested, the inner article elements represent
articles that are in principle related to the contents of the outer article.

• For instance, the comments to a blog entry could be represented as
article elements nested within the article element for the blog entry.

Article text

<article>

heading

<time> (just date)

<article> another comment

<article>

<footer> (metadata)

<header>

<header>
<time> comment date / time

Comment text

I N L I N E S E M A N T I C E L E M E N T S

• Semantics can also include text-level information, which you add
to explain and point out much smaller pieces of content.

• <time> — used for unambiguously encoding dates and times for
machines, while still displaying them in a human-readable way.

• <output> — a placeholder that your JavaScript code can use to
show a piece of calculated information (the result).

• <mark> — a section of text that’s highlighted for reference. Can
be used to flag important content or keywords, as search engines
do when showing matching text in your search results

The party starts <time datetime="2014-03-21">March 21st</time>.

H T M L 5 S E M A N T I C E L E M E N T S
B E N E F I T S

• Easier editing and maintenance — interpreting the markup
in a traditional HTML page is difficult; using HTML5’s semantic
elements allows to provide extra structural information.

• Accessability — HTML5 can provide a far better browsing
experience for disabled visitors.

• Search-engine optimization — search bots already check for
some of HTML5’s semantic elements to glean more
information about the pages they’re indexing.

• Future features — new browsers and web editing tools are
sure to take advantage of semantic elements.

O T H E R S E M A N T I C S S T A N D A R D S
A R I A

• Accessibility of web content requires semantic information about
widgets, structures, and behaviors, in order to allow assistive
technologies to convey appropriate information to persons with
disabilities.

• Accessible Rich Internet Applications (ARIA) provides an ontology of
roles, states, and properties that define accessible user interface
elements and can be used to improve the accessibility and
interoperability of web content and applications.

• These semantics are designed to allow an author to properly convey
user interface behaviors and structural information to assistive
technologies in document-level markup

• ARIA was invented before HTML5 and later incorporated into HTML5.
The semantic elements of HTML5 have default values for ARIA
attributes.

A R I A E X A M P L E
<!-- The role attributes describe the tab list and each tab. -->
<ol role="tablist">

<li id="ch1Tab" role="tab">
Chapter 1

<li id="ch2Tab" role="tab">

Chapter 2

<li id="quizTab" role="tab">

Quiz

<div>
<!-- The role and aria-labelledby attributes describe these panels. -->

<div id="ch1Panel" role="tabpanel" aria-labelledby="ch1Tab">
Chapter 1 content goes here

</div>
<div id="ch2Panel" role="tabpanel" aria-labelledby="ch2Tab">

Chapter 2 content goes here
</div>
<div id="quizPanel" role="tabpanel" aria-labelledby="quizTab">

Quiz content goes here
</div>

</div>

O T H E R S E M A N T I C S S T A N D A R D S
M I C R O D A T A

• Microdata is a specification used to nest metadata within
existing content on web pages.

• Search engines, web crawlers, and browsers can extract and
process Microdata from a web page and use it to provide
a richer browsing experience for users.

• Web developers can design a custom vocabulary or use
vocabularies available on the web.

• A collection of commonly used markup vocabularies are
provided by schema.org schemas which include: Person,
Event, Organization, Product, Review.

M I C R O D A T A E X A M P L E

<section itemscope itemtype="http://schema.org/Person">
Hello, my name is
John Doe,
I am a
graduate research assistant
at the
University of Dreams.
My friends call me
Johnny.
You can visit my homepage at
www.JohnnyD.com.
<section itemprop="address" itemscope itemtype="http://schema.org/PostalAddress">

I live at
1234 Peach Drive,
Warner Robins,
Georgia.

</section>
</section>

Source: https://en.wikipedia.org/wiki/Microdata_%28HTML%29

https://en.wikipedia.org/wiki/Microdata_(HTML)

H T M L 5 F O R M S

• Before HTML5 the text input was used for all sorts of textual input
(In the same way that the <div> element was employed for all sorts
of block content).

• HTML5 provides a number of new and backward-compatible input
types to improve the semantics of data input.

• In addition to new form field types, HTML5 introduces ten common
attributes, that allow to alter the behavior of a given field.

