
D A T A P E R S I S T E N C E
I N T E R N E T S Y S T E M S

T O M A S Z P A W L A K , P H D
M A R C I N S Z U B E R T , P H D
P O Z N A N U N I V E R S I T Y O F T E C H N O L O G Y , I N S T I T U T E O F C O M P U T I N G S C I E N C E

P R E S E N T A T I O N O U T L I N E

• Motivation

• Relational Databases
• JDBC — Java Database Connectivity
• ORM — Object-Relational Mapping
• JPA — Java Persistence API

• NoSQL Databases
• Challenges and common features
• Key-value stores: Redis, Riak
• Document-oriented databases: MongoDB, CouchDB
• Graph databases: Neo4J
• Column-oriented databases: HBase, Cassandra

M O D E R N W E B A P P L I C A T I O N

• Most web applications need to store
information (e.g. state of resources)
between sessions.

S E R V E RD A T A B A S E

M O T I V A T I O N

• Persistence is making data last across multiple executions
of an application by saving it in non-volatile storage.

• Persistence simply means that we would like our
application’s data to outlive the applications process.

• Most web applications achieve persistence by storing data
in databases, which maintain data integrity and
potentially can reduce the amount of data duplication.

• Database Management Systems (DBMS) provides not
only persistence but also other services such as queries,
auditing and access control.

P R E S E N T A T I O N O U T L I N E

• Motivation

• Relational Databases
• JDBC — Java Database Connectivity
• ORM — Object-Relational Mapping
• JPA — Java Persistence API

• NoSQL Databases
• Challenges and common features
• Key-value stores: Redis, Riak
• Document-oriented databases: MongoDB, CouchDB
• Graph databases: Neo4J
• Column-oriented databases: HBase, Cassandra

R E L A T I O N A L D A T A B A S E S

• Relational database organizes data into one or more
tables (relations) of rows and columns.

• Each table stores exactly one type of entity — the rows
(records) represent entity instances and the columns
represent their attributes (fields).

CustNo Name Address City State Zip

1 Emma Brown 1565 Rainbow Road Los Angeles CA 90014

2 Darren Ryder 4758 Emily Drive Richmond VA 23219

3 Earl B. Thurston 862 Gregory Lane Frankfort KY 40601

4 David Miller 3647 Cedar Lane Waltham MA 02154

R E L A T I O N A L D A T A B A S E S

CustNo Name Address City State Zip

1 Emma Brown 1565 Rainbow Road Los Angeles CA 90014

2 Darren Ryder 4758 Emily Drive Richmond VA 23219

3 Earl B. Thurston 862 Gregory Lane Frankfort KY 40601

4 David Miller 3647 Cedar Lane Waltham MA 02154

ISBN Title Price

0596101015 PHP Cookbook 44.99

0596527403 Dynamic HTML 59.99

0596005436 PHP and MySQL 44.95

0596006815 Programming PHP 39.99

CustNo ISBN Date

1 0596101015 Mar 03 2009

2 0596527403 Dec 19 2008

2 0596101015 Dec 19 2008

3 0596005436 Jun 22 2009

4 0596006815 Jan 16 2009

R E L A T I O N A L D A T A B A S E S
S T R U C T U R E D Q U E R Y L A N G U A G E

• Structured Query Language (SQL) — a special-purpose
programming language designed for managing data held in a
relational database management system. SQL consists of:
• data definition language (DDL) — schema creation and modification:

CREATE, ALTER, TRUNCATE, DROP

• data manipulation language (DML) — data CRUD operations:
INSERT, SELECT, UPDATE, DELETE

• SQL became a standard of the American National Standards
Institute (ANSI) in 1986, and of the International Organization for
Standardization (ISO) in 1987. Current release is SQL:2016.

• Despite standardization, most SQL code is not completely
portable among different database systems without adjustments.

R E L A T I O N A L D A T A B A S E S

• Oracle RDBMS

• MySQL

• Microsoft SQL Server

• PostgreSQL

• IBM DB2

• SQLite

• Maria DB

• Java DB — Apache Derby

R E L A T I O N A L D A T A B A S E S

Source: http://db-engines.com/en/ranking_trend/relational+dbms

http://db-engines.com/en/ranking_trend/relational+dbms

R E L A T I O N A L D B V S N O S Q L D B

Source: https://db-engines.com/en/ranking_categories

https://db-engines.com/en/ranking_categories

R E L A T I O N A L D A T A B A S E S
S T R E N G T H S

• Despite the growing interest in newer database trends, the
relational style remains the most popular — it has been the
focus of intense academic research and industrial
improvements for more than 50 years.

• Many programming models, like object-relational mapping
(ORM), assume an underlying relational database.

• Queries are flexible — you needn’t know how you plan to
actually use the data, since you can always perform some joins,
filters, views, and indexes.

• Normalized relational databases minimize redundancy.

J A V A D A T A B A S E C O N N E C T I V I T Y

• The JDBC API provides universal data access from the Java
programming language to a wide range of tabular data,
including relational databases, spreadsheets, and flat files.

• JDBC allows a Java program to:
• establish a connection with a data source
• create SQL statements (e.g. precompiled statements)
• execute created SQL queries in the database
• retrieve and modify the resulting records

• To use the JDBC API with a particular DBMS, you need a JDBC
driver that provides the connection to the database and
implements the protocol for transferring the query and result.

J D B C D R I V E R S

J D B C E X A M P L E

1. Connect to a data source, like a database.
2. Send queries and update statements to the database.
3. Retrieve and process the results received from the database.

1 public void connectAndQuery(String username, String password) {
2
3 Connection con = DriverManager.getConnection(
4 "jdbc:myDriver:myDatabase",
5 username,
6 password);
7
8 Statement stmt = con.createStatement();
9 ResultSet rs = stmt.executeQuery("SELECT a, b, c FROM Table1");

10
11 while (rs.next()) {
12 int x = rs.getInt("a");
13 String s = rs.getString("b");
14 float f = rs.getFloat("c");
15 }
16 }

J D B C T R A N S A C T I O N S
• A transaction is a set of one or more statements that is executed as

a unit, so either all of the statements are executed or none of them is
executed.

• When a connection is created, it is in auto-commit mode — each
individual SQL statement is treated as a transaction and is
automatically committed right after it is executed.

• Transaction isolation level controls the degree of locking that occurs
when selecting data, e.g.,

1 try {
2 connection.setAutoCommit(false);
3 // create and execute statements etc.
4 connection.commit();
5 } catch(Exception e) {
6 connection.rollback();
7 } finally {
8 connection.close();
9 }

Isolation Level Transactions Dirty Reads Non-Repeatable ReadsPhantom Reads
TRANSACTION_NONE Not supported Not applicable Not applicable Not applicable
TRANSACTION_READ_UNCOMMITTED Supported Allowed Allowed Allowed
TRANSACTION_READ_COMMITTED Supported Prevented Allowed Allowed
TRANSACTION_REPEATABLE_READ Supported Prevented Prevented Allowed
TRANSACTION_SERIALIZABLE Supported Prevented Prevented Prevented

J D B C E X A M L E — M O V I E M A N A G E R

ID TITLE DIRECTOR SYNOPSIS

1 Top Gun Tony Scott When Maverick encounters a pair of

MiGs…

2 Jaws Steven Spielberg A tale of a white shark!

J D B C E X A M L E — M O V I E M A N A G E R

1 public class MovieManager {
2
3 private Connection connection = null;
4 private String url = "jdbc:mysql://localhost:3307/mm";
5
6 private Connection getConnection() {
7 if (connection == null) {
8 try {
9 connection = DriverManager.getConnection(url, "uname", "pass");
10 } catch (SQLException e) {
11 System.err.println("Exception while creating a connection");
12 }
13 }
14 return connection;
15 }

ID TITLE DIRECTOR SYNOPSIS

1 Top Gun Tony Scott When Maverick encounters a pair of

MiGs…

2 Jaws Steven Spielberg A tale of a white shark!

J D B C E X A M L E — M O V I E M A N A G E R
P E R S I S T I N G A M O V I E

1 private String insertSql = "INSERT INTO MOVIES VALUES (?,?,?,?)";
2
3 private void persistMovie() {
4 try {
5 PreparedStatement pst = getConnection().
6 prepareStatement(insertSql);
7
8 pst.setInt(1, 1);
9 pst.setString(2, "Top Gun");

10 pst.setString(3, "Tony Scott");
11 pst.setString(4, "Maverick is a pilot. When he encounters a
12 pair of MiGs over the Persian Gulf...");
13
14 pst.execute();
15 System.out.println("Movie persisted successfully!");
16 } catch (SQLException ex) {
17 System.err.println(ex.getMessage());
18 }
19 }

J D B C E X A M L E — M O V I E M A N A G E R
P E R S I S T I N G A M O V I E
1 public static class Movie {
2 private long id;
3 private String title;
4 private String synopsis;
5 private String director; // Setters and getters omitted
6 }
7
8 private String insertSql = "INSERT INTO MOVIES VALUES (?,?,?,?)";
9

10 private void persistMovie(Movie movie) {
11 try {
12 PreparedStatement pst = getConnection().
13 prepareStatement(insertSql);
14 pst.setInt(1, movie.id);
15 pst.setString(2, movie.title);
16 pst.setString(3, movie.director);
17 pst.setString(4, movie.synopsis);
18 pst.execute();
19 } catch (SQLException ex) {
20 System.err.println(ex.getMessage());
21 }
22 }

O B J E C T - R E L A T I O N A L M A P P I N G

• Storing object-oriented entities in a relational database requires a lot
of repetitive, error-prone code and conversion between data types.

• Object-Relational Mapping (ORM) delegates the task of creating a
correspondence between objects and tables to external tools —
classes, objects, attributes are mapped to tables, rows, columns.

1 public static class Movie {
2 private long id;
3 private String title;
4 private String synopsis;
5 private String director;
6 }

ID: BIGINT
TITLE: VARCHAR
SYNOPSIS: VARCHAR
TITLE: VARCHAR

MOVIES

ORM

1 public static class Movie {
2 private long id;
3 private String title;
4 private String synopsis;
5 private String director; // Setters and getters omitted
6 }
7
8 private String insertSql = "INSERT INTO MOVIES VALUES (?,?,?,?)";
9

10 private void persistMovie(Movie movie) {
11 try {
12 PreparedStatement pst = getConnection().
13 prepareStatement(insertSql);
14 pst.setInt(1, movie.id);
15 pst.setString(2, movie.title);
16 pst.setString(3, movie.director);
17 pst.setString(4, movie.synopsis);
18 pst.execute();
19 } catch (SQLException ex) {
20 System.err.println(ex.getMessage());
21 }
22 }

J D B C E X A M L E — M O V I E M A N A G E R
P E R S I S T I N G A M O V I E

J D B C E X A M L E — M O V I E M A N A G E R
P E R S I S T I N G A M O V I E
1 public static class Movie {
2 private long id;
3 private String title;
4 private String synopsis;
5 private String director; // Setters and getters omitted
6 }
7
8 @PersistenceContext(unitName = "MovieManager")
9 private EntityManager em;

10
11 public void persistMovieORM(Movie movie) {
12 em.persist(movie);
13 }

O R M B E N E F I T S

• ORM reduces the amount of code that needs to be written
— developers transparently use entities instead of tables

• Avoids low-level JDBC and SQL code — eliminates the
'hand' mapping from a SQL ResultSet to a POJO.

• Reduces the amount of work required when a domain data
model and/or relational data model change.

• Provides high end performance features such as caching
and sophisticated database and query optimizations.

O R M D R A W B A C K S

• Using an ORM requires creating formal mapping instructions
telling how to map objects to database records.

• Switching between different ORMs may require significant work
because mapping instructions take different forms.

• The high level of abstraction can make it hard to understand
what happens behind the scenes — if an ORM generates poor
SQL statements, it could result in bad application performance.

• Many ORMs can generate table schema automatically based on
your mapping instructions, but this should never be used in a
production environment.

O R M C H A L L E N G E S

• Type mismatches between programming languages,

• How to find the row from the object, and vice-versa?

• How to keep the object and the row in sync?

• How to represent collections?

• How to represent inheritance?

• How to share sub-objects?

O B J E C T - R E L A T I O N A L M I S M A T C H
I N H E R I T A N C E M I S M A T C H

• Inheritance
• The fundamental object-oriented programming principle

• Class B inherits fields and methods of class A

• No natural way to represent inheritance in a relational
database

• Tables cannot inherit a one from an other

O B J E C T - R E L A T I O N A L M I S M A T C H
F L A T I N H E R I T A N C E M A P P I N G

• Single table strategy:
the sum of the attributes of the
entire hierarchy is flattened down
to a single table (default strategy).

• Advantage — simple and fast:
• never requires a join to retrieve a

single persistent instance from DB;
• persisting or updating an instance

requires only a single statement;

• Disadvantage — wide tables:
• deep inheritance hierarchy leads to

tables with many empty columns.

DTYPE

O B J E C T - R E L A T I O N A L M I S M A T C H
V E R T I C A L I N H E R I T A N C E M A P P I N G

• Joined-subclass strategy:
each entity in the hierarchy,
concrete or abstract, is mapped to
its own dedicated table.

• Advantage — normalization:
• redundant data will not exist in any of

the tables;
• adding new subclasses requires minor

modifications in database schema;

• Disadvantage — low performance:
• retrieving or storing subclasses may

require multiple join operations;

DTYPE

O B J E C T - R E L A T I O N A L M I S M A T C H
H O R I Z O N T A L I N H E R I T A N C E M A P P I N G

• Table-per-concrete-class /
one-table-per-leaf strategy:
each concrete entity hierarchy is
mapped to its own separate table.