• Some attributes allow the browser to perform client-side validation
without JavaScript. For example, the required attribute specifies
that a field must be populated, or the browser will produce an error.

H T M L 5 F O R M S

• Input tag

• Examples

• Types and support
• http://www.wufoo.com/html5/

<input name="name1" type="text" value="abc"/>

<input name="name2" type="radio" value="male" checked/>Male
<input name="name2" type="radio" value="female" />Female

<input name="name" type="type" field-specific-attributes/>

http://www.wufoo.com/html5/

P R E S E N T A T I O N O U T L I N E

• History and Motivation

• HTML5 basics

• HTML5 features
• Semantics
• Connectivity
• Offline & Storage
• Multimedia
• 2D/3D Graphics & Effects
• Performance & Integration
• Device Access
• Styling

C O N N E C T I V I T
Y

C O N N E C T I V I T Y

• Before HTML5 there was one main tool that allows a web
page to speak to a web server — XMLHTTPRequest.

• HTML5 provides two new ways for web pages to talk
with a web server:
• server-sent events — allows a server to push events to a client,

rather than the classical paradigm where the server could send
data only in response to a client's request.

• web sockets — allows creating a permanent connection
between the page and the server and to exchange non-HTML
data through that means.

C O N N E C T I V I T Y
X M L H T T P R E Q U E S T

• XMLHttpRequest (XHR) is a JavaScript object that provides
an easy way to retrieve data from a URL without a full page
refresh.

• A web page can update just a part of the page without
disrupting what the user is doing — requests take place
asynchronously, the web page stays responsive.

• XMLHttpRequest is used heavily in AJAX (Asynchronous
JavaScript and XML) programming.

• XMLHttpRequest Level 2 extends the functionality of
XMLHttpRequest object, including, progress events, support
for cross-site requests, and the handling of byte streams.

C O N N E C T I V I T Y
F E T C H

• Fetch API is a HTML5 replacement for XMLHttpRequest

• Supports all features of XMLHttpRequest plus Promises

• Promise is JavaScript object that represents future result of activity and
fires events when activity is done

• Simpler to use than XMLHttpRequest

• Supported in all major browsers

• https://developer.mozilla.org/en-
US/docs/Web/API/Fetch_API/Using_Fetch

https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch

C O N N E C T I V I T Y
C R O S S - O R I G I N R E S O U R C E S H A R I N G

• Cross-site HTTP requests using the XMLHttpRequest and
Fetch objects have been subject to the same-origin policy
— a web application could only make requests to the domain
it was loaded from, and not to other domains.

• Cross-Origin Resource Sharing (CORS) mechanism provides
a way for web servers to support cross-site access controls,
which enable secure cross-site data transfers.

• The Cross-Origin Resource Sharing standard works by adding
new HTTP headers that allow servers to describe the set of
origins that are permitted to read the information.

• Other HTTP requests:

• Browser uses OPTIONS preflight
request to acquire CORS headers
before running actual request

C O N N E C T I V I T Y
C R O S S - O R I G I N R E S O U R C E S H A R I N G

• Safe HTTP requests (GET, HEAD,
POST without payload):

• The CORS header is verified by the
browser, if it is not valid, the
response is not available for a script

https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS

https://developer.mozilla.org/en-US/docs/Web/HTTP/Access_control_CORS

C O N N E C T I V I T Y
S E R V E R - S E N T E V E N T S

• With XMLHttpRequest and Fetch once the server provides
its response, the interaction is over — there’s no way for the
web server to wait a moment and send another message with
an update.

• One approach to maintain a longer-term web server
relationship is to use polling — periodically checking the web
server for new data (or long polling, i.e. hanging GET).

• HTML5 provides server-sent events (SSE), which let a web
page hold an open connection to the web server.

• With SSE a browser receives updates from a server via HTTP
connection and processes them using EventSource API.

C O N N E C T I V I T Y
S E R V E R - S E N T E V E N T S

• Unlike XMLHttpRequest and Fetch, the standard of the
server-sent events doesn’t let you send just arbitrary data.