• Advantage — efficient (not always):
• when querying instances of a concrete

class — never requires join operations;
• adding new classes does not require

modifying existing tables;

• Disadvantage — restrictions:
• polymorphic queries across a class

hierarchy are expensive (UNION);

O B J E C T - R E L A T I O N A L M I S M A T C H
C H O O S I N G I N H E R I T A N C E S T R A T E G I E S

• Database maintainability:
1. joined-subclass — changing fields requires modifying only one table; adding new

class to the hierarchy only requires a new table (no changes in existing ones).
2. table-per-concrete-class — a change to a column in a parent class requires that

the column change be made in all child tables.
3. single-table — many columns that aren’t used in every row, as well as a rapidly

horizontally growing table.

• Performance:
1. single-table — a select query for any class in the hierarchy will only read from one

table, with no joins necessary.
2. table-per-concrete-class — good performance with the leaf nodes in the class

hierarchy; any queries related to the parent classes will require unions to get
results

3. joined-subclass — requires joins for any select query; the number of joins will be
related to the size (depth) of the class hierarchy.

O B J E C T - R E L A T I O N A L M I S M A T C H
A S S O C I A T I O N S A N D R E L A T I O N S H I P S

• Representing associations in the object world is easy.

• Multiplicity refers to how many of the specific objects are related
to how many of the other target objects.
• One-to-one: one customer has one address
• One-to-many: one customer has multiple addresses
• Many-to-one: many customers have one address
• Many-to-many: one customer has multiple addresses while one address

can be assigned to many customers

• Directionality refers to the possibility of navigating from source
object to target object: unidirectional or bidirectional.

Customer Address

O B J E C T - R E L A T I O N A L M I S M A T C H
M O D E L I N G R E L A T I O N S H I P S

O B J E C T - R E L A T I O N A L M I S M A T C H
M O D E L I N G R E L A T I O N S H I P S

E L E M E N T S O F O R M T E C H N O L O G Y

• Object-relational mapping metadata (in annotations or
XML descriptions — useful when DB configuration changes)

• API for managing object persistence and perform database-
related operations, such as CRUD.

• Query language that allows to retrieve objects without
writing SQL queries specific to the database.

• Transactions and locking mechanisms useful when
accessing data concurrently.

• Callbacks and listeners to hook business logic into the life
cycle of a persistent object.

O R M T E C H N O L O G I E S I N J A V A

• 1994: The Object People developed TopLink for Smalltalk

• 1998: Java version of TopLink developed.

• 2001: Hibernate ORM started — one of the most popular ORMs,
later developed by JBoss which is now a division of Red Hat.

• 2002: Oracle Corporation acquired TopLink.

• 2006: Java Persistence API created to provide a standard API for
Java persistence in relational databases using ORM technology.

• 2007: TopLink source code was donated to the Eclipse Foundation
and the EclipseLink project was born.

• 2009: Sun Microsystems had selected the EclipseLink project as the
reference implementation for the JPA 2.0 (later also for the JPA 2.1).

J A V A P E R S I S T E N C E A P I (J P A)

• JPA 2.1 specification (JSR 338) defines:
• object-relational mapping metadata

(annotations and XML mapping descriptors)

• API for the management of persistence
(entity managers and persistence contexts)

• Java Persistent Query Language (JPQL) — a platform-
independent query language which resembles SQL in syntax, but
operates against entity objects rather than directly with tables.

• JPA implementations use JDBC for executing SQL
statements, but do not require to deal with JDBC directly.

J P A E X A M P L E

1 EntityManagerFactory factory = Persistence.
2 createEntityManagerFactory("emp");
3 EntityManager em = factory.createEntityManager();
4
5 em.getTransaction().begin();
6
7 Query query = em.createQuery("SELECT e " +
8 " FROM Employee e " +
9 " WHERE e.division = 'Research'" +

10 " AND e.avgHours > 40");
11
12 List results = query.getResultList();
13 for (Object res : results) {
14 Employee emp = (Employee) res;
15 emp.setSalary(emp.getSalary() * 1.1);
16 }
17
18 em.getTransaction().commit();
19
20 em.close();

J P A E N T I T I E S

• An entity is a lightweight persistence domain object that
lives shortly in memory and persistently in a database.

• The mapping between entity and DB table is derived
following reasonable defaults but can be overridden using
annotations (convention over configuration):
• the entity name is mapped to a relational table name (e.g., the Book

entity is mapped to a BOOK table);

• attribute names are mapped to a column name (e.g., the id attribute,
or the getId() method, is mapped to an ID column);

• JDBC rules apply for mapping Java primitives to relational data types
(e.g. a String will be mapped to VARCHAR, a Long to a BIGINT).

J P A E N T I T Y — A N N O T A T I O N S
1 @Entity
2 @Table(name = "t_contact")
3 public class Contact implements Serializable {
4 @Id
5 @GeneratedValue(strategy = GenerationType.AUTO)
6 private Long id;
7
8 @NotNull
9 protected String firstName;

10 @Column(name = "surname", nullable = false, length = 2000)
11 protected String lastName;
12
13 @Pattern(regexp = "^\\(?(\\d{3})\\)?[-]?(\\d{3})[-]?(\\d{4})$",
14 message = "{invalid.phonenumber}")
15 protected String mobilePhone;
16
17 @Temporal(TemporalType.DATE)
18 @Past
19 protected Date birthday;
20
21 @Transient
22 private Integer age;
23 }

J P A E N T I T Y — X M L M A P P I N G

• When the metadata are really coupled to the code (e.g., a primary
key), it does make sense to use annotations, since the metadata
are just another aspect of the program.

• XML mapping may be used to configure mapping at deployment.

• XML mapping takes precedence over annotations.

• Certain column options may need to be adjusted depending on the
database type in use — this may be better expressed in external XML
deployment descriptors so the code doesn’t have to be modified.

1 <entity class="pl.put.tpsi.Contact">
2 <table name="contact_xml_mapping" />
3 <attributes>
4 <basic name="lastName">
5 <column name="familyName" length="500" nullable="false" />
6 </basic>
7 </attributes>
8 </entity>

C O L L E C T I O N S I N E N T I T I E S

1 @Entity
2 public class Book {
3 @Id @GeneratedValue
4 private Long id;
5 private String title;
6 private Float price;
7 private String description;
8 private String isbn;
9 private Integer nbOfPage;
10 private Boolean illustrations;
11 @ElementCollection(fetch = FetchType.LAZY)
12 @CollectionTable(name = "Tag")
13 @Column(name = "Value")
14 private List<String> tags = new ArrayList<>();
15 }

C O L L E C T I O N S I N E N T I T I E S

1 @Entity
2 public class Book {
3 @Id @GeneratedValue
4 private Long id;
5 private String title;
6 private Float price;
7 private String description;
8 private String isbn;
9 private Integer nbOfPage;
10 private Boolean illustrations;
11 @ElementCollection(fetch = FetchType.LAZY)
12 @CollectionTable(name = "Tag")
13 @Column(name = "Value")
14 private List<String> tags = new ArrayList<>();
15 }

This is not JPA entity

C O L L E C T I O N S I N E N T I T I E S

1 @Entity
2 public class CD {
3 @Id @GeneratedValue
4 private Long id;
5 private String title;
6 private Float price;
7 private String description;
8 @Lob
9 private byte[] cover;
10 @ElementCollection
11 @CollectionTable(name = "track")
12 @MapKeyColumn(name = "position")
13 @Column(name = "title")
14 private Map<Integer, String> tracks = new HashMap<>();
15 }

E N T I T Y I N H E R I T A N C E

• JPA supports three inheritance strategies which are
switched by the strategy element of @Inheritance:
• InheritanceType.SINGLE_TABLE — default strategy;

table contains a discriminator column to identify the subclass
to which the instance represented by the row belongs;

• InheritanceType.JOINED — the root table contains the
discriminator column; each subclass table contains its own
attributes and a primary key that refers to the root table’s
primary key (they do not hold a discriminator column).