• You need to follow a simple but specific format:

1 event: userconnect
2 data: {"username": "bobby", "time": "02:33:48"}
3
4 event: usermessage
5 data: {"username": "bobby", "time": "02:34:11", "text": "Hi everyone."}
6
7 event: userdisconnect
8 data: {"username": "bobby", "time": "02:34:23"}
9
10 event: usermessage
11 data: {"username": "sean", "time": "02:34:36", "text": "Bye, bobby."}

C O N N E C T I V I T Y
S E R V E R - S E N T E V E N T S

• Subscribe to events using JavaScript:

var source = new EventSource("demo_sse.php");
source.onmessage = function(event) {

document.getElementById("result").innerHTML += event.data + "
";
};

C O N N E C T I V I T Y
W E B S O C K E T S

• With server-sent events the communication is completely
one-sided — there’s no way for the browser to respond, or
to enter into a more complex dialogue.

• If a web application requires bidirectional communication,
one approach is to use the XMLHttpRequest or the
Fetch object, but:
• it is difficult to determine order of messages if you send multiple

asynchronous messages back and forth very quickly (e.g. in a chat
application).

• there’s no way to associate one call with the next, so every time
the web page makes a request, the web server needs to sort out
who you are all over again.

C O N N E C T I V I T Y
W E B S O C K E T S

• The HTML5 WebSockets specification defines an API that
enables web pages to use the WebSockets protocol for two-
way communication between the user's browser and a server.

• WebSocket is a protocol providing full-duplex communication
channels over a single TCP connection.

• WebSockets provides an enormous step forward in the
scalability of the real-time, event-driven web applications.

• Web Sockets can provide even a 1000:1 reduction in HTTP
header traffic and 3:1 reduction in latency.

• Source: https://websocket.org/quantum.html

https://websocket.org/quantum.html

W E B S O C K E T S E X A M P L E
if ("WebSocket" in window) {

alert("WebSocket is supported by your Browser!");

// Let us open a web socket
var ws = new WebSocket("ws://localhost:9998/echo");

ws.onopen = function () {
// Web Socket is connected, send data using send()
ws.send("Message to send");
alert("Message is sent...");

};

ws.onmessage = function (evt) {
var received_msg = evt.data;
alert("Message is received...");

};

ws.onclose = function () {
// websocket is closed.
alert("Connection is closed...");

};
}
else
{

// The browser doesn't support WebSocket
alert("WebSocket NOT supported by your Browser!");

}

Source: http://www.tutorialspoint.com/html5/html5_websocket.htm

http://www.tutorialspoint.com/html5/html5_websocket.htm

O F F L I N E &
S T O R A G E

O F F L I N E & S T O R A G E
S E R V I C E W O R K E R S
• A service worker is a script that a browser runs in the

background, separate from a web page and without user
interaction. Web workers are intended for on-demand caching,
push notifications and background sync.

• A service worker is like a proxy between a web page and
a server. It takes over the requests raised by the web page and
serves them using its custom behavior.

• Things to note about a service worker:
• It can't access the DOM directly. Instead, a service worker can

communicate with the pages it controls by responding to messages sent
via the postMessage interface, and those pages can manipulate the DOM.

• It's terminated when not in use, and restarted when it's next needed, so
you cannot rely on global state within a service worker's onfetch and
onmessage handlers. If there is information that you need to persist and
reuse across restarts, service workers do have access to the IndexedDB API.

• It handles HTTPS connections only.

O F F L I N E & S T O R A G E
S E R V I C E W O R K E R L I F E C Y C L E

• The first event a service worker gets is
install. It's triggered once as soon as the
worker executes. After updating the service
worker script, the new script gets its install
event.

• Once a service worker is ready to control clients
and handle functional events like push and
sync, it gets an activate event.

• A service worker won't receive events like
fetch and push until it successfully finishes
installing and becomes "active".

• By default, page's fetches won't go through the
service worker unless the page request itself
went through a service worker. So you'll need
to refresh the page to see the effects of the
service worker.

• clients.claim() can override this default,
and take control of non-controlled pages.