• InheritanceType.TABLE_PER_CLASS — support for this
strategy is optional; there is no discriminator column, no
shared columns but all tables must share a common primary
key that matches across all tables in the hierarchy.

E N T I T Y I N H E R I T A N C E

1 @Entity
2 @Inheritance(strategy = InheritanceType.
3 SINGLE_TABLE)
4 @DiscriminatorColumn (name="disc",
5 discriminatorType =
6 DiscriminatorType.CHAR)
7 @DiscriminatorValue("I")
8 public class Item {
9 @Id @GeneratedValue
10 protected Long id;
11 protected String title;
12 protected Float price;
13 protected String description;
14 }

E N T I T Y I N H E R I T A N C E
1 @Entity
2 @DiscriminatorValue("B")
3 public class Book extends Item {
4 private String isbn;
5 private String publisher;
6 private Integer nbOfPage;
7 private Boolean illustrations;
8 }
9
10 @Entity
11 @DiscriminatorValue("C")
12 public class CD extends Item {
13 private String musicCompany;
14 private Integer numberOfCDs;
15 private Float totalDuration;
16 private String genre;
17 }

1 @Entity
2 @Inheritance(strategy = InheritanceType.
3 SINGLE_TABLE)
4 @DiscriminatorColumn (name="disc",
5 discriminatorType =
6 DiscriminatorType.CHAR)
7 @DiscriminatorValue("I")
8 public class Item {
9 @Id @GeneratedValue
10 protected Long id;
11 protected String title;
12 protected Float price;
13 protected String description;
14 }

E N T I T Y I N H E R I T A N C E
1 @Entity
2 @DiscriminatorValue("B")
3 public class Book extends Item {
4 private String isbn;
5 private String publisher;
6 private Integer nbOfPage;
7 private Boolean illustrations;
8 }
9
10 @Entity
11 @DiscriminatorValue("C")
12 public class CD extends Item {
13 private String musicCompany;
14 private Integer numberOfCDs;
15 private Float totalDuration;
16 private String genre;
17 }

1 @Entity
2 @Inheritance(strategy = InheritanceType.
3 SINGLE_TABLE)
4 @DiscriminatorColumn (name="disc",
5 discriminatorType =
6 DiscriminatorType.CHAR)
7 @DiscriminatorValue("I")
8 public class Item {
9 @Id @GeneratedValue
10 protected Long id;
11 protected String title;
12 protected Float price;
13 protected String description;
14 }

E N T I T Y R E L A T I O N S H I P S

• If entities contained only simple persistent state, the business
of object-relational mapping would be a trivial.

• Most entities have associations with other entities:
• single-valued associations — an association from an entity instance to

another entity instance (where the cardinality of the target is “one”):
@ManyToOne and @OneToOne;

• many-valued association — the source entity references one or more
target entity instances, i.e. relationship is to a collection of other
objects: @OneToMany and @ManyToMany;

• All relationships in Java and JPA are unidirectional, while in a
relational database relationships are defined through foreign
keys and querying such that the inverse query always exists.

S I N G L E - V A L U E D A S S O C I A T I O N S
M A N Y - T O - O N E M A P P I N G

1 @Entity
2 public class Department {
3 @Id
4 private int id;
5 private String name;
6 // ...
7 }

1 @Entity
2 public class Employee {
3 @Id
4 private int id;
5 private String name;
6
7 @ManyToOne
8 @JoinColumn(name="DEPT_ID")
9 private Department department;
10 // ...
11 }

1 @Entity
2 public class ParkingSpace {
3 @Id
4 private int id;
5 private int lot;
6 private String location;
7 // ...
8 }

1 @Entity
2 public class Employee {
3 @Id
4 private int id;
5 private String name;
6
7 @OneToOne
8 @JoinColumn(name="PSPACE_ID")
9 private ParkingSpace parkingSpace;
10 // ...
11 }

S I N G L E - V A L U E D A S S O C I A T I O N S
O N E - T O - O N E M A P P I N G

1 @Entity
2 public class ParkingSpace {
3 @Id
4 private int id;
5 private int lot;
6 private String location;
7
8 @OneToOne(mappedBy="parkingSpace")
9 private Employee employee;
10 // ...
11 }

1 @Entity
2 public class Employee {
3 @Id
4 private int id;
5 private String name;
6
7 @OneToOne
8 @JoinColumn(name="PSPACE_ID")
9 private ParkingSpace parkingSpace;
10 // ...
11 }

S I N G L E - V A L U E D A S S O C I A T I O N S
B I D I R E C T I O N A L O N E - T O - O N E M A P P I N G

C O L L E C T I O N - V A L U E D A S S O C I A T I O N S
B I D I R E C T I O N A L M A N Y - T O - M A N Y M A P P I N G

1 @Entity
2 public class Employee {
3 @Id
4 private int id;
5 private String name;
6
7 @ManyToMany
8 private Collection<Project> projects;
9 // ...

10 }

1 @Entity
2 public class Project {
3 @Id
4 private int id;
5 private String name;
6
7 @ManyToMany(mappedBy="projects")
8 private Collection<Employee> employees;
9 // ...
10 }

C O L L E C T I O N - V A L U E D A S S O C I A T I O N S
B I D I R E C T I O N A L M A N Y - T O - M A N Y M A P P I N G

1 @Entity
2 public class Employee {
3 @Id
4 private int id;
5 private String name;
6
7 @ManyToMany
8 @JoinTable(name="EMP_PROJ",
9 joinColumns=@JoinColumn(name="EMP_ID"),
10 inverseJoinColumns=@JoinColumn(name="PROJ_ID"))
11 private Collection<Project> projects;
12 // ...
13 }

E N T I T Y M A N A G E R

• The entity manager is a central piece of JPA:
• manages the state and life cycle of entities in a persistence context
• creates and removes persistent entity instances,
• finds entities by their primary key,
• locks entities for protecting against concurrent access,
• executes JPQL queries to retrieve entities following certain criteria.

• EntityManager is an interface implemented by a JPA provider
that generates and executes SQL statements.

• Persistence context — a set of managed entity instances in which
only one entity instance with the same persistent identity can exist
(can be seen as a first-level cache where the entity manager
stores entities before flushing the content to the database).