O F F L I N E & S T O R A G E
O N - D E M A N D C A C H I N G E X A M P L E

• An HTML page

<!DOCTYPE html>

An image will appear here in 3 seconds:

<script>

navigator.serviceWorker.register('/sw.js')

.then(reg => console.log('SW registered!', reg))

.catch(err => console.log('Boo!', err));

setTimeout(() => {

const img = new Image();

img.src = '/dog.svg';

document.body.appendChild(img);

}, 3000);

</script>

self.addEventListener('install', event => {

console.log('V1 installing…');

// cache a cat SVG

event.waitUntil(

caches.open('static-v1').then(cache => cache.add('/cat.svg'))

);

});

self.addEventListener('activate', event => {

console.log('V1 now ready to handle fetches!');

});

self.addEventListener('fetch', event => {

const url = new URL(event.request.url);

// serve the cat SVG from the cache if the request is

// same-origin and the path is '/dog.svg'

if (url.origin == location.origin && url.pathname == '/dog.svg') {

event.respondWith(caches.match('/cat.svg'));

}

});

• A service worker (sw.js)

O F F L I N E & S T O R A G E
B A C K G R O U N D S Y N C E X A M P L E

• An HTML page

• In the above, doSomeStuff() should return a promise
indicating the success/failure of whatever it’s trying to do.
If it fulfills, the sync is complete. If it fails, another sync will
be scheduled to retry. Retrying syncs wait for connectivity,
and employ an exponential back-off.

<!DOCTYPE html>

<script>

// Register your service worker:

navigator.serviceWorker.register('/sw.js');

// Then later, request a one-off sync:

navigator.serviceWorker.ready.then(function(registration) {

return registration.sync.register('myFirstSync');

});

</script>

• A service worker (sw.js)
self.addEventListener('sync', function(event) {

if (event.tag == 'myFirstSync') {

event.waitUntil(doSomeStuff());

}

});

O F F L I N E & S T O R A G E
C L I E N T - S I D E S T O R A G E

• Certain types of data should be stored on the client-side:
• user preferences (setting how the web page tailors its display)
• application state (a snapshot of where the web application is right

now, so the web visitor can pick up at the same spot later on).

• Before HTML5, the only way to get local storage was to
use cookies, a mechanism originally devised to transmit
small bits of identifying information.
• Most browsers limit the size of cookies to 4KB, and the number of

cookies stored per domain to 20.
• Cookies are sent in every HTTP request, adding overhead to

transactions and slowing down page loads.

O F F L I N E & S T O R A G E
C L I E N T - S I D E S T O R A G E

• HTML5 provides alternatives to cookies allowing the
application to persistently save a larger amount of data
on the client device, without sending it to the web server:
• Web Storage simply provides a key-value mapping.

• Indexed Database supports indexes like those of relational
databases, so searching objects matching a particular field is fast.

• Client-side storage is a particularly useful for:
• making self-sufficient offline applications that can store all the

information they need, even when there’s no web connection.
• enhancing performance — e.g., in applications that continually

retrieve the same data or generate data using complex calculations.

O F F L I N E & S T O R A G E
W E B S T O R A G E

• Web Storage is an example of a NoSQL key-value store.

• There are two types of web storage that can be accessed via
globally available JavaScript objects:
• Local storage uses the localStorage object to store data

permanently and make it accessible to any page in your website; most
browsers allow users to clear out local storage.

• Session storage uses the sessionStorage object to store data
temporarily, for a single browser window; the data remains until the window
is closed, at which point the session ends and the data disappears.

• Present implementations only support string-to-string mappings,
so you need to serialize and deserialize other data structures.

• Web Storage supports events fired when a data is written. The
events are fired in all browser windows sharing the same storage,
thus can be used as inter-window communication mechanism.

O F F L I N E & S T O R A G E
I N D E X E D D B

• Although the Web Storage can store megabytes of data (browsers
limit capacity in their own ways), it’s not ideal for storing complex
data structures that would typically be stored in a database.

• The IndexedDB API provides developers with a means of storing
significant amounts of structured data in a client-side JavaScript
object-oriented database.

• In IndexedDB the values are fully indexable, making it a viable
solution for any application where you need to search or filter data.

• IndexedDB uses an asynchronous model — database tasks happen
in the background, without stalling your code or locking up the page.