E N T I T Y M A N A G E R A R C H I T E C T U R E

1 EntityManagerFactory emf = Persistence.
2 createEntityManagerFactory("unit");
3 EntityManager em = emf.createEntityManager();

E N T I T Y M A N A G E R I N A C T I O N

1 protected EntityManager em;
2
3 public Employee createEmployee(int id, String name, long salary) {
4 Employee emp = new Employee(id, name, salary);
5 em.getTransaction().begin();
6 em.persist(emp);
7 em.getTransaction().commit();
8 return emp;
9 }
10
11 public void removeEmployee(Employee emp) {
12 if (emp != null) {
13 em.getTransaction().begin();
14 em.remove(emp);
15 em.getTransaction().end();
16 }
17 }
18
19 public Employee findEmployee(int id) {
20 return em.find(Employee.class, id);
21 }

P E R S I S T E N C E U N I T

• The persistence unit indicates to the entity manager:
• type of database to use,
• connection parameters,
• list of entities that can be managed in a persistence context.

• Additionally, persistence unit:
• specifies a persistence provider
• declares the type of transactions

• JTA – external transaction manager
• resource-local – use DBMS

• references external XML mapping files

• Persistence units are defined in an XML file called
persistence.xml, which can contain one or more named
persistence unit configurations, but each persistence unit is
separate and distinct from the others.

P E R S I S T E N C E U N I T
D A T A B A S E S C H E M A G E N E R A T I O N

• JPA 2.1 introduces an API and properties of persistence.xml
that allow generation of database artifacts like tables,
indexes, and constraints in a standard and portable way.

• The persistence provider can be configured to:
• create the database tables,
• load data into the tables,
• remove the tables.

• These tasks are typically used during the development
phase of a release, not against a production database.

P E R S I S T E N C E U N I T E X A M P L E

1 <persistence-unit name="tpsi" transaction-type="RESOURCE_LOCAL">
2 <provider>org.eclipse.persistence.jpa.PersistenceProvider</provider>
3 <class>pl.put.tpsi.Book</class>
4 <mapping-file>META-INF/book_mapping.xml</mapping-file>
5 <properties>
6 <property name="javax.persistence.schema-generation.database.action"
7 value="drop-and-create" />
8 <property name="javax.persistence.schema-generation.scripts.action"
9 value="drop-and-create" />
10 <property name="javax.persistence.schema-generation.scripts.create-target"
11 value="create.sql" />
12 <property name="javax.persistence.schema-generation.scripts.drop-target"
13 value="drop.sql" />
14
15 <property name="javax.persistence.jdbc.driver"
16 value="org.apache.derby.jdbc.EmbeddedDriver" />
17
18 <property name="javax.persistence.jdbc.url"
19 value="jdbc:derby:lab05;create=true" />
20
21 <property name="eclipselink.logging.level" value="INFO" />
22 </properties>
23 </persistence-unit>

Q U E R Y I N G D A T A B A S E

• EntityManager API allows to find a single entity using
its unique identifier.

• To retrieve a set of entities based of different criteria,
five different types of queries that can be used in code:
• Dynamic JPQL queries — the simplest form of query, consisting

of a JPQL query string dynamically specified at runtime.

• Named JPQL queries — static and unchangeable.

• Criteria API — object-oriented query API (introduced in JPA 2.0)

• Native queries — a native SQL statement instead of a JPQL

• Stored procedure queries — JPA 2.1 brings a new API to call
stored procedures.

Q U E R Y I N G D A T A B A S E
D Y N A M I C Q U E R I E S

• Dynamic queries are defined on the fly directly within
an application's business logic:

1 String jpqlQuery = "SELECT c FROM Customer c";
2 if (someCriteria) {
3 jpqlQuery += " WHERE c.firstName = 'Betty'";
4 }
5 query = em.createQuery(jpqlQuery, Customer.class);
6 List<Customer> customers = query.getResultList();

1 query = em.createQuery("SELECT c FROM Customer c
2 WHERE c.firstName = :fname");
3 query.setParameter("fname", "Betty");

• Queries can be parameterized by using named
parameters prefixed with a colon:

Q U E R Y I N G D A T A B A S E
N A M E D J P Q L Q U E R I E S

• Named queries are static queries expressed in metadata inside
either a @NamedQuery annotation or the XML equivalent.

• Executing named queries:

1 @Entity
2 @NamedQueries({
3 @NamedQuery(name = "findAll", query="SELECT c FROM Customer c"),
4 @NamedQuery(name = "findWithParam", query="SELECT c FROM Customer c
5 WHERE c.firstName = :fname")
6 })
7 public class Customer { }

1 Query query = em.createNamedQuery("findWithParam", Customer.class);
2 query.setParameter("fname", "Vincent");
3 List<Customer> customers = query.getResultList();

Q U E R Y I N G D A T A B A S E
C R I T E R I A A P I

• JPA 2.0 introduced Criteria API which allows to write any
query in an object-oriented and syntactically correct way.

• Most of the mistakes that a developer could make writing
a statement are found at compile time, not at runtime
(in contrast to writing JPQL query strings).

1 CriteriaBuilder builder = em.getCriteriaBuilder();
2 CriteriaQuery<Customer> criteriaQuery = builder.createQuery(Customer.class);
3 Root<Customer> c = criteriaQuery.from(Customer.class);
4 criteriaQuery.select(c).where(builder.equal(c.get("firstName"), "Vincent"));
5 Query query = em.createQuery(criteriaQuery);
6 List<Customer> customers = query.getResultList();

J P A P R O V I D E R S

• EclipseLink
• Reference implementation of JPA 2.0 and JPA 2.1
• Included in GlassFish and Oracle WebLogic application servers

• Hibernate ORM
• Provides its own native API, in addition to full JPA support
• Included in JBoss / WildFly application server

• Apache OpenJPA
• Included in IBM WebSphere application server

O T H E R O R M F R A M E W O R K S

• Java
• Apache Cayenne
• JOOQ

• .NET
• Entity Framework
• NHibernate

• Python
• SQL Alchemy

• Ruby on Rails

P R E S E N T A T I O N O U T L I N E

• Motivation

• Relational Databases
• JDBC — Java Database Connectivity
• ORM — Object-Relational Mapping
• JPA — Java Persistence API

• NoSQL Databases
• Challenges and common features
• Key-value stores: Redis, Riak
• Document-oriented databases: MongoDB, CouchDB
• Graph databases: Neo4J
• Column-oriented databases: HBase, Cassandra

N O S Q L D A T A B A S E S

• NoSQL databases come in a variety of shapes — the
only feature that unifies them is that they are not
relational.

• There are no standard APIs to interact with a NoSQL
database — each NoSQL database offers its own library.

• Web-friendly, language-agnostic interactions — many
NoSQL databases ship with RESTful APIs based on
HTTP.

• NoSQL databases find growing use in industry of big
data and web applications.