M U L T I M E D I
A

M U L T I M E D I A

• The majority of internet bandwidth in recent years has been
driven by the delivery of multimedia content.

• Cisco reports that the trend isn’t slowing down, estimating that
a staggering 73% of all internet traffic was video in 2016, and
predicting increase of that value to 82% in 2021. The fastest
growing market segment is live video streaming.

• Adobe Flash was de facto standard of showing video on the web
— it works everywhere the plug-in is installed, and currently that’s
on more than 99 percent of connected computers.

• Problems with Flash:
• markup that uses the <object> and <embed> elements.
• security and performance of Flash as a platform for video.
• lack of support for Flash on some mobile devices.

M U L T I M E D I A

• HTML5 introduces built-in media support via the <audio>
and <video> elements, offering the ability to easily embed
media into HTML documents.

• New elements allow supported multimedia files to be
played natively by the browser, with no third-party plug-
ins required.

• Controlling an HTML5 players to play, pause, increase and
decrease volume using some Javascript is straightforward.

• www.youtube.com/html5

http://www.youtube.com/html5

M U L T I M E D I A
S U P P O R T E D F O R M A T S

• The HTML5 specification does not specify which video
formats browsers should support.

• User agents are free to support any video formats they feel
are appropriate, but content authors cannot assume that any
video will be accessible by all complying user agents.

• The ideal format would:
• be royalty-free,
• have good compression and image quality
• a hardware video decoder should exist for the format, as many

embedded processors do not have the performance to decode video.

M U L T I M E D I A
S U P P O R T E D F O R M A T S

• The result has been the polarisation of HTML5 video:
• industry-standard but patented formats (MP4, H.264)
• free, open formats (WebM, Ogg Theora, Ogg Vorbis)

• A web page can provide video in multiple formats — the
browser will choose automatically which file to download:

1 <video poster="movie.jpg" controls>
2 <source src="movie.webm" type='video/webm; codecs="vp8.0, vorbis"'>
3 <source src="movie.ogv" type='video/ogg; codecs="theora, vorbis"'>
4 <source src="movie.mp4" type='video/mp4; codecs="avc1.4D401E, mp4a.40.2"'>
5 <p>This is fallback content to display for user agents that do not support
6 the video tag.</p>
7 </video>

G R A P H I C S &
E F F E C T S

G R A P H I C S & E F F E C T S
C A N V A S

• HTML5 defines the <canvas> element as
“a resolution-dependent bitmap canvas that can be used for
rendering graphs, game graphics, or other visual images on the fly.”

• A canvas is a rectangular drawing surface in your page where you
can use JavaScript to draw anything you want.

• HTML5 defines a set of functions (the canvas API) for drawing
shapes, defining paths, creating gradients, adding text and
applying transformations without additional plug-ins.

• The API also provides developers with a way to export the current
content of the canvas as a PNG or JPG format image.

G R A P H I C S & E F F E C T S
C A N V A S 3 D / W E B G L

• Web Graphics Library (WebGL), a JavaScript API for creating 3D
graphics using the <canvas> element (without the use of plug-ins).

• WebGL is based on the Open Graphics Library for Embedded
Systems (OpenGL ES) standard, which was designed for implementing
3D on embedded devices including mobile phones.

• It provides developers with an API that allows them to control graphics
hardware at a low level using shader, buffer, and drawing methods.

• WebGL programs consist of control code written in JavaScript and
special effects code (shader code) that is executed on a computer's
Graphics Processing Unit (GPU)

• Examples
• http://carvisualizer.plus360degrees.com/threejs/
• http://hexgl.bkcore.com/play/

http://carvisualizer.plus360degrees.com/threejs/
http://hexgl.bkcore.com/play/

G R A P H I C S & E F F E C T S
S C A L A B L E V E C T O R G R A P H I C S

• Scalable Vector Graphics (SVG) is an XML language
for describing two-dimensional vector graphics.

• HTML5 specification gives you the ability to use SVG
directly in your HTML markup.

• SVG maintains a tree that represents the current state
of all the objects drawn on-screen — every graphical
object is also a DOM object, so you ca attach
JavaScript event handlers or modify them later.