N O S Q L B U S I N E S S D R I V E R S

• Driving forces:
• variety / flexibility
• volume / scalability
• velocity / performance
• availability

N O S Q L B U S I N E S S D R I V E R S

• Driving forces:
• variety / flexibility
• volume / scalability
• velocity / performance
• availability

• NoSQL answers:
• schemaless
• partitioning
• replication
• eventual consistency

V A R I E T Y / F L E X I B I L I T Y –
R E L A T I O N A L D B M S
• In theory, the relational model is extremely flexible and can

model almost any type of data and relationships

• In practice, it can lead to solutions that overemphasize the
tabular way in which the data is stored and queried using
SQL

• The impedance mismatch between the structure of data in
the database and the models used by most applications
has an adverse effect on the productivity of developers

• Applications are tightly coupled to a database schema —
once a relational schema has been fixed it can become
difficult to change, especially as many applications depend
on it

V A R I E T Y / F L E X I B I L I T Y – N O S Q L
D B M S

• NoSQL databases are schemaless — the responsibility for
managing the structure of data has moved from the
databases to the applications that use them

• The simplified APIs exposed by most NoSQL databases
enable an application to store and retrieve data, but rarely
impose any restrictions on data structure

• When business requirements change, the applications can
freely modify the structure of the data that they store

• The database may end up holding a non-uniform set of
data — requires a great deal of discipline from applications

V O L U M E / S C A L A B I L I T Y

• Many systems make assumptions about the number of
requests — what if the volume of traffic increases?

V O L U M E / S C A L A B I L I T Y

• Many systems make assumptions about the number of
requests — what if the volume of traffic increases?

• Vertical scaling (scaling up) — adding resources to a
single node in a system, e.g., purchasing a faster CPU
or more memory to a single database server.

V O L U M E / S C A L A B I L I T Y

• Many systems make assumptions about the number of
requests — what if the volume of traffic increases?

• Vertical scaling (scaling up) — adding resources to a
single node in a system, e.g., purchasing a faster CPU
or more memory to a single database server.

• Horizontal scaling (scaling out) — adding more nodes
to a system, e.g., partitioning the data into a set
(cluster) of smaller databases and running each
database on a separate commodity server.

S C A L I N G O U T U S I N G S H A R D I N G
(H O R I Z O N T A L P A R T I T I O N I N G)

S H A R E D - N O T H I N G P A T T E R N

F E D E R A T I O N A P P R O A C H

S C A L A B I L I T Y — R D B M S
• Partitioning enables to handle more users or data, but can

also have a detrimental effect on the performance:
• queries that need to join data held in different shards,
• transactions that update data spread across multiple shards.

• Relational databases place great emphasis on ensuring that
data is consistent — ACID transactions.

S C A L A B I L I T Y — R D B M S
• Partitioning enables to handle more users or data, but can

also have a detrimental effect on the performance:
• queries that need to join data held in different shards,
• transactions that update data spread across multiple shards.

• Relational databases place great emphasis on ensuring that
data is consistent — ACID transactions.

• Local ACID transactions use two-phase commit (2PC)
algorithm to achieve consistency.

S C A L A B I L I T Y — R D B M S
• Partitioning enables to handle more users or data, but can

also have a detrimental effect on the performance:
• queries that need to join data held in different shards,
• transactions that update data spread across multiple shards.

• Relational databases place great emphasis on ensuring that
data is consistent — ACID transactions.

• Local ACID transactions use two-phase commit (2PC)
algorithm to achieve consistency.

• Implementing distributed ACID transactions across multiple
databases requires careful coordination of locking — two-
phase commit (2PC) or three-phase commit (3PC)
protocols.

• Consistency comes at a price of decreased performance.

2 P C P R O T O C O L

Source: S. Krakowiak, Middleware Architecture with Patterns and Frameworks, 2009

3 P C P R O T O C O L

Source: S. Krakowiak, Middleware Architecture with Patterns and Frameworks, 2009

S C A L A B I L I T Y — N O S Q L

In partitioned databases, trading some consistency for
availability can lead to dramatic improvements in scalability.

B A S E : A N A C I D A L T E R N A T I V E — D A N P R I T C H E T T , E B A Y

• NoSQL databases provide eventual rather than
immediate consistency — BASE transactions:
• Basic Availability — a guarantee that every request quickly

receives some copy of data or an error,
• Soft state — the state of the system may change over time, at

times without any input (for eventual consistency).
• Eventual consistency — the database may be momentarily

inconsistent but will be consistent eventually.

S C A L A B I L I T Y — N O S Q L

• BASE transactions philosophy:
• focus on throughput and availability, not consistency

• never block a write, even at the risk of being out of sync

• be optimistic — assume that eventually all nodes will catch up
and become consistent.

• keep things simple and fast by avoiding locking

• ACID and BASE are not strict oppositions — they lie
on a continuum and you can decide how close you
want to be to one end of the continuum or the other
according to your priorities.

A V A I L A B I L I T Y — R D B M S

• The relational model does not address the issue of
availability, although many relational database
management systems offer high availability (for a price).

• Availability can be implemented by maintaining a copy
of the database hosted by a separate failover server
that is brought online if the primary server fails.

• Increased availability complicates consistency —
maintaining multiple copies of data requires ensuring
that each copy is modified consistently.

A V A I L A B I L I T Y — N O S Q L D B M S

• Most NoSQL databases are explicitly designed
around high-availability, and their architecture is
geared towards maintaining high performance and
availability.

• Absolute consistency is a lower priority, as long as
data is not lost and eventually becomes consistent.

• NoSQL databases commonly implement one of two
replication schemes for ensuring that data is available:
• primary/secondary replication (master/subordinate replication),

• peer-to-peer replication.

P R I M A R Y / S E C O N D A R Y
R E P L I C A T I O N

P E E R - T O - P E E R
R E P L I C A T I O N

A V A I L A B I L I T Y — N O S Q L D B M S

• Replication improves performance and availability, but at
the increased risk of inconsistency between replicated data.

• Many NoSQL databases include mechanisms that help to
reduce the likelihood of inconsistent data:
• read and write quorums — subset of the servers in a replication

cluster must agree on the value of a data item.
• data versioning — optimistic locking scheme:

1. reading a data item together with version information,
2. attempting to update the data item — re-reading the version

information,
3. if the version information is unchanged — saving modified data back

to the database together with new version information,
4. if the version information is different — retrieving the latest value of

the data from the database and going back to step 2.
• Version information is stored using a version vector (a kind of vector clock)
• Versioning conflicts are resolved using configurable rules (e.g., siblings or

last-write-wins)

https://en.wikipedia.org/wiki/Version_vector
https://en.wikipedia.org/wiki/Vector_clock

C A P T H E O R E M

Though its desirable to have Consistency,
High-availability and Partition-tolerance in every system,
unfortunately no system can achieve all three at the same
time.

• Consistency — all database clients see the same data,
even with concurrent updates.

• Availability — all database clients are able to
immediately access some version of the data.

• Partition tolerance — operations will complete, even if
individual components are unavailable.

NOT
POSSIBLE

AVAILABILITYCONSISTENCY

PARTITION
TOLERANCE

P R E S E N T A T I O N O U T L I N E

• Motivation

• Relational Databases
• JDBC — Java Database Connectivity
• ORM — Object-Relational Mapping
• JPA — Java Persistence API

• NoSQL Databases
• Challenges and common features
• Key-value stores: Redis, Riak
• Document-oriented databases: MongoDB, CouchDB
• Graph databases: Neo4J
• Column-oriented databases: HBase, Cassandra

N O S Q L D A T A B A S E S

• The software industry has attempted to categorize
NoSQL databases into a small set of functional areas:
• key-value stores

• document databases

• column-family databases

• graph databases.

• Some NoSQL databases fit naturally into a single
category, while others include functionality that spans
few categories.

K E Y - V A L U E S T O R E S

• A key-value store implements the simplest of the
NoSQL storage mechanisms — a large hash table.

• The values deposited in a key-value store are BLOBs,
they are opaque to the database management system.

• Key-value stores have no query language, they support
only simple query, insert, and delete operations — the
keys provide the only means of access to the data values.

• In most implementations, reading or writing a single
value is an atomic operation.

000110100111100100011110010

01011001100100110011111001011

AABAB

DFA766

ValueKey

Application

Data Access

Logic

Hash

Function

111100101100011110000001011CD76BB

110100100100111101001001001AAAAA

1111000011001010010110011001FABCC4

Hash function
computes the

location for key
CD76BB

Application
attempts to retrieve
data with the key

CD76BB

Collision-
detection strategy

probes for the correct
key by using the same
strategy used when

inserting data

This key matches
the request. The value in
this slot is returned to

the application

Hash function
indicates this slot,
but the key is not
the same as that
requested by the

application

K E Y - V A L U E S T O R E S

• Key-value stores focus on the ability to store and retrieve
data rather than the structure of that data.

• Most implementations are very quick and efficient,
lending themselves to fast scalable applications that need
to read and write large amounts of data.

• Useful when the data are not highly related — e.g. in a
web application for storing users’ session data.

• With little or no indexes and scanning capabilities, key-
value stores do not allow to perform complex queries on
your data (other than basic CRUD operations).

K E Y - V A L U E S T O R E S
R I A K

• Availability — Riak writes to and reads from multiple servers
to offer data availability even when hardware or the network
itself are experiencing failure conditions.

• Masterless — Requests are not held hostage to a specific
server in the cluster that may or may not be available.

• Scalability — Riak automatically distributes data around the
cluster (consistent hashing) and yields a near-linear
performance increase as you add capacity.

• Tunable CAP properties — eventual to strong consistency.

• Values are accessible through simple RESTful API through
HTTP (GET, PUT, DELETE) — flexibility for a web system.

K E Y - V A L U E S T O R E S
R I A K R I N G

K E Y - V A L U E S T O R E S
R E D I S

• Unique data model — values can contain more complex
data types: strings, lists, sets, hashes; Redis is not a plain
key-value store, actually it is a data structures server.

• In-memory — high performance is achieved with the
limitation of data sets that can't be larger than memory.

• Optional durability — the dataset can be asynchronously
transferred from memory to disk from time to time.

• Master-slave asynchronous replication — slave servers are
exact copies of master server and can serve read queries.

D O C U M E N T D A T A B A S E S

• A document database is similar in concept to a key-value
store except that the values are documents (collections of
named fields and values).

• The data in the fields in a document can be encoded in a
variety of ways, including XML, YAML, JSON, BSON etc.

• The fields in the documents are exposed to the database
management system, enabling an application to query and
filter data by using the values in these fields.

• In-place updates enable an application to modify the values
of specific fields without rewriting the entire document.

M O N G O D B

• Agility — document data model makes it easy for you to store
data of any structure and dynamically modify the schema.

• High availability — implemented using primary/secondary
replication.

• Scalability — automatic sharding distributes data across a
cluster of machines.

• High performance — secondary indexes provide fast, fine-
grained access to data, including fully consistent indexes on
any field (also geospatial and text).

M O N G O D B

• Documents are organized into collections

• JSON
• Document format
• Query format

M O N G O D B : I N S E R T D O C U M E N T
db.restaurants.insert(

{
"address": {

"street": "2 Avenue",
"zipcode": "10075",
"building": "1480",
"coord": [-73.9557413, 40.7720266]

},
"borough": "Manhattan",
"cuisine": "Italian",
"grades": [

{
"date": ISODate("2014-10-01T00:00:00Z"),
"grade": "A",
"score": 11

},
{

"date": ISODate("2014-01-16T00:00:00Z"),
"grade": "B",
"score": 17

}
],
"name": "Vella",
"restaurant_id": "41704620"

}
)

M O N G O D B : F I N D D O C U M E N T
// get all documents in collection
db.restaurants.find()

// get documents by field value
db.restaurants.find({ "borough": "Manhattan" })

// get documents by value of field of nested object
db.restaurants.find({ "address.zipcode": "10075" })

// use operator (greater than)
db.restaurants.find({ "grades.score": { $gt: 30 } })

// combine conditions (AND)
db.restaurants.find({ "cuisine": "Italian", "address.zipcode": "10075" })

// combine conditions (OR)
db.restaurants.find(

{ $or: [{ "cuisine": "Italian" }, { "address.zipcode": "10075" }] }
)

// sort documents (1 and -1 denote ascending and descending orders, respectively)
db.restaurants.find().sort({ "borough": 1, "address.zipcode": 1 })

M O N G O D B : U P D A T E D O C U M E N T
// update the first found document
db.restaurants.update(

// condition
{ "name": "Juni" },
// values to set
{

$set: { "cuisine": "American (New)" },
$currentDate: { "lastModified": true }

}
)

// update all matching documents
db.restaurants.update(

{ "address.zipcode": "10016", cuisine: "Other" },
{

$set: { cuisine: "Category To Be Determined" },
$currentDate: { "lastModified": true }

},
{ multi: true }

)

M O N G O D B : R E M O V E D O C U M E N T
// remove all matching documents
db.restaurants.remove({ "borough": "Manhattan" })

// remove just one matching document
db.restaurants.remove({ "borough": "Queens" }, { justOne: true })

// remove all documents
db.restaurants.remove({})

// drop collection
db.restaurants.drop()

C O L U M N - F A M I L Y D A T A B A S E S

• Key-value stores and document databases are very
row focused — optimized towards retrieving
complete entities that match one or more criteria.

• Column-family databases allow to retrieve data from a
subset of fields across a collection of documents.

• Column-family — a logically related collection of
columns that hold the data for a set of entities.

C O L U M N - F A M I L Y D A T A B A S E S
V E R S U S R E L A T I O N A L D A T A B A S E S

• Like relational databases:
• a column-family DB organizes its data into rows and columns
• column families give flexibility to perform complex queries

• Unlike a relational database:
• the names of columns do not have to be static,
• structure of the information can vary from row to row —

columns do not have to conform to a rigidly defined schema

• The real power of a column-family database lies in its
denormalized approach to structuring sparse data.

C O L U M N - F A M I L Y D A T A B A S E S
P E R F O R M A N C E A N D G E N E R A L I T Y

• Column-family databases are designed to hold vast
amounts of data (hundreds of millions, or billions of
rows containing hundreds of columns).