P E R F O R M A N C E &
I N T E G R A T I O N

P E R F O R M A N C E & I N T E G R A T I O N
W E B W O R K E R S

• A web worker is a script executed from an HTML page that runs
in the background, independently of other user-interface scripts
that may also have been executed from the same HTML page.

• Web workers are able to utilize multi-core CPUs more effectively.

• Using web workers allows web pages to remain responsive at the
same time as they are running long tasks in the background.

P E R F O R M A N C E & I N T E G R A T I O N
W E B W O R K E R S

• Web workers can do complex mathematical calculations, make
network requests, access IndexedDB while the main web page
responds to the user scrolling, clicking, or typing.

• Web workers do not have access to DOM and are executed in
separate context from the “normal” JS code (don’t have access
to objects defined there)

• There is no synchronization mechanism between web workers

• E.g., no locks, mutexes, semaphores etc.

• To communicate between web worker(s) and normal JS code use
message queues and events.

P E R F O R M A N C E & I N T E G R A T I O N
D R A G - A N D - D R O P

• Lack of drag-and-drop interactivity had been an issue that
has plagued web application developers for a long time.

• This type of functionality has been prevalent in desktop
applications for as long as graphical UIs have been around.

• Up until now, developers had to rely on using JavaScript
libraries (e.g. Dojo) to provide web apps with decent drag-
and-drop features (e.g. for rearranging the order of a list or
moving documents in content management systems).

• In HTML5, a full Drag and Drop API has been specified.

P E R F O R M A N C E & I N T E G R A T I O N
D R A G - A N D - D R O P A P I

• To use drag and drop in HTML5, you can use the draggable attribute
on an element to explicitly define that element as draggable (many
elements, such as images, are draggable by default.)

• You can then use a series of events to listen for changes as the user
drags the element into and out of other elements and indeed when
the user drops the element.

• The API allows you to set the data you want to associate with the drag
operation and then to read this back when dropped.

• A new feature of HTML5 drag and drop (combined with File API) is
the ability to drag files from your computer and drop them into a
web application: an example of this functionality can be seen in Gmail.

P E R F O R M A N C E & I N T E G R A T I O N
F U L L S C R E E N A P I

• The Fullscreen API provides an easy way for web content
to be presented using the user's entire screen.

• The Fullscreen API allows to make an arbitrary HTML
element "full-screen", hiding the browser's UI and
stretching the element to encompass the entire screen.

• This API is particularly useful for HTML5 video and games.

• The API is not consistently implemented — there are
subtle presentation differences between the browsers.

P E R F O R M A N C E & I N T E G R A T I O N
H I S T O R Y A P I

• The HTML5 History API gives developers the ability to modify
a website's URL without a full page refresh.

• This is particularly useful in Single Page Applications for loading
portions of a page with AJAX, such that the content is significantly
different and warrants a new URL.

• The History API provides two new methods:
• history.pushState()— adds a new entry in the history stack

• history.replaceState()— replaces current history value

• HTML5 History API also allows us to build applications in
an SEO-friendly manner.

P E R F O R M A N C E & I N T E G R A T I O N
P A G E V I S I B I L I T Y A P I

• With tabbed browsing, there is a reasonable chance that any given
webpage is in the background and thus not visible to the user.

• The Page Visibility API provides events you can watch for to know
when a document becomes visible or hidden, as well as features to
look at the current visibility state of the page.

• When the user minimizes the window or switches to another tab,
the API sends a visibilitychange event to let listeners know
the state of the page has changed.

• http://daniemon.com/tech/webapps/page-visibility/

http://daniemon.com/tech/webapps/page-visibility/

D E V I C E A C C E S S

D E V I C E A C C E S S
G E O L O C A T I O N

• The Geolocation API allows the user to provide their location
to web applications (if GPS isn’t available, devices can fall
back to other means of tracking location, such as IP address).

• For privacy reasons, the user is asked for permission to report
location information.