• A well-designed column-family database is inherently
faster and more scalable than a relational database
that holds an equivalent volume of data.

• Performance comes at a price of decreased generality
— column-families are designed to optimize the most
common queries.

A R E L A T I O N A L M O D E L

A C O L U M N M O D E L

 13Dat a St or age f or Moder n Hi gh -Per f or mance Busi n ess Appl i cat i ons

Another feature of a typical column-family database is that the structure of the
information in a column-family can vary from row to row; different rows can
have different fields and the data does not confirm to a rigid layout. In the ex-
ample shown in Figure 6, this variability is useful if the database needs to include
the details of customers in other countries. For example, the United Kingdom
includes county names rather than states in addresses, and uses post codes in-
stead of zip codes. If Mark Hanson relocated to the UK, his address details might
change as shown in Figure 7. Note that if you query a column-family database
by referencing an indexed column that does not exist in every row, such as the
State column described previously, the rows without this column will simply be
omitted from the results (they will not be included in the index that spans this
column). This feature enables a column-family database to hold sparse data very
efficiently.

Figur e 7

A column-family database with different fields for the columns

Although Figures 6 and 7 show the column-families for customers appended
together to form a single logical entity they are most likely to be stored sepa-
rately, with the CustomerInfo column-family on one disk and the AddressInfo
column-family on another, in a simple form of vertical partitioning. You should
really think of the structure in terms of column-families rather than rows. The
data for a single entity that spans multiple column-families will have the same
row key in each column-family. As an alternative to the tabular layout shown
previously, you can visualize the data shown in Figure 7 as the following pair of
structures.

1

CustomerInfoCustomerID

CustomerInfo:Title

CustomerInfo:FirstName

CustomerInfo:LastName

Row Key Column Families

AddressInfo

Mr

Mark

Hanson

AddressInfo:StreetAddress

AddressInfo:City

AddressInfo:County

AddressInfo:PostCode

999 Thames St

Reading

Berkshire

RG99 922

2 CustomerInfo:Title

CustomerInfo:FirstName

CustomerInfo:LastName

Ms

Lisa

Andrews

AddressInfo:StreetAddress

AddressInfo:City

AddressInfo:State

AddressInfo:ZipCode

888 W. Front St

Boise

ID

54321

3 CustomerInfo:Title

CustomerInfo:FirstName

CustomerInfo:LastName

Mr

Walter

Harp

AddressInfo:StreetAddress

AddressInfo:City

AddressInfo:State

AddressInfo:ZipCode

999 500th Ave

Bellevue

WA

12345

In a column-family database,

you can think of a column

as a simple name/value

pair and a column-family

as a collection of columns.

Unlike a relational database,

the names of columns do

not have to be static (they

can actually be generated

from data items).

P H Y S I C A L S T O R A G E M A Y V A R Y

C O L U M N - F A M I L Y D A T A B A S E S
C A S S A N D R A

• Decentralized — no single points of failure, no network
bottlenecks, every node in the cluster is identical.

• Fault Tolerant — data is replicated to multiple nodes;
failed nodes can be replaced with no downtime.

• Scaling — read and write throughput both increase
linearly as new machines are added

• Hadoop integration, with MapReduce support.

Q U E R Y I N G C A S S A N D R A

• Cassandra Query Language (CQL) is SQL-inspired
query language for Cassandra DB
SELECT name, occupation FROM users WHERE userid IN (199, 200, 207);
SELECT JSON name, occupation FROM users WHERE userid = 199;
SELECT name AS user_name, occupation AS user_occupation FROM users;

SELECT time, value
FROM events
WHERE event_type = 'myEvent'
AND time > '2011-02-03'
AND time <= '2012-01-01'

SELECT COUNT (*) AS user_count FROM users;

G R A P H D A T A B A S E S

• The main focus in graph databases is on the relationships
between the stored entities.

• A graph database stores two types of information:
• nodes that you can think of as instances of entities,
• edges which specify the relationships between nodes.

• Nodes and edges can both have properties that provide
information; additionally, edges can have a direction
indicating the nature of the relationship.

G R A P H D A T A B A S E S
C O M M O N A P P L I C A T I O N S

• Social Networking — a typical social networking database
contains a significant number of contacts together with the
connections that these contacts have with each other.

• Calculating Routes — a graph database helps in solving
complex routing problems that would require considerable
resources to resolve by using an algorithmic approach.

• Generating Recommendations — a graph database as a
recommendations engine by storing information about
which products are frequently purchased together.

G R A P H D A T A B A S E S
R E T R I E V I N G D A T A

• All graph databases provide a means to walk through
a set of connected nodes based on their relationships:
imperative or declarative approach to querying.

• All queries against a graph database require a node
(or a collection of nodes) as a starting point.

• Most graph databases allow to define indexes over
properties to enable the database server to quickly
locate a node or relationship.

G R A P H D A T A B A S E S
N E O 4 J

• Neo4j is an open-source, ACID transaction compliant
graph database implemented in Java and Scala.

• Cypher Query Language — a declarative, SQL-inspired
language for describing patterns in graphs — allows us
to describe what we want from a graph database
without requiring us to describe exactly how to do it:

1 MATCH (ch:Person { name:'Charlie Sheen' })-[:ACTED_IN]-(m:Movie)
2 RETURN m

1 MATCH (you {name:"You"})-[:FRIEND]->(yourFriends)
2 RETURN you, yourFriends

C O N C L U S I O N S

• Relational databases provide an excellent mechanism for storing
and accessing data in a very generalized manner but this
generalization can also be a weakness.

• Relational model might not always provide the optimal way to
meet specific data access requirements.

• NoSQL databases might not be as comprehensive as
a relational ones, but their focus on a well-defined tasks
enables them to be highly optimized for those tasks.

• Understanding the strength and weaknesses of different
NoSQL databases allows to match the application requirements.

R E F E R E N C E S
• Data Access for Highly-Scalable Solutions: Using SQL, NoSQL, and Polyglot

Persistence — Douglas McMurtry, Andrew Oakley, John Sharp, Mani
Subramanian, Hanz Zhang, Microsoft, Inc., 2013
https://www.microsoft.com/en-us/download/details.aspx?id=40327

• Seven Databases in Seven Weeks: A Guide to Modern Databases and NoSQL
Movement — Eric Redmond and Jim R. Wilson,
Pragmatic Programmers, LLC, 2012

• Pro JPA 2: Mastering the Java Persistence API,
Mike Keith and Merrick Schnicariol, Apress, 2009

• Java Platform, Enterprise Edition: The Java EE Tutorial
https://docs.oracle.com/javaee/7/tutorial

• Java Persistence — http://en.wikibooks.org/wiki/Java_Persistence

• Getting Started with MongoDB - https://docs.mongodb.org/getting-
started/shell/

https://www.microsoft.com/en-us/download/details.aspx?id=40327
https://docs.oracle.com/javaee/7/tutorial
http://en.wikibooks.org/wiki/Java_Persistence
https://docs.mongodb.org/getting-started/shell/