• The Geolocation API can also support features like:
• tracking user movement over set time intervals
• obtaining the user’s altitude, heading, and speed
• limiting GPS use when battery life is a concern

D E V I C E A C C E S S
M O B I L E D E V I C E S A P I

• The Device Orientation API delivers events to your web page that
correspond to the movement of the device:
• DeviceOrientationEvent — sent when the accelerometer detects a change to

the orientation of the device; allows to respond to rotation and elevation changes

• DeviceMotionEvent — listening for changes in acceleration (instead of
orientation)

• The Battery API allows to adjust the amount of processing depending on
the state of the battery, e.g. you could avoid doing any heavy processing
or reduce the number of network connections when the battery is low.

• Mobile devices offer alternative input — the Vibration API provides
access to a mobile’s built-in vibration function.

D E V I C E A C C E S S
C A M E R A A P I

• Through the Camera API, it is possible to take pictures with
your device's camera and upload them into the current web
page.

• When users choose to activate this HTML element, they are
presented with an option to choose a file, where the device's
camera is one of the options.

• If they select the camera, it goes into picture taking mode. After
the picture has been taken, the user is presented with a choice
to accept or discard it. If accepted, it gets sent to the <input
type="file"> element and its onchange event is triggered.

<input type="file" id="take-picture" accept="image/*">

D E V I C E A C C E S S
M E D I A C A P T U R E A N D S T R E A M S

• The MediaDevices.getUserMedia() method prompts the
user for permission to use a media input which produces a
MediaStream with tracks containing the requested types of
media.

• That stream can include, for example,
• a video track produced by either a hardware or virtual video source such as

a camera, video recording device, screen sharing service, and so forth,
• an audio track produced by a physical or virtual audio source like

a microphone, A/D converter, or the like,
• possibly other track types.

• https://webrtc.github.io/samples/
• https://appr.tc/

https://webrtc.github.io/samples/
https://appr.tc/

D E V I C E A C C E S S
C E R T I F I C A T E S A N D S M A R T C A R D S
• The Web Crypto API is an interface allowing a script

to use cryptographic primitives in order to build
systems using cryptography

• Web Crypto API methods are available through
Crypto.subtle property.

• The SubtleCrypto API provides the following
cryptography functions:
• sign() and verify(): create and verify digital signatures.
• encrypt() and decrypt(): encrypt and decrypt data.
• digest(): create a fixed-length, collision-resistant digest of

some data.

S T Y L I N G

S T Y L I N G
C A S C A D I N G S T Y L E S H E E T S

• Cascading Style Sheets (CSS), is a stylesheet
language used to describe the presentation of
a document written in HTML or XML, including
elements such as the layout, colors, and fonts.

• More information in the next lecture!

C O N C L U S I O N S

H T M L 5 = N E X T G E N E R A T I O N F E A T U R E S
F O R M O D E R N W E B D E V E L O P M E N T

1. It’s not one big thing — it is a collection of individual features.

2. You don’t need to throw anything away — applications that
worked yesterday in HTML 4 will still work today in HTML5.

3. It’s easy to get started — upgrading to HTML5 is simple.

4. It already works — it is already well-supported by most
browsers.

5. It’s here to stay — HTML5 is the future of web standards.

R E F E R E N C E S

• Dive into HTML — Mark Pilgrim
http://diveintohtml5.info

• HTML5 - Web Developer Guide, Mozilla Developer Network
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/HTML5

• http://slides.html5rocks.com

• http://html5doctor.com

• HTML5 in Action — Rob Crowther, Joe Lennon, Ash Blue, Greg Wanish. Manning Publications,
2014

• Introducing HTML5 — Bruce Lawson and Remy Sharp. New Riders: Pearson Education, 2014

• Service Workers: an Introduction — Matt Gaunt
https://developers.google.com/web/fundamentals/primers/service-workers/

• The Service Worker Lifecycle — Jake
Archibaldhttpshttps://developers.google.com/web/fundamentals/primers/service-workers/lifecycle

• Introducing Background Sync — Jake
Archibaldhttps://developers.google.com/web/updates/2015/12/background-sync

http://diveintohtml5.info
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/HTML5
http://slides.html5rocks.com
http://html5doctor.com
https://developers.google.com/web/fundamentals/primers/service-workers/
https://developers.google.com/web/updates/2015/12/background-sync
https://developers.google.com/web/fundamentals/primers/service-workers/lifecycle
https://developers.google.com/web/updates/2015/12/background-sync

